Automatic selection of IMFs to denoise the sEMG signals using EMD
Surface Electromyography (sEMG) signals are muscle activation signals, which has applications in muscle diagnosis, rehabilitation, prosthetics, and speech etc. However, they are known to be affected by noises such as Power Line Interference (PLI), motion artifacts etc. Currently, Empirical Mode Deco...
Saved in:
Published in | Journal of electromyography and kinesiology Vol. 73; p. 102834 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Surface Electromyography (sEMG) signals are muscle activation signals, which has applications in muscle diagnosis, rehabilitation, prosthetics, and speech etc. However, they are known to be affected by noises such as Power Line Interference (PLI), motion artifacts etc. Currently, Empirical Mode Decomposition (EMD) and its modifications such as Ensemble EMD (EEMD), and Complementary EEMD (CEEMD) are used to decompose EMG into a series of Intrinsic Mode Functions (IMFs). The denoised EMG can be obtained from the selected IMFs. Statistical methods are used to select the signal dominant IMFs to reconstruct the denoised signal. In this work, a novel procedure is proposed to automatically separate noisy IMFs from the original sEMG signal. For this purpose, Permutation Entropy (PE) is employed in EEMD sifting process called Partly EEMD (PEEMD), to separate the noisy IMFs from the original sEMG signal according to the preset PE threshold. PEEMD decomposes the original signal into various modes according to a preset PE threshold and the denoised signal is reconstructed from resultant IMFs. The PEEMD denoising procedure is applied on the experimental sEMG data collected from eight subjects, that include six various upper limb movement classes. The proposed denoising procedure achieved an improved denoising performance in comparison with EMD, EEMD, and CEEMD. An alternate measure called Sample Entropy (SE) is also used in place of PE, for the automated sifting process as a comparison. Signal to Noise Ratio (SNR), Root Mean Square Error (RMSE), and Reconstruction Error (RE) parameters are used to evaluate the denoising performance. The results, averaged across eight subjects, demonstrate that the proposed denoising procedure outperforms the state-of-the-art EMD techniques in terms of these performance measures on the experimentally collected sEMG data samples. |
---|---|
AbstractList | AbstractSurface Electromyography (sEMG) signals are muscle activation signals, which has applications in muscle diagnosis, rehabilitation, prosthetics, and speech etc. However, they are known to be affected by noises such as Power Line Interference (PLI), motion artifacts etc. Currently, Empirical Mode Decomposition (EMD) and its modifications such as Ensemble EMD (EEMD), and Complementary EEMD (CEEMD) are used to decompose EMG into a series of Intrinsic Mode Functions (IMFs). The denoised EMG can be obtained from the selected IMFs. Statistical methods are used to select the signal dominant IMFs to reconstruct the denoised signal. In this work, a novel procedure is proposed to automatically separate noisy IMFs from the original sEMG signal. For this purpose, Permutation Entropy (PE) is employed in EEMD sifting process called Partly EEMD (PEEMD), to separate the noisy IMFs from the original sEMG signal according to the preset PE threshold. PEEMD decomposes the original signal into various modes according to a preset PE threshold and the denoised signal is reconstructed from resultant IMFs. The PEEMD denoising procedure is applied on the experimental sEMG data collected from eight subjects, that include six various upper limb movement classes. The proposed denoising procedure achieved an improved denoising performance in comparison with EMD, EEMD, and CEEMD. An alternate measure called Sample Entropy (SE) is also used in place of PE, for the automated sifting process as a comparison. Signal to Noise Ratio (SNR), Root Mean Square Error (RMSE), and Reconstruction Error (RE) parameters are used to evaluate the denoising performance. The results, averaged across eight subjects, demonstrate that the proposed denoising procedure outperforms the state-of-the-art EMD techniques in terms of these performance measures on the experimentally collected sEMG data samples. Surface Electromyography (sEMG) signals are muscle activation signals, which has applications in muscle diagnosis, rehabilitation, prosthetics, and speech etc. However, they are known to be affected by noises such as Power Line Interference (PLI), motion artifacts etc. Currently, Empirical Mode Decomposition (EMD) and its modifications such as Ensemble EMD (EEMD), and Complementary EEMD (CEEMD) are used to decompose EMG into a series of Intrinsic Mode Functions (IMFs). The denoised EMG can be obtained from the selected IMFs. Statistical methods are used to select the signal dominant IMFs to reconstruct the denoised signal. In this work, a novel procedure is proposed to automatically separate noisy IMFs from the original sEMG signal. For this purpose, Permutation Entropy (PE) is employed in EEMD sifting process called Partly EEMD (PEEMD), to separate the noisy IMFs from the original sEMG signal according to the preset PE threshold. PEEMD decomposes the original signal into various modes according to a preset PE threshold and the denoised signal is reconstructed from resultant IMFs. The PEEMD denoising procedure is applied on the experimental sEMG data collected from eight subjects, that include six various upper limb movement classes. The proposed denoising procedure achieved an improved denoising performance in comparison with EMD, EEMD, and CEEMD. An alternate measure called Sample Entropy (SE) is also used in place of PE, for the automated sifting process as a comparison. Signal to Noise Ratio (SNR), Root Mean Square Error (RMSE), and Reconstruction Error (RE) parameters are used to evaluate the denoising performance. The results, averaged across eight subjects, demonstrate that the proposed denoising procedure outperforms the state-of-the-art EMD techniques in terms of these performance measures on the experimentally collected sEMG data samples. Surface Electromyography (sEMG) signals are muscle activation signals, which has applications in muscle diagnosis, rehabilitation, prosthetics, and speech etc. However, they are known to be affected by noises such as Power Line Interference (PLI), motion artifacts etc. Currently, Empirical Mode Decomposition (EMD) and its modifications such as Ensemble EMD (EEMD), and Complementary EEMD (CEEMD) are used to decompose EMG into a series of Intrinsic Mode Functions (IMFs). The denoised EMG can be obtained from the selected IMFs. Statistical methods are used to select the signal dominant IMFs to reconstruct the denoised signal. In this work, a novel procedure is proposed to automatically separate noisy IMFs from the original sEMG signal. For this purpose, Permutation Entropy (PE) is employed in EEMD sifting process called Partly EEMD (PEEMD), to separate the noisy IMFs from the original sEMG signal according to the preset PE threshold. PEEMD decomposes the original signal into various modes according to a preset PE threshold and the denoised signal is reconstructed from resultant IMFs. The PEEMD denoising procedure is applied on the experimental sEMG data collected from eight subjects, that include six various upper limb movement classes. The proposed denoising procedure achieved an improved denoising performance in comparison with EMD, EEMD, and CEEMD. An alternate measure called Sample Entropy (SE) is also used in place of PE, for the automated sifting process as a comparison. Signal to Noise Ratio (SNR), Root Mean Square Error (RMSE), and Reconstruction Error (RE) parameters are used to evaluate the denoising performance. The results, averaged across eight subjects, demonstrate that the proposed denoising procedure outperforms the state-of-the-art EMD techniques in terms of these performance measures on the experimentally collected sEMG data samples.Surface Electromyography (sEMG) signals are muscle activation signals, which has applications in muscle diagnosis, rehabilitation, prosthetics, and speech etc. However, they are known to be affected by noises such as Power Line Interference (PLI), motion artifacts etc. Currently, Empirical Mode Decomposition (EMD) and its modifications such as Ensemble EMD (EEMD), and Complementary EEMD (CEEMD) are used to decompose EMG into a series of Intrinsic Mode Functions (IMFs). The denoised EMG can be obtained from the selected IMFs. Statistical methods are used to select the signal dominant IMFs to reconstruct the denoised signal. In this work, a novel procedure is proposed to automatically separate noisy IMFs from the original sEMG signal. For this purpose, Permutation Entropy (PE) is employed in EEMD sifting process called Partly EEMD (PEEMD), to separate the noisy IMFs from the original sEMG signal according to the preset PE threshold. PEEMD decomposes the original signal into various modes according to a preset PE threshold and