Enduring reduction of carbon and nitrogen emissions from landfills due to aeration?

•Leachate emission reduction after aeration caused by increased sorption capacity.•Hardly any N is removed by aeration; most remains in solids (>83% of initial N)•Chloroform fumigation-extraction applied for determining microbial bound carbon.•Recurring methane emissions after aeration has been t...

Full description

Saved in:
Bibliographic Details
Published inWaste management (Elmsford) Vol. 135; pp. 457 - 466
Main Authors Fricko, Nora, Brandstätter, Christian, Fellner, Johann
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Leachate emission reduction after aeration caused by increased sorption capacity.•Hardly any N is removed by aeration; most remains in solids (>83% of initial N)•Chloroform fumigation-extraction applied for determining microbial bound carbon.•Recurring methane emissions after aeration has been terminated (10-month lag) The objective of the present work is to investigate to what extent emission reductions observed during landfill aeration are permanent. To do so, lab-scale degradation experiments using waste from an old landfill have been conducted under different conditions (anaerobic, (partly) aerobic returning to anaerobic, aerobic) and balances for carbon and nitrogen have been established. For the latter, all emissions of C and N (except N2) and their pools at the start and end of the experiment have been determined. In addition, the chloroform fumigation-extraction method (biocidal treatment) has been applied to determine microbially bound carbon and to estimate nitrogen in microbial biomass accordingly. The results reveal that 18 g TOC·kg DM−1 of the waste material were mineralized during aerobic treatment for 699 days, which is equivalent to about 14% of the initial TOC content. For the anaerobic treatment, only 10 g TOC·kg DM−1 were released. For the aerobic-anaerobic reactors, a slight increase in methane emissions approximately 10 months after termination of aeration was observed. With respect to leachate emissions, the results indicate significantly lower emission levels (factor 1.5 for TOC and factor 4 for TN) for the reactors, which were aerated at least sometimes. The biocidal treatment highlights that this emission reduction is rather based on an increased sorption capacity of aerated waste (higher ion exchange capacity) than a lower overall pollutant potential. It is shown that regardless of the operation mode, most nitrogen remained in solids (83.1–92.6%) and is subject to internal recycling during waste degradation.
AbstractList The objective of the present work is to investigate to what extent emission reductions observed during landfill aeration are permanent. To do so, lab-scale degradation experiments using waste from an old landfill have been conducted under different conditions (anaerobic, (partly) aerobic returning to anaerobic, aerobic) and balances for carbon and nitrogen have been established. For the latter, all emissions of C and N (except N2) and their pools at the start and end of the experiment have been determined. In addition, the chloroform fumigation-extraction method (biocidal treatment) has been applied to determine microbially bound carbon and to estimate nitrogen in microbial biomass accordingly. The results reveal that 18 g TOC·kg DM-1 of the waste material were mineralized during aerobic treatment for 699 days, which is equivalent to about 14% of the initial TOC content. For the anaerobic treatment, only 10 g TOC·kg DM-1 were released. For the aerobic-anaerobic reactors, a slight increase in methane emissions approximately 10 months after termination of aeration was observed. With respect to leachate emissions, the results indicate significantly lower emission levels (factor 1.5 for TOC and factor 4 for TN) for the reactors, which were aerated at least sometimes. The biocidal treatment highlights that this emission reduction is rather based on an increased sorption capacity of aerated waste (higher ion exchange capacity) than a lower overall pollutant potential. It is shown that regardless of the operation mode, most nitrogen remained in solids (83.1-92.6%) and is subject to internal recycling during waste degradation.The objective of the present work is to investigate to what extent emission reductions observed during landfill aeration are permanent. To do so, lab-scale degradation experiments using waste from an old landfill have been conducted under different conditions (anaerobic, (partly) aerobic returning to anaerobic, aerobic) and balances for carbon and nitrogen have been established. For the latter, all emissions of C and N (except N2) and their pools at the start and end of the experiment have been determined. In addition, the chloroform fumigation-extraction method (biocidal treatment) has been applied to determine microbially bound carbon and to estimate nitrogen in microbial biomass accordingly. The results reveal that 18 g TOC·kg DM-1 of the waste material were mineralized during aerobic treatment for 699 days, which is equivalent to about 14% of the initial TOC content. For the anaerobic treatment, only 10 g TOC·kg DM-1 were released. For the aerobic-anaerobic reactors, a slight increase in methane emissions approximately 10 months after termination of aeration was observed. With respect to leachate emissions, the results indicate significantly lower emission levels (factor 1.5 for TOC and factor 4 for TN) for the reactors, which were aerated at least sometimes. The biocidal treatment highlights that this emission reduction is rather based on an increased sorption capacity of aerated waste (higher ion exchange capacity) than a lower overall pollutant potential. It is shown that regardless of the operation mode, most nitrogen remained in solids (83.1-92.6%) and is subject to internal recycling during waste degradation.
