Enduring reduction of carbon and nitrogen emissions from landfills due to aeration?
•Leachate emission reduction after aeration caused by increased sorption capacity.•Hardly any N is removed by aeration; most remains in solids (>83% of initial N)•Chloroform fumigation-extraction applied for determining microbial bound carbon.•Recurring methane emissions after aeration has been t...
Saved in:
Published in | Waste management (Elmsford) Vol. 135; pp. 457 - 466 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Leachate emission reduction after aeration caused by increased sorption capacity.•Hardly any N is removed by aeration; most remains in solids (>83% of initial N)•Chloroform fumigation-extraction applied for determining microbial bound carbon.•Recurring methane emissions after aeration has been terminated (10-month lag)
The objective of the present work is to investigate to what extent emission reductions observed during landfill aeration are permanent. To do so, lab-scale degradation experiments using waste from an old landfill have been conducted under different conditions (anaerobic, (partly) aerobic returning to anaerobic, aerobic) and balances for carbon and nitrogen have been established. For the latter, all emissions of C and N (except N2) and their pools at the start and end of the experiment have been determined. In addition, the chloroform fumigation-extraction method (biocidal treatment) has been applied to determine microbially bound carbon and to estimate nitrogen in microbial biomass accordingly.
The results reveal that 18 g TOC·kg DM−1 of the waste material were mineralized during aerobic treatment for 699 days, which is equivalent to about 14% of the initial TOC content. For the anaerobic treatment, only 10 g TOC·kg DM−1 were released. For the aerobic-anaerobic reactors, a slight increase in methane emissions approximately 10 months after termination of aeration was observed. With respect to leachate emissions, the results indicate significantly lower emission levels (factor 1.5 for TOC and factor 4 for TN) for the reactors, which were aerated at least sometimes. The biocidal treatment highlights that this emission reduction is rather based on an increased sorption capacity of aerated waste (higher ion exchange capacity) than a lower overall pollutant potential. It is shown that regardless of the operation mode, most nitrogen remained in solids (83.1–92.6%) and is subject to internal recycling during waste degradation. |
---|---|
AbstractList | The objective of the present work is to investigate to what extent emission reductions observed during landfill aeration are permanent. To do so, lab-scale degradation experiments using waste from an old landfill have been conducted under different conditions (anaerobic, (partly) aerobic returning to anaerobic, aerobic) and balances for carbon and nitrogen have been established. For the latter, all emissions of C and N (except N2) and their pools at the start and end of the experiment have been determined. In addition, the chloroform fumigation-extraction method (biocidal treatment) has been applied to determine microbially bound carbon and to estimate nitrogen in microbial biomass accordingly. The results reveal that 18 g TOC·kg DM-1 of the waste material were mineralized during aerobic treatment for 699 days, which is equivalent to about 14% of the initial TOC content. For the anaerobic treatment, only 10 g TOC·kg DM-1 were released. For the aerobic-anaerobic reactors, a slight increase in methane emissions approximately 10 months after termination of aeration was observed. With respect to leachate emissions, the results indicate significantly lower emission levels (factor 1.5 for TOC and factor 4 for TN) for the reactors, which were aerated at least sometimes. The biocidal treatment highlights that this emission reduction is rather based on an increased sorption capacity of aerated waste (higher ion exchange capacity) than a lower overall pollutant potential. It is shown that regardless of the operation mode, most nitrogen remained in solids (83.1-92.6%) and is subject to internal recycling during waste degradation.The objective of the present work is to investigate to what extent emission reductions observed during landfill aeration are permanent. To do so, lab-scale degradation experiments using waste from an old landfill have been