the denoised signal is reconstructed from resultant IMFs. The PEEMD denoising procedure is applied on the experimental sEMG data collected from eight subjects, that include six various upper limb movement classes. The proposed denoising procedure achieved an improved denoising performance in comparison with EMD, EEMD, and CEEMD. An alternate measure called Sample Entropy (SE) is also used in place of PE, for the automated sifting process as a comparison. Signal to Noise Ratio (SNR), Root Mean Square Error (RMSE), and Reconstruction Error (RE) parameters are used to evaluate the denoising performance. The results, averaged across eight subjects, demonstrate that the proposed denoising procedure outperforms the state-of-the-art EMD techniques in terms of these performance measures on the experimentally collected sEMG data samples. |
ArticleNumber | 102834 |
Author | Koppolu, Pratap Kumar Chemmangat, Krishnan |
Author_xml | – sequence: 1 givenname: Pratap Kumar surname: Koppolu fullname: Koppolu, Pratap Kumar email: pratapsame@gmail.com – sequence: 2 givenname: Krishnan surname: Chemmangat fullname: Chemmangat, Krishnan email: cmckrishnan@nitk.edu.in |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37922679$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1r3DAQhkVJaT5_QouOvXg7kvwhU1pY0k0ayNJDk7OQ5HEqxyulllzIv6_Mbi6FktOI4X3f0TxzSo588EjIewYrBqz-NKwGHPHR-RUHLnKPS1G-ISdMNqKoGsaO8hsqKOqSsWNyGuMAwBqQ8I4ci6blvG7aE7JezynsdHKWxpxnkwuehp7ebK8iTYF26IOLSNMvpHGzvabRPXg9RjpH5x_oZvvtnLztcwMvDvWM3F9t7i6_F7c_rm8u17eFLZlMBeeNZShrYY2t2563je600QLbDphtoe56YyouO9ODbEtetb2RHXRGlgZ0heKMfNznPk3h94wxqZ2LFsdRewxzVFzKugZeCsjSDwfpbHbYqafJ7fT0rF7WzoLPe4GdQowT9sq6pJfd06TdqBioBbIa1AGyWiCrPeTsrv5xvwx4zfd178OM6Y_DSdnReWf1-IjPGIcwTwtaxVTkCtTP5XzL9bgAgFY0OeDL_wNUF9wrH_gLZ_erlw |
CitedBy_id | crossref_primary_10_1016_j_compbiomed_2025_109651 crossref_primary_10_1016_j_conengprac_2025_106312 crossref_primary_10_1016_j_isatra_2024_01_027 crossref_primary_10_1016_j_asoc_2024_112235 crossref_primary_10_1109_JSEN_2024_3523941 crossref_primary_10_1016_j_bspc_2024_106307 crossref_primary_10_1109_JSEN_2025_3532689 crossref_primary_10_1088_2057_1976_ad773a crossref_primary_10_1088_1361_6501_ad9348 crossref_primary_10_3390_w15244287 crossref_primary_10_1007_s13369_024_09320_y |
Cites_doi | 10.1098/rspa.1998.0193 10.1016/j.jbiomech.2010.01.027 10.1111/j.1468-0394.2008.00483.x 10.1109/TNSRE.2003.810432 10.3934/mbe.2020359 10.1109/TSP.2009.2013885 10.1016/j.cmpb.2007.04.004 10.1016/j.sigpro.2013.09.013 10.1063/1.5057725 10.3389/fnbot.2020.566172 10.1016/j.bspc.2006.03.003 10.1016/j.ymssp.2011.11.022 10.1007/s40846-016-0201-5 10.1016/j.future.2019.11.025 10.1016/j.eswa.2011.07.008 10.1109/TNSRE.2016.2624763 10.1016/j.jelekin.2019.07.008 10.1016/j.medengphy.2012.10.009 10.3390/app10207144 10.1103/PhysRevLett.88.174102 10.1142/S1793536909000047 10.1152/ajpheart.2000.278.6.H2039 10.1103/PhysRevE.70.046217 10.1016/j.measurement.2019.01.026 10.1016/S1050-6411(01)00033-5 10.1016/j.jelekin.2020.102440 10.1016/j.aeue.2016.12.008 10.1155/2018/4230649 10.1109/IEMBS.2008.4650275 10.1016/j.acme.2016.05.003 10.1016/j.jelekin.2019.102363 10.1142/S1793536910000422 10.1109/TNSRE.2017.2771273 10.5772/25757 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.jelekin.2023.102834 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1873-5711 |
EndPage | 102834 |
ExternalDocumentID | 37922679 10_1016_j_jelekin_2023_102834 1_s2_0_S1050641123000937 S1050641123000937 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 D-I DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEB HMK HMO HVGLF HZ~ IHE J1W KOM M29 M41 MO0 N9A O-L O9- OAUVE OH. OHT OT. OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K TWZ UPT WUQ YQT Z5R ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c418t-227c1e863cbc69f297adaba3e9d01c906dfbb528dbf0894259fb8d0db84b0a5e3 |
ISSN | 1050-6411 1873-5711 |
IngestDate | Fri Jul 11 00:18:59 EDT 2025 Thu Apr 03 07:00:33 EDT 2025 Tue Jul 01 04:30:36 EDT 2025 Thu Apr 24 23:11:59 EDT 2025 Tue Feb 25 19:56:57 EST 2025 Tue Aug 26 19:57:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electromyography Permutation entropy EMD Denoising Permutation Entropy |
Language | English |
License | Copyright © 2023 Elsevier Ltd. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c418t-227c1e863cbc69f297adaba3e9d01c906dfbb528dbf0894259fb8d0db84b0a5e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 37922679 |