The objective of the present work is to investigate to what extent emission reductions observed during landfill aeration are permanent. To do so, lab-scale degradation experiments using waste from an old landfill have been conducted under different conditions (anaerobic, (partly) aerobic returning to anaerobic, aerobic) and balances for carbon and nitrogen have been established. For the latter, all emissions of C and N (except N₂) and their pools at the start and end of the experiment have been determined. In addition, the chloroform fumigation-extraction method (biocidal treatment) has been applied to determine microbially bound carbon and to estimate nitrogen in microbial biomass accordingly.The results reveal that 18 g TOC·kg DM⁻¹ of the waste material were mineralized during aerobic treatment for 699 days, which is equivalent to about 14% of the initial TOC content. For the anaerobic treatment, only 10 g TOC·kg DM⁻¹ were released. For the aerobic-anaerobic reactors, a slight increase in methane emissions approximately 10 months after termination of aeration was observed. With respect to leachate emissions, the results indicate significantly lower emission levels (factor 1.5 for TOC and factor 4 for TN) for the reactors, which were aerated at least sometimes. The biocidal treatment highlights that this emission reduction is rather based on an increased sorption capacity of aerated waste (higher ion exchange capacity) than a lower overall pollutant potential. It is shown that regardless of the operation mode, most nitrogen remained in solids (83.1–92.6%) and is subject to internal recycling during waste degradation.
•Leachate emission reduction after aeration caused by increased sorption capacity.•Hardly any N is removed by aeration; most remains in solids (>83% of initial N)•Chloroform fumigation-extraction applied for determining microbial bound carbon.•Recurring methane emissions after aeration has been terminated (10-month lag) The objective of the present work is to investigate to what extent emission reductions observed during landfill aeration are permanent. To do so, lab-scale degradation experiments using waste from an old landfill have been conducted under different conditions (anaerobic, (partly) aerobic returning to anaerobic, aerobic) and balances for carbon and nitrogen have been established. For the latter, all emissions of C and N (except N2) and their pools at the start and end of the experiment have been determined. In addition, the chloroform fumigation-extraction method (biocidal treatment) has been applied to determine microbially bound carbon and to estimate nitrogen in microbial biomass accordingly. The results reveal that 18 g TOC·kg DM−1 of the waste material were mineralized during aerobic treatment for 699 days, which is equivalent to about 14% of the initial TOC content. For the anaerobic treatment, only 10 g TOC·kg DM−1 were released. For the aerobic-anaerobic reactors, a slight increase in methane emissions approximately 10 months after termination of aeration was observed. With respect to leachate emissions, the results indicate significantly lower emission levels (factor 1.5 for TOC and factor 4 for TN) for the reactors, which were aerated at least sometimes. The biocidal treatment highlights that this emission reduction is rather based on an increased sorption capacity of aerated waste (higher ion exchange capacity) than a lower overall pollutant potential. It is shown that regardless of the operation mode, most nitrogen remained in solids (83.1–92.6%) and is subject to internal recycling during waste degradation.
Author Fellner, Johann
Fricko, Nora
Brandstätter, Christian
Author_xml – sequence: 1
  givenname: Nora
  surname: Fricko
  fullname: Fricko, Nora
  email: nora.fricko@tuwien.ac.at
– sequence: 2
  givenname: Christian
  surname: Brandstätter
  fullname: Brandstätter, Christian
  email: bran.chri@gmail.com
– sequence: 3
  givenname: Johann
  orcidid: 0000-0001-8756-6709
  surname: Fellner
  fullname: Fellner, Johann
  email: johann.fellner@tuwien.ac.at
BookMark eNqFkLFuFDEQhi0UJC6BN6BwSbOLx2t7bYpEUZQAUiQKUtBZPns28mnPTuzdRLx9fBwVBalmpPm_X6PvlJyknJCQj8B6YKA-7_pnV_cu9Zxx6JnpGRdvyAb0aDoupDohG2ak6pgcfr0jp7XuGAOhgW3Iz-sU1hLTPS0YVr_EnGieqHdl2zaXAk1xKfkeE8V9rLXdK51K3tO5Hac4z5WGFemSqcPiDvzFe_J2cnPFD3_nGbm7ub67-tbd_vj6_erytvMC9NIBisGAcEqBG1BqCTxs3SgCN-NWjoFrL7QPOhjvJsPRjQElKM8mPUkYhjPy6Vj7UPLjinWx7UGPc3sM81otV4PSwEc9vh6VmikzAKgWFceoL7nWgpN9KHHvym8LzB5s25092rYH25YZ22w37Ms_mI_LHx1LcXF-DT4_wthsPUUstvqIyWOIBf1iQ47_L3gB14mgXA
