CHOP induces activating transcription factor 5 (ATF5) to trigger apoptosis in response to perturbations in protein homeostasis
Environmental stresses that disrupt protein homeostasis induce phosphorylation of eIF2, triggering repression of global protein synthesis coincident with preferential translation of ATF4, a transcriptional activator of the integrated stress response (ISR). Depending on the extent of protein disrupti...
Saved in:
Published in | Molecular biology of the cell Vol. 24; no. 15; pp. 2477 - 2490 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Society for Cell Biology
01.08.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Environmental stresses that disrupt protein homeostasis induce phosphorylation of eIF2, triggering repression of global protein synthesis coincident with preferential translation of ATF4, a transcriptional activator of the integrated stress response (ISR). Depending on the extent of protein disruption, ATF4 may not be able to restore proteostatic control and instead switches to a terminal outcome that features elevated expression of the transcription factor CHOP (GADD153/DDIT3). The focus of this study is to define the mechanisms by which CHOP directs gene regulatory networks that determine cell fate. We find that in response to proteasome inhibition, CHOP enhances the expression of a collection of genes encoding transcription regulators, including ATF5, which is preferentially translated during eIF2 phosphorylation. Transcriptional expression of ATF5 is directly induced by both CHOP and ATF4. Knockdown of ATF5 increases cell survival in response to proteasome inhibition, supporting the idea that both ATF5 and CHOP have proapoptotic functions. Transcriptome analysis of ATF5-dependent genes reveals targets involved in apoptosis, including NOXA, which is important for inducing cell death during proteasome inhibition. This study suggests that the ISR features a feedforward loop of stress-induced transcriptional regulators, each subject to transcriptional and translational control, which can switch cell fate toward apoptosis. |
---|---|
AbstractList | Environmental stresses that disrupt protein homeostasis induce phosphorylation of eIF2, triggering repression of global protein synthesis coincident with preferential translation of ATF4, a transcriptional activator of the integrated stress response (ISR). Depending on the extent of protein disruption, ATF4 may not be able to restore proteostatic control and instead switches to a terminal outcome that features elevated expression of the transcription factor CHOP (GADD153/DDIT3). The focus of this study is to define the mechanisms by which CHOP directs gene regulatory networks that determine cell fate. We find that in response to proteasome inhibition, CHOP enhances the expression of a collection of genes encoding transcription regulators, including ATF5, which is preferentially translated during eIF2 phosphorylation. Transcriptional expression of ATF5 is directly induced by both CHOP and ATF4. Knockdown of ATF5 increases cell survival in response to proteasome inhibition, supporting the idea that both ATF5 and CHOP have proapoptotic functions. Transcriptome analysis of ATF5-dependent genes reveals targets involved in apoptosis, including NOXA, which is important for inducing cell death during proteasome inhibition. This study suggests that the ISR features a feedforward loop of stress-induced transcriptional regulators, each subject to transcriptional and translational control, which can switch cell fate toward apoptosis.Environmental stresses that disrupt protein homeostasis induce phosphorylation of eIF2, triggering repression of global protein synthesis coincident with preferential translation of ATF4, a transcriptional activator of the integrated stress response (ISR). Depending on the extent of protein disruption, ATF4 may not be able to restore proteostatic control and instead switches to a terminal outcome that features elevated expression of the transcription factor CHOP (GADD153/DDIT3). The focus of this study is to define the mechanisms by which CHOP directs gene regulatory networks that determine cell fate. We find that in response to proteasome inhibition, CHOP enhances the expression of a collection of genes encoding transcription regulators, including