PQID | 2886602430 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2886602430 pubmed_primary_37922679 crossref_citationtrail_10_1016_j_jelekin_2023_102834 crossref_primary_10_1016_j_jelekin_2023_102834 elsevier_clinicalkeyesjournals_1_s2_0_S1050641123000937 elsevier_clinicalkey_doi_10_1016_j_jelekin_2023_102834 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of electromyography and kinesiology |
PublicationTitleAlternate | J Electromyogr Kinesiol |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hussain, Reaz, Mohd-Yasin, Ibrahimy (b0045) 2009; 26 Yan, Liu, Gao (b0145) 2012; 29 Mengarelli, Tigrini, Fioretti, Cardarelli, Verdini (b0075) 2020; 10 Zhao, She, Fukushima, Wang, Wu, Pan (b0160) 2020; 14 De Luca, Gilmore, Kuznetsov, Roy (b0030) 2010; 43 Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H., 1998. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. London. Series A: Math., Phys. Eng. Sci. 454, 903–995. doi: 10.1098/rspa.1998.0193. Bandt, Pompe (b0010) 2002; 88 Andrade, Nasuto, Kyberd, Sweeney-Reed, Van Kanijn (b0005) 2006; 1 Merletti, Cerone (b0080) 2020; 54 Besomi, Hodges, Van Dieën, Carson, Clancy, Disselhorst-Klug, Holobar, Hug, Kiernan, Lowery (b0015) 2019; 48 Sun, Xi, Yuan, Yang, Hua (b0120) 2020; 17 Pilkar, Yarossi, Ramanujam, Rajagopalan, Bayram, Mitchell, Canton, Forrest (b0110) 2016; 25 Liu, Zheng, Dai, Zhou (b0060) 2018; 2018 Mello, Oliveira, Nadal (b0070) 2007; 87 Richman, Moorman (b0115) 2000 Xi, Zhang, Zhao, She, Luo (b0135) 2019; 90 Khezri, M., Jahed, M., 2008. Surface electromyogram signal estimation based on wavelet thresholding technique. In: 2008 30th annual international conference of the IEEE engineering in medicine and biology society, IEEE. pp. 4752–4755. doi:10.1109/IEMBS.2008.4650275. Tapia, Daud, Ruiz-del Solar (b0125) 2017; 37 Cao, Y., Tung, W.w., Gao, J., Protopopescu, V.A., Hively, L.M., 2004. Detecting dynamical changes in time series using the permutation entropy. Phys. Rev.E 70, 046217. doi:10.1103/PhysRevE.70.046217. Nicolaou, Georgiou (b0095) 2012; 39 Phinyomark, Phukpattaranont, Limsakul (b0105) 2012; 107–132 Zhang, Zhou (b0155) 2013; 35 Yeh, Shieh, Huang (b0150) 2010; 2 Kopsinis, McLaughlin (b0055) 2009; 57 Clancy, Morin, Merletti (b0025) 2002; 12 Huang, Wang, Li, Kang (b0040) 2019; 139 Ortolan, Mori, Pereira, Cabral, Pereira, Cliquet (b0100) 2003; 11 Mishra, Bajaj, Kumar, Sharma, Singh (b0090) 2017; 72 Wu, Huang (b0130) 2009; 1 Xiao, Yang, Lv, Guo, Liu, Wang (b0140) 2020; 110 Maier, Naber, Ortiz-Catalan (b0065) 2017; 26 Merletti, Muceli (b0085) 2019; 49 Zheng, Cheng, Yang (b0170) 2014; 96 Zheng (b0165) 2016; 16 Huang (10.1016/j.jelekin.2023.102834_b0040) 2019; 139 Hussain (10.1016/j.jelekin.2023.102834_b0045) 2009; 26 Bandt (10.1016/j.jelekin.2023.102834_b0010) 2002; 88 Pilkar (10.1016/j.jelekin.2023.102834_b0110) 2016; 25 Zhang (10.1016/j.jelekin.2023.102834_b0155) 2013; 35 Clancy (10.1016/j.jelekin.2023.102834_b0025) 2002; 12 Kopsinis (10.1016/j.jelekin.2023.102834_b0055) 2009; 57 Zhao (10.1016/j.jelekin.2023.102834_b0160) 2020; 14 10.1016/j.jelekin.2023.102834_b0020 Besomi (10.1016/j.jelekin.2023.102834_b0015) 2019; 48 Tapia (10.1016/j.jelekin.2023.102834_b0125) 2017; 37 Xiao (10.1016/j.jelekin.2023.102834_b0140) 2020; 110 Wu (10.1016/j.jelekin.2023.102834_b0130) 2009; 1 Mengarelli (10.1016/j.jelekin.2023.102834_b0075) 2020; 10 Ortolan (10.1016/j.jelekin.2023.102834_b0100) 2003; 11 Merletti (10.1016/j.jelekin.2023.102834_b0085) 2019; 49 De Luca (10.1016/j.jelekin.2023.102834_b0030) 2010; 43 Sun (10.1016/j.jelekin.2023.102834_b0120) 2020; 17 Merletti (10.1016/j.jelekin.2023.102834_b0080) 2020; 54 10.1016/j.jelekin.2023.102834_b0035 Maier (10.1016/j.jelekin.2023.102834_b0065) 2017; 26 Richman (10.1016/j.jelekin.2023.102834_b0115) 2000 Mishra (10.1016/j.jelekin.2023.102834_b0090) 2017; 72 10.1016/j.jelekin.2023.102834_b0050 Zheng (10.1016/j.jelekin.2023.102834_b0165) 2016; 16 Mello (10.1016/j.jelekin.2023.102834_b0070) 2007; 87 Andrade (10.1016/j.jelekin.2023.102834_b0005) 2006; 1 Yan (10.1016/j.jelekin.2023.102834_b0145) 2012; 29 Yeh (10.1016/j.jelekin.2023.102834_b0150) 2010; 2 Zheng (10.1016/j.jelekin.2023.102834_b0170) 2014; 96 Liu (10.1016/j.jelekin.2023.102834_b0060) 2018; 2018 Phinyomark (10.1016/j.jelekin.2023.102834_b0105) 2012; 107–132 Nicolaou (10.1016/j.jelekin.2023.102834_b0095) 2012; 39 Xi (10.1016/j.jelekin.2023.102834_b0135) 2019; 90 |