CitedBy_id crossref_primary_10_1016_j_scitotenv_2023_161875
crossref_primary_10_1016_j_wasman_2024_02_048
crossref_primary_10_1016_j_chemosphere_2023_140286
crossref_primary_10_1016_j_wasman_2023_07_012
crossref_primary_10_1007_s10532_021_09967_6
crossref_primary_10_1007_s10532_022_10000_7
Cites_doi 10.1007/s10532-015-9742-5
10.1016/j.wasman.2018.01.026
10.1016/0038-0717(76)90005-5
10.1787/9789264309395-en
10.1016/j.wasman.2012.11.014
10.1007/BF00384433
10.1016/j.wasman.2016.07.043
10.1016/j.wasman.2012.02.020
10.1596/978-1-4648-1329-0
10.1016/j.wasman.2005.11.009
10.1016/0038-0717(87)90052-6
10.1016/j.wasman.2013.02.004
10.1016/S0038-0717(00)00037-7
10.1016/0038-0717(85)90144-0
10.1016/j.wasman.2013.01.027
10.1016/j.wasman.2015.03.011
10.1016/j.soilbio.2003.10.014
10.1016/j.wasman.2016.06.004
10.1016/S0038-0717(02)00070-6
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2021 The Author(s)
– notice: Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.wasman.2021.09.024
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-2456
EndPage 466
ExternalDocumentID 10_1016_j_wasman_2021_09_024
S0956053X21005134
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29R
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
IMUCA
J1W
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEN
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
WUQ
Y6R
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c418t-1e43914a661a3e58512dba74d297b57d28c48cd8d9caf92ea7de516c0f8f5133
IEDL.DBID .~1
ISSN 0956-053X
1879-2456
IngestDate Tue Aug 05 10:34:00 EDT 2025
Tue Aug 05 10:33:39 EDT 2025
Thu Apr 24 22:50:40 EDT 2025
Tue Jul 01 01:03:23 EDT 2025
Fri Feb 23 02:42:23 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Landfill aeration
Nitrogen
Carbon
Microbial biomass
Chloroform fumigation-extraction
Landfill aftercare
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-1e43914a661a3e58512dba74d297b57d28c48cd8d9caf92ea7de516c0f8f5133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8756-6709
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0956053X21005134
PQID 2580693116
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2636812787
proquest_miscellaneous_2580693116
crossref_primary_10_1016_j_wasman_2021_09_024
crossref_citationtrail_10_1016_j_wasman_2021_09_024
elsevier_sciencedirect_doi_10_1016_j_wasman_2021_09_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Waste management (Elmsford)
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Tabasaran, Rettenberger (b0165) 1987
Ritzkowski, M., & Kuchta, K. (2018). Untersuchungen zu Umsetzungsprozessen im Zuge der Deponiebelüftung. In Stegmann, Rettenberger, Ritzkowski, Kuchta, Siechau, & Fricke (Hrsg.), Deponietechnik 2018 (S. 201-218). Stuttgart: Verlag Abfall Aktuell.
DIN EN ISO 13395. (1996). Wasserbeschaffenheit - Bestimmung von Nitritstickstoff, Nitratstickstoff und der Summe von beiden mit der Fließanalytik (CFA und FIA) und spektrometrischer Detektion (Water quality - Determination of nitrite nitrogen and nitrate nitrogen and the sum of).
Ritzkowski, Walker, Kuchta, Raga, Stegmann (b0160) 2016; 55
Montgomery, Monreal, Young, Seifert (b0110) 2000; 32
Brandstätter, C., Laner, D., Fellner, J., & Prantl, R. (2015c). Planung, Durchfühung und Dokumentation von wissenschaftlichen und technischen Untersuchungen zur Betriebsoptimierung der Altlastensicherung “Heferlbach” - Endbericht 2015. Wien: Institut für Wassergüte, Ressourcenmanagement und Abfallwirtschaft, TU Wien.
Hrad, Gamperling, Huber-Humer (b0085) 2013; 33
Raga, Cossu (b0135) 2013; 33
DIN EN ISO 11905-1. (1998). Wasserbeschaffenheit - Bestimmung von Stickstoff - Teil 1: Bestimmung von Stickstoff nach oxidativem Aufschluß mit Peroxodisulfat (Water quality - Determination of nitrogen - Part 1: Method using oxidative digestion with peroxodisulfate).
Council of the European Union. (26. April 1999). Council Directive 1999/31/EC on the Landfill of Waste. Official Journal of the European Communities L182/1-19.
Wiechmann, B., Dienemann, C., Kabbe, C., Brandt, S., Vogel, I., & Roskosch, A. (2013). Klärschlammentsorgung in der Bundesrepublik Deutschland. Dessau-Roßlau: Umweltbundesamt (UBA).
Hrad, Huber-Humer (b0080) 2017; 63
DIN EN 15403. (2011). Feste Sekundärbrennstoffe - Bestimmung des Aschegehaltes (Solid recovered fuels - Determination of ash content).