conducted under different conditions (anaerobic, (partly) aerobic returning to anaerobic, aerobic) and balances for carbon and nitrogen have been established. For the latter, all emissions of C and N (except N2) and their pools at the start and end of the experiment have been determined. In addition, the chloroform fumigation-extraction method (biocidal treatment) has been applied to determine microbially bound carbon and to estimate nitrogen in microbial biomass accordingly. The results reveal that 18 g TOC·kg DM-1 of the waste material were mineralized during aerobic treatment for 699 days, which is equivalent to about 14% of the initial TOC content. For the anaerobic treatment, only 10 g TOC·kg DM-1 were released. For the aerobic-anaerobic reactors, a slight increase in methane emissions approximately 10 months after termination of aeration was observed. With respect to leachate emissions, the results indicate significantly lower emission levels (factor 1.5 for TOC and factor 4 for TN) for the reactors, which were aerated at least sometimes. The biocidal treatment highlights that this emission reduction is rather based on an increased sorption capacity of aerated waste (higher ion exchange capacity) than a lower overall pollutant potential. It is shown that regardless of the operation mode, most nitrogen remained in solids (83.1-92.6%) and is subject to internal recycling during waste degradation. The objective of the present work is to investigate to what extent emission reductions observed during landfill aeration are permanent. To do so, lab-scale degradation experiments using waste from an old landfill have been conducted under different conditions (anaerobic, (partly) aerobic returning to anaerobic, aerobic) and balances for carbon and nitrogen have been established. For the latter, all emissions of C and N (except N₂) and their pools at the start and end of the experiment have been determined. In addition, the chloroform fumigation-extraction method (biocidal treatment) has been applied to determine microbially bound carbon and to estimate nitrogen in microbial biomass accordingly.The results reveal that 18 g TOC·kg DM⁻¹ of the waste material were mineralized during aerobic treatment for 699 days, which is equivalent to about 14% of the initial TOC content. For the anaerobic treatment, only 10 g TOC·kg DM⁻¹ were released. For the aerobic-anaerobic reactors, a slight increase in methane emissions approximately 10 months after termination of aeration was observed. With respect to leachate emissions, the results indicate significantly lower emission levels (factor 1.5 for TOC and factor 4 for TN) for the reactors, which were aerated at least sometimes. The biocidal treatment highlights that this emission reduction is rather based on an increased sorption capacity of aerated waste (higher ion exchange capacity) than a lower overall pollutant potential. It is shown that regardless of the operation mode, most nitrogen remained in solids (83.1–92.6%) and is subject to internal recycling during waste degradation. •Leachate emission reduction after aeration caused by increased sorption capacity.•Hardly any N is removed by aeration; most remains in solids (>83% of initial N)•Chloroform fumigation-extraction applied for determining microbial bound carbon.•Recurring methane emissions after aeration has been terminated (10-month lag) The objective of the present work is to investigate to what extent emission reductions observed during landfill aeration are permanent. To do so, lab-scale degradation experiments using waste from an old landfill have been conducted under different conditions (anaerobic, (partly) aerobic returning to anaerobic, aerobic) and balances for carbon and nitrogen have been established. For the latter, all emissions of C and N (except N2) and their pools at the start and end of the experiment have been determined. In addition, the chloroform fumigation-extraction method (biocidal treatment) has been applied to determine microbially bound carbon and to estimate nitrogen in microbial biomass accordingly. The results reveal that 18 g TOC·kg DM−1 of the waste material were mineralized during aerobic treatment for 699 days, which is equivalent to about 14% of the initial TOC content. For the anaerobic treatment, only 10 g TOC·kg DM−1 were released. For the aerobic-anaerobic reactors, a slight increase in methane emissions approximately 10 months after termination of aeration was observed. With respect to leachate emissions, the results indicate significantly lower emission levels (factor 1.5 for TOC and factor 4 for TN) for the reactors, which were aerated at least sometimes. The biocidal treatment highlights that this emission reduction is rather based on an increased sorption capacity of aerated waste (higher ion exchange capacity) than a lower overall pollutant potential. It is shown that regardless of the operation mode, most nitrogen remained in solids (83.1–92.6%) and is subject to internal recycling during waste degradation. |