References_xml | – volume: 88 start-page: 174102 year: 2002 ident: b0010 article-title: Permutation entropy: a natural complexity measure for time series publication-title: Phys. Rev. Lett. – volume: 72 start-page: 200 year: 2017 end-page: 209 ident: b0090 article-title: An efficient method for analysis of emg signals using improved empirical mode decomposition publication-title: AEU-Int. J. Electron. Commun. – volume: 35 start-page: 537 year: 2013 end-page: 542 ident: b0155 article-title: Filtering of surface emg using ensemble empirical mode decomposition publication-title: Med. Eng. Phys. – volume: 49 start-page: 102363 year: 2019 ident: b0085 article-title: Tutorial. surface emg detection in space and time: Best practices publication-title: J. Electromyogr. Kinesiol. – reference: Khezri, M., Jahed, M., 2008. Surface electromyogram signal estimation based on wavelet thresholding technique. In: 2008 30th annual international conference of the IEEE engineering in medicine and biology society, IEEE. pp. 4752–4755. doi:10.1109/IEMBS.2008.4650275. – volume: 17 start-page: 6945 year: 2020 end-page: 6962 ident: b0120 article-title: Surface electromyography signal denoising via eemd and improved wavelet thresholds publication-title: Math. Biosci. Eng. – volume: 139 start-page: 438 year: 2019 end-page: 453 ident: b0040 article-title: Data decomposition method combining permutation entropy and spectral substitution with ensemble empirical mode decomposition publication-title: Measurement – volume: 14 start-page: 566172 year: 2020 ident: b0160 article-title: Muscle fatigue analysis with optimized complementary ensemble empirical mode decomposition and multi-scale envelope spectral entropy publication-title: Frontiers in Neurorobotics – volume: 16 start-page: 784 year: 2016 end-page: 794 ident: b0165 article-title: Rolling bearing fault diagnosis based on partially ensemble empirical mode decomposition and variable predictive model-based class discrimination publication-title: Arch. Civil Mech. Eng. – volume: 48 start-page: 128 year: 2019 end-page: 144 ident: b0015 article-title: Consensus for experimental design in electromyography (cede) project: Electrode selection matrix publication-title: J. Electromyogr. Kinesiol. – reference: Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H., 1998. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. London. Series A: Math., Phys. Eng. Sci. 454, 903–995. doi: 10.1098/rspa.1998.0193. – volume: 10 start-page: 7144 year: 2020 ident: b0075 article-title: On the use of fuzzy and permutation entropy in hand gesture characterization from emg signals: Parameters selection and comparison publication-title: Appl. Sci. – volume: 110 start-page: 1023 year: 2020 end-page: 1036 ident: b0140 article-title: Classification of hand movements using variational mode decomposition and composite permutation entropy index with surface electromyogram signals publication-title: Future Gener. Comput. Syst. – volume: 107–132 year: 2012 ident: b0105 article-title: The usefulness of wavelet transform to reduce noise in the semg signal publication-title: EMG methods for evaluating muscle and nerve function – volume: 90 start-page: 035003 year: 2019 ident: b0135 article-title: Denoising of surface electromyogram based on complementary ensemble empirical mode decomposition and improved interval thresholding publication-title: Rev. Sci. Instrum. – volume: 26 start-page: 506 year: 2017 end-page: 514 ident: b0065 article-title: Improved prosthetic control based on myoelectric pattern recognition via wavelet-based de-noising publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 29 start-page: 474 year: 2012 end-page: 484 ident: b0145 article-title: Permutation entropy: A nonlinear statistical measure for status characterization of rotary machines publication-title: Mech. Syst. Signal Process. – volume: 25 start-page: 1268 year: 2016 end-page: 1277 ident: b0110 article-title: Application of empirical mode decomposition combined with notch filtering for interpretation of surface electromyograms during functional electrical stimulation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 2 start-page: 135 year: 2010 end-page: 156 ident: b0150 article-title: Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method publication-title: Advances in adaptive data analysis – volume: 1 start-page: 44 year: 2006 end-page: 55 ident: b0005 article-title: Emg signal filtering based on empirical mode decomposition publication-title: Biomed. Signal Process. Control – volume: 57 start-page: 1351 year: 2009 end-page: 1362 ident: b0055 article-title: Development of emd-based denoising methods inspired by wavelet thresholding publication-title: IEEE Trans. Signal Process. – volume: 37 start-page: 140 year: 2017 end-page: 155 ident: b0125 article-title: Emg signal filtering based on independent component analysis and empirical mode decomposition for estimation of motor activation patterns publication-title: J. Med. Biol. Eng. – volume: 2018 start-page: 1 year: 2018 end-page: 10 ident: b0060 article-title: The measurement and elimination of mode splitting: from the perspective of the partly ensemble empirical mode decomposition publication-title: Complexity – volume: 12 start-page: 1 year: 2002 end-page: 16 ident: b0025 article-title: Sampling, noise-reduction and amplitude estimation issues in surface electromyography publication-title: J. Electromyogr. Kinesiol. – volume: 1 start-page: 1 year: 2009 end-page: 41 ident: b0130 article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method publication-title: Adv. Adapt. Data Anal. – volume: 26 start-page: 35 year: 2009 end-page: 48 ident: b0045 article-title: Electromyography signal analysis using wavelet transform and higher order statistics to determine muscle contraction publication-title: Exp. Syst. – volume: 96 start-page: 362 year: 2014 end-page: 374 ident: b0170 article-title: Partly ensemble empirical mode decomposition: An improved noise-assisted method for eliminating mode mixing publication-title: Signal Processing – volume: 87 start-page: 28 year: 2007 end-page: 35 ident: b0070 article-title: Digital butterworth filter for subtracting noise from low magnitude surface electromyogram publication-title: Comput. Methods Prog. Biomed. – reference: Cao, Y., Tung, W.w., Gao, J., Protopopescu, V.A., Hively, L.M., 2004. Detecting dynamical changes in time series using the permutation entropy. Phys. Rev.E 70, 046217. doi:10.1103/PhysRevE.70.046217. – volume: 43 start-page: 1573 year: 2010 end-page: 1579 ident: b0030 article-title: Filtering the surface emg signal: Movement artifact and baseline noise contamination publication-title: J. Biomech. – volume: 11 start-page: 60 year: 2003 end-page: 69 ident: b0100 article-title: Evaluation of adaptive/nonadaptive filtering and wavelet transform techniques for noise reduction in emg mobile acquisition equipment publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – year: 2000 ident: b0115 article-title: Physiological time-series analysis using approximate entropy and sample entropy publication-title: Am. J. Physiol.-Heart Circulat. Physiol. – volume: 54 start-page: 102440 year: 2020 ident: b0080 article-title: Tutorial. surface emg detection, conditioning and pre-processing: Best practices publication-title: J. Electromyogr. Kinesiol. – volume: 39 start-page: 202 year: 2012 end-page: 209 ident: b0095 article-title: Detection of epileptic electroencephalogram based on permutation entropy and support vector machines publication-title: Expert Syst. Appl. – ident: 10.1016/j.jelekin.2023.102834_b0035 doi: 10.1098/rspa.1998.0193 – volume: 43 start-page: 1573 year: 2010 ident: 10.1016/j.jelekin.2023.102834_b0030 article-title: Filtering the surface emg signal: Movement artifact and baseline noise contamination publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.01.027 – volume: 26 start-page: 35 year: 2009 ident: 10.1016/j.jelekin.2023.102834_b0045 article-title: Electromyography signal analysis using wavelet transform and higher order statistics to determine muscle contraction publication-title: Exp. Syst. doi: 10.1111/j.1468-0394.2008.00483.x – volume: 11 start-page: 60 year: 2003 ident: 10.1016/j.jelekin.2023.102834_b0100 article-title: Evaluation of adaptive/nonadaptive filtering and wavelet transform techniques for noise reduction in emg mobile acquisition equipment publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2003.810432 – volume: 17 start-page: 6945 year: 2020 ident: 10.1016/j.jelekin.2023.102834_b0120 article-title: Surface electromyography signal denoising via eemd and improved wavelet thresholds publication-title: Math. Biosci. Eng. doi: 10.3934/mbe.2020359 – volume: 57 start-page: 1351 year: 2009 ident: 10.1016/j.jelekin.2023.102834_b0055 article-title: Development of emd-based denoising methods inspired by wavelet thresholding publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2009.2013885 – volume: 87 start-page: 28 year: 2007 ident: 10.1016/j.jelekin.2023.102834_b0070 article-title: Digital butterworth filter for subtracting noise from low magnitude surface electromyogram publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2007.04.004 – volume: 96 start-page: 362 year: 2014 ident: 10.1016/j.jelekin.2023.102834_b0170 article-title: Partly ensemble empirical mode decomposition: An