Bailey, Peacock, Smith, Bolton (b0010) 2002; 34
Ritzkowski, Stegmann (b0145) 2012; 32
Vance, Brookes, Jenkinson (b0170) 1987; 19
Leckie, S., Prescott, C., Grayston, S., Neufeld, J., & Mohn, W. (2004). Comparison of chloroform fumigation-extraction, phospholipid fatty acid, and DNA methods to determine microbial biomass in forest humus. Soil Biol. Biochem. 36(3), S. 529–532.
Jenkinson, Powlson (b0095) 1976; 8
ÖNORM S 2027-3. (2012). Beurteilung von Abfällen aus der mechanisch-biologischen Behandlung - Teil 3: Stabilitätsparameter - Gasbildung im Gärtest (GB21) (Evaluation of waste from mechanical-biological treatment - Part 3: Stability parameters - Gas generation by fermentation).
Ritzkowski, Stegmann (b0150) 2013; 33
Frostegård, A., & Bååth, E. (1996). The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertility Soils, 22(1-2), S. 59–65.
(b0005) 2018
DIN EN 1484. (1997). Wasseranalytik – Anleitungen zur Bestimmung des gesamten organischen Kohlenstoffs (TOC) und des gelösten organischen Kohlenstoffs (DOC) (Water analysis - Guidelines for the determination of total organic.
Brandstätter, Laner, Fellner (b0015) 2015
DIN EN 15407. (2011). Feste Sekundärbrennstoffe - Verfahren zur Bestimmung des Gehaltes an Kohlenstoff (C), Wasserstoff (H) und Stickstoff (N) (Solid recovered fuels - Methods for the determination of carbon (C), hydrogen (H) and nitrogen (N) content).
Institute of Soil Research, University of Natural Resources and Life Sciences. (2021). Standard Operating Procedure(SOP) for PLFA analysis on soil. Vienna.
Heyer, Hupe, Heerenklage, Ritzkowski, Dalheimer, Stegmann (b0075) 1999
Brandstätter, Laner, Fellner (b0020) 2015; 26
Brookes, Landman, Pruden, Jenkinson (b0030) 1985; 17
Morello, Raga, Sgarbossa, Rosson, Cossu (b0115) 2018; 75
Ritzkowski, Heyer, Stegmann (b0155) 2006; 26
ÖNORM S 2027-4. (2012). Beurteilung von Abfällen aus der mechanisch-biologischen Behandlung - Teil 4: Stabilitätsparameter - Atmungsaktivität (AT4) (Evaluation of waste from mechanical-biological treatment - Part 4: Stability parameters - Respiration activity (AT4)).
OECD. (2019). Waste Management and the Circular Economy in Selected OECD Countries: Evidence from Environmental Performance Reviews. OECD Environmental Performance Reviews. Paris: OECD Publishing. doi:https://doi.org/10.1787/9789264309395-en.
Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a Waste 2.0. A Global Snapshot of Solid Waste Management to 2050. Washington: International Bank for Reconstruction and Development. doi:10.1596/978-1-4648-1329-0.
DIN EN ISO 787-13. (2019). Allgemeine Prüfverfahren für Pigmente und Füllstoffe - Teil 13: Bestimmung der wasserlöslichen Sulfate, Chloride und Nitrate (General methods of test for pigments and extenders - Part 13: Determination of water-soluble sulfates, chlorides and nitrates).
10.1016/j.wasman.2021.09.024_b0040
10.1016/j.wasman.2021.09.024_b0140
10.1016/j.wasman.2021.09.024_b0065
10.1016/j.wasman.2021.09.024_b0120
10.1016/j.wasman.2021.09.024_b0045
Hrad (10.1016/j.wasman.2021.09.024_b0080) 2017; 63
10.1016/j.wasman.2021.09.024_b0100
10.1016/j.wasman.2021.09.024_b0025
10.1016/j.wasman.2021.09.024_b0125
Bailey (10.1016/j.wasman.2021.09.024_b0010) 2002; 34
(10.1016/j.wasman.2021.09.024_b0005) 2018
Brandstätter (10.1016/j.wasman.2021.09.024_b0020) 2015; 26
10.1016/j.wasman.2021.09.024_b0105
Vance (10.1016/j.wasman.2021.09.024_b0170) 1987; 19
Brandstätter (10.1016/j.wasman.2021.09.024_b0015) 2015
Heyer (10.1016/j.wasman.2021.09.024_b0075) 1999
Montgomery (10.1016/j.wasman.2021.09.024_b0110) 2000; 32
Jenkinson (10.1016/j.wasman.2021.09.024_b0095) 1976; 8
Raga (10.1016/j.wasman.2021.09.024_b0135) 2013; 33
Ritzkowski (10.1016/j.wasman.2021.09.024_b0145) 2012; 32
Morello (10.1016/j.wasman.2021.09.024_b0115) 2018; 75
10.1016/j.wasman.2021.09.024_b0090
10.1016/j.wasman.2021.09.024_b0070
10.1016/j.wasman.2021.09.024_b0050
Tabasaran (10.1016/j.wasman.2021.09.024_b0165) 1987
10.1016/j.wasman.2021.09.024_b0130
10.1016/j.wasman.2021.09.024_b0175
10.1016/j.wasman.2021.09.024_b0055
10.1016/j.wasman.2021.09.024_b0035
Brookes (10.1016/j.wasman.2021.09.024_b0030) 1985; 17
Hrad (10.1016/j.wasman.2021.09.024_b0085) 2013; 33
Ritzkowski (10.1016/j.wasman.2021.09.024_b0150) 2013; 33
Ritzkowski (10.1016/j.wasman.2021.09.024_b0155) 2006; 26
10.1016/j.wasman.2021.09.024_b0060
Ritzkowski (10.1016/j.wasman.2021.09.024_b0160) 2016; 55
References_xml – reference: Institute of Soil Research, University of Natural Resources and Life Sciences. (2021). Standard Operating Procedure(SOP) for PLFA analysis on soil. Vienna.
