Automatic selection of IMFs to denoise the sEMG signals using EMD

Surface Electromyography (sEMG) signals are muscle activation signals, which has applications in muscle diagnosis, rehabilitation, prosthetics, and speech etc. However, they are known to be affected by noises such as Power Line Interference (PLI), motion artifacts etc. Currently, Empirical Mode Deco...

Full description

Saved in:
Bibliographic Details
Published inJournal of electromyography and kinesiology Vol. 73; p. 102834
Main Authors Koppolu, Pratap Kumar, Chemmangat, Krishnan
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Surface Electromyography (sEMG) signals are muscle activation signals, which has applications in muscle diagnosis, rehabilitation, prosthetics, and speech etc. However, they are known to be affected by noises such as Power Line Interference (PLI), motion artifacts etc. Currently, Empirical Mode Decomposition (EMD) and its modifications such as Ensemble EMD (EEMD), and Complementary EEMD (CEEMD) are used to decompose EMG into a series of Intrinsic Mode Functions (IMFs). The denoised EMG can be obtained from the selected IMFs. Statistical methods are used to select the signal dominant IMFs to reconstruct the denoised signal. In this work, a novel procedure is proposed to automatically separate noisy IMFs from the original sEMG signal. For this purpose, Permutation Entropy (PE) is employed in EEMD sifting process called Partly EEMD (PEEMD), to separate the noisy IMFs from the original sEMG signal according to the preset PE threshold. PEEMD decomposes the original signal into various modes according to a preset PE threshold and the denoised signal is reconstructed from resultant IMFs. The PEEMD denoising procedure is applied on the experimental sEMG data collected from eight subjects, that include six various upper limb movement classes. The proposed denoising procedure achieved an improved denoising performance in comparison with EMD, EEMD, and CEEMD. An alternate measure called Sample Entropy (SE) is also used in place of PE, for the automated sifting process as a comparison. Signal to Noise Ratio (SNR), Root Mean Square Error (RMSE), and Reconstruction Error (RE) parameters are used to evaluate the denoising performance. The results, averaged across eight subjects, demonstrate that the proposed denoising procedure outperforms the state-of-the-art EMD techniques in terms of these performance measures on the experimentally collected sEMG data samples.
AbstractList AbstractSurface Electromyography (sEMG) signals are muscle activation signals, which has applications in muscle diagnosis, rehabilitation, prosthetics, and speech etc. However, they are known to be affected by noises such as Power Line Interference (PLI), motion artifacts etc. Currently, Empirical Mode Decomposition (EMD) and its modifications such as Ensemble EMD (EEMD), and Complementary EEMD (CEEMD) are used to decompose EMG into a series of Intrinsic Mode Functions (IMFs). The denoised EMG can be obtained from the selected IMFs. Statistical methods are used to select the signal dominant IMFs to reconstruct the denoised signal. In this work, a novel procedure is proposed to automatically separate noisy IMFs from the original sEMG signal. For this purpose, Permutation Entropy (PE) is employed in EEMD sifting process called Partly EEMD (PEEMD), to separate the noisy IMFs from the original sEMG signal according to the preset PE threshold. PEEMD decomposes the original signal into various modes according to a preset PE threshold and the denoised signal is reconstructed from resultant IMFs. The PEEMD denoising procedure is applied on the experimental sEMG data collected from eight subjects, that include six various upper limb movement classes. The proposed denoising procedure achieved an improved denoising performance in comparison with EMD, EEMD, and CEEMD. An alternate measure called Sample Entropy (SE) is also used in place of PE, for the automated sifting process as a comparison. Signal to Noise Ratio (SNR), Root Mean Square Error (RMSE), and Reconstruction Error (RE) parameters are used to evaluate the denoising performance. The results, averaged across eight subjects, demonstrate that the proposed denoising procedure outperforms the state-of-the-art EMD techniques in terms of these performance measures on the experimentally collected sEMG data samples.
Surface Electromyography (sEMG) signals are muscle activation signals, which has applications in muscle diagnosis, rehabilitation, prosthetics, and speech etc. However, they are known to be affected by noises such as Power Line Interference (PLI), motion artifacts etc. Currently, Empirical Mode Decomposition (EMD) and its modifications such as Ensemble EMD (EEMD), and Complementary EEMD (CEEMD) are used to decompose EMG into a series of Intrinsic Mode Functions (IMFs). The denoised EMG can be obtained from the selected IMFs. Statistical methods are used to select the signal dominant IMFs to reconstruct the denoised signal. In this work, a novel procedure is proposed to automatically separate noisy IMFs from the original sEMG signal. For this purpose, Permutation Entropy (PE) is employed in EEMD sifting process called Partly EEMD (PEEMD), to separate the noisy IMFs from the original sEMG signal according to the preset PE threshold. PEEMD decomposes the original signal into various modes according to a preset PE threshold and the denoised signal is reconstructed from resultant IMFs. The PEEMD denoising procedure is applied on the experimental sEMG data collected from eight subjects, that include six various upper limb movement classes. The proposed denoising procedure achieved an improved denoising performance in comparison with EMD, EEMD, and CEEMD. An alternate measure called Sample Entropy (SE) is also used in place of PE, for the automated sifting process as a comparison. Signal to Noise Ratio (SNR), Root Mean Square Error (RMSE), and Reconstruction Error (RE) parameters are used to evaluate the denoising performance. The results, averaged across eight subjects, demonstrate that the proposed denoising procedure outperforms the state-of-the-art EMD techniques in terms of these performance measures on the experimentally collected sEMG data samples.