ATF5, which is preferentially translated during eIF2 phosphorylation. Transcriptional expression of ATF5 is directly induced by both CHOP and ATF4. Knockdown of ATF5 increases cell survival in response to proteasome inhibition, supporting the idea that both ATF5 and CHOP have proapoptotic functions. Transcriptome analysis of ATF5-dependent genes reveals targets involved in apoptosis, including NOXA, which is important for inducing cell death during proteasome inhibition. This study suggests that the ISR features a feedforward loop of stress-induced transcriptional regulators, each subject to transcriptional and translational control, which can switch cell fate toward apoptosis. This study addresses the mechanisms by which CHOP directs gene regulatory networks and determines cell fate. Transcriptional expression of ATF5 is activated by both CHOP and ATF4 in the integrated stress response. CHOP and ATF5 control a switch to activate apoptotic genes and decrease cell survival in response to loss of proteostatic control. Environmental stresses that disrupt protein homeostasis induce phosphorylation of eIF2, triggering repression of global protein synthesis coincident with preferential translation of ATF4, a transcriptional activator of the integrated stress response (ISR). Depending on the extent of protein disruption, ATF4 may not be able to restore proteostatic control and instead switches to a terminal outcome that features elevated expression of the transcription factor CHOP (GADD153/DDIT3). The focus of this study is to define the mechanisms by which CHOP directs gene regulatory networks that determine cell fate. We find that in response to proteasome inhibition, CHOP enhances the expression of a collection of genes encoding transcription regulators, including ATF5, which is preferentially translated during eIF2 phosphorylation. Transcriptional expression of ATF5 is directly induced by both CHOP and ATF4. Knockdown of ATF5 increases cell survival in response to proteasome inhibition, supporting the idea that both ATF5 and CHOP have proapoptotic functions. Transcriptome analysis of ATF5-dependent genes reveals targets involved in apoptosis, including NOXA , which is important for inducing cell death during proteasome inhibition. This study suggests that the ISR features a feedforward loop of stress-induced transcriptional regulators, each subject to transcriptional and translational control, which can switch cell fate toward apoptosis. Environmental stresses that disrupt protein homeostasis induce phosphorylation of eIF2, triggering repression of global protein synthesis coincident with preferential translation of ATF4, a transcriptional activator of the integrated stress response (ISR). Depending on the extent of protein disruption, ATF4 may not be able to restore proteostatic control and instead switches to a terminal outcome that features elevated expression of the transcription factor CHOP (GADD153/DDIT3). The focus of this study is to define the mechanisms by which CHOP directs gene regulatory networks that determine cell fate. We find that in response to proteasome inhibition, CHOP enhances the expression of a collection of genes encoding transcription regulators, including ATF5, which is preferentially translated during eIF2 phosphorylation. Transcriptional expression of ATF5 is directly induced by both CHOP and ATF4. Knockdown of ATF5 increases cell survival in response to proteasome inhibition, supporting the idea that both ATF5 and CHOP have proapoptotic functions. Transcriptome analysis of ATF5-dependent genes reveals targets involved in apoptosis, including NOXA, which is important for inducing cell death during proteasome inhibition. This study suggests that the ISR features a feedforward loop of stress-induced transcriptional regulators, each subject to transcriptional and translational control, which can switch cell fate toward apoptosis. |
Author | McClintick, Jeanette N. Shan, Jixiu Fusakio, Michael E. Kilberg, Michael S. Wek, Ronald C. Zhou, Donghui Teske, Brian F. |