– reference: Council of the European Union. (26. April 1999). Council Directive 1999/31/EC on the Landfill of Waste. Official Journal of the European Communities L182/1-19.
– volume: 34
  start-page: 1385
  year: 2002
  end-page: 1389
  ident: b0010
  article-title: Relationships between soil microbial biomass determined by chloroform fumigation-extraction, substrate-induced respiration, and phospholipid fatty acid analysis
  publication-title: Soil Biol. Biochem.
– reference: Brandstätter, C., Laner, D., Fellner, J., & Prantl, R. (2015c). Planung, Durchfühung und Dokumentation von wissenschaftlichen und technischen Untersuchungen zur Betriebsoptimierung der Altlastensicherung “Heferlbach” - Endbericht 2015. Wien: Institut für Wassergüte, Ressourcenmanagement und Abfallwirtschaft, TU Wien.
– reference: Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a Waste 2.0. A Global Snapshot of Solid Waste Management to 2050. Washington: International Bank for Reconstruction and Development. doi:10.1596/978-1-4648-1329-0.
– reference: OECD. (2019). Waste Management and the Circular Economy in Selected OECD Countries: Evidence from Environmental Performance Reviews. OECD Environmental Performance Reviews. Paris: OECD Publishing. doi:https://doi.org/10.1787/9789264309395-en.
– volume: 33
  start-page: 871
  year: 2013
  end-page: 880
  ident: b0135
  article-title: Bioreactor tests preliminary to landfill in situ aeration: A case study
  publication-title: Waste Manage.
– reference: DIN EN 1484. (1997). Wasseranalytik – Anleitungen zur Bestimmung des gesamten organischen Kohlenstoffs (TOC) und des gelösten organischen Kohlenstoffs (DOC) (Water analysis - Guidelines for the determination of total organic.
– volume: 19
  start-page: 703
  year: 1987
  end-page: 707
  ident: b0170
  article-title: An extraction method for measuring microbial biomass C
  publication-title: Soil Biol. Biochem.
– reference: DIN EN 15403. (2011). Feste Sekundärbrennstoffe - Bestimmung des Aschegehaltes (Solid recovered fuels - Determination of ash content).
– year: 1987
  ident: b0165
  article-title: Grundlage zur Planung von Entgasungsanlagen, Müllhandbuch
– reference: Ritzkowski, M., & Kuchta, K. (2018). Untersuchungen zu Umsetzungsprozessen im Zuge der Deponiebelüftung. In Stegmann, Rettenberger, Ritzkowski, Kuchta, Siechau, & Fricke (Hrsg.), Deponietechnik 2018 (S. 201-218). Stuttgart: Verlag Abfall Aktuell.
– reference: DIN EN 15407. (2011). Feste Sekundärbrennstoffe - Verfahren zur Bestimmung des Gehaltes an Kohlenstoff (C), Wasserstoff (H) und Stickstoff (N) (Solid recovered fuels - Methods for the determination of carbon (C), hydrogen (H) and nitrogen (N) content).
– volume: 55
  start-page: 99
  year: 2016
  end-page: 107
  ident: b0160
  article-title: Aeration of the teuftal landfill: Field scale concept and lab scale simulation
  publication-title: Waste Manag.
– reference: DIN EN ISO 11905-1. (1998). Wasserbeschaffenheit - Bestimmung von Stickstoff - Teil 1: Bestimmung von Stickstoff nach oxidativem Aufschluß mit Peroxodisulfat (Water quality - Determination of nitrogen - Part 1: Method using oxidative digestion with peroxodisulfate).
– volume: 32
  start-page: 1411
  year: 2012
  end-page: 1419
  ident: b0145
  article-title: Landfill aeration worldwide: Concepts, indications and findings
  publication-title: Waste Manage.