Surface Electromyography (sEMG) signals are muscle activation signals, which has applications in muscle diagnosis, rehabilitation, prosthetics, and speech etc. However, they are known to be affected by noises such as Power Line Interference (PLI), motion artifacts etc. Currently, Empirical Mode Decomposition (EMD) and its modifications such as Ensemble EMD (EEMD), and Complementary EEMD (CEEMD) are used to decompose EMG into a series of Intrinsic Mode Functions (IMFs). The denoised EMG can be obtained from the selected IMFs. Statistical methods are used to select the signal dominant IMFs to reconstruct the denoised signal. In this work, a novel procedure is proposed to automatically separate noisy IMFs from the original sEMG signal. For this purpose, Permutation Entropy (PE) is employed in EEMD sifting process called Partly EEMD (PEEMD), to separate the noisy IMFs from the original sEMG signal according to the preset PE threshold. PEEMD decomposes the original signal into various modes according to a preset PE threshold and the denoised signal is reconstructed from resultant IMFs. The PEEMD denoising procedure is applied on the experimental sEMG data collected from eight subjects, that include six various upper limb movement classes. The proposed denoising procedure achieved an improved denoising performance in comparison with EMD, EEMD, and CEEMD. An alternate measure called Sample Entropy (SE) is also used in place of PE, for the automated sifting process as a comparison. Signal to Noise Ratio (SNR), Root Mean Square Error (RMSE), and Reconstruction Error (RE) parameters are used to evaluate the denoising performance. The results, averaged across eight subjects, demonstrate that the proposed denoising procedure outperforms the state-of-the-art EMD techniques in terms of these performance measures on the experimentally collected sEMG data samples.Surface Electromyography (sEMG) signals are muscle activation signals, which has applications in muscle diagnosis, rehabilitation, prosthetics, and speech etc. However, they are known to be affected by noises such as Power Line Interference (PLI), motion artifacts etc. Currently, Empirical Mode Decomposition (EMD) and its modifications such as Ensemble EMD (EEMD), and Complementary EEMD (CEEMD) are used to decompose EMG into a series of Intrinsic Mode Functions (IMFs). The denoised EMG can be obtained from the selected IMFs. Statistical methods are used to select the signal dominant IMFs to reconstruct the denoised signal. In this work, a novel procedure is proposed to automatically separate noisy IMFs from the original sEMG signal. For this purpose, Permutation Entropy (PE) is employed in EEMD sifting process called Partly EEMD (PEEMD), to separate the noisy IMFs from the original sEMG signal according to the preset PE threshold. PEEMD decomposes the original signal into various modes according to a preset PE threshold and the denoised signal is reconstructed from resultant IMFs. The PEEMD denoising procedure is applied on the experimental sEMG data collected from eight subjects, that include six various upper limb movement classes. The proposed denoising procedure achieved an improved denoising performance in comparison with EMD, EEMD, and CEEMD. An alternate measure called Sample Entropy (SE) is also used in place of PE, for the automated sifting process as a comparison. Signal to Noise Ratio (SNR), Root Mean Square Error (RMSE), and Reconstruction Error (RE) parameters are used to evaluate the denoising performance. The results, averaged across eight subjects, demonstrate that the proposed denoising procedure outperforms the state-of-the-art EMD techniques in terms of these performance measures on the experimentally collected sEMG data samples.