Author | Fellner, Johann Fricko, Nora Brandstätter, Christian |
Author_xml | – sequence: 1 givenname: Nora surname: Fricko fullname: Fricko, Nora email: nora.fricko@tuwien.ac.at – sequence: 2 givenname: Christian surname: Brandstätter fullname: Brandstätter, Christian email: bran.chri@gmail.com – sequence: 3 givenname: Johann orcidid: 0000-0001-8756-6709 surname: Fellner fullname: Fellner, Johann email: johann.fellner@tuwien.ac.at |
BookMark | eNqFkLFuFDEQhi0UJC6BN6BwSbOLx2t7bYpEUZQAUiQKUtBZPns28mnPTuzdRLx9fBwVBalmpPm_X6PvlJyknJCQj8B6YKA-7_pnV_cu9Zxx6JnpGRdvyAb0aDoupDohG2ak6pgcfr0jp7XuGAOhgW3Iz-sU1hLTPS0YVr_EnGieqHdl2zaXAk1xKfkeE8V9rLXdK51K3tO5Hac4z5WGFemSqcPiDvzFe_J2cnPFD3_nGbm7ub67-tbd_vj6_erytvMC9NIBisGAcEqBG1BqCTxs3SgCN-NWjoFrL7QPOhjvJsPRjQElKM8mPUkYhjPy6Vj7UPLjinWx7UGPc3sM81otV4PSwEc9vh6VmikzAKgWFceoL7nWgpN9KHHvym8LzB5s25092rYH25YZ22w37Ms_mI_LHx1LcXF-DT4_wthsPUUstvqIyWOIBf1iQ47_L3gB14mgXA |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2023_161875 crossref_primary_10_1016_j_wasman_2024_02_048 crossref_primary_10_1016_j_chemosphere_2023_140286 crossref_primary_10_1016_j_wasman_2023_07_012 crossref_primary_10_1007_s10532_021_09967_6 crossref_primary_10_1007_s10532_022_10000_7 |
Cites_doi | 10.1007/s10532-015-9742-5 10.1016/j.wasman.2018.01.026 10.1016/0038-0717(76)90005-5 10.1787/9789264309395-en 10.1016/j.wasman.2012.11.014 10.1007/BF00384433 10.1016/j.wasman.2016.07.043 10.1016/j.wasman.2012.02.020 10.1596/978-1-4648-1329-0 10.1016/j.wasman.2005.11.009 10.1016/0038-0717(87)90052-6 10.1016/j.wasman.2013.02.004 10.1016/S0038-0717(00)00037-7 10.1016/0038-0717(85)90144-0 10.1016/j.wasman.2013.01.027 10.1016/j.wasman.2015.03.011 10.1016/j.soilbio.2003.10.014 10.1016/j.wasman.2016.06.004 10.1016/S0038-0717(02)00070-6 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2021 The Author(s) – notice: Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.wasman.2021.09.024 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1879-2456 |
EndPage | 466 |
ExternalDocumentID | 10_1016_j_wasman_2021_09_024 S0956053X21005134 |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29R 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE IMUCA J1W KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEN SES SEW SPC SPCBC SSE SSJ SSZ T5K TAE WUQ Y6R ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c418t-1e43914a661a3e58512dba74d297b57d28c48cd8d9caf92ea7de516c0f8f5133 |
IEDL.DBID | .~1 |
ISSN | 0956-053X 1879-2456 |
IngestDate | Tue Aug 05 10:34:00 EDT 2025 Tue Aug 05 10:33:39 EDT 2025 Thu Apr 24 22:50:40 EDT 2025 Tue Jul 01 01:03:23 EDT 2025 Fri Feb 23 02:42:23 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Landfill aeration Nitrogen Carbon Microbial biomass Chloroform fumigation-extraction Landfill aftercare |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-1e43914a661a3e58512dba74d297b57d28c48cd8d9caf92ea7de516c0f8f5133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8756-6709 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0956053X21005134 |
PQID | 2580693116 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2636812787 proquest_miscellaneous_2580693116 crossref_primary_10_1016_j_wasman_2021_09_024 crossref_citationtrail_10_1016_j_wasman_2021_09_024 elsevier_sciencedirect_doi_10_1016_j_wasman_2021_09_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 2021-11-00 20211101 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationTitle | Waste management (Elmsford) |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Tabasaran, Rettenberger (b0165) 1987 Ritzkowski, M., & Kuchta, K. (2018). Untersuchungen zu Umsetzungsprozessen im Zuge der Deponiebelüftung. In Stegmann, Rettenberger, Ritzkowski, Kuchta, Siechau, & Fricke (Hrsg.), Deponietechnik 