CHOP induces activating transcription factor 5 (ATF5) to trigger apoptosis in response to perturbations in protein homeostasis

Environmental stresses that disrupt protein homeostasis induce phosphorylation of eIF2, triggering repression of global protein synthesis coincident with preferential translation of ATF4, a transcriptional activator of the integrated stress response (ISR). Depending on the extent of protein disrupti...

Full description

Saved in:
Bibliographic Details
Published inMolecular biology of the cell Vol. 24; no. 15; pp. 2477 - 2490
Main Authors Teske, Brian F., Fusakio, Michael E., Zhou, Donghui, Shan, Jixiu, McClintick, Jeanette N., Kilberg, Michael S., Wek, Ronald C.
Format Journal Article
LanguageEnglish
Published United States The American Society for Cell Biology 01.08.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Environmental stresses that disrupt protein homeostasis induce phosphorylation of eIF2, triggering repression of global protein synthesis coincident with preferential translation of ATF4, a transcriptional activator of the integrated stress response (ISR). Depending on the extent of protein disruption, ATF4 may not be able to restore proteostatic control and instead switches to a terminal outcome that features elevated expression of the transcription factor CHOP (GADD153/DDIT3). The focus of this study is to define the mechanisms by which CHOP directs gene regulatory networks that determine cell fate. We find that in response to proteasome inhibition, CHOP enhances the expression of a collection of genes encoding transcription regulators, including ATF5, which is preferentially translated during eIF2 phosphorylation. Transcriptional expression of ATF5 is directly induced by both CHOP and ATF4. Knockdown of ATF5 increases cell survival in response to proteasome inhibition, supporting the idea that both ATF5 and CHOP have proapoptotic functions. Transcriptome analysis of ATF5-dependent genes reveals targets involved in apoptosis, including NOXA, which is important for inducing cell death during proteasome inhibition. This study suggests that the ISR features a feedforward loop of stress-induced transcriptional regulators, each subject to transcriptional and translational control, which can switch cell fate toward apoptosis.
AbstractList Environmental stresses that disrupt protein homeostasis induce phosphorylation of eIF2, triggering repression of global protein synthesis coincident with preferential translation of ATF4, a transcriptional activator of the integrated stress response (ISR). Depending on the extent of protein disruption, ATF4 may not be able to restore proteostatic control and instead switches to a terminal outcome that features elevated expression of the transcription factor CHOP (GADD153/DDIT3). The focus of this study is to define the mechanisms by which CHOP directs gene regulatory networks that determine cell fate. We find that in response to proteasome inhibition, CHOP enhances the expression of a collection of genes encoding transcription regulators, including ATF5, which is preferentially translated during eIF2 phosphorylation. Transcriptional expression of ATF5 is directly induced by both CHOP and ATF4. Knockdown of ATF5 increases cell survival in response to proteasome inhibition, supporting the idea that both ATF5 and CHOP have proapoptotic functions. Transcriptome analysis of ATF5-dependent genes reveals targets involved in apoptosis, including NOXA, which is important for inducing cell death during proteasome inhibition. This study suggests that the ISR features a feedforward loop of stress-induced transcriptional regulators, each subject to transcriptional and translational control, which can switch cell fate toward apoptosis.Environmental stresses that disrupt protein homeostasis induce phosphorylation of eIF2, triggering repression of global protein synthesis coincident with preferential translation of ATF4, a transcriptional activator of the integrated stress response (ISR). Depending on the extent of protein disruption, ATF4 may not be able to restore proteostatic control and instead switches to a terminal outcome that features elevated expression of the transcription factor CHOP (GADD153/DDIT3). The focus of this study is to define the mechanisms by which CHOP directs gene regulatory networks that determine cell fate. We find that in response to proteasome inhibition, CHOP enhances the expression of a collection of genes encoding transcription regulators, including ATF5, which is preferentially translated during eIF2 phosphorylation. Transcriptional expression of ATF5 is directly induced by both CHOP and ATF4. Knockdown of ATF5 increases cell survival in response to proteasome inhibition, supporting the idea that both ATF5 and CHOP have proapoptotic functions. Transcriptome analysis of ATF5-dependent genes reveals targets involved in apoptosis, including NOXA, which is important for inducing cell death during proteasome inhibition. This study suggests that the ISR features a feedforward loop of stress-induced transcriptional regulators, each subject to transcriptional and translational control, which can switch cell fate toward apoptosis.
This study addresses the mechanisms by which CHOP directs gene regulatory networks and determines cell fate. Transcriptional expression of ATF5 is activated by both CHOP and ATF4 in the integrated stress response. CHOP and ATF5 control a switch to activate apoptotic genes and decrease cell survival in response to loss of proteostatic control. Environmental stresses that disrupt protein homeostasis induce phosphorylation of eIF2, triggering repression of global protein synthesis coincident with preferential translation of ATF4, a transcriptional activator of the integrated stress response (ISR). Depending on the extent of protein disruption, ATF4 may not be able to restore proteostatic control and instead switches to a terminal outcome that features elevated expression of the transcription factor CHOP (GADD153/DDIT3). The focus of this study is to define the mechanisms by which CHOP directs gene regulatory networks that determine cell fate. We find that in response to proteasome inhibition, CHOP enhances the expression of a collection of genes encoding transcription regulators, including ATF5, which is preferentially translated during eIF2 phosphorylation. Transcriptional expression of ATF5 is directly induced by both CHOP and ATF4. Knockdown of ATF5 increases cell survival in response to proteasome inhibition, supporting the idea that both ATF5 and CHOP have proapoptotic functions. Transcriptome analysis of ATF5-dependent genes reveals targets involved in apoptosis, including NOXA , which is important for inducing cell death during proteasome inhibition. This study suggests that the ISR features a feedforward loop of stress-induced transcriptional regulators, each subject to transcriptional and translational control, which can switch cell fate toward apoptosis.