Author_xml | – sequence: 1 givenname: Brian F. surname: Teske fullname: Teske, Brian F. organization: Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN 46202 – sequence: 2 givenname: Michael E. surname: Fusakio fullname: Fusakio, Michael E. organization: Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN 46202 – sequence: 3 givenname: Donghui surname: Zhou fullname: Zhou, Donghui organization: Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN 46202 – sequence: 4 givenname: Jixiu surname: Shan fullname: Shan, Jixiu organization: Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610 – sequence: 5 givenname: Jeanette N. surname: McClintick fullname: McClintick, Jeanette N. organization: Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN 46202 – sequence: 6 givenname: Michael S. surname: Kilberg fullname: Kilberg, Michael S. organization: Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610 – sequence: 7 givenname: Ronald C. surname: Wek fullname: Wek, Ronald C. organization: Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN 46202 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23761072$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UU1rFTEUDVKxH7p2J1nWxbS5M0km2QjlYa1QqIu6Dpm8O6-RmWRMMgU3_nbz2lpUcHUD93zcnHNMDkIMSMhbYGfANJzPgztD6BoGDWOyf0GOQHe64ULJg_pmQjcgWn5IjnP-xhhwLvtX5LDtegmsb4_Iz83VzRfqw3Z1mKl1xd_b4sOOlmRDdskvxcdAx7qJiQp6enF7Kd7TEivA73aYqF3iUmL2uarQhHmJIeMesGAqaxrsXuBhuaRYsM67OGPMxVbOa_JytFPGN0_zhHy9_Hi7uWqubz593lxcN46DKk2rneu0UyO0VoxMDKB7JxVzA9-qoe2QsUEp7KRVdhw1byXTW6GV7UFqkK47IR8edZd1mHHrMNT_TWZJfrbph4nWm783wd-ZXbw3Xd_2NdEqcPokkOL3FXMxs88Op8kGjGs2wEHKasx5hb770-vZ5HfoFXD-CHAp5pxwfIYAM_taTa3V1FoNA7OvtTLEPwzny0Ow9Vg__Zf3C6Riqhs |
CitedBy_id | crossref_primary_10_3390_genes11050563 crossref_primary_10_1016_j_mcn_2019_04_003 crossref_primary_10_1038_s41420_019_0220_4 crossref_primary_10_1074_jbc_R117_791061 crossref_primary_10_1172_JCI179570 crossref_primary_10_1002_adbi_202400297 crossref_primary_10_7717_peerj_16683 crossref_primary_10_1016_j_biopha_2023_114544 crossref_primary_10_1016_j_critrevonc_2018_05_003 crossref_primary_10_1016_j_semcdb_2022_01_002 crossref_primary_10_3389_fmicb_2021_645161 crossref_primary_10_1007_s12640_018_9962_7 crossref_primary_10_1007_s00394_017_1576_y crossref_primary_10_1038_ncomms12185 crossref_primary_10_1074_jbc_TM117_000893 crossref_primary_10_3390_genes10110864 crossref_primary_10_3390_ijms24021482 crossref_primary_10_1038_cr_2018_16 crossref_primary_10_3390_biology13030146 crossref_primary_10_3389_fcell_2021_636295 crossref_primary_10_3390_ijms23137129 crossref_primary_10_3390_life12101477 crossref_primary_10_1016_j_celrep_2018_07_068 crossref_primary_10_1186_s13045_022_01317_0 crossref_primary_10_1002_jez_b_23124 crossref_primary_10_2147_CMAR_S496925 crossref_primary_10_1007_s00109_019_01787_9 crossref_primary_10_3390_ijms242417423 crossref_primary_10_1016_j_mito_2020_05_009 crossref_primary_10_1042_BSR20211699 crossref_primary_10_1016_j_biocel_2021_106059 crossref_primary_10_1126_scitranslmed_abd3904 crossref_primary_10_2174_1386207325666220705115007 crossref_primary_10_1016_j_arr_2022_101702 crossref_primary_10_3390_antiox10020175 crossref_primary_10_1073_pnas_1907548116 crossref_primary_10_3390_ijms21207704 crossref_primary_10_1016_j_jid_2017_04_029 crossref_primary_10_1186_s13045_024_01615_9 crossref_primary_10_3390_ijms22158306 crossref_primary_10_1038_s41392_021_00646_9 crossref_primary_10_14336_AD_2024_1019 crossref_primary_10_1111_brv_12860 crossref_primary_10_18632_oncotarget_9818 crossref_primary_10_1186_s13036_018_0119_2 crossref_primary_10_1186_s41231_020_00071_0 crossref_primary_10_1074_jbc_M114_635144 crossref_primary_10_1111_cpr_13796 crossref_primary_10_1016_j_virusres_2023_199271 crossref_primary_10_1016_j_biocel_2021_105934 crossref_primary_10_3390_ijms22010363 crossref_primary_10_1074_jbc_M116_722256 crossref_primary_10_1007_s12672_024_01485_0 crossref_primary_10_1074_jbc_RA119_008336 crossref_primary_10_1038_s41590_019_0584_x crossref_primary_10_1177_0271678X211046992 crossref_primary_10_1016_j_devcel_2021_02_009 crossref_primary_10_1111_jnc_15282 crossref_primary_10_1016_j_molcel_2019_11_008 crossref_primary_10_1126_sciadv_adh8228 crossref_primary_10_3390_cells11213509 crossref_primary_10_1093_hmg_ddab078 crossref_primary_10_1074_jbc_R116_733899 crossref_primary_10_1073_pnas_1620705114 crossref_primary_10_1091_mbc_e14_02_0704 crossref_primary_10_3389_fnagi_2020_581849 crossref_primary_10_1128_MCB_00412_17 crossref_primary_10_1186_s12915_018_0548_x crossref_primary_10_1074_jbc_M115_693184 crossref_primary_10_1074_jbc_M115_705640 