2018 (S. 201-218). Stuttgart: Verlag Abfall Aktuell. DIN EN ISO 13395. (1996). Wasserbeschaffenheit - Bestimmung von Nitritstickstoff, Nitratstickstoff und der Summe von beiden mit der Fließanalytik (CFA und FIA) und spektrometrischer Detektion (Water quality - Determination of nitrite nitrogen and nitrate nitrogen and the sum of). Ritzkowski, Walker, Kuchta, Raga, Stegmann (b0160) 2016; 55 Montgomery, Monreal, Young, Seifert (b0110) 2000; 32 Brandstätter, C., Laner, D., Fellner, J., & Prantl, R. (2015c). Planung, Durchfühung und Dokumentation von wissenschaftlichen und technischen Untersuchungen zur Betriebsoptimierung der Altlastensicherung “Heferlbach” - Endbericht 2015. Wien: Institut für Wassergüte, Ressourcenmanagement und Abfallwirtschaft, TU Wien. Hrad, Gamperling, Huber-Humer (b0085) 2013; 33 Raga, Cossu (b0135) 2013; 33 DIN EN ISO 11905-1. (1998). Wasserbeschaffenheit - Bestimmung von Stickstoff - Teil 1: Bestimmung von Stickstoff nach oxidativem Aufschluß mit Peroxodisulfat (Water quality - Determination of nitrogen - Part 1: Method using oxidative digestion with peroxodisulfate). Council of the European Union. (26. April 1999). Council Directive 1999/31/EC on the Landfill of Waste. Official Journal of the European Communities L182/1-19. Wiechmann, B., Dienemann, C., Kabbe, C., Brandt, S., Vogel, I., & Roskosch, A. (2013). Klärschlammentsorgung in der Bundesrepublik Deutschland. Dessau-Roßlau: Umweltbundesamt (UBA). Hrad, Huber-Humer (b0080) 2017; 63 DIN EN 15403. (2011). Feste Sekundärbrennstoffe - Bestimmung des Aschegehaltes (Solid recovered fuels - Determination of ash content). Bailey, Peacock, Smith, Bolton (b0010) 2002; 34 Ritzkowski, Stegmann (b0145) 2012; 32 Vance, Brookes, Jenkinson (b0170) 1987; 19 Leckie, S., Prescott, C., Grayston, S., Neufeld, J., & Mohn, W. (2004). Comparison of chloroform fumigation-extraction, phospholipid fatty acid, and DNA methods to determine microbial biomass in forest humus. Soil Biol. Biochem. 36(3), S. 529–532. Jenkinson, Powlson (b0095) 1976; 8 ÖNORM S 2027-3. (2012). Beurteilung von Abfällen aus der mechanisch-biologischen Behandlung - Teil 3: Stabilitätsparameter - Gasbildung im Gärtest (GB21) (Evaluation of waste from mechanical-biological treatment - Part 3: Stability parameters - Gas generation by fermentation). Ritzkowski, Stegmann (b0150) 2013; 33 Frostegård, A., & Bååth, E. (1996). The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertility Soils, 22(1-2), S. 59–65. (b0005) 2018 DIN EN 1484. (1997). Wasseranalytik – Anleitungen zur Bestimmung des gesamten organischen Kohlenstoffs (TOC) und des gelösten organischen Kohlenstoffs (DOC) (Water analysis - Guidelines for the determination of total organic. Brandstätter, Laner, Fellner (b0015) 2015 DIN EN 15407. (2011). Feste Sekundärbrennstoffe - Verfahren zur Bestimmung des Gehaltes an Kohlenstoff (C), Wasserstoff (H) und Stickstoff (N) (Solid recovered fuels - Methods for the determination of carbon (C), hydrogen (H) and nitrogen (N) content). Institute of Soil Research, University of Natural Resources and Life Sciences. (2021). Standard Operating Procedure(SOP) for PLFA analysis on soil. Vienna. Heyer, Hupe, Heerenklage, Ritzkowski, Dalheimer, Stegmann (b0075) 1999 Brandstätter, Laner, Fellner (b0020) 2015; 26 Brookes, Landman, Pruden, Jenkinson (b0030) 1985; 17 Morello, Raga, Sgarbossa, Rosson, Cossu (b0115) 2018; 75 Ritzkowski, Heyer, Stegmann (b0155) 2006; 26 ÖNORM S 2027-4. (2012). Beurteilung von Abfällen aus der mechanisch-biologischen Behandlung - Teil 4: Stabilitätsparameter - Atmungsaktivität (AT4) (Evaluation of waste from mechanical-biological treatment - Part 4: Stability parameters - Respiration activity (AT4)). OECD. (2019). Waste Management and the Circular Economy in Selected OECD Countries: Evidence from Environmental Performance Reviews. OECD Environmental Performance Reviews. Paris: OECD Publishing. doi:https://doi.org/10.1787/9789264309395-en. Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a Waste 2.0. A Global Snapshot of Solid Waste Management to 2050. Washington: International Bank for Reconstruction and Development. doi:10.1596/978-1-4648-1329-0. DIN EN ISO 787-13. (2019). Allgemeine Prüfverfahren für Pigmente und Füllstoffe - Teil 13: Bestimmung der wasserlöslichen Sulfate, Chloride und Nitrate (General methods of test for pigments and extenders - Part 13: Determination of water-soluble sulfates, chlorides and nitrates). 