ArticleNumber 102834
Author Koppolu, Pratap Kumar
Chemmangat, Krishnan
Author_xml – sequence: 1
  givenname: Pratap Kumar
  surname: Koppolu
  fullname: Koppolu, Pratap Kumar
  email: pratapsame@gmail.com
– sequence: 2
  givenname: Krishnan
  surname: Chemmangat
  fullname: Chemmangat, Krishnan
  email: cmckrishnan@nitk.edu.in
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37922679$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1r3DAQhkVJaT5_QouOvXg7kvwhU1pY0k0ayNJDk7OQ5HEqxyulllzIv6_Mbi6FktOI4X3f0TxzSo588EjIewYrBqz-NKwGHPHR-RUHLnKPS1G-ISdMNqKoGsaO8hsqKOqSsWNyGuMAwBqQ8I4ci6blvG7aE7JezynsdHKWxpxnkwuehp7ebK8iTYF26IOLSNMvpHGzvabRPXg9RjpH5x_oZvvtnLztcwMvDvWM3F9t7i6_F7c_rm8u17eFLZlMBeeNZShrYY2t2563je600QLbDphtoe56YyouO9ODbEtetb2RHXRGlgZ0heKMfNznPk3h94wxqZ2LFsdRewxzVFzKugZeCsjSDwfpbHbYqafJ7fT0rF7WzoLPe4GdQowT9sq6pJfd06TdqBioBbIa1AGyWiCrPeTsrv5xvwx4zfd178OM6Y_DSdnReWf1-IjPGIcwTwtaxVTkCtTP5XzL9bgAgFY0OeDL_wNUF9wrH_gLZ_erlw
CitedBy_id crossref_primary_10_1016_j_compbiomed_2025_109651
crossref_primary_10_1016_j_conengprac_2025_106312
crossref_primary_10_1016_j_isatra_2024_01_027
crossref_primary_10_1016_j_asoc_2024_112235
crossref_primary_10_1109_JSEN_2024_3523941
crossref_primary_10_1016_j_bspc_2024_106307
crossref_primary_10_1109_JSEN_2025_3532689
crossref_primary_10_1088_2057_1976_ad773a
crossref_primary_10_1088_1361_6501_ad9348
crossref_primary_10_3390_w15244287
crossref_primary_10_1007_s13369_024_09320_y
Cites_doi 10.1098/rspa.1998.0193
10.1016/j.jbiomech.2010.01.027
10.1111/j.1468-0394.2008.00483.x
10.1109/TNSRE.2003.810432
10.3934/mbe.2020359
10.1109/TSP.2009.2013885
10.1016/j.cmpb.2007.04.004
10.1016/j.sigpro.2013.09.013
10.1063/1.5057725
10.3389/fnbot.2020.566172
10.1016/j.bspc.2006.03.003
10.1016/j.ymssp.2011.11.022
10.1007/s40846-016-0201-5
10.1016/j.future.2019.11.025
10.1016/j.eswa.2011.07.008
10.1109/TNSRE.2016.2624763
10.1016/j.jelekin.2019.07.008
10.1016/j.medengphy.2012.10.009
10.3390/app10207144
10.1103/PhysRevLett.88.174102
10.1142/S1793536909000047
10.1152/ajpheart.2000.278.6.H2039
10.1103/PhysRevE.70.046217
10.1016/j.measurement.2019.01.026
10.1016/S1050-6411(01)00033-5
10.1016/j.jelekin.2020.102440
10.1016/j.aeue.2016.12.008
10.1155/2018/4230649
10.1109/IEMBS.2008.4650275
10.1016/j.acme.2016.05.003
10.1016/j.jelekin.2019.102363
10.1142/S1793536910000422
10.1109/TNSRE.2017.2771273
10.5772/25757
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jelekin.2023.102834
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1873-5711
EndPage 102834
ExternalDocumentID 37922679
10_1016_j_jelekin_2023_102834
1_s2_0_S1050641123000937
S1050641123000937
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
D-I
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEB
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OH.
OHT
OT.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
TWZ
UPT
WUQ
YQT
Z5R
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c418t-227c1e863cbc69f297adaba3e9d01c906dfbb528dbf0894259fb8d0db84b0a5e3
ISSN 1050-6411
1873-5711
IngestDate Fri Jul 11 00:18:59 EDT 2025
Thu Apr 03 07:00:33 EDT 2025
Tue Jul 01 04:30:36 EDT 2025
Thu Apr 24 23:11:59 EDT 2025
Tue Feb 25 19:56:57 EST 2025
Tue Aug 26 19:57:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Electromyography
Permutation entropy
EMD
Denoising
Permutation Entropy
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c418t-227c1e863cbc69f297adaba3e9d01c906dfbb528dbf0894259fb8d0db84b0a5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 37922679
PQID 2886602430
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_2886602430
pubmed_primary_37922679
crossref_citationtrail_10_1016_j_jelekin_2023_102834
crossref_primary_10_1016_j_jelekin_2023_102834
elsevier_clinicalkeyesjournals_1_s2_0_S1050641123000937
elsevier_clinicalkey_doi_10_1016_j_jelekin_2023_102834
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of electromyography and kinesiology
PublicationTitleAlternate J Electromyogr Kinesiol
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hussain, Reaz, Mohd-Yasin, Ibrahimy (b0045) 2009; 26
Yan, Liu, Gao (b0145) 2012; 29
Mengarelli, Tigrini, Fioretti, Cardarelli, Verdini (b0075) 2020; 10
Zhao, She, Fukushima, Wang, Wu, Pan (b0160) 2020; 14
De Luca, Gilmore, Kuznetsov, Roy (b0030) 2010; 43
Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H., 1998. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. London. Series A: Math., Phys. Eng. Sci. 454, 903–995. doi: 10.1098/rspa.1998.0193.