crossref_primary_10_1016_j_exger_2024_112379 crossref_primary_10_1016_j_bbabio_2024_149532 crossref_primary_10_1158_1078_0432_CCR_17_1231 crossref_primary_10_1172_jci_insight_99543 crossref_primary_10_1080_14789450_2025_2451704 crossref_primary_10_1186_s12935_024_03443_w crossref_primary_10_3390_biom13121789 crossref_primary_10_1016_j_tox_2024_153760 crossref_primary_10_3390_cancers12092385 crossref_primary_10_1091_mbc_E16_01_0039 crossref_primary_10_1177_1010428320914477 crossref_primary_10_1016_j_tem_2017_07_003 crossref_primary_10_1016_j_phymed_2022_154350 crossref_primary_10_1016_j_cellsig_2024_111353 crossref_primary_10_1083_jcb_201809056 crossref_primary_10_3892_ol_2018_9131 crossref_primary_10_1091_mbc_E17_06_0362 crossref_primary_10_1016_j_celrep_2022_111789 crossref_primary_10_1016_j_cellsig_2019_02_007 crossref_primary_10_1186_s13023_022_02331_8 crossref_primary_10_3390_ijms23031320 crossref_primary_10_14336_AD_2024_0058 crossref_primary_10_3389_fimmu_2023_1282996 crossref_primary_10_1016_j_freeradbiomed_2020_12_013 crossref_primary_10_1042_BCJ20190654 crossref_primary_10_1186_s12967_023_04498_5 crossref_primary_10_1016_j_jbc_2025_108171 crossref_primary_10_1016_j_tcb_2020_03_001 crossref_primary_10_1111_boc_202100002 crossref_primary_10_3389_fcell_2021_715923 crossref_primary_10_1016_j_phrs_2021_105603 crossref_primary_10_1126_scitranslmed_abq1533 crossref_primary_10_3390_antiox10101543 crossref_primary_10_1016_j_neo_2021_01_004 crossref_primary_10_3390_cells10081901 crossref_primary_10_1084_jem_20200137 crossref_primary_10_1016_j_jbc_2022_102277 crossref_primary_10_1007_s00018_021_03887_7 crossref_primary_10_1016_j_tibs_2017_05_002 crossref_primary_10_3390_ijms241713656 crossref_primary_10_3390_ijms21020643 crossref_primary_10_1038_nrm_2017_110 crossref_primary_10_1007_s11626_022_00739_x crossref_primary_10_1016_j_molmet_2018_07_007 crossref_primary_10_3389_fnagi_2023_1326127 crossref_primary_10_1093_jn_nxaa396 |
Cites_doi | 10.1074/jbc.M413660200 10.3945/an.112.001891 10.1101/gad.12.7.982 10.1083/jcb.153.5.1011 10.1101/gad.1250704 10.1074/jbc.M708530200 10.1111/j.1365-2141.2006.06132.x 10.1111/j.1471-4159.2008.05749.x 10.1182/blood-2006-08-041830 10.1146/annurev.micro.59.031805.133833 10.1016/S1097-2765(00)00108-8 10.1371/journal.pbio.0040374 10.1074/jbc.M409173200 10.1038/onc.2009.46 10.1073/pnas.0400541101 10.3945/an.112.002113 10.1016/j.cell.2007.04.027 10.1111/j.1463-1326.2010.01277.x 10.1038/ncb0311-184 10.1128/MCB.01507-09 10.1091/mbc.e11-06-0510 10.1042/bj20030076 10.1074/jbc.M707879200 10.1158/0008-5472.CAN-05-0686 10.1016/S1097-2765(03)00105-9 10.1042/BJ20061261 10.1158/0008-5472.CAN-05-0676 10.1146/annurev.biochem.73.011303.074134 10.1016/j.tem.2009.05.008 10.1038/ncb2738 10.1016/S0092-8674(04)00344-7 10.1074/jbc.M206149200 10.1074/jbc.M707781200 10.1074/jbc.M301107200 10.1126/science.1209038 10.1016/j.cmet.2012.07.007 10.1016/B978-0-12-385114-7.00019-2 10.1006/geno.2002.6838 10.1074/jbc.M806735200 10.1523/JNEUROSCI.3447-04.2005 10.1074/jbc.M112.363622 10.1016/j.cmet.2012.07.005 10.1038/nrm2308 10.1089/ars.2007.1764 10.1074/jbc.M110.216093 10.1038/sj.emboj.7600030 10.1128/MCB.21.4.1249-1259.2001 10.1146/annurev.biochem.052308.114844 10.1073/pnas.0807611106 |
ContentType | Journal Article |
Copyright | 2013 Teske This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( ). 2013 |
Copyright_xml | – notice: 2013 Teske This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( ). 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1091/mbc.e13-01-0067 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1939-4586 |
EndPage | 2490 |
ExternalDocumentID | PMC3727939 23761072 10_1091_mbc_e13_01_0067 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: T32 DK064466 – fundername: NIGMS NIH HHS grantid: GM049164 – fundername: NIDDK NIH HHS grantid: T32DK064466 – fundername: NIDDK NIH HHS grantid: R01 DK092062 – fundername: NIDDK NIH HHS grantid: DK94729 – fundername: NIDDK NIH HHS grantid: DK92062 – fundername: NIDDK NIH HHS grantid: R01 DK094729 – fundername: NIGMS NIH HHS grantid: R01 GM049164 |