10.1016/j.wasman.2021.09.024_b0040 10.1016/j.wasman.2021.09.024_b0140 10.1016/j.wasman.2021.09.024_b0065 10.1016/j.wasman.2021.09.024_b0120 10.1016/j.wasman.2021.09.024_b0045 Hrad (10.1016/j.wasman.2021.09.024_b0080) 2017; 63 10.1016/j.wasman.2021.09.024_b0100 10.1016/j.wasman.2021.09.024_b0025 10.1016/j.wasman.2021.09.024_b0125 Bailey (10.1016/j.wasman.2021.09.024_b0010) 2002; 34 (10.1016/j.wasman.2021.09.024_b0005) 2018 Brandstätter (10.1016/j.wasman.2021.09.024_b0020) 2015; 26 10.1016/j.wasman.2021.09.024_b0105 Vance (10.1016/j.wasman.2021.09.024_b0170) 1987; 19 Brandstätter (10.1016/j.wasman.2021.09.024_b0015) 2015 Heyer (10.1016/j.wasman.2021.09.024_b0075) 1999 Montgomery (10.1016/j.wasman.2021.09.024_b0110) 2000; 32 Jenkinson (10.1016/j.wasman.2021.09.024_b0095) 1976; 8 Raga (10.1016/j.wasman.2021.09.024_b0135) 2013; 33 Ritzkowski (10.1016/j.wasman.2021.09.024_b0145) 2012; 32 Morello (10.1016/j.wasman.2021.09.024_b0115) 2018; 75 10.1016/j.wasman.2021.09.024_b0090 10.1016/j.wasman.2021.09.024_b0070 10.1016/j.wasman.2021.09.024_b0050 Tabasaran (10.1016/j.wasman.2021.09.024_b0165) 1987 10.1016/j.wasman.2021.09.024_b0130 10.1016/j.wasman.2021.09.024_b0175 10.1016/j.wasman.2021.09.024_b0055 10.1016/j.wasman.2021.09.024_b0035 Brookes (10.1016/j.wasman.2021.09.024_b0030) 1985; 17 Hrad (10.1016/j.wasman.2021.09.024_b0085) 2013; 33 Ritzkowski (10.1016/j.wasman.2021.09.024_b0150) 2013; 33 Ritzkowski (10.1016/j.wasman.2021.09.024_b0155) 2006; 26 10.1016/j.wasman.2021.09.024_b0060 Ritzkowski (10.1016/j.wasman.2021.09.024_b0160) 2016; 55 |
References_xml | – reference: Institute of Soil Research, University of Natural Resources and Life Sciences. (2021). Standard Operating Procedure(SOP) for PLFA analysis on soil. Vienna. – reference: Council of the European Union. (26. April 1999). Council Directive 1999/31/EC on the Landfill of Waste. Official Journal of the European Communities L182/1-19. – volume: 34 start-page: 1385 year: 2002 end-page: 1389 ident: b0010 article-title: Relationships between soil microbial biomass determined by chloroform fumigation-extraction, substrate-induced respiration, and phospholipid fatty acid analysis publication-title: Soil Biol. Biochem. – reference: Brandstätter, C., Laner, D., Fellner, J., & Prantl, R. (2015c). Planung, Durchfühung und Dokumentation von wissenschaftlichen und technischen Untersuchungen zur Betriebsoptimierung der Altlastensicherung “Heferlbach” - Endbericht 2015. Wien: Institut für Wassergüte, Ressourcenmanagement und Abfallwirtschaft, TU Wien. – reference: Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a Waste 2.0. A Global Snapshot of Solid Waste Management to 2050. Washington: International Bank for Reconstruction and Development. doi:10.1596/978-1-4648-1329-0. – reference: OECD. (2019). Waste Management and the Circular Economy in Selected OECD Countries: Evidence from Environmental Performance Reviews. OECD Environmental Performance Reviews. Paris: OECD Publishing. doi:https://doi.org/10.1787/9789264309395-en. – volume: 33 start-page: 871 year: 2013 end-page: 880 ident: b0135 article-title: Bioreactor tests preliminary to landfill in situ aeration: A case study publication-title: Waste Manage. – reference: DIN EN 1484. (1997). Wasseranalytik – Anleitungen zur Bestimmung des gesamten organischen Kohlenstoffs (TOC) und des gelösten organischen Kohlenstoffs (DOC) (Water analysis - Guidelines for the determination of total organic. – volume: 19 start-page: 703 year: 1987 end-page: 707 ident: b0170 article-title: An extraction method for measuring microbial biomass C publication-title: Soil Biol. Biochem. – reference: DIN EN 15403. (2011). Feste Sekundärbrennstoffe - Bestimmung des Aschegehaltes (Solid recovered fuels - Determination of ash content). – year: 1987 ident: b0165 article-title: Grundlage zur Planung von Entgasungsanlagen, Müllhandbuch – reference: Ritzkowski, M., & Kuchta, K. (2018). Untersuchungen zu Umsetzungsprozessen im Zuge der Deponiebelüftung. In Stegmann, Rettenberger, Ritzkowski, Kuchta, Siechau, & Fricke (Hrsg.), Deponietechnik 2018 (S. 201-218). Stuttgart: Verlag Abfall Aktuell. – reference: DIN EN 15407. (2011). Feste Sekundärbrennstoffe - Verfahren zur Bestimmung des Gehaltes an Kohlenstoff (C), Wasserstoff (H) und Stickstoff (N) (Solid recovered fuels - Methods for the determination of carbon (C), hydrogen (H) and nitrogen (N) content). – volume: 55 start-page: 99 year: 2016 end-page: 107 ident: b0160 article-title: Aeration of the teuftal landfill: Field scale concept and lab scale simulation publication-title: Waste Manag. – reference: DIN EN ISO 11905-1. (1998). Wasserbeschaffenheit - Bestimmung von Stickstoff - Teil 1: Bestimmung von Stickstoff nach oxidativem Aufschluß mit Peroxodisulfat (Water quality - Determination of nitrogen - Part 1: Method using oxidative digestion with peroxodisulfate). – volume: 32 start-page: 1411 year: 2012 end-page: 1419 ident: b0145 article-title: Landfill aeration worldwide: Concepts, indications and findings publication-title: Waste Manage. – volume: 8 start-page: 209 year: 1976 end-page: 213 ident: b0095 article-title: The effects of biocidal treatments on metabolism in soil - V: A method for measuring soil biomass publication-title: Soil Biol. Biochem. – volume: 26 start-page: 399 year: 2015 end-page: 414 ident: b0020 article-title: Nitrogen pools and flows during lab-scale degradation of old landfilled waste under different oxygen and water regimes publication-title: Biodegradation – volume: 63 start-page: 397 year: 2017 end-page: 409 ident: b0080 article-title: Performance and completion assessment of an in-situ aerated municipal solid waste landfill – Final scientific documentation of an Austrian case study publication-title: Waste Manage. – start-page: 563 year: 1999 end-page: 571 ident: b0075 article-title: Aeration of old landfills as an innovative method of process enhancement publication-title: Sardinia – reference: ÖNORM S 2027-3. (2012). Beurteilung von Abfällen aus der mechanisch-biologischen Behandlung - Teil 3: Stabilitätsparameter - Gasbildung im Gärtest (GB21) (Evaluation of waste from mechanical-biological treatment - Part 3: Stability parameters - Gas generation by fermentation). – year: 2018 ident: b0005 publication-title: Scheffer/Schachtschabel Lehrbuch der Bodenkunde – volume: 33 start-page: 2061 year: 2013 end-page: 2073 ident: b0085 article-title: Comparison between lab- and full-scale applications of in situ aeration of an old landfill and assessment of long-term emission development after completion publication-title: Waste Manage. – start-page: 100 year: 2015 end-page: 111 ident: b0015 article-title: Carbon pools and flows during lab-scale degradation of old landfilled publication-title: Waste Management – volume: 32 start-page: 1207 year: 2000 end-page: 1217 ident: b0110 article-title: Determinination of soil fungal biomass from soil ergosterol analyses publication-title: Soil Biol. Biochem. – volume: 17 start-page: 837 year: 1985 end-page: 842 ident: b0030 article-title: Chloroform Fumigation and the release of soil Nitrogen: a rapid direct extraction method to measure microbial biomass Nitrogen in soil publication-title: Soil Biol. Biochem. – reference: ÖNORM S 2027-4. (2012). Beurteilung von Abfällen aus der mechanisch-biologischen Behandlung - Teil 4: Stabilitätsparameter - Atmungsaktivität (AT4) (Evaluation of waste from mechanical-biological treatment - Part 4: Stability parameters - Respiration activity (AT4)). – reference: DIN EN ISO 13395. (1996). Wasserbeschaffenheit - Bestimmung von Nitritstickstoff, Nitratstickstoff und der Summe von beiden mit der Fließanalytik (CFA und FIA) und spektrometrischer Detektion (Water quality - Determination of nitrite nitrogen and nitrate nitrogen and the sum of). – volume: 33 start-page: 2074 year: 2013 end-page: 2082 ident: b0150 article-title: Landfill aeration within the scope of post-closure care and its completion publication-title: Waste Manage. – reference: Leckie, S., Prescott, C., Grayston, S., Neufeld, J., & Mohn, W. (2004). Comparison of chloroform fumigation-extraction, phospholipid fatty acid, and DNA methods to determine microbial biomass in forest humus. Soil Biol. Biochem. 