Bandt, Pompe (b0010) 2002; 88
Andrade, Nasuto, Kyberd, Sweeney-Reed, Van Kanijn (b0005) 2006; 1
Merletti, Cerone (b0080) 2020; 54
Besomi, Hodges, Van Dieën, Carson, Clancy, Disselhorst-Klug, Holobar, Hug, Kiernan, Lowery (b0015) 2019; 48
Sun, Xi, Yuan, Yang, Hua (b0120) 2020; 17
Pilkar, Yarossi, Ramanujam, Rajagopalan, Bayram, Mitchell, Canton, Forrest (b0110) 2016; 25
Liu, Zheng, Dai, Zhou (b0060) 2018; 2018
Mello, Oliveira, Nadal (b0070) 2007; 87
Richman, Moorman (b0115) 2000
Xi, Zhang, Zhao, She, Luo (b0135) 2019; 90
Khezri, M., Jahed, M., 2008. Surface electromyogram signal estimation based on wavelet thresholding technique. In: 2008 30th annual international conference of the IEEE engineering in medicine and biology society, IEEE. pp. 4752–4755. doi:10.1109/IEMBS.2008.4650275.
Tapia, Daud, Ruiz-del Solar (b0125) 2017; 37
Cao, Y., Tung, W.w., Gao, J., Protopopescu, V.A., Hively, L.M., 2004. Detecting dynamical changes in time series using the permutation entropy. Phys. Rev.E 70, 046217. doi:10.1103/PhysRevE.70.046217.
Nicolaou, Georgiou (b0095) 2012; 39
Phinyomark, Phukpattaranont, Limsakul (b0105) 2012; 107–132
Zhang, Zhou (b0155) 2013; 35
Yeh, Shieh, Huang (b0150) 2010; 2
Kopsinis, McLaughlin (b0055) 2009; 57
Clancy, Morin, Merletti (b0025) 2002; 12
Huang, Wang, Li, Kang (b0040) 2019; 139
Ortolan, Mori, Pereira, Cabral, Pereira, Cliquet (b0100) 2003; 11
Mishra, Bajaj, Kumar, Sharma, Singh (b0090) 2017; 72
Wu, Huang (b0130) 2009; 1
Xiao, Yang, Lv, Guo, Liu, Wang (b0140) 2020; 110
Maier, Naber, Ortiz-Catalan (b0065) 2017; 26
Merletti, Muceli (b0085) 2019; 49
Zheng, Cheng, Yang (b0170) 2014; 96
Zheng (b0165) 2016; 16
Huang (10.1016/j.jelekin.2023.102834_b0040) 2019; 139
Hussain (10.1016/j.jelekin.2023.102834_b0045) 2009; 26
Bandt (10.1016/j.jelekin.2023.102834_b0010) 2002; 88
Pilkar (10.1016/j.jelekin.2023.102834_b0110) 2016; 25
Zhang (10.1016/j.jelekin.2023.102834_b0155) 2013; 35
Clancy (10.1016/j.jelekin.2023.102834_b0025) 2002; 12
Kopsinis (10.1016/j.jelekin.2023.102834_b0055) 2009; 57
Zhao (10.1016/j.jelekin.2023.102834_b0160) 2020; 14
10.1016/j.jelekin.2023.102834_b0020
Besomi (10.1016/j.jelekin.2023.102834_b0015) 2019; 48
Tapia (10.1016/j.jelekin.2023.102834_b0125) 2017; 37
Xiao (10.1016/j.jelekin.2023.102834_b0140) 2020; 110
Wu (10.1016/j.jelekin.2023.102834_b0130) 2009; 1
Mengarelli (10.1016/j.jelekin.2023.102834_b0075) 2020; 10
Ortolan (10.1016/j.jelekin.2023.102834_b0100) 2003; 11
Merletti (10.1016/j.jelekin.2023.102834_b0085) 2019; 49
De Luca (10.1016/j.jelekin.2023.102834_b0030) 2010; 43
Sun (10.1016/j.jelekin.2023.102834_b0120) 2020; 17
Merletti (10.1016/j.jelekin.2023.102834_b0080) 2020; 54
10.1016/j.jelekin.2023.102834_b0035
Maier (10.1016/j.jelekin.2023.102834_b0065) 2017; 26
Richman (10.1016/j.jelekin.2023.102834_b0115) 2000
Mishra (10.1016/j.jelekin.2023.102834_b0090) 2017; 72
10.1016/j.jelekin.2023.102834_b0050
Zheng (10.1016/j.jelekin.2023.102834_b0165) 2016; 16
Mello (10.1016/j.jelekin.2023.102834_b0070) 2007; 87
Andrade (10.1016/j.jelekin.2023.102834_b0005) 2006; 1
Yan (10.1016/j.jelekin.2023.102834_b0145) 2012; 29
Yeh (10.1016/j.jelekin.2023.102834_b0150) 2010; 2
Zheng (10.1016/j.jelekin.2023.102834_b0170) 2014; 96
Liu (10.1016/j.jelekin.2023.102834_b0060) 2018; 2018
Phinyomark (10.1016/j.jelekin.2023.102834_b0105) 2012; 107–132
Nicolaou (10.1016/j.jelekin.2023.102834_b0095) 2012; 39
Xi (10.1016/j.jelekin.2023.102834_b0135) 2019; 90
References_xml – volume: 88
  start-page: 174102
  year: 2002
  ident: b0010
  article-title: Permutation entropy: a natural complexity measure for time series
  publication-title: Phys. Rev. Lett.