GroupedDBID | --- .GJ 123 18M 29M 2WC 34G 39C 3O- 4.4 53G 5RE 5VS AAYXX ABDNZ ABSQV ACGFO ACYGS ADBBV ADNWM AEILP AENEX AFFNX AFHIN AFOSN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL C1A CITATION CS3 D0L DIK DU5 E3Z EBS EJD F5P F9R GX1 H13 HH5 HYE IAO IGS IH2 IHR INIJC ITC KQ8 OHT R0Z RPM SJN TCB TR2 W8F WOQ YHG YKV YNT YQT YWH ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c418t-29cc39c8f12a5f05b197c680cb4d8b23e00b88e36a8aff942609d598a716916c3 |
ISSN | 1059-1524 1939-4586 |
IngestDate | Thu Aug 21 18:34:05 EDT 2025 Fri Jul 11 09:59:43 EDT 2025 Thu Apr 03 07:05:39 EDT 2025 Tue Jul 01 02:18:55 EDT 2025 Thu Apr 24 23:02:53 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell Biology. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c418t-29cc39c8f12a5f05b197c680cb4d8b23e00b88e36a8aff942609d598a716916c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3727939 |
PMID | 23761072 |
PQID | 1416694244 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3727939 proquest_miscellaneous_1416694244 pubmed_primary_23761072 crossref_primary_10_1091_mbc_e13_01_0067 crossref_citationtrail_10_1091_mbc_e13_01_0067 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-08-00 2013-Aug 20130801 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-00 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular biology of the cell |
PublicationTitleAlternate | Mol Biol Cell |
PublicationYear | 2013 |
Publisher | The American Society for Cell Biology |
Publisher_xml | – name: The American Society for Cell Biology |
References | Schroder M (B35) 2005; 74 Greene LA (B7) 2009; 108 Oslowski CM (B24) 2012; 16 Kilberg MS (B15) 2009; 20 Tabas I (B37) 2011; 13 Harding HP (B10) 2000; 6 Wei Y (B44) 2008; 283 Chen JJ (B4) 2007; 109 Shringarpure R (B36) 2006; 134 Ploner C (B29) 2008; 27 Papa FR (B28) 2012; 2 Youle RJ (B47) 2008; 9 Yang X (B46) 2004; 117 Lee YY (B16) 2009; 284 Puthalakath H (B31) 2007; 129 Zhou D (B49) 2008; 283 Ron D (B33) 2012; 4 Han J (B8) 2013; 15 Chen C (B51) 2004; 279 Wek RC (B45) 2007; 9 Hansen MB (B9) 2002; 80 Powers ET (B30) 2009; 78 B39 Angelastro JM (B1) 2005; 25 Jiang HY (B13) 2005; 280 Oslowski CM (B25) 2010; 12 Palam LR (B26) 2011; 286 Fernandez Y (B6) 2005; 65 Lerner AG (B17) 2012; 16 Bruhat A (B3) 2002; 277 Harding HP (B11) 2003; 11 Novoa I (B23) 2001; 153 Liu X (B18) 2012; 287 Chiribau CB (B5) 2010; 30 Lu PD (B19) 2004; 23 Ma Y (B20) 2003; 278 Teske BF (B38) 2011; 490 Wang Q (B42) 2009; 106 Qin JZ (B32) 2005; 65 Zinszner H (B50) 1998; 12 Walter P (B41) 2011; 334 Kilberg MS (B14) 2012; 3 Marciniak SJ (B21) 2004; 18 Zhong C (B48) 2003; 372 Baird TD (B2) 2012; 3 Watatani Y (B43) 2008; 283 Pan YX (B27) 2007; 401 McCullough KD (B22) 2001; 21 Hinnebusch AG (B12) 2005; 59 Vattem KM (B40) 2004; 101 Rutkowski DT (B34) 2006; 4 19641509 - Oncogene. 2008 Dec;27 Suppl 1:S84-92 12351626 - J Biol Chem. 2002 Dec 13;277(50):48107-14 18097445 - Nat Rev Mol Cell Biol. 2008 Jan;9(1):47-59 12840028 - J Biol Chem. 2003 Sep 12;278(37):34864-73 16846475 - Br J Haematol. 2006 Jul;134(2):145-56 17110456 - Blood. 2007 Apr 1;109(7):2693-9 12667446 - Mol Cell. 2003 Mar;11(3):619-33 16989641 - Biochem J. 2007 Jan 1;401(1):299-307 21029301 - Diabetes Obes Metab. 2010 Oct;12 Suppl 2:58-65 19298183 - Annu Rev Biochem. 2009;78:959-91 22951443 - Cold Spring Harb Perspect Med. 2012 Sep;2(9):a007666 19131336 - J Biol Chem. 2009 Mar 13;284(11):6661-73 22116877 - Science. 2011 Nov 25;334(6059):1081-6 22883233 - Cell Metab. 2012 Aug 8;16(2):250-64 15601821 - Genes Dev. 2004 Dec 15;18(24):3066-77 18458088 - J Biol Chem. 2008 Jul 4;283(27):18773-81 12213205 - Genomics. 2002 Sep;80(3):344-50 11381086 - J Cell Biol. 2001 May 28;153(5):1011-22 22585904 - Adv Nutr. 2012 May;3(3):307-21 17760508 - Antioxid Redox Signal. 2007 Dec;9(12):2357-71 18055463 - J Biol Chem. 2008 Feb 1;283(5):2543-53 11106749 - Mol Cell. 2000 Nov;6(5):1099-108 15277680 - Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11269-74 19164757 - Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2200-5 21266259 - Methods Enzymol. 2011;490:333-56 19046351 - J Neurochem. 2009 Jan;108(1):11-22 14713949 - EMBO J. 2004 Jan 14;23(1):169-79 23209157 - Cold Spring Harb Perspect Biol. 2012 Dec;4(12). pii: a013177. doi: 10.1101/cshperspect.a013177 9531536 - Genes Dev. 1998 Apr 1;12(7):982-95 11158311 - Mol Cell Biol. 2001 Feb;21(4):1249-59 15829641 - J Neurosci. 2005 Apr 13;25(15):3889-99 15952902 - Annu Rev Biochem. 2005;74:739-89 21364565 - Nat Cell Biol. 2011 Mar;13(3):184-90 12628003 - Biochem J. 2003 Jun 1;372(Pt 2):603-9 16153175 - Annu Rev Microbiol. 