Environmental stresses that disrupt protein homeostasis induce phosphorylation of eIF2, triggering repression of global protein synthesis coincident with preferential translation of ATF4, a transcriptional activator of the integrated stress response (ISR). Depending on the extent of protein disruption, ATF4 may not be able to restore proteostatic control and instead switches to a terminal outcome that features elevated expression of the transcription factor CHOP (GADD153/DDIT3). The focus of this study is to define the mechanisms by which CHOP directs gene regulatory networks that determine cell fate. We find that in response to proteasome inhibition, CHOP enhances the expression of a collection of genes encoding transcription regulators, including ATF5, which is preferentially translated during eIF2 phosphorylation. Transcriptional expression of ATF5 is directly induced by both CHOP and ATF4. Knockdown of ATF5 increases cell survival in response to proteasome inhibition, supporting the idea that both ATF5 and CHOP have proapoptotic functions. Transcriptome analysis of ATF5-dependent genes reveals targets involved in apoptosis, including NOXA, which is important for inducing cell death during proteasome inhibition. This study suggests that the ISR features a feedforward loop of stress-induced transcriptional regulators, each subject to transcriptional and translational control, which can switch cell fate toward apoptosis.
Author McClintick, Jeanette N.
Shan, Jixiu
Fusakio, Michael E.
Kilberg, Michael S.
Wek, Ronald C.
Zhou, Donghui
Teske, Brian F.
Author_xml – sequence: 1
  givenname: Brian F.
  surname: Teske
  fullname: Teske, Brian F.
  organization: Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN 46202
– sequence: 2
  givenname: Michael E.
  surname: Fusakio
  fullname: Fusakio, Michael E.
  organization: Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN 46202
– sequence: 3
  givenname: Donghui
  surname: Zhou
  fullname: Zhou, Donghui
  organization: Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN 46202
– sequence: 4
  givenname: Jixiu
  surname: Shan
  fullname: Shan, Jixiu
  organization: Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610
– sequence: 5
  givenname: Jeanette N.
  surname: McClintick
  fullname: McClintick, Jeanette N.
  organization: Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN 46202
– sequence: 6
  givenname: Michael S.
  surname: Kilberg
  fullname: Kilberg, Michael S.
  organization: Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610
– sequence: 7
  givenname: Ronald C.
  surname: Wek
  fullname: Wek, Ronald C.
  organization: Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN 46202
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23761072$$D View this record in MEDLINE/PubMed
BookMark eNp1UU1rFTEUDVKxH7p2J1nWxbS5M0km2QjlYa1QqIu6Dpm8O6-RmWRMMgU3_nbz2lpUcHUD93zcnHNMDkIMSMhbYGfANJzPgztD6BoGDWOyf0GOQHe64ULJg_pmQjcgWn5IjnP-xhhwLvtX5LDtegmsb4_Iz83VzRfqw3Z1mKl1xd_b4sOOlmRDdskvxcdAx7qJiQp6enF7Kd7TEivA73aYqF3iUmL2uarQhHmJIeMesGAqaxrsXuBhuaRYsM67OGPMxVbOa_JytFPGN0_zhHy9_Hi7uWqubz593lxcN46DKk2rneu0UyO0VoxMDKB7JxVzA9-qoe2QsUEp7KRVdhw1byXTW6GV7UFqkK47IR8edZd1mHHrMNT_TWZJfrbph4nWm783wd-ZXbw3Xd_2NdEqcPokkOL3FXMxs88Op8kGjGs2wEHKasx5hb770-vZ5HfoFXD-CHAp5pxwfIYAM_taTa3V1FoNA7OvtTLEPwzny0Ow9Vg__Zf3C6Riqhs
CitedBy_id crossref_primary_10_3390_genes11050563
crossref_primary_10_1016_j_mcn_2019_04_003
crossref_primary_10_1038_s41420_019_0220_4
crossref_primary_10_1074_jbc_R117_791061
crossref_primary_10_1172_JCI179570
crossref_primary_10_1002_adbi_202400297
crossref_primary_10_7717_peerj_16683
crossref_primary_10_1016_j_biopha_2023_114544
crossref_primary_10_1016_j_critrevonc_2018_05_003
crossref_primary_10_1016_j_semcdb_2022_01_002
crossref_primary_10_3389_fmicb_2021_645161
crossref_primary_10_1007_s12640_018_9962_7
crossref_primary_10_1007_s00394_017_1576_y
crossref_primary_10_1038_ncomms12185
crossref_primary_10_1074_jbc_TM117_000893
crossref_primary_10_3390_genes10110864
crossref_primary_10_3390_ijms24021482
crossref_primary_10_1038_cr_2018_16
crossref_primary_10_3390_biology13030146
crossref_primary_10_3389_fcell_2021_636295
crossref_primary_10_3390_ijms23137129