– volume: 8
  start-page: 209
  year: 1976
  end-page: 213
  ident: b0095
  article-title: The effects of biocidal treatments on metabolism in soil - V: A method for measuring soil biomass
  publication-title: Soil Biol. Biochem.
– volume: 26
  start-page: 399
  year: 2015
  end-page: 414
  ident: b0020
  article-title: Nitrogen pools and flows during lab-scale degradation of old landfilled waste under different oxygen and water regimes
  publication-title: Biodegradation
– volume: 63
  start-page: 397
  year: 2017
  end-page: 409
  ident: b0080
  article-title: Performance and completion assessment of an in-situ aerated municipal solid waste landfill – Final scientific documentation of an Austrian case study
  publication-title: Waste Manage.
– start-page: 563
  year: 1999
  end-page: 571
  ident: b0075
  article-title: Aeration of old landfills as an innovative method of process enhancement
  publication-title: Sardinia
– reference: ÖNORM S 2027-3. (2012). Beurteilung von Abfällen aus der mechanisch-biologischen Behandlung - Teil 3: Stabilitätsparameter - Gasbildung im Gärtest (GB21) (Evaluation of waste from mechanical-biological treatment - Part 3: Stability parameters - Gas generation by fermentation).
– year: 2018
  ident: b0005
  publication-title: Scheffer/Schachtschabel Lehrbuch der Bodenkunde
– volume: 33
  start-page: 2061
  year: 2013
  end-page: 2073
  ident: b0085
  article-title: Comparison between lab- and full-scale applications of in situ aeration of an old landfill and assessment of long-term emission development after completion
  publication-title: Waste Manage.
– start-page: 100
  year: 2015
  end-page: 111
  ident: b0015
  article-title: Carbon pools and flows during lab-scale degradation of old landfilled
  publication-title: Waste Management
– volume: 32
  start-page: 1207
  year: 2000
  end-page: 1217
  ident: b0110
  article-title: Determinination of soil fungal biomass from soil ergosterol analyses
  publication-title: Soil Biol. Biochem.
– volume: 17
  start-page: 837
  year: 1985
  end-page: 842
  ident: b0030
  article-title: Chloroform Fumigation and the release of soil Nitrogen: a rapid direct extraction method to measure microbial biomass Nitrogen in soil
  publication-title: Soil Biol. Biochem.
– reference: ÖNORM S 2027-4. (2012). Beurteilung von Abfällen aus der mechanisch-biologischen Behandlung - Teil 4: Stabilitätsparameter - Atmungsaktivität (AT4) (Evaluation of waste from mechanical-biological treatment - Part 4: Stability parameters - Respiration activity (AT4)).
– reference: DIN EN ISO 13395. (1996). Wasserbeschaffenheit - Bestimmung von Nitritstickstoff, Nitratstickstoff und der Summe von beiden mit der Fließanalytik (CFA und FIA) und spektrometrischer Detektion (Water quality - Determination of nitrite nitrogen and nitrate nitrogen and the sum of).
– volume: 33
  start-page: 2074
  year: 2013
  end-page: 2082
  ident: b0150
  article-title: Landfill aeration within the scope of post-closure care and its completion
  publication-title: Waste Manage.
– reference: Leckie, S., Prescott, C., Grayston, S., Neufeld, J., & Mohn, W. (2004). Comparison of chloroform fumigation-extraction, phospholipid fatty acid, and DNA methods to determine microbial biomass in forest humus. Soil Biol. Biochem. 36(3), S. 529–532.
– volume: 75
  start-page: 372
  year: 2018
  end-page: 383
  ident: b0115
  article-title: Storage potential and residual emissions from fresh and stabilized waste samples from a landfill simulation experiment
  publication-title: Waste Manage.
– volume: 26
  start-page: 356
  year: 2006
  end-page: 372
  ident: b0155
  article-title: Fundamental processes and implications during in situ aeration of old landfills
  publication-title: Waste Manag.
– reference: Wiechmann, B., Dienemann, C., Kabbe, C., Brandt, S., Vogel, I., & Roskosch, A. (2013). Klärschlammentsorgung in der Bundesrepublik Deutschland. Dessau-Roßlau: Umweltbundesamt (UBA).
– reference: DIN EN ISO 787-13. (2019). Allgemeine Prüfverfahren für Pigmente und Füllstoffe - Teil 13: Bestimmung der wasserlöslichen Sulfate, Chloride und Nitrate (General methods of test for pigments and extenders - Part 13: Determination of water-soluble sulfates, chlorides and nitrates).
– reference: Frostegård, A., & Bååth, E. (1996). The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertility Soils, 22(1-2), S. 59–65.