2005;59:407-50 23624402 - Nat Cell Biol. 2013 May;15(5):481-90 16024631 - Cancer Res. 2005 Jul 15;65(14):6294-304 21285359 - J Biol Chem. 2011 Apr 1;286(13):10939-49 22585903 - Adv Nutr. 2012 May;3(3):295-306 17604722 - Cell. 2007 Jun 29;129(7):1337-49 18195013 - J Biol Chem. 2008 Mar 14;283(11):7064-73 22528486 - J Biol Chem. 2012 Jun 1;287(23):19599-609 15684420 - J Biol Chem. 2005 Apr 8;280(14):14189-202 17090218 - PLoS Biol. 2006 Nov;4(11):e374 21917591 - Mol Biol Cell. 2011 Nov;22(22):4390-405 16024630 - Cancer Res. 2005 Jul 15;65(14):6282-93 19800252 - Trends Endocrinol Metab. 2009 Nov;20(9):436-43 22883234 - Cell Metab. 2012 Aug 8;16(2):265-73 20479126 - Mol Cell Biol. 2010 Jul;30(14):3722-31 15109498 - Cell. 2004 Apr 30;117(3):387-98 15385533 - J Biol Chem. 2004 Dec 3;279(49):50829-39 |
References_xml | – volume: 280 start-page: 14189 year: 2005 ident: B13 publication-title: J Biol Chem doi: 10.1074/jbc.M413660200 – volume: 3 start-page: 295 year: 2012 ident: B14 publication-title: Adv Nutr doi: 10.3945/an.112.001891 – volume: 12 start-page: 982 year: 1998 ident: B50 publication-title: Genes Dev doi: 10.1101/gad.12.7.982 – volume: 153 start-page: 1011 year: 2001 ident: B23 publication-title: J Cell Biol doi: 10.1083/jcb.153.5.1011 – volume: 18 start-page: 3066 year: 2004 ident: B21 publication-title: Genes Dev doi: 10.1101/gad.1250704 – volume: 283 start-page: 7064 year: 2008 ident: B49 publication-title: J Biol Chem doi: 10.1074/jbc.M708530200 – volume: 134 start-page: 145 year: 2006 ident: B36 publication-title: Br J Haematol doi: 10.1111/j.1365-2141.2006.06132.x – volume: 108 start-page: 11 year: 2009 ident: B7 publication-title: J Neurochem doi: 10.1111/j.1471-4159.2008.05749.x – volume: 109 start-page: 2693 year: 2007 ident: B4 publication-title: Blood doi: 10.1182/blood-2006-08-041830 – volume: 59 start-page: 407 year: 2005 ident: B12 publication-title: Annu Rev Microbiol doi: 10.1146/annurev.micro.59.031805.133833 – volume: 6 start-page: 1099 year: 2000 ident: B10 publication-title: Mol Cell doi: 10.1016/S1097-2765(00)00108-8 – volume: 4 start-page: e374 year: 2006 ident: B34 publication-title: PLoS Biol doi: 10.1371/journal.pbio.0040374 – volume: 279 start-page: 50829 year: 2004 ident: B51 publication-title: J Biol Chem doi: 10.1074/jbc.M409173200 – volume: 27 start-page: S84 issue: 1 year: 2008 ident: B29 publication-title: Oncogene doi: 10.1038/onc.2009.46 – volume: 101 start-page: 11269 year: 2004 ident: B40 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0400541101 – volume: 3 start-page: 307 year: 2012 ident: B2 publication-title: Adv Nutr doi: 10.3945/an.112.002113 – volume: 129 start-page: 1337 year: 2007 ident: B31 publication-title: Cell doi: 10.1016/j.cell.2007.04.027 – volume: 12 start-page: 58 issue: 2 year: 2010 ident: B25 publication-title: Diabetes Obes Metab doi: 10.1111/j.1463-1326.2010.01277.x – volume: 13 start-page: 184 year: 2011 ident: B37 publication-title: Nat Cell Biol doi: 10.1038/ncb0311-184 – volume: 30 start-page: 3722 year: 2010 ident: B5 publication-title: Mol Cell Biol doi: 10.1128/MCB.01507-09 – ident: B39 doi: 10.1091/mbc.e11-06-0510 – volume: 372 start-page: 603 year: 2003 ident: B48 publication-title: Biochem J doi: 10.1042/bj20030076 – volume: 2 start-page: a007666 year: 2012 ident: B28 publication-title: Cold Spring Harb Perspect Med – volume: 283 start-page: 18773 year: 2008 ident: B44 publication-title: J Biol Chem doi: 10.1074/jbc.M707879200 – volume: 65 start-page: 6294 year: 2005 ident: B6 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-05-0686 – volume: 11 start-page: 619 year: 2003 ident: B11 publication-title: Mol Cell doi: 10.1016/S1097-2765(03)00105-9 – volume: 401 start-page: 299 year: 2007 ident: B27 publication-title: Biochem J doi: 10.1042/BJ20061261 – volume: 65 start-page: 6282 year: 2005 ident: B32 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-05-0676 – volume: 74 start-page: 739 year: 2005 ident: B35 publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.73.011303.074134 – volume: 20 start-page: 436 year: 2009 ident: B15 publication-title: Trends Endocrinol Metab doi: 10.1016/j.tem.2009.05.008 – volume: 15 start-page: 481 year: 2013 ident: B8 publication-title: Nat Cell Biol doi: 10.1038/ncb2738 – volume: 117 start-page: 