crossref_primary_10_3390_life12101477
crossref_primary_10_1016_j_celrep_2018_07_068
crossref_primary_10_1186_s13045_022_01317_0
crossref_primary_10_1002_jez_b_23124
crossref_primary_10_2147_CMAR_S496925
crossref_primary_10_1007_s00109_019_01787_9
crossref_primary_10_3390_ijms242417423
crossref_primary_10_1016_j_mito_2020_05_009
crossref_primary_10_1042_BSR20211699
crossref_primary_10_1016_j_biocel_2021_106059
crossref_primary_10_1126_scitranslmed_abd3904
crossref_primary_10_2174_1386207325666220705115007
crossref_primary_10_1016_j_arr_2022_101702
crossref_primary_10_3390_antiox10020175
crossref_primary_10_1073_pnas_1907548116
crossref_primary_10_3390_ijms21207704
crossref_primary_10_1016_j_jid_2017_04_029
crossref_primary_10_1186_s13045_024_01615_9
crossref_primary_10_3390_ijms22158306
crossref_primary_10_1038_s41392_021_00646_9
crossref_primary_10_14336_AD_2024_1019
crossref_primary_10_1111_brv_12860
crossref_primary_10_18632_oncotarget_9818
crossref_primary_10_1186_s13036_018_0119_2
crossref_primary_10_1186_s41231_020_00071_0
crossref_primary_10_1074_jbc_M114_635144
crossref_primary_10_1111_cpr_13796
crossref_primary_10_1016_j_virusres_2023_199271
crossref_primary_10_1016_j_biocel_2021_105934
crossref_primary_10_3390_ijms22010363
crossref_primary_10_1074_jbc_M116_722256
crossref_primary_10_1007_s12672_024_01485_0
crossref_primary_10_1074_jbc_RA119_008336
crossref_primary_10_1038_s41590_019_0584_x
crossref_primary_10_1177_0271678X211046992
crossref_primary_10_1016_j_devcel_2021_02_009
crossref_primary_10_1111_jnc_15282
crossref_primary_10_1016_j_molcel_2019_11_008
crossref_primary_10_1126_sciadv_adh8228
crossref_primary_10_3390_cells11213509
crossref_primary_10_1093_hmg_ddab078
crossref_primary_10_1074_jbc_R116_733899
crossref_primary_10_1073_pnas_1620705114
crossref_primary_10_1091_mbc_e14_02_0704
crossref_primary_10_3389_fnagi_2020_581849
crossref_primary_10_1128_MCB_00412_17
crossref_primary_10_1186_s12915_018_0548_x
crossref_primary_10_1074_jbc_M115_693184
crossref_primary_10_1074_jbc_M115_705640
crossref_primary_10_1016_j_exger_2024_112379
crossref_primary_10_1016_j_bbabio_2024_149532
crossref_primary_10_1158_1078_0432_CCR_17_1231
crossref_primary_10_1172_jci_insight_99543
crossref_primary_10_1080_14789450_2025_2451704
crossref_primary_10_1186_s12935_024_03443_w
crossref_primary_10_3390_biom13121789
crossref_primary_10_1016_j_tox_2024_153760
crossref_primary_10_3390_cancers12092385
crossref_primary_10_1091_mbc_E16_01_0039
crossref_primary_10_1177_1010428320914477
crossref_primary_10_1016_j_tem_2017_07_003
crossref_primary_10_1016_j_phymed_2022_154350
crossref_primary_10_1016_j_cellsig_2024_111353
crossref_primary_10_1083_jcb_201809056
crossref_primary_10_3892_ol_2018_9131
crossref_primary_10_1091_mbc_E17_06_0362
crossref_primary_10_1016_j_celrep_2022_111789
crossref_primary_10_1016_j_cellsig_2019_02_007
crossref_primary_10_1186_s13023_022_02331_8
crossref_primary_10_3390_ijms23031320
crossref_primary_10_14336_AD_2024_0058
crossref_primary_10_3389_fimmu_2023_1282996
crossref_primary_10_1016_j_freeradbiomed_2020_12_013
crossref_primary_10_1042_BCJ20190654
crossref_primary_10_1186_s12967_023_04498_5
crossref_primary_10_1016_j_jbc_2025_108171
crossref_primary_10_1016_j_tcb_2020_03_001
crossref_primary_10_1111_boc_202100002
crossref_primary_10_3389_fcell_2021_715923
crossref_primary_10_1016_j_phrs_2021_105603
crossref_primary_10_1126_scitranslmed_abq1533
crossref_primary_10_3390_antiox10101543
crossref_primary_10_1016_j_neo_2021_01_004
crossref_primary_10_3390_cells10081901
crossref_primary_10_1084_jem_20200137
crossref_primary_10_1016_j_jbc_2022_102277
crossref_primary_10_1007_s00018_021_03887_7
crossref_primary_10_1016_j_tibs_2017_05_002
crossref_primary_10_3390_ijms241713656
crossref_primary_10_3390_ijms21020643
crossref_primary_10_1038_nrm_2017_110
crossref_primary_10_1007_s11626_022_00739_x
crossref_primary_10_1016_j_molmet_2018_07_007
crossref_primary_10_3389_fnagi_2023_1326127
crossref_primary_10_1093_jn_nxaa396
Cites_doi 10.1074/jbc.M413660200
10.3945/an.112.001891
10.1101/gad.12.7.982
10.1083/jcb.153.5.1011
10.1101/gad.1250704
10.1074/jbc.M708530200
10.1111/j.1365-2141.2006.06132.x
10.1111/j.1471-4159.2008.05749.x
10.1182/blood-2006-08-041830