improved noise-assisted method for eliminating mode mixing publication-title: Signal Processing doi: 10.1016/j.sigpro.2013.09.013 – volume: 90 start-page: 035003 year: 2019 ident: 10.1016/j.jelekin.2023.102834_b0135 article-title: Denoising of surface electromyogram based on complementary ensemble empirical mode decomposition and improved interval thresholding publication-title: Rev. Sci. Instrum. doi: 10.1063/1.5057725 – volume: 14 start-page: 566172 year: 2020 ident: 10.1016/j.jelekin.2023.102834_b0160 article-title: Muscle fatigue analysis with optimized complementary ensemble empirical mode decomposition and multi-scale envelope spectral entropy publication-title: Frontiers in Neurorobotics doi: 10.3389/fnbot.2020.566172 – volume: 1 start-page: 44 year: 2006 ident: 10.1016/j.jelekin.2023.102834_b0005 article-title: Emg signal filtering based on empirical mode decomposition publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2006.03.003 – volume: 29 start-page: 474 year: 2012 ident: 10.1016/j.jelekin.2023.102834_b0145 article-title: Permutation entropy: A nonlinear statistical measure for status characterization of rotary machines publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2011.11.022 – volume: 37 start-page: 140 year: 2017 ident: 10.1016/j.jelekin.2023.102834_b0125 article-title: Emg signal filtering based on independent component analysis and empirical mode decomposition for estimation of motor activation patterns publication-title: J. Med. Biol. Eng. doi: 10.1007/s40846-016-0201-5 – volume: 110 start-page: 1023 year: 2020 ident: 10.1016/j.jelekin.2023.102834_b0140 article-title: Classification of hand movements using variational mode decomposition and composite permutation entropy index with surface electromyogram signals publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.11.025 – volume: 39 start-page: 202 year: 2012 ident: 10.1016/j.jelekin.2023.102834_b0095 article-title: Detection of epileptic electroencephalogram based on permutation entropy and support vector machines publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.07.008 – volume: 25 start-page: 1268 year: 2016 ident: 10.1016/j.jelekin.2023.102834_b0110 article-title: Application of empirical mode decomposition combined with notch filtering for interpretation of surface electromyograms during functional electrical stimulation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2624763 – volume: 48 start-page: 128 year: 2019 ident: 10.1016/j.jelekin.2023.102834_b0015 article-title: Consensus for experimental design in electromyography (cede) project: Electrode selection matrix publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2019.07.008 – volume: 35 start-page: 537 year: 2013 ident: 10.1016/j.jelekin.2023.102834_b0155 article-title: Filtering of surface emg using ensemble empirical mode decomposition publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2012.10.009 – volume: 10 start-page: 7144 year: 2020 ident: 10.1016/j.jelekin.2023.102834_b0075 article-title: On the use of fuzzy and permutation entropy in hand gesture characterization from emg signals: Parameters selection and comparison publication-title: Appl. Sci. doi: 10.3390/app10207144 – volume: 88 start-page: 174102 year: 2002 ident: 10.1016/j.jelekin.2023.102834_b0010 article-title: Permutation entropy: a natural complexity measure for time series publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.174102 – volume: 1 start-page: 1 year: 2009 ident: 10.1016/j.jelekin.2023.102834_b0130 article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536909000047 – year: 2000 ident: 10.1016/j.jelekin.2023.102834_b0115 article-title: Physiological time-series analysis using approximate entropy and sample entropy publication-title: Am. J. Physiol.-Heart Circulat. Physiol. doi: 10.1152/ajpheart.2000.278.6.H2039 – ident: 10.1016/j.jelekin.2023.102834_b0020 doi: 10.1103/PhysRevE.70.046217 – volume: 139 start-page: 438 year: 2019 ident: 10.1016/j.jelekin.2023.102834_b0040 article-title: Data decomposition method combining permutation entropy and spectral substitution with ensemble empirical mode decomposition publication-title: Measurement doi: 10.1016/j.measurement.2019.01.026 – volume: 12 start-page: 1 year: 2002 ident: 10.1016/j.jelekin.2023.102834_b0025 article-title: Sampling, noise-reduction and amplitude estimation issues in surface electromyography publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/S1050-6411(01)00033-5 – volume: 54 start-page: 102440 year: 2020 ident: 10.1016/j.jelekin.2023.102834_b0080 