387 year: 2004 ident: B46 publication-title: Cell doi: 10.1016/S0092-8674(04)00344-7 – volume: 277 start-page: 48107 year: 2002 ident: B3 publication-title: J Biol Chem doi: 10.1074/jbc.M206149200 – volume: 283 start-page: 2543 year: 2008 ident: B43 publication-title: J Biol Chem doi: 10.1074/jbc.M707781200 – volume: 278 start-page: 34864 year: 2003 ident: B20 publication-title: J Biol Chem doi: 10.1074/jbc.M301107200 – volume: 334 start-page: 1081 year: 2011 ident: B41 publication-title: Science doi: 10.1126/science.1209038 – volume: 16 start-page: 250 year: 2012 ident: B17 publication-title: Cell Metab doi: 10.1016/j.cmet.2012.07.007 – volume: 490 start-page: 333 year: 2011 ident: B38 publication-title: Methods Enzymol doi: 10.1016/B978-0-12-385114-7.00019-2 – volume: 4 start-page: a013177 year: 2012 ident: B33 publication-title: Cold Spring Harb Perspect – volume: 80 start-page: 344 year: 2002 ident: B9 publication-title: Genomics doi: 10.1006/geno.2002.6838 – volume: 284 start-page: 6661 year: 2009 ident: B16 publication-title: J Biol Chem doi: 10.1074/jbc.M806735200 – volume: 25 start-page: 3889 year: 2005 ident: B1 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3447-04.2005 – volume: 287 start-page: 19599 year: 2012 ident: B18 publication-title: J Biol Chem doi: 10.1074/jbc.M112.363622 – volume: 16 start-page: 265 year: 2012 ident: B24 publication-title: Cell Metab doi: 10.1016/j.cmet.2012.07.005 – volume: 9 start-page: 47 year: 2008 ident: B47 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2308 – volume: 9 start-page: 2357 year: 2007 ident: B45 publication-title: Antioxid Redox Signal doi: 10.1089/ars.2007.1764 – volume: 286 start-page: 10939 year: 2011 ident: B26 publication-title: J Biol Chem doi: 10.1074/jbc.M110.216093 – volume: 23 start-page: 169 year: 2004 ident: B19 publication-title: EMBO J doi: 10.1038/sj.emboj.7600030 – volume: 21 start-page: 1249 year: 2001 ident: B22 publication-title: Mol Cell Biol doi: 10.1128/MCB.21.4.1249-1259.2001 – volume: 78 start-page: 959 year: 2009 ident: B30 publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.052308.114844 – volume: 106 start-page: 2200 year: 2009 ident: B42 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0807611106 – reference: 21285359 - J Biol Chem. 2011 Apr 1;286(13):10939-49 – reference: 15829641 - J Neurosci. 2005 Apr 13;25(15):3889-99 – reference: 19164757 - Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2200-5 – reference: 22585903 - Adv Nutr. 2012 May;3(3):295-306 – reference: 15601821 - Genes Dev. 2004 Dec 15;18(24):3066-77 – reference: 19298183 - Annu Rev Biochem. 2009;78:959-91 – reference: 17090218 - PLoS Biol. 2006 Nov;4(11):e374 – reference: 19046351 - J Neurochem. 2009 Jan;108(1):11-22 – reference: 12667446 - Mol Cell. 2003 Mar;11(3):619-33 – reference: 21917591 - Mol Biol Cell. 2011 Nov;22(22):4390-405 – reference: 14713949 - EMBO J. 2004 Jan 14;23(1):169-79 – reference: 11158311 - Mol Cell Biol. 2001 Feb;21(4):1249-59 – reference: 15277680 - Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11269-74 – reference: 16989641 - Biochem J. 2007 Jan 1;401(1):299-307 – reference: 21266259 - Methods Enzymol. 2011;490:333-56 – reference: 19800252 - Trends Endocrinol Metab. 2009 Nov;20(9):436-43 – reference: 9531536 - Genes Dev. 1998 Apr 1;12(7):982-95 – reference: 16846475 - Br J Haematol. 2006 Jul;134(2):145-56 – reference: 17110456 - Blood. 2007 Apr 1;109(7):2693-9 – reference: 22528486 - J Biol Chem. 2012 Jun 1;287(23):19599-609 – reference: 15385533 - J Biol Chem. 2004 Dec 3;279(49):50829-39 – reference: 12213205 - Genomics. 2002 Sep;80(3):344-50 – reference: 23624402 - Nat Cell Biol. 2013 May;15(5):481-90 – reference: 11381086 - J Cell Biol. 2001 May 28;153(5):1011-22 – reference: 12351626 - J Biol Chem. 2002 Dec 13;277(50):48107-14 – reference: 18097445 - Nat Rev Mol Cell Biol. 2008 Jan;9(1):47-59 – reference: 16024631 - Cancer Res. 2005 Jul 15;65(14):6294-304 – reference: 22585904 - Adv Nutr. 2012 May;3(3):307-21 – reference: 17604722 - Cell. 2007 Jun 29;129(7):1337-49 – reference: 12628003 - Biochem J. 2003 Jun 1;372(Pt 2):603-9 – reference: 17760508 - Antioxid Redox Signal. 2007 Dec;9(12):2357-71 – reference: 22883234 - Cell Metab. 2012 Aug 8;16(2):265-73 – reference: 19641509 - Oncogene. 2008 Dec;27 Suppl 1:S84-92 – reference: 15952902 - Annu Rev Biochem. 