– volume: 72
  start-page: 200
  year: 2017
  end-page: 209
  ident: b0090
  article-title: An efficient method for analysis of emg signals using improved empirical mode decomposition
  publication-title: AEU-Int. J. Electron. Commun.
– volume: 35
  start-page: 537
  year: 2013
  end-page: 542
  ident: b0155
  article-title: Filtering of surface emg using ensemble empirical mode decomposition
  publication-title: Med. Eng. Phys.
– volume: 49
  start-page: 102363
  year: 2019
  ident: b0085
  article-title: Tutorial. surface emg detection in space and time: Best practices
  publication-title: J. Electromyogr. Kinesiol.
– reference: Khezri, M., Jahed, M., 2008. Surface electromyogram signal estimation based on wavelet thresholding technique. In: 2008 30th annual international conference of the IEEE engineering in medicine and biology society, IEEE. pp. 4752–4755. doi:10.1109/IEMBS.2008.4650275.
– volume: 17
  start-page: 6945
  year: 2020
  end-page: 6962
  ident: b0120
  article-title: Surface electromyography signal denoising via eemd and improved wavelet thresholds
  publication-title: Math. Biosci. Eng.
– volume: 139
  start-page: 438
  year: 2019
  end-page: 453
  ident: b0040
  article-title: Data decomposition method combining permutation entropy and spectral substitution with ensemble empirical mode decomposition
  publication-title: Measurement
– volume: 14
  start-page: 566172
  year: 2020
  ident: b0160
  article-title: Muscle fatigue analysis with optimized complementary ensemble empirical mode decomposition and multi-scale envelope spectral entropy
  publication-title: Frontiers in Neurorobotics
– volume: 16
  start-page: 784
  year: 2016
  end-page: 794
  ident: b0165
  article-title: Rolling bearing fault diagnosis based on partially ensemble empirical mode decomposition and variable predictive model-based class discrimination
  publication-title: Arch. Civil Mech. Eng.
– volume: 48
  start-page: 128
  year: 2019
  end-page: 144
  ident: b0015
  article-title: Consensus for experimental design in electromyography (cede) project: Electrode selection matrix
  publication-title: J. Electromyogr. Kinesiol.
– reference: Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H., 1998. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. London. Series A: Math., Phys. Eng. Sci. 454, 903–995. doi: 10.1098/rspa.1998.0193.
– volume: 10
  start-page: 7144
  year: 2020
  ident: b0075
  article-title: On the use of fuzzy and permutation entropy in hand gesture characterization from emg signals: Parameters selection and comparison
  publication-title: Appl. Sci.
– volume: 110
  start-page: 1023
  year: 2020
  end-page: 1036
  ident: b0140
  article-title: Classification of hand movements using variational mode decomposition and composite permutation entropy index with surface electromyogram signals
  publication-title: Future Gener. Comput. Syst.
– volume: 107–132
  year: 2012
  ident: b0105
  article-title: The usefulness of wavelet transform to reduce noise in the semg signal
  publication-title: EMG methods for evaluating muscle and nerve function
– volume: 90
  start-page: 035003
  year: 2019
  ident: b0135
  article-title: Denoising of surface electromyogram based on complementary ensemble empirical mode decomposition and improved interval thresholding
  publication-title: Rev. Sci. Instrum.
– volume: 26
  start-page: 506
  year: 2017
  end-page: 514
  ident: b0065
  article-title: Improved prosthetic control based on myoelectric pattern recognition via wavelet-based de-noising
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 29
  start-page: 474
  year: 2012
  end-page: 484
  ident: b0145
  article-title: Permutation entropy: A nonlinear statistical measure for status characterization of rotary machines
  publication-title: Mech. Syst. Signal Process.
– volume: 25
  start-page: 1268
  year: 2016
  end-page: 1277
  ident: b0110
  article-title: Application of empirical mode decomposition combined with notch filtering for interpretation of surface electromyograms during functional electrical stimulation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 2
  start-page: 135
  year: 2010
  end-page: 156
  ident: b0150
  article-title: Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method
  publication-title: Advances in adaptive data analysis
– volume: 1
  start-page: 44
  year: 2006
  end-page: 55
  ident: b0005
  article-title: Emg signal filtering based on empirical mode decomposition
  publication-title: Biomed. Signal Process. Control
– volume: 57
  start-page: 1351
  year: 2009
  end-page: 1362
  ident: b0055
  article-title: Development of emd-based denoising methods inspired by wavelet thresholding
  publication-title: IEEE Trans. Signal Process.