article-title: Tutorial. surface emg detection, conditioning and pre-processing: Best practices publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2020.102440 – volume: 72 start-page: 200 year: 2017 ident: 10.1016/j.jelekin.2023.102834_b0090 article-title: An efficient method for analysis of emg signals using improved empirical mode decomposition publication-title: AEU-Int. J. Electron. Commun. doi: 10.1016/j.aeue.2016.12.008 – volume: 2018 start-page: 1 year: 2018 ident: 10.1016/j.jelekin.2023.102834_b0060 article-title: The measurement and elimination of mode splitting: from the perspective of the partly ensemble empirical mode decomposition publication-title: Complexity doi: 10.1155/2018/4230649 – ident: 10.1016/j.jelekin.2023.102834_b0050 doi: 10.1109/IEMBS.2008.4650275 – volume: 16 start-page: 784 year: 2016 ident: 10.1016/j.jelekin.2023.102834_b0165 article-title: Rolling bearing fault diagnosis based on partially ensemble empirical mode decomposition and variable predictive model-based class discrimination publication-title: Arch. Civil Mech. Eng. doi: 10.1016/j.acme.2016.05.003 – volume: 49 start-page: 102363 year: 2019 ident: 10.1016/j.jelekin.2023.102834_b0085 article-title: Tutorial. surface emg detection in space and time: Best practices publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2019.102363 – volume: 2 start-page: 135 year: 2010 ident: 10.1016/j.jelekin.2023.102834_b0150 article-title: Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method publication-title: Advances in adaptive data analysis doi: 10.1142/S1793536910000422 – volume: 26 start-page: 506 year: 2017 ident: 10.1016/j.jelekin.2023.102834_b0065 article-title: Improved prosthetic control based on myoelectric pattern recognition via wavelet-based de-noising publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2771273 – volume: 107–132 year: 2012 ident: 10.1016/j.jelekin.2023.102834_b0105 article-title: The usefulness of wavelet transform to reduce noise in the semg signal publication-title: EMG methods for evaluating muscle and nerve function doi: 10.5772/25757 |
SSID | ssj0017080 |
Score | 2.4624732 |
Snippet | Surface Electromyography (sEMG) signals are muscle activation signals, which has applications in muscle diagnosis, rehabilitation, prosthetics, and speech etc.... AbstractSurface Electromyography (sEMG) signals are muscle activation signals, which has applications in muscle diagnosis, rehabilitation, prosthetics, and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 102834 |
SubjectTerms | Algorithms Denoising Electromyography Electromyography - methods EMD Humans Muscle, Skeletal Permutation entropy Physical Medicine and Rehabilitation Signal Processing, Computer-Assisted Signal-To-Noise Ratio |
Title | Automatic selection of IMFs to denoise the sEMG signals using EMD |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1050641123000937 https://www.clinicalkey.es/playcontent/1-s2.0-S1050641123000937 https://www.ncbi.nlm.nih.gov/pubmed/37922679 https://www.proquest.com/docview/2886602430 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXLggoDyWl4yEuFQJjvP0cdVuKVTLZVupN8t2nLILm6xI9lAO_HbGjpNs1V0VeokiK35-XyYzzswYoQ-SFoEURHupSGIvKhjzhFCxl8VFTqJAFLEywcnTb8nJefT1Ir4YYk9sdEkjffV7a1zJXVCFMsDVRMn-B7J9o1AA94AvXAFhuP4TxuN1U7UpV2f2OBun_H2ZHtu8DUe6rOa1trplPZl-PpjNL2265LXdIJhMj3aopu5snOWVy2dt_zD8MA7y82u78KfVagUTtJooMEmsDqzH9uAyoJdLUV6KphMn30tHRrfPQMMNn41WNJIYDM3IicZW3FntJNr4eA4FN0Rzu0uw8BcwBxixb_rwNxvYTIU9OTwNvJr6xJuZfk23YCuZ7Zf0-sOtIcNrygm_8eh99ICC9WDEn_-n9_wJUpK1SSrchIbArk9bh7dLZdllkljV5OwxeuSAw-OWIE_QPV0-RfvjUgA7rvBHbL18LXD7aNxzBvecwVWBDWdwU2HHGQycwYYz2HEGW85g4MwzdH48OTs88dwxGp6KgqzxKE1VoLMkVFIlrKAsFbmQItQsJ4FiJMkLKWOa5bIgGQMZzgqZ5SSXWSSJiHX4HO2VValfIgwthdAoSwkREYmUMNY-YzTNc5UUeTJCUbdSXLkc8-aok5-8cyZccLfA3Cwwbxd4hPy-2qpNsnJbhaSDgXcRxPDN48C12yqm2yrq2r3VNd_FpRF638HNQQKb32qi1NW65jTLksQk9iQj9KLlQT-LMGVg36Ts1Z37fY0eDm_jG7TX_Frrt6AHN_KdZfVfMECs5Q |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Selection+of+IMFs+to+Denoise+the+sEMG+Signals+using+EMD&rft.jtitle=Journal+of+electromyography+and+kinesiology&rft.au=Koppolu%2C+Pratap+Kumar&rft.au=Chemmangat%2C+Krishnan&rft.date=2023-12-01&rft.issn=1050-6411&rft.spage=102834&rft.epage=102834&rft_id=info:doi/10.1016%2Fj.jelekin.2023.102834&rft.externalDBID=ECK1-s2.0-S1050641123000937&rft.externalDocID=1_s2_0_S1050641123000937 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-6411&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-6411&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-6411&client=summon |