10.1146/annurev.micro.59.031805.133833
10.1016/S1097-2765(00)00108-8
10.1371/journal.pbio.0040374
10.1074/jbc.M409173200
10.1038/onc.2009.46
10.1073/pnas.0400541101
10.3945/an.112.002113
10.1016/j.cell.2007.04.027
10.1111/j.1463-1326.2010.01277.x
10.1038/ncb0311-184
10.1128/MCB.01507-09
10.1091/mbc.e11-06-0510
10.1042/bj20030076
10.1074/jbc.M707879200
10.1158/0008-5472.CAN-05-0686
10.1016/S1097-2765(03)00105-9
10.1042/BJ20061261
10.1158/0008-5472.CAN-05-0676
10.1146/annurev.biochem.73.011303.074134
10.1016/j.tem.2009.05.008
10.1038/ncb2738
10.1016/S0092-8674(04)00344-7
10.1074/jbc.M206149200
10.1074/jbc.M707781200
10.1074/jbc.M301107200
10.1126/science.1209038
10.1016/j.cmet.2012.07.007
10.1016/B978-0-12-385114-7.00019-2
10.1006/geno.2002.6838
10.1074/jbc.M806735200
10.1523/JNEUROSCI.3447-04.2005
10.1074/jbc.M112.363622
10.1016/j.cmet.2012.07.005
10.1038/nrm2308
10.1089/ars.2007.1764
10.1074/jbc.M110.216093
10.1038/sj.emboj.7600030
10.1128/MCB.21.4.1249-1259.2001
10.1146/annurev.biochem.052308.114844
10.1073/pnas.0807611106
ContentType Journal Article
Copyright 2013 Teske This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( ). 2013
Copyright_xml – notice: 2013 Teske This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( ). 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1091/mbc.e13-01-0067
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1939-4586
EndPage 2490
ExternalDocumentID PMC3727939
23761072
10_1091_mbc_e13_01_0067
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: T32 DK064466
– fundername: NIGMS NIH HHS
  grantid: GM049164
– fundername: NIDDK NIH HHS
  grantid: T32DK064466
– fundername: NIDDK NIH HHS
  grantid: R01 DK092062
– fundername: NIDDK NIH HHS
  grantid: DK94729
– fundername: NIDDK NIH HHS
  grantid: DK92062
– fundername: NIDDK NIH HHS
  grantid: R01 DK094729
– fundername: NIGMS NIH HHS
  grantid: R01 GM049164
GroupedDBID ---
.GJ
123
18M
29M
2WC
34G
39C
3O-
4.4
53G
5RE
5VS
AAYXX
ABDNZ
ABSQV
ACGFO
ACYGS
ADBBV
ADNWM
AEILP
AENEX
AFFNX
AFHIN
AFOSN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
C1A
CITATION
CS3
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
GX1
H13
HH5
HYE
IAO
IGS
IH2
IHR
INIJC
ITC
KQ8
OHT
R0Z
RPM
SJN
TCB
TR2
W8F
WOQ
YHG
YKV
YNT
YQT
YWH
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c418t-29cc39c8f12a5f05b197c680cb4d8b23e00b88e36a8aff942609d598a716916c3
ISSN 1059-1524
1939-4586
IngestDate Thu Aug 21 18:34:05 EDT 2025
Fri Jul 11 09:59:43 EDT 2025
Thu Apr 03 07:05:39 EDT 2025
Tue Jul 01 02:18:55 EDT 2025
Thu Apr 24 23:02:53 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell Biology.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c418t-29cc39c8f12a5f05b197c680cb4d8b23e00b88e36a8aff942609d598a716916c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3727939
PMID 23761072
PQID 1416694244
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3727939
proquest_miscellaneous_1416694244
pubmed_primary_23761072
crossref_primary_10_1091_mbc_e13_01_0067
crossref_citationtrail_10_1091_mbc_e13_01_0067
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-08-00
2013-Aug
20130801
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular biology of the cell
PublicationTitleAlternate Mol Biol Cell
PublicationYear 2013
Publisher The American Society for Cell Biology
Publisher_xml – name: The American Society for Cell Biology
References Schroder M (B35) 2005; 74
Greene LA (B7) 2009; 108
Oslowski CM (B24) 2012; 16
Kilberg MS (B15) 2009; 20
Tabas I (B37) 2011; 13
Harding HP (B10) 2000; 6
Wei Y (B44) 2008; 283
Chen JJ (B4) 2007; 109
Shringarpure R (B36) 2006; 134
Ploner C (B29) 2008; 27
Papa FR (B28) 2012; 2
Youle RJ (B47) 2008; 9
Yang X (B46) 2004; 117
Lee YY (B16) 2009; 284
Puthalakath H (B31) 2007; 129
Zhou D (B49) 2008; 283
Ron D (B33) 2012; 4
Han J (B8) 2013; 15
Chen C (B51) 2004; 279
Wek RC (B45) 2007; 9
Hansen MB (B9) 2002; 80
Powers ET (B30) 2009; 78
B39
Angelastro JM (B1) 2005; 25
Jiang HY (B13) 2005; 280
Oslowski CM (B25) 2010; 12
Palam LR (B26) 2011; 286
Fernandez Y (B6) 2005; 65
Lerner AG (B17) 2012; 16
Bruhat A (B3) 2002; 277
Harding HP (B11) 2003; 11
Novoa I (B23) 2001; 153
Liu X (B18) 2012; 287
Chiribau CB (B5) 2010; 30
Lu PD (B19) 2004; 23