– volume: 37
  start-page: 140
  year: 2017
  end-page: 155
  ident: b0125
  article-title: Emg signal filtering based on independent component analysis and empirical mode decomposition for estimation of motor activation patterns
  publication-title: J. Med. Biol. Eng.
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 10
  ident: b0060
  article-title: The measurement and elimination of mode splitting: from the perspective of the partly ensemble empirical mode decomposition
  publication-title: Complexity
– volume: 12
  start-page: 1
  year: 2002
  end-page: 16
  ident: b0025
  article-title: Sampling, noise-reduction and amplitude estimation issues in surface electromyography
  publication-title: J. Electromyogr. Kinesiol.
– volume: 1
  start-page: 1
  year: 2009
  end-page: 41
  ident: b0130
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
– volume: 26
  start-page: 35
  year: 2009
  end-page: 48
  ident: b0045
  article-title: Electromyography signal analysis using wavelet transform and higher order statistics to determine muscle contraction
  publication-title: Exp. Syst.
– volume: 96
  start-page: 362
  year: 2014
  end-page: 374
  ident: b0170
  article-title: Partly ensemble empirical mode decomposition: An improved noise-assisted method for eliminating mode mixing
  publication-title: Signal Processing
– volume: 87
  start-page: 28
  year: 2007
  end-page: 35
  ident: b0070
  article-title: Digital butterworth filter for subtracting noise from low magnitude surface electromyogram
  publication-title: Comput. Methods Prog. Biomed.
– reference: Cao, Y., Tung, W.w., Gao, J., Protopopescu, V.A., Hively, L.M., 2004. Detecting dynamical changes in time series using the permutation entropy. Phys. Rev.E 70, 046217. doi:10.1103/PhysRevE.70.046217.
– volume: 43
  start-page: 1573
  year: 2010
  end-page: 1579
  ident: b0030
  article-title: Filtering the surface emg signal: Movement artifact and baseline noise contamination
  publication-title: J. Biomech.
– volume: 11
  start-page: 60
  year: 2003
  end-page: 69
  ident: b0100
  article-title: Evaluation of adaptive/nonadaptive filtering and wavelet transform techniques for noise reduction in emg mobile acquisition equipment
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– year: 2000
  ident: b0115
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: Am. J. Physiol.-Heart Circulat. Physiol.
– volume: 54
  start-page: 102440
  year: 2020
  ident: b0080
  article-title: Tutorial. surface emg detection, conditioning and pre-processing: Best practices
  publication-title: J. Electromyogr. Kinesiol.
– volume: 39
  start-page: 202
  year: 2012
  end-page: 209
  ident: b0095
  article-title: Detection of epileptic electroencephalogram based on permutation entropy and support vector machines
  publication-title: Expert Syst. Appl.
– ident: 10.1016/j.jelekin.2023.102834_b0035
  doi: 10.1098/rspa.1998.0193
– volume: 43
  start-page: 1573
  year: 2010
  ident: 10.1016/j.jelekin.2023.102834_b0030
  article-title: Filtering the surface emg signal: Movement artifact and baseline noise contamination
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.01.027
– volume: 26
  start-page: 35
  year: 2009
  ident: 10.1016/j.jelekin.2023.102834_b0045
  article-title: Electromyography signal analysis using wavelet transform and higher order statistics to determine muscle contraction
  publication-title: Exp. Syst.