– ident: 10.1016/j.wasman.2021.09.024_b0065
– ident: 10.1016/j.wasman.2021.09.024_b0090
– volume: 26
  start-page: 399
  issue: 5
  year: 2015
  ident: 10.1016/j.wasman.2021.09.024_b0020
  article-title: Nitrogen pools and flows during lab-scale degradation of old landfilled waste under different oxygen and water regimes
  publication-title: Biodegradation
  doi: 10.1007/s10532-015-9742-5
– volume: 75
  start-page: 372
  year: 2018
  ident: 10.1016/j.wasman.2021.09.024_b0115
  article-title: Storage potential and residual emissions from fresh and stabilized waste samples from a landfill simulation experiment
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2018.01.026
– ident: 10.1016/j.wasman.2021.09.024_b0040
– volume: 8
  start-page: 209
  issue: 3
  year: 1976
  ident: 10.1016/j.wasman.2021.09.024_b0095
  article-title: The effects of biocidal treatments on metabolism in soil - V: A method for measuring soil biomass
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(76)90005-5
– ident: 10.1016/j.wasman.2021.09.024_b0120
  doi: 10.1787/9789264309395-en
– volume: 33
  start-page: 871
  issue: 4
  year: 2013
  ident: 10.1016/j.wasman.2021.09.024_b0135
  article-title: Bioreactor tests preliminary to landfill in situ aeration: A case study
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2012.11.014
– ident: 10.1016/j.wasman.2021.09.024_b0070
  doi: 10.1007/BF00384433
– start-page: 563
  year: 1999
  ident: 10.1016/j.wasman.2021.09.024_b0075
  article-title: Aeration of old landfills as an innovative method of process enhancement
  publication-title: Sardinia
– volume: 63
  start-page: 397
  year: 2017
  ident: 10.1016/j.wasman.2021.09.024_b0080
  article-title: Performance and completion assessment of an in-situ aerated municipal solid waste landfill – Final scientific documentation of an Austrian case study
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2016.07.043
– volume: 32
  start-page: 1411
  issue: 7
  year: 2012
  ident: 10.1016/j.wasman.2021.09.024_b0145
  article-title: Landfill aeration worldwide: Concepts, indications and findings
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2012.02.020
– ident: 10.1016/j.wasman.2021.09.024_b0025
– ident: 10.1016/j.wasman.2021.09.024_b0050
– ident: 10.1016/j.wasman.2021.09.024_b0100
  doi: 10.1596/978-1-4648-1329-0
– ident: 10.1016/j.wasman.2021.09.024_b0035
– ident: 10.1016/j.wasman.2021.09.024_b0130
– year: 2018
  ident: 10.1016/j.wasman.2021.09.024_b0005
– volume: 26
  start-page: 356
  issue: 4
  year: 2006
  ident: 10.1016/j.wasman.2021.09.024_b0155
  article-title: Fundamental processes and implications during in situ aeration of old landfills
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2005.11.009
– year: 1987
  ident: 10.1016/j.wasman.2021.09.024_b0165
– volume: 19
  start-page: 703
  issue: 6
  year: 1987
  ident: 10.1016/j.wasman.2021.09.024_b0170
  article-title: An extraction method for measuring microbial biomass C
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(87)90052-6
– volume: 33
  start-page: 2074
  issue: 10
  year: 2013
  ident: 10.1016/j.wasman.2021.09.024_b0150
  article-title: Landfill aeration within the scope of post-closure care and its completion
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2013.02.004
– ident: 10.1016/j.wasman.2021.09.024_b0125
– volume: 32
  start-page: 1207
  issue: 8-9
  year: 2000
  ident: 10.1016/j.wasman.2021.09.024_b0110
  article-title: Determinination of soil fungal biomass from soil ergosterol analyses
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(00)00037-7
– ident: 10.1016/j.wasman.2021.09.024_b0045
– volume: 17
  start-page: 837
  issue: 6
  year: 1985
  ident: 10.1016/j.wasman.2021.09.024_b0030
  article-title: Chloroform Fumigation and the release of soil Nitrogen: a rapid direct extraction method to measure microbial biomass Nitrogen in soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(85)90144-0
– ident: 10.1016/j.wasman.2021.09.024_b0175
– ident: 10.1016/j.wasman.2021.09.024_b0060
– ident: 10.1016/j.wasman.2021.09.024_b0140
– ident: 10.1016/j.wasman.2021.09.024_b0055
– volume: 33
  start-page: 2061
  issue: 10
  year: 2013
  ident: 10.1016/j.wasman.2021.09.024_b0085
  article-title: Comparison between lab- and full-scale applications of in situ aeration of an old landfill and assessment of long-term emission development after completion
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2013.01.027
– start-page: 100
  issue: 40
  year: 2015
  ident: 10.1016/j.wasman.2021.09.024_b0015
  article-title: Carbon pools and flows during lab-scale degradation of old landfilled
  publication-title: Waste Management
  doi: 10.1016/j.wasman.2015.03.011
– ident: 10.1016/j.wasman.2021.09.024_b0105
  doi: 10.1016/j.soilbio.2003.10.014
– volume: 55
  start-page: 99
  year: 2016
  ident: 10.1016/j.wasman.2021.09.024_b0160
  article-title: Aeration of the teuftal landfill: Field scale concept and lab scale simulation
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2016.06.004
– volume: 34
  start-page: 1385
  issue: 9
  year: 2002
  ident: 10.1016/j.wasman.2021.09.024_b0010
  article-title: Relationships between soil microbial biomass determined by chloroform fumigation-extraction, substrate-induced respiration, and phospholipid fatty acid analysis
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(02)00070-6
SSID ssj0014810
Score 2.380905
Snippet •Leachate emission reduction after aeration caused by increased sorption capacity.•Hardly any N is removed by aeration; most remains in solids (>83% of initial...