Ma Y (B20) 2003; 278
Teske BF (B38) 2011; 490
Wang Q (B42) 2009; 106
Qin JZ (B32) 2005; 65
Zinszner H (B50) 1998; 12
Walter P (B41) 2011; 334
Kilberg MS (B14) 2012; 3
Marciniak SJ (B21) 2004; 18
Zhong C (B48) 2003; 372
Baird TD (B2) 2012; 3
Watatani Y (B43) 2008; 283
Pan YX (B27) 2007; 401
McCullough KD (B22) 2001; 21
Hinnebusch AG (B12) 2005; 59
Vattem KM (B40) 2004; 101
Rutkowski DT (B34) 2006; 4
19641509 - Oncogene. 2008 Dec;27 Suppl 1:S84-92
12351626 - J Biol Chem. 2002 Dec 13;277(50):48107-14
18097445 - Nat Rev Mol Cell Biol. 2008 Jan;9(1):47-59
12840028 - J Biol Chem. 2003 Sep 12;278(37):34864-73
16846475 - Br J Haematol. 2006 Jul;134(2):145-56
17110456 - Blood. 2007 Apr 1;109(7):2693-9
12667446 - Mol Cell. 2003 Mar;11(3):619-33
16989641 - Biochem J. 2007 Jan 1;401(1):299-307
21029301 - Diabetes Obes Metab. 2010 Oct;12 Suppl 2:58-65
19298183 - Annu Rev Biochem. 2009;78:959-91
22951443 - Cold Spring Harb Perspect Med. 2012 Sep;2(9):a007666
19131336 - J Biol Chem. 2009 Mar 13;284(11):6661-73
22116877 - Science. 2011 Nov 25;334(6059):1081-6
22883233 - Cell Metab. 2012 Aug 8;16(2):250-64
15601821 - Genes Dev. 2004 Dec 15;18(24):3066-77
18458088 - J Biol Chem. 2008 Jul 4;283(27):18773-81
12213205 - Genomics. 2002 Sep;80(3):344-50
11381086 - J Cell Biol. 2001 May 28;153(5):1011-22
22585904 - Adv Nutr. 2012 May;3(3):307-21
17760508 - Antioxid Redox Signal. 2007 Dec;9(12):2357-71
18055463 - J Biol Chem. 2008 Feb 1;283(5):2543-53
11106749 - Mol Cell. 2000 Nov;6(5):1099-108
15277680 - Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11269-74
19164757 - Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2200-5
21266259 - Methods Enzymol. 2011;490:333-56
19046351 - J Neurochem. 2009 Jan;108(1):11-22
14713949 - EMBO J. 2004 Jan 14;23(1):169-79
23209157 - Cold Spring Harb Perspect Biol. 2012 Dec;4(12). pii: a013177. doi: 10.1101/cshperspect.a013177
9531536 - Genes Dev. 1998 Apr 1;12(7):982-95
11158311 - Mol Cell Biol. 2001 Feb;21(4):1249-59
15829641 - J Neurosci. 2005 Apr 13;25(15):3889-99
15952902 - Annu Rev Biochem. 2005;74:739-89
21364565 - Nat Cell Biol. 2011 Mar;13(3):184-90
12628003 - Biochem J. 2003 Jun 1;372(Pt 2):603-9
16153175 - Annu Rev Microbiol. 2005;59:407-50
23624402 - Nat Cell Biol. 2013 May;15(5):481-90
16024631 - Cancer Res. 2005 Jul 15;65(14):6294-304
21285359 - J Biol Chem. 2011 Apr 1;286(13):10939-49
22585903 - Adv Nutr. 2012 May;3(3):295-306
17604722 - Cell. 2007 Jun 29;129(7):1337-49
18195013 - J Biol Chem. 2008 Mar 14;283(11):7064-73
22528486 - J Biol Chem. 2012 Jun 1;287(23):19599-609
15684420 - J Biol Chem. 2005 Apr 8;280(14):14189-202
17090218 - PLoS Biol. 2006 Nov;4(11):e374
21917591 - Mol Biol Cell. 2011 Nov;22(22):4390-405
16024630 - Cancer Res. 2005 Jul 15;65(14):6282-93
19800252 - Trends Endocrinol Metab. 2009 Nov;20(9):436-43
22883234 - Cell Metab. 2012 Aug 8;16(2):265-73
20479126 - Mol Cell Biol. 2010 Jul;30(14):3722-31
15109498 - Cell. 2004 Apr 30;117(3):387-98
15385533 - J Biol Chem. 2004 Dec 3;279(49):50829-39
References_xml – volume: 280
  start-page: 14189
  year: 2005
  ident: B13
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M413660200
– volume: 3
  start-page: 295
  year: 2012
  ident: B14
  publication-title: Adv Nutr
  doi: 10.3945/an.112.001891
– volume: 12
  start-page: 982
  year: 1998
  ident: B50
  publication-title: Genes Dev
  doi: 10.1101/gad.12.7.982
– volume: 153
  start-page: 1011
  year: 2001
  ident: B23
  publication-title: J Cell Biol
  doi: 10.1083/jcb.153.5.1011
– volume: 18
  start-page: 3066
  year: 2004
  ident: B21
  publication-title: Genes Dev
  doi: 10.1101/gad.1250704
– volume: 283
  start-page: 7064
  year: 2008
  ident: B49
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M708530200
– volume: 134
  start-page: 145
  year: 2006
  ident: B36
  publication-title: Br J Haematol
  doi: 10.1111/j.1365-2141.2006.06132.x
– volume: 108
  start-page: 11
  year: 2009
  ident: B7
  publication-title: J Neurochem
  doi: 10.1111/j.1471-4159.2008.05749.x
– volume: 109
  start-page: 2693
  year: 2007
  ident: B4
  publication-title: Blood
  doi: 10.1182/blood-2006-08-041830
– volume: 59
  start-page: 407
  year: 2005
  ident: B12
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev.micro.59.031805.133833