  doi: 10.1111/j.1468-0394.2008.00483.x
– volume: 11
  start-page: 60
  year: 2003
  ident: 10.1016/j.jelekin.2023.102834_b0100
  article-title: Evaluation of adaptive/nonadaptive filtering and wavelet transform techniques for noise reduction in emg mobile acquisition equipment
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2003.810432
– volume: 17
  start-page: 6945
  year: 2020
  ident: 10.1016/j.jelekin.2023.102834_b0120
  article-title: Surface electromyography signal denoising via eemd and improved wavelet thresholds
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2020359
– volume: 57
  start-page: 1351
  year: 2009
  ident: 10.1016/j.jelekin.2023.102834_b0055
  article-title: Development of emd-based denoising methods inspired by wavelet thresholding
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2013885
– volume: 87
  start-page: 28
  year: 2007
  ident: 10.1016/j.jelekin.2023.102834_b0070
  article-title: Digital butterworth filter for subtracting noise from low magnitude surface electromyogram
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2007.04.004
– volume: 96
  start-page: 362
  year: 2014
  ident: 10.1016/j.jelekin.2023.102834_b0170
  article-title: Partly ensemble empirical mode decomposition: An improved noise-assisted method for eliminating mode mixing
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2013.09.013
– volume: 90
  start-page: 035003
  year: 2019
  ident: 10.1016/j.jelekin.2023.102834_b0135
  article-title: Denoising of surface electromyogram based on complementary ensemble empirical mode decomposition and improved interval thresholding
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.5057725
– volume: 14
  start-page: 566172
  year: 2020
  ident: 10.1016/j.jelekin.2023.102834_b0160
  article-title: Muscle fatigue analysis with optimized complementary ensemble empirical mode decomposition and multi-scale envelope spectral entropy
  publication-title: Frontiers in Neurorobotics
  doi: 10.3389/fnbot.2020.566172
– volume: 1
  start-page: 44
  year: 2006
  ident: 10.1016/j.jelekin.2023.102834_b0005
  article-title: Emg signal filtering based on empirical mode decomposition
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2006.03.003
– volume: 29
  start-page: 474
  year: 2012
  ident: 10.1016/j.jelekin.2023.102834_b0145
  article-title: Permutation entropy: A nonlinear statistical measure for status characterization of rotary machines
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2011.11.022
– volume: 37
  start-page: 140
  year: 2017
  ident: 10.1016/j.jelekin.2023.102834_b0125
  article-title: Emg signal filtering based on independent component analysis and empirical mode decomposition for estimation of motor activation patterns
  publication-title: J. Med. Biol. Eng.
  doi: 10.1007/s40846-016-0201-5
– volume: 110
  start-page: 1023
  year: 2020
  ident: 10.1016/j.jelekin.2023.102834_b0140
  article-title: Classification of hand movements using variational mode decomposition and composite permutation entropy index with surface electromyogram signals
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.11.025
– volume: 39
  start-page: 202
  year: 2012
  ident: 10.1016/j.jelekin.2023.102834_b0095
  article-title: Detection of epileptic electroencephalogram based on permutation entropy and support vector machines
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.07.008
– volume: 25
  start-page: 1268
  year: 2016
  ident: 10.1016/j.jelekin.2023.102834_b0110
  article-title: Application of empirical mode decomposition combined with notch filtering for interpretation of surface electromyograms during functional electrical stimulation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2624763
– volume: 48
  start-page: 128
  year: 2019
  ident: 10.1016/j.jelekin.2023.102834_b0015
  article-title: Consensus for experimental design in electromyography (cede) project: Electrode selection matrix
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2019.07.008
– volume: 35
  start-page: 537
  year: 2013
  ident: 10.1016/j.jelekin.2023.102834_b0155
  article-title: Filtering of surface emg using ensemble empirical mode decomposition
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2012.10.009
– volume: 10
  start-page: 7144
  year: 2020
  ident: 10.1016/j.jelekin.2023.102834_b0075
  article-title: On the use of fuzzy and permutation entropy in hand gesture characterization from emg signals: Parameters selection and comparison
  publication-title: Appl. Sci.
  doi: 10.3390/app10207144
– volume: 88
  start-page: 174102
  year: 2002
  ident: 10.1016/j.jelekin.2023.102834_b0010
  article-title: Permutation entropy: a natural complexity measure for time series
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.174102
– volume: 1
  start-page: 1
  year: 2009
  ident: 10.1016/j.jelekin.2023.102834_b0130
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000047
– year: 2000
  ident: 10.1016/j.jelekin.2023.102834_b0115
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: Am. J. Physiol.-Heart Circulat. Physiol.
  doi: 10.1152/ajpheart.2000.278.6.H2039
– ident: 10.1016/j.jelekin.2023.102834_b0020
  doi: 10.1103/PhysRevE.70.046217
– volume: 139
  start-page: 438
  year: 2019
  ident: 10.1016/j.jelekin.2023.102834_b0040
  article-title: Data decomposition method combining permutation entropy and spectral substitution with ensemble empirical mode decomposition
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.01.026
– volume: 12
  start-page: 1
  year: 2002
  ident: 10.1016/j.jelekin.2023.102834_b0025
  article-title: Sampling, noise-reduction and amplitude estimation issues in surface electromyography
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/S1050-6411(01)00033-5
– volume: 54
  start-page: 102440
  year: 2020
  ident: 10.1016/j.jelekin.2023.102834_b0080
  article-title: Tutorial. surface emg detection, conditioning and pre-processing: Best practices
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2020.102440
– volume: 72
  start-page: 200
  year: 2017
  ident: 10.1016/j.jelekin.2023.102834_b0090
  article-title: An efficient method for analysis of emg signals using improved empirical mode decomposition
  publication-title: AEU-Int. J. Electron. Commun.