2005;74:739-89 – reference: 18055463 - J Biol Chem. 2008 Feb 1;283(5):2543-53 – reference: 18195013 - J Biol Chem. 2008 Mar 14;283(11):7064-73 – reference: 21364565 - Nat Cell Biol. 2011 Mar;13(3):184-90 – reference: 16024630 - Cancer Res. 2005 Jul 15;65(14):6282-93 – reference: 23209157 - Cold Spring Harb Perspect Biol. 2012 Dec;4(12). pii: a013177. doi: 10.1101/cshperspect.a013177 – reference: 21029301 - Diabetes Obes Metab. 2010 Oct;12 Suppl 2:58-65 – reference: 18458088 - J Biol Chem. 2008 Jul 4;283(27):18773-81 – reference: 15109498 - Cell. 2004 Apr 30;117(3):387-98 – reference: 20479126 - Mol Cell Biol. 2010 Jul;30(14):3722-31 – reference: 16153175 - Annu Rev Microbiol. 2005;59:407-50 – reference: 22883233 - Cell Metab. 2012 Aug 8;16(2):250-64 – reference: 15684420 - J Biol Chem. 2005 Apr 8;280(14):14189-202 – reference: 22116877 - Science. 2011 Nov 25;334(6059):1081-6 – reference: 22951443 - Cold Spring Harb Perspect Med. 2012 Sep;2(9):a007666 – reference: 12840028 - J Biol Chem. 2003 Sep 12;278(37):34864-73 – reference: 19131336 - J Biol Chem. 2009 Mar 13;284(11):6661-73 – reference: 11106749 - Mol Cell. 2000 Nov;6(5):1099-108 |
SSID | ssj0014467 |
Score | 2.5072834 |
Snippet | Environmental stresses that disrupt protein homeostasis induce phosphorylation of eIF2, triggering repression of global protein synthesis coincident with... This study addresses the mechanisms by which CHOP directs gene regulatory networks and determines cell fate. Transcriptional expression of ATF5 is activated by... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2477 |
SubjectTerms | Activating Transcription Factors - genetics Activating Transcription Factors - metabolism Animals Apoptosis Apoptosis Regulatory Proteins - genetics Apoptosis Regulatory Proteins - metabolism Cell Survival Cells, Cultured Eukaryotic Initiation Factor-2 - metabolism Feedback, Physiological Gene Expression Regulation Gene Knockout Techniques Gene Regulatory Networks Homeostasis Leupeptins - pharmacology Mice Phosphorylation Promoter Regions, Genetic Proteasome Inhibitors - pharmacology Protein Biosynthesis Protein Processing, Post-Translational Proteolysis Proto-Oncogene Proteins c-bcl-2 - genetics Proto-Oncogene Proteins c-bcl-2 - metabolism Response Elements Stress, Physiological Thapsigargin - pharmacology Transcription Factor CHOP - physiology Transcriptional Activation Transcriptome |
Title | CHOP induces activating transcription factor 5 (ATF5) to trigger apoptosis in response to perturbations in protein homeostasis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23761072 https://www.proquest.com/docview/1416694244 https://pubmed.ncbi.nlm.nih.gov/PMC3727939 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiQuiDfhpUXiUBQ52F6vs3ssVaNQVOCQShUXa71ZN5aIHcW21HLgL_CXmfHajtNSCbg4kb1eS_6-nZ0Zz4OQt4wFC2Fi4SipEycI_Ikjk4V2OFMswa6jsi7HcPI5nJ0Gx2f8bDD41Ytaqsp4rH_8Ma_kf1CFc4ArZsn-A7LdpHAC_gO-cASE4fhXGB_OvnwdgVFdYVgVZiigf9X2fci24sC21BlxVCYP5lOOjgDUOMEux5Rftc7XZY51SerUljpktu6nsTYb2I_iXrQ51nSA32W-MjlolUVa9HXbk7bT7qit7NTEH-DHgc5DYAobDvRhg6KliyueVgXosnkvkn-bI_FtmVdW2c_Ol1XaOYWW1nl7nF6kVd97gZ0kROu9MFbiSvwUzZt62I1ItmnVLfV4X8AGtuvLNckPeg_AtYr1-Aif4jm4D_dHAnTrVU0EDAQCq9ffboFdYGJ76Ra57YPdUdvoHz91n6XAdp609aGk9_7K07CwdHP_rpZzzXS5GoHbU2nm98m9xhahB5ZYD8jAZA_JHdud9PIR-Yn0og296JZedIde1NKLcrqP5HpHy5w21KIdtWAW2lILB-xQCy821KI9aj0mp9Oj-eHMadp1ODrwROn4UmsmtUg8X_HE5bEnJzoUro5BHMQ-M64bC2FYqIRKEomtEeSCS6Hqgk2hZk_IXpZn5hmhiU64UQorLwVBwoxQItThQnOYVJhwMSTj9vVGuqlljy1Vvkc2psKLAJrIeCxyvQihGZL97oa1LeNy89A3LV4RiFpcIiozeVWAleyFocTM0CF5avHrJmuBH5LJDrLdACzjvnslS5d1OXcGJgQsguc3zvmC3N0unZdkr9xU5hWowmX8uqbnb7iXuOw |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CHOP+induces+activating+transcription+factor+5+%28ATF5%29+to+trigger+apoptosis+in+response+to+perturbations+in+protein+homeostasis&rft.jtitle=Molecular+biology+of+the+cell&rft.au=Teske%2C+Brian+F&rft.au=Fusakio%2C+Michael+E&rft.au=Zhou%2C+Donghui&rft.au=Shan%2C+Jixiu&rft.date=2013-08-01&rft.eissn=1939-4586&rft.volume=24&rft.issue=15&rft.spage=2477&rft_id=info:doi/10.1091%2Fmbc.E13-01-0067&rft_id=info%3Apmid%2F23761072&rft.externalDocID=23761072 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-1524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-1524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-1524&client=summon |