– volume: 6
  start-page: 1099
  year: 2000
  ident: B10
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(00)00108-8
– volume: 4
  start-page: e374
  year: 2006
  ident: B34
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0040374
– volume: 279
  start-page: 50829
  year: 2004
  ident: B51
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M409173200
– volume: 27
  start-page: S84
  issue: 1
  year: 2008
  ident: B29
  publication-title: Oncogene
  doi: 10.1038/onc.2009.46
– volume: 101
  start-page: 11269
  year: 2004
  ident: B40
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0400541101
– volume: 3
  start-page: 307
  year: 2012
  ident: B2
  publication-title: Adv Nutr
  doi: 10.3945/an.112.002113
– volume: 129
  start-page: 1337
  year: 2007
  ident: B31
  publication-title: Cell
  doi: 10.1016/j.cell.2007.04.027
– volume: 12
  start-page: 58
  issue: 2
  year: 2010
  ident: B25
  publication-title: Diabetes Obes Metab
  doi: 10.1111/j.1463-1326.2010.01277.x
– volume: 13
  start-page: 184
  year: 2011
  ident: B37
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb0311-184
– volume: 30
  start-page: 3722
  year: 2010
  ident: B5
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.01507-09
– ident: B39
  doi: 10.1091/mbc.e11-06-0510
– volume: 372
  start-page: 603
  year: 2003
  ident: B48
  publication-title: Biochem J
  doi: 10.1042/bj20030076
– volume: 2
  start-page: a007666
  year: 2012
  ident: B28
  publication-title: Cold Spring Harb Perspect Med
– volume: 283
  start-page: 18773
  year: 2008
  ident: B44
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M707879200
– volume: 65
  start-page: 6294
  year: 2005
  ident: B6
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-05-0686
– volume: 11
  start-page: 619
  year: 2003
  ident: B11
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(03)00105-9
– volume: 401
  start-page: 299
  year: 2007
  ident: B27
  publication-title: Biochem J
  doi: 10.1042/BJ20061261
– volume: 65
  start-page: 6282
  year: 2005
  ident: B32
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-05-0676
– volume: 74
  start-page: 739
  year: 2005
  ident: B35
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.73.011303.074134
– volume: 20
  start-page: 436
  year: 2009
  ident: B15
  publication-title: Trends Endocrinol Metab
  doi: 10.1016/j.tem.2009.05.008
– volume: 15
  start-page: 481
  year: 2013
  ident: B8
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2738
– volume: 117
  start-page: 387
  year: 2004
  ident: B46
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00344-7
– volume: 277
  start-page: 48107
  year: 2002
  ident: B3
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M206149200
– volume: 283
  start-page: 2543
  year: 2008
  ident: B43
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M707781200
– volume: 278
  start-page: 34864
  year: 2003
  ident: B20
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M301107200
– volume: 334
  start-page: 1081
  year: 2011
  ident: B41
  publication-title: Science
  doi: 10.1126/science.1209038
– volume: 16
  start-page: 250
  year: 2012
  ident: B17
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2012.07.007
– volume: 490
  start-page: 333
  year: 2011
  ident: B38
  publication-title: Methods Enzymol
  doi: 10.1016/B978-0-12-385114-7.00019-2
– volume: 4
  start-page: a013177
  year: 2012
  ident: B33
  publication-title: Cold Spring Harb Perspect
– volume: 80
  start-page: 344
  year: 2002
  ident: B9
  publication-title: Genomics
  doi: 10.1006/geno.2002.6838
– volume: 284
  start-page: 6661
  year: 2009
  ident: B16
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M806735200
– volume: 25
  start-page: 3889
  year: 2005
  ident: B1
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3447-04.2005
– volume: 287
  start-page: 19599
  year: 2012
  ident: B18
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.363622
– volume: 16
  start-page: 265
  year: 2012
  ident: B24
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2012.07.005
– volume: 9
  start-page: 47
  year: 2008
  ident: B47
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2308