36(3), S. 529–532. – volume: 75 start-page: 372 year: 2018 end-page: 383 ident: b0115 article-title: Storage potential and residual emissions from fresh and stabilized waste samples from a landfill simulation experiment publication-title: Waste Manage. – volume: 26 start-page: 356 year: 2006 end-page: 372 ident: b0155 article-title: Fundamental processes and implications during in situ aeration of old landfills publication-title: Waste Manag. – reference: Wiechmann, B., Dienemann, C., Kabbe, C., Brandt, S., Vogel, I., & Roskosch, A. (2013). Klärschlammentsorgung in der Bundesrepublik Deutschland. Dessau-Roßlau: Umweltbundesamt (UBA). – reference: DIN EN ISO 787-13. (2019). Allgemeine Prüfverfahren für Pigmente und Füllstoffe - Teil 13: Bestimmung der wasserlöslichen Sulfate, Chloride und Nitrate (General methods of test for pigments and extenders - Part 13: Determination of water-soluble sulfates, chlorides and nitrates). – reference: Frostegård, A., & Bååth, E. (1996). The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertility Soils, 22(1-2), S. 59–65. – ident: 10.1016/j.wasman.2021.09.024_b0065 – ident: 10.1016/j.wasman.2021.09.024_b0090 – volume: 26 start-page: 399 issue: 5 year: 2015 ident: 10.1016/j.wasman.2021.09.024_b0020 article-title: Nitrogen pools and flows during lab-scale degradation of old landfilled waste under different oxygen and water regimes publication-title: Biodegradation doi: 10.1007/s10532-015-9742-5 – volume: 75 start-page: 372 year: 2018 ident: 10.1016/j.wasman.2021.09.024_b0115 article-title: Storage potential and residual emissions from fresh and stabilized waste samples from a landfill simulation experiment publication-title: Waste Manage. doi: 10.1016/j.wasman.2018.01.026 – ident: 10.1016/j.wasman.2021.09.024_b0040 – volume: 8 start-page: 209 issue: 3 year: 1976 ident: 10.1016/j.wasman.2021.09.024_b0095 article-title: The effects of biocidal treatments on metabolism in soil - V: A method for measuring soil biomass publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(76)90005-5 – ident: 10.1016/j.wasman.2021.09.024_b0120 doi: 10.1787/9789264309395-en – volume: 33 start-page: 871 issue: 4 year: 2013 ident: 10.1016/j.wasman.2021.09.024_b0135 article-title: Bioreactor tests preliminary to landfill in situ aeration: A case study publication-title: Waste Manage. doi: 10.1016/j.wasman.2012.11.014 – ident: 10.1016/j.wasman.2021.09.024_b0070 doi: 10.1007/BF00384433 – start-page: 563 year: 1999 ident: 10.1016/j.wasman.2021.09.024_b0075 article-title: Aeration of old landfills as an innovative method of process enhancement publication-title: Sardinia – volume: 63 start-page: 397 year: 2017 ident: 10.1016/j.wasman.2021.09.024_b0080 article-title: Performance and completion assessment of an in-situ aerated municipal solid waste landfill – Final scientific documentation of an Austrian case study publication-title: Waste Manage. doi: 10.1016/j.wasman.2016.07.043 – volume: 32 start-page: 1411 issue: 7 year: 2012 ident: 10.1016/j.wasman.2021.09.024_b0145 article-title: Landfill aeration worldwide: Concepts, indications and findings publication-title: Waste Manage. doi: 10.1016/j.wasman.2012.02.020 – ident: 10.1016/j.wasman.2021.09.024_b0025 – ident: 10.1016/j.wasman.2021.09.024_b0050 – ident: 10.1016/j.wasman.2021.09.024_b0100 doi: 10.1596/978-1-4648-1329-0 – ident: 10.1016/j.wasman.2021.09.024_b0035 – ident: 10.1016/j.wasman.2021.09.024_b0130 – year: 2018 ident: 10.1016/j.wasman.2021.09.024_b0005 – volume: 26 start-page: 356 issue: 4 year: 2006 ident: 10.1016/j.wasman.2021.09.024_b0155 article-title: Fundamental processes and implications during in situ aeration of old landfills publication-title: Waste Manag. doi: 10.1016/j.wasman.2005.11.009 – year: 1987 ident: 10.1016/j.wasman.2021.09.024_b0165 – volume: 19 start-page: 703 issue: 6 year: 1987 ident: 10.1016/j.wasman.2021.09.024_b0170 article-title: An extraction method for measuring microbial biomass C publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(87)90052-6 – volume: 33 start-page: 2074 issue: 10 year: 2013 ident: 10.1016/j.wasman.2021.09.024_b0150 article-title: Landfill aeration within the scope of post-closure care and its completion publication-title: Waste Manage. doi: 10.1016/j.wasman.2013.02.004 – ident: 10.1016/j.wasman.2021.09.024_b0125 – volume: 32 start-page: 1207 issue: 8-9 year: 2000 ident: 10.1016/j.wasman.2021.09.024_b0110 article-title: Determinination of soil fungal biomass from soil ergosterol analyses publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(00)00037-7 – ident: 10.1016/j.wasman.2021.09.024_b0045 – volume: 17 start-page: 837 issue: 6 year: 1985 ident: 10.1016/j.wasman.2021.09.024_b0030 article-title: Chloroform Fumigation and the release of soil Nitrogen: a rapid direct extraction method to measure microbial biomass Nitrogen in