The objective of the present work is to investigate to what extent emission reductions observed during landfill aeration are permanent. To do so, lab-scale...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 457
SubjectTerms aeration
anaerobic treatment
Carbon
chloroform
Chloroform fumigation-extraction
ion exchange capacity
Landfill aeration
Landfill aftercare
landfills
leachates
methane
Microbial biomass
Nitrogen
pollutants
sorption
wastes
Title Enduring reduction of carbon and nitrogen emissions from landfills due to aeration?
URI https://dx.doi.org/10.1016/j.wasman.2021.09.024
https://www.proquest.com/docview/2580693116
https://www.proquest.com/docview/2636812787
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEG5ED4mHYNYEjUZa8DrZ7dd0z0lkUTYR9qLC3pqefsDKOiP7wJu_3ap5SCIkQm4zQ_fQfP1NdfV01VeEnKVc6oKplAnhZCYDd1mZXMok5yz6MoGP3gTITvPJnfw1U7MtMu5zYTCssrP9rU1vrHX3ZNihOXycz4c3KKEHFJrBpgWYJVATVEqNLP_x_BrmAd5-o0jQ6O1h6z59ronxenKrB4cqqJw1aqdc_m15emOom9Xnao986txGetGO7DPZitWAfBj31doGZPc3YcF9cnNZtfmHdInSrAg-rRP1blnClasChS95WQN5KL4B_5itKGaaUAx0TPPFYkXDJtJ1TV1sOXL-hdxeXd6OJ1lXPiHzkpl1xiJm1UoHK7ATEY__eCidhvkodKl04MZL44MJhXep4NHpEBXL_SiZhFVfvpLtqq7iAaHBK6aFSsJ72A8yUyrvwa0yOiijC1ccEtGDZn0nLY4VLha2jyG7ty3UFqG2o8IC1Icke-312EprvNNe9_Nh_6CIBev_Ts_TfvosgIpHIq6K9WZluTKjvBCM5f9okwsUaQPL9u2_R3BEPuJdm8R4TLbXy038Dt7Mujxp6HpCdi5-Xk-mL8fw9Ug
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SzSHNIbRJSpM-okKvZlcvSz6VsCRsmnQv2cLehKwHbNnaYR_k70fjR0gKbaA3Y0tGfBrPjDwz3wB8jblQBZUx49yKTHhmszLamAnGaHBlTD56kyA7zSc_xfe5nO_AuK-FwbTKTve3Or3R1t2dYYfm8G6xGN4ihV4SoXk6tCTJ4uIV7CI7lRzA7vnV9WT6GEwQuiElaCj3cEJfQdeked3b9W-LRKiMNoSnTPzNQv2hqxsDdPkGDjrPkZy3i3sLO6E6hL1x37DtEPafcAsewe1F1ZYgkhWysyL-pI7E2VWZrmzlSfqYV3WSH4JvwJ9ma4LFJgRzHeNiuVwTvw1kUxMbWjH5dgyzy4vZeJJ1HRQyJ6jeZDRgYa2wyQhbHjACyHxpVdqSQpVSeaad0M5rXzgbCxas8kHS3I2ijtj45R0MqroK74F4J6niMnLn0pGQ6lI6lzwrrbzUqrDFCfAeNOM6dnFscrE0fRrZL9NCbRBqMypMgvoEssdZdy27xgvjVb8f5pmUmGQAXpj5pd8-k0DFqIitQr1dGyb1KC84pfk_xuQcedqScjv97xWcwd5k9uPG3FxNrz_Aa3zS1jR-hMFmtQ2fknOzKT93wvsALhr3-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enduring+reduction+of+carbon+and+nitrogen+emissions+from+landfills+due+to+aeration%3F&rft.jtitle=Waste+management+%28Elmsford%29&rft.au=Fricko%2C+Nora&rft.au=Brandst%C3%A4tter%2C+Christian&rft.au=Fellner%2C+Johann&rft.date=2021-11-01&rft.pub=Elsevier+Ltd&rft.issn=0956-053X&rft.eissn=1879-2456&rft.volume=135&rft.spage=457&rft.epage=466&rft_id=info:doi/10.1016%2Fj.wasman.2021.09.024&rft.externalDocID=S0956053X21005134
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-053X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-053X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-053X&client=summon