– volume: 9
  start-page: 2357
  year: 2007
  ident: B45
  publication-title: Antioxid Redox Signal
  doi: 10.1089/ars.2007.1764
– volume: 286
  start-page: 10939
  year: 2011
  ident: B26
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.216093
– volume: 23
  start-page: 169
  year: 2004
  ident: B19
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7600030
– volume: 21
  start-page: 1249
  year: 2001
  ident: B22
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.21.4.1249-1259.2001
– volume: 78
  start-page: 959
  year: 2009
  ident: B30
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.052308.114844
– volume: 106
  start-page: 2200
  year: 2009
  ident: B42
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0807611106
– reference: 21285359 - J Biol Chem. 2011 Apr 1;286(13):10939-49
– reference: 15829641 - J Neurosci. 2005 Apr 13;25(15):3889-99
– reference: 19164757 - Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2200-5
– reference: 22585903 - Adv Nutr. 2012 May;3(3):295-306
– reference: 15601821 - Genes Dev. 2004 Dec 15;18(24):3066-77
– reference: 19298183 - Annu Rev Biochem. 2009;78:959-91
– reference: 17090218 - PLoS Biol. 2006 Nov;4(11):e374
– reference: 19046351 - J Neurochem. 2009 Jan;108(1):11-22
– reference: 12667446 - Mol Cell. 2003 Mar;11(3):619-33
– reference: 21917591 - Mol Biol Cell. 2011 Nov;22(22):4390-405
– reference: 14713949 - EMBO J. 2004 Jan 14;23(1):169-79
– reference: 11158311 - Mol Cell Biol. 2001 Feb;21(4):1249-59
– reference: 15277680 - Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11269-74
– reference: 16989641 - Biochem J. 2007 Jan 1;401(1):299-307
– reference: 21266259 - Methods Enzymol. 2011;490:333-56
– reference: 19800252 - Trends Endocrinol Metab. 2009 Nov;20(9):436-43
– reference: 9531536 - Genes Dev. 1998 Apr 1;12(7):982-95
– reference: 16846475 - Br J Haematol. 2006 Jul;134(2):145-56
– reference: 17110456 - Blood. 2007 Apr 1;109(7):2693-9
– reference: 22528486 - J Biol Chem. 2012 Jun 1;287(23):19599-609
– reference: 15385533 - J Biol Chem. 2004 Dec 3;279(49):50829-39
– reference: 12213205 - Genomics. 2002 Sep;80(3):344-50
– reference: 23624402 - Nat Cell Biol. 2013 May;15(5):481-90
– reference: 11381086 - J Cell Biol. 2001 May 28;153(5):1011-22
– reference: 12351626 - J Biol Chem. 2002 Dec 13;277(50):48107-14
– reference: 18097445 - Nat Rev Mol Cell Biol. 2008 Jan;9(1):47-59
– reference: 16024631 - Cancer Res. 2005 Jul 15;65(14):6294-304
– reference: 22585904 - Adv Nutr. 2012 May;3(3):307-21
– reference: 17604722 - Cell. 2007 Jun 29;129(7):1337-49
– reference: 12628003 - Biochem J. 2003 Jun 1;372(Pt 2):603-9
– reference: 17760508 - Antioxid Redox Signal. 2007 Dec;9(12):2357-71
– reference: 22883234 - Cell Metab. 2012 Aug 8;16(2):265-73
– reference: 19641509 - Oncogene. 2008 Dec;27 Suppl 1:S84-92
– reference: 15952902 - Annu Rev Biochem. 2005;74:739-89
– reference: 18055463 - J Biol Chem. 2008 Feb 1;283(5):2543-53
– reference: 18195013 - J Biol Chem. 2008 Mar 14;283(11):7064-73
– reference: 21364565 - Nat Cell Biol. 2011 Mar;13(3):184-90
– reference: 16024630 - Cancer Res. 2005 Jul 15;65(14):6282-93
– reference: 23209157 - Cold Spring Harb Perspect Biol. 2012 Dec;4(12). pii: a013177. doi: 10.1101/cshperspect.a013177
– reference: 21029301 - Diabetes Obes Metab. 2010 Oct;12 Suppl 2:58-65
– reference: 18458088 - J Biol Chem. 2008 Jul 4;283(27):18773-81
– reference: 15109498 - Cell. 2004 Apr 30;117(3):387-98
– reference: 20479126 - Mol Cell Biol. 2010 Jul;30(14):3722-31
– reference: 16153175 - Annu Rev Microbiol. 2005;59:407-50
– reference: 22883233 - Cell Metab. 2012 Aug 8;16(2):250-64
– reference: 15684420 - J Biol Chem. 2005 Apr 8;280(14):14189-202
– reference: 22116877 - Science. 2011 Nov 25;334(6059):1081-6
– reference: 22951443 - Cold Spring Harb Perspect Med. 2012 Sep;2(9):a007666
– reference: 12840028 - J Biol Chem. 2003 Sep 12;278(37):34864-73
– reference: 19131336 - J Biol Chem. 2009 Mar 13;284(11):6661-73
– reference: 11106749 - Mol Cell. 2000 Nov;6(5):1099-108
SSID ssj0014467
Score 2.5072834
Snippet Environmental stresses that disrupt protein homeostasis induce phosphorylation of eIF2, triggering repression of global protein synthesis coincident with...