soil publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(85)90144-0 – ident: 10.1016/j.wasman.2021.09.024_b0175 – ident: 10.1016/j.wasman.2021.09.024_b0060 – ident: 10.1016/j.wasman.2021.09.024_b0140 – ident: 10.1016/j.wasman.2021.09.024_b0055 – volume: 33 start-page: 2061 issue: 10 year: 2013 ident: 10.1016/j.wasman.2021.09.024_b0085 article-title: Comparison between lab- and full-scale applications of in situ aeration of an old landfill and assessment of long-term emission development after completion publication-title: Waste Manage. doi: 10.1016/j.wasman.2013.01.027 – start-page: 100 issue: 40 year: 2015 ident: 10.1016/j.wasman.2021.09.024_b0015 article-title: Carbon pools and flows during lab-scale degradation of old landfilled publication-title: Waste Management doi: 10.1016/j.wasman.2015.03.011 – ident: 10.1016/j.wasman.2021.09.024_b0105 doi: 10.1016/j.soilbio.2003.10.014 – volume: 55 start-page: 99 year: 2016 ident: 10.1016/j.wasman.2021.09.024_b0160 article-title: Aeration of the teuftal landfill: Field scale concept and lab scale simulation publication-title: Waste Manag. doi: 10.1016/j.wasman.2016.06.004 – volume: 34 start-page: 1385 issue: 9 year: 2002 ident: 10.1016/j.wasman.2021.09.024_b0010 article-title: Relationships between soil microbial biomass determined by chloroform fumigation-extraction, substrate-induced respiration, and phospholipid fatty acid analysis publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(02)00070-6 |
SSID | ssj0014810 |
Score | 2.380905 |
Snippet | •Leachate emission reduction after aeration caused by increased sorption capacity.•Hardly any N is removed by aeration; most remains in solids (>83% of initial... The objective of the present work is to investigate to what extent emission reductions observed during landfill aeration are permanent. To do so, lab-scale... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 457 |
SubjectTerms | aeration anaerobic treatment Carbon chloroform Chloroform fumigation-extraction ion exchange capacity Landfill aeration Landfill aftercare landfills leachates methane Microbial biomass Nitrogen pollutants sorption wastes |
Title | Enduring reduction of carbon and nitrogen emissions from landfills due to aeration? |
URI | https://dx.doi.org/10.1016/j.wasman.2021.09.024 https://www.proquest.com/docview/2580693116 https://www.proquest.com/docview/2636812787 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEG5ED4mHYNYEjUZa8DrZ7dd0z0lkUTYR9qLC3pqefsDKOiP7wJu_3ap5SCIkQm4zQ_fQfP1NdfV01VeEnKVc6oKplAnhZCYDd1mZXMok5yz6MoGP3gTITvPJnfw1U7MtMu5zYTCssrP9rU1vrHX3ZNihOXycz4c3KKEHFJrBpgWYJVATVEqNLP_x_BrmAd5-o0jQ6O1h6z59ronxenKrB4cqqJw1aqdc_m15emOom9Xnao986txGetGO7DPZitWAfBj31doGZPc3YcF9cnNZtfmHdInSrAg-rRP1blnClasChS95WQN5KL4B_5itKGaaUAx0TPPFYkXDJtJ1TV1sOXL-hdxeXd6OJ1lXPiHzkpl1xiJm1UoHK7ATEY__eCidhvkodKl04MZL44MJhXep4NHpEBXL_SiZhFVfvpLtqq7iAaHBK6aFSsJ72A8yUyrvwa0yOiijC1ccEtGDZn0nLY4VLha2jyG7ty3UFqG2o8IC1Icke-312EprvNNe9_Nh_6CIBev_Ts_TfvosgIpHIq6K9WZluTKjvBCM5f9okwsUaQPL9u2_R3BEPuJdm8R4TLbXy038Dt7Mujxp6HpCdi5-Xk-mL8fw9Ug |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SzSHNIbRJSpM-okKvZlcvSz6VsCRsmnQv2cLehKwHbNnaYR_k70fjR0gKbaA3Y0tGfBrPjDwz3wB8jblQBZUx49yKTHhmszLamAnGaHBlTD56kyA7zSc_xfe5nO_AuK-FwbTKTve3Or3R1t2dYYfm8G6xGN4ihV4SoXk6tCTJ4uIV7CI7lRzA7vnV9WT6GEwQuiElaCj3cEJfQdeked3b9W-LRKiMNoSnTPzNQv2hqxsDdPkGDjrPkZy3i3sLO6E6hL1x37DtEPafcAsewe1F1ZYgkhWysyL-pI7E2VWZrmzlSfqYV3WSH4JvwJ9ma4LFJgRzHeNiuVwTvw1kUxMbWjH5dgyzy4vZeJJ1HRQyJ6jeZDRgYa2wyQhbHjACyHxpVdqSQpVSeaad0M5rXzgbCxas8kHS3I2ijtj45R0MqroK74F4J6niMnLn0pGQ6lI6lzwrrbzUqrDFCfAeNOM6dnFscrE0fRrZL9NCbRBqMypMgvoEssdZdy27xgvjVb8f5pmUmGQAXpj5pd8-k0DFqIitQr1dGyb1KC84pfk_xuQcedqScjv97xWcwd5k9uPG3FxNrz_Aa3zS1jR-hMFmtQ2fknOzKT93wvsALhr3-Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enduring+reduction+of+carbon+and+nitrogen+emissions+from+landfills+due+to+aeration%3F&rft.jtitle=Waste+management+%28Elmsford%29&rft.au=Fricko%2C+Nora&rft.au=Brandst%C3%A4tter%2C+Christian&rft.au=Fellner%2C+Johann&rft.date=2021-11-01&rft.pub=Elsevier+Ltd&rft.issn=0956-053X&rft.eissn=1879-2456&rft.volume=135&rft.spage=457&rft.epage=466&rft_id=info:doi/10.1016%2Fj.wasman.2021.09.024&rft.externalDocID=S0956053X21005134 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-053X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-053X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-053X&client=summon |