  doi: 10.1016/j.aeue.2016.12.008
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.jelekin.2023.102834_b0060
  article-title: The measurement and elimination of mode splitting: from the perspective of the partly ensemble empirical mode decomposition
  publication-title: Complexity
  doi: 10.1155/2018/4230649
– ident: 10.1016/j.jelekin.2023.102834_b0050
  doi: 10.1109/IEMBS.2008.4650275
– volume: 16
  start-page: 784
  year: 2016
  ident: 10.1016/j.jelekin.2023.102834_b0165
  article-title: Rolling bearing fault diagnosis based on partially ensemble empirical mode decomposition and variable predictive model-based class discrimination
  publication-title: Arch. Civil Mech. Eng.
  doi: 10.1016/j.acme.2016.05.003
– volume: 49
  start-page: 102363
  year: 2019
  ident: 10.1016/j.jelekin.2023.102834_b0085
  article-title: Tutorial. surface emg detection in space and time: Best practices
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2019.102363
– volume: 2
  start-page: 135
  year: 2010
  ident: 10.1016/j.jelekin.2023.102834_b0150
  article-title: Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method
  publication-title: Advances in adaptive data analysis
  doi: 10.1142/S1793536910000422
– volume: 26
  start-page: 506
  year: 2017
  ident: 10.1016/j.jelekin.2023.102834_b0065
  article-title: Improved prosthetic control based on myoelectric pattern recognition via wavelet-based de-noising
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2771273
– volume: 107–132
  year: 2012
  ident: 10.1016/j.jelekin.2023.102834_b0105
  article-title: The usefulness of wavelet transform to reduce noise in the semg signal
  publication-title: EMG methods for evaluating muscle and nerve function
  doi: 10.5772/25757
SSID ssj0017080
Score 2.4624732
Snippet Surface Electromyography (sEMG) signals are muscle activation signals, which has applications in muscle diagnosis, rehabilitation, prosthetics, and speech etc....
AbstractSurface Electromyography (sEMG) signals are muscle activation signals, which has applications in muscle diagnosis, rehabilitation, prosthetics, and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102834
SubjectTerms Algorithms
Denoising
Electromyography
Electromyography - methods
EMD
Humans
Muscle, Skeletal
Permutation entropy
Physical Medicine and Rehabilitation
Signal Processing, Computer-Assisted
Signal-To-Noise Ratio
Title Automatic selection of IMFs to denoise the sEMG signals using EMD
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1050641123000937
https://www.clinicalkey.es/playcontent/1-s2.0-S1050641123000937
https://www.ncbi.nlm.nih.gov/pubmed/37922679
https://www.proquest.com/docview/2886602430
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXLggoDyWl4yEuFQJjvP0cdVuKVTLZVupN8t2nLILm6xI9lAO_HbGjpNs1V0VeokiK35-XyYzzswYoQ-SFoEURHupSGIvKhjzhFCxl8VFTqJAFLEywcnTb8nJefT1Ir4YYk9sdEkjffV7a1zJXVCFMsDVRMn-B7J9o1AA94AvXAFhuP4TxuN1U7UpV2f2OBun_H2ZHtu8DUe6rOa1trplPZl-PpjNL2265LXdIJhMj3aopu5snOWVy2dt_zD8MA7y82u78KfVagUTtJooMEmsDqzH9uAyoJdLUV6KphMn30tHRrfPQMMNn41WNJIYDM3IicZW3FntJNr4eA4FN0Rzu0uw8BcwBxixb_rwNxvYTIU9OTwNvJr6xJuZfk23YCuZ7Zf0-sOtIcNrygm_8eh99ICC9WDEn_-n9_wJUpK1SSrchIbArk9bh7dLZdllkljV5OwxeuSAw-OWIE_QPV0-RfvjUgA7rvBHbL18LXD7aNxzBvecwVWBDWdwU2HHGQycwYYz2HEGW85g4MwzdH48OTs88dwxGp6KgqzxKE1VoLMkVFIlrKAsFbmQItQsJ4FiJMkLKWOa5bIgGQMZzgqZ5SSXWSSJiHX4HO2VValfIgwthdAoSwkREYmUMNY-YzTNc5UUeTJCUbdSXLkc8-aok5-8cyZccLfA3Cwwbxd4hPy-2qpNsnJbhaSDgXcRxPDN48C12yqm2yrq2r3VNd_FpRF638HNQQKb32qi1NW65jTLksQk9iQj9KLlQT-LMGVg36Ts1Z37fY0eDm_jG7TX_Frrt6AHN_KdZfVfMECs5Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Selection+of+IMFs+to+Denoise+the+sEMG+Signals+using+EMD&rft.jtitle=Journal+of+electromyography+and+kinesiology&rft.au=Koppolu%2C+Pratap+Kumar&rft.au=Chemmangat%2C+Krishnan&rft.date=2023-12-01&rft.issn=1050-6411&rft.spage=102834&rft.epage=102834&rft_id=info:doi/10.1016%2Fj.jelekin.2023.102834&rft.externalDBID=ECK1-s2.0-S1050641123000937&rft.externalDocID=1_s2_0_S1050641123000937
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-6411&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-6411&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-6411&client=summon