This study addresses the mechanisms by which CHOP directs gene regulatory networks and determines cell fate. Transcriptional expression of ATF5 is activated by...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2477
SubjectTerms Activating Transcription Factors - genetics
Activating Transcription Factors - metabolism
Animals
Apoptosis
Apoptosis Regulatory Proteins - genetics
Apoptosis Regulatory Proteins - metabolism
Cell Survival
Cells, Cultured
Eukaryotic Initiation Factor-2 - metabolism
Feedback, Physiological
Gene Expression Regulation
Gene Knockout Techniques
Gene Regulatory Networks
Homeostasis
Leupeptins - pharmacology
Mice
Phosphorylation
Promoter Regions, Genetic
Proteasome Inhibitors - pharmacology
Protein Biosynthesis
Protein Processing, Post-Translational
Proteolysis
Proto-Oncogene Proteins c-bcl-2 - genetics
Proto-Oncogene Proteins c-bcl-2 - metabolism
Response Elements
Stress, Physiological
Thapsigargin - pharmacology
Transcription Factor CHOP - physiology
Transcriptional Activation
Transcriptome
Title CHOP induces activating transcription factor 5 (ATF5) to trigger apoptosis in response to perturbations in protein homeostasis
URI https://www.ncbi.nlm.nih.gov/pubmed/23761072
https://www.proquest.com/docview/1416694244
https://pubmed.ncbi.nlm.nih.gov/PMC3727939
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiQuiDfhpUXiUBQ52F6vs3ssVaNQVOCQShUXa71ZN5aIHcW21HLgL_CXmfHajtNSCbg4kb1eS_6-nZ0Zz4OQt4wFC2Fi4SipEycI_Ikjk4V2OFMswa6jsi7HcPI5nJ0Gx2f8bDD41Ytaqsp4rH_8Ma_kf1CFc4ArZsn-A7LdpHAC_gO-cASE4fhXGB_OvnwdgVFdYVgVZiigf9X2fci24sC21BlxVCYP5lOOjgDUOMEux5Rftc7XZY51SerUljpktu6nsTYb2I_iXrQ51nSA32W-MjlolUVa9HXbk7bT7qit7NTEH-DHgc5DYAobDvRhg6KliyueVgXosnkvkn-bI_FtmVdW2c_Ol1XaOYWW1nl7nF6kVd97gZ0kROu9MFbiSvwUzZt62I1ItmnVLfV4X8AGtuvLNckPeg_AtYr1-Aif4jm4D_dHAnTrVU0EDAQCq9ffboFdYGJ76Ra57YPdUdvoHz91n6XAdp609aGk9_7K07CwdHP_rpZzzXS5GoHbU2nm98m9xhahB5ZYD8jAZA_JHdud9PIR-Yn0og296JZedIde1NKLcrqP5HpHy5w21KIdtWAW2lILB-xQCy821KI9aj0mp9Oj-eHMadp1ODrwROn4UmsmtUg8X_HE5bEnJzoUro5BHMQ-M64bC2FYqIRKEomtEeSCS6Hqgk2hZk_IXpZn5hmhiU64UQorLwVBwoxQItThQnOYVJhwMSTj9vVGuqlljy1Vvkc2psKLAJrIeCxyvQihGZL97oa1LeNy89A3LV4RiFpcIiozeVWAleyFocTM0CF5avHrJmuBH5LJDrLdACzjvnslS5d1OXcGJgQsguc3zvmC3N0unZdkr9xU5hWowmX8uqbnb7iXuOw
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CHOP+induces+activating+transcription+factor+5+%28ATF5%29+to+trigger+apoptosis+in+response+to+perturbations+in+protein+homeostasis&rft.jtitle=Molecular+biology+of+the+cell&rft.au=Teske%2C+Brian+F&rft.au=Fusakio%2C+Michael+E&rft.au=Zhou%2C+Donghui&rft.au=Shan%2C+Jixiu&rft.date=2013-08-01&rft.eissn=1939-4586&rft.volume=24&rft.issue=15&rft.spage=2477&rft_id=info:doi/10.1091%2Fmbc.E13-01-0067&rft_id=info%3Apmid%2F23761072&rft.externalDocID=23761072
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-1524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-1524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-1524&client=summon