Machine learning-based predictive model for thermal comfort and energy optimization in smart buildings

In the current context of energy transition and increasing climate change, optimizing building performance has become a critical objective. Efficient energy use and occupant comfort are paramount considerations in building design and operation. To address these challenges, this study introduces a pr...

Full description

Saved in:
Bibliographic Details
Published inResults in engineering Vol. 22; p. 102148
Main Authors Boutahri, Youssef, Tilioua, Amine
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the current context of energy transition and increasing climate change, optimizing building performance has become a critical objective. Efficient energy use and occupant comfort are paramount considerations in building design and operation. To address these challenges, this study introduces a predictive model leveraging Machine Learning (ML) algorithms. The model aims to predict thermal comfort levels and optimize energy consumption in Heating, Ventilation, and Air Conditioning (HVAC) systems. Four distinct ML algorithms Support Vector Machine (SVM), Artificial Neural Network (ANN), Random Forest (RF), and EXtreme Gradient Boosting (XGBOOST) are employed for this purpose. Data for the model is collected using a network of Raspberry Pi boards equipped with multiple sensors. Performance evaluation of the ML algorithms is conducted using statistical error metrics, including, Root Mean Square Error (RMSE), Mean Square Error (MSE), Mean Absolute Error (MAE), and coefficient of determination (R2). Results reveal that the RF and XGBOOST algorithms exhibit superior performance, achieving accuracies of 96.7 % and 9.64 % respectively. In contrast, the SVM algorithm demonstrates inferior performance with a R2 of 81.1 %. These findings underscore the predictive capability of the RF and XGBOOST model in forecasting Predicted Mean Vote (PMV) values. The proposed model holds promise for enhancing occupant thermal comfort in buildings while simultaneously optimizing energy consumption in HVAC systems. Further research could explore the practical applications of these findings in building design and operation. •A predictive model leveraging ML methodologies has been devised.•The objective entails forecasting thermal comfort levels and mitigating energy utilization within HVAC frameworks.•Four distinct algorithms, namely SVM, ANN, RF, and XGBOOST, are employed.•The efficacy of ML algorithms is assessed through RMSE, MSE, MAE, and R2.•Notably, RF and XGBOOST algorithms exhibit superior performance, attaining accuracies of 0.967 and 0.964, respectively.
AbstractList In the current context of energy transition and increasing climate change, optimizing building performance has become a critical objective. Efficient energy use and occupant comfort are paramount considerations in building design and operation. To address these challenges, this study introduces a predictive model leveraging Machine Learning (ML) algorithms. The model aims to predict thermal comfort levels and optimize energy consumption in Heating, Ventilation, and Air Conditioning (HVAC) systems. Four distinct ML algorithms Support Vector Machine (SVM), Artificial Neural Network (ANN), Random Forest (RF), and EXtreme Gradient Boosting (XGBOOST) are employed for this purpose. Data for the model is collected using a network of Raspberry Pi boards equipped with multiple sensors. Performance evaluation of the ML algorithms is conducted using statistical error metrics, including, Root Mean Square Error (RMSE), Mean Square Error (MSE), Mean Absolute Error (MAE), and coefficient of determination (R2). Results reveal that the RF and XGBOOST algorithms exhibit superior performance, achieving accuracies of 96.7 % and 9.64 % respectively. In contrast, the SVM algorithm demonstrates inferior performance with a R2 of 81.1 %. These findings underscore the predictive capability of the RF and XGBOOST model in forecasting Predicted Mean Vote (PMV) values. The proposed model holds promise for enhancing occupant thermal comfort in buildings while simultaneously optimizing energy consumption in HVAC systems. Further research could explore the practical applications of these findings in building design and operation.
In the current context of energy transition and increasing climate change, optimizing building performance has become a critical objective. Efficient energy use and occupant comfort are paramount considerations in building design and operation. To address these challenges, this study introduces a predictive model leveraging Machine Learning (ML) algorithms. The model aims to predict thermal comfort levels and optimize energy consumption in Heating, Ventilation, and Air Conditioning (HVAC) systems. Four distinct ML algorithms Support Vector Machine (SVM), Artificial Neural Network (ANN), Random Forest (RF), and EXtreme Gradient Boosting (XGBOOST) are employed for this purpose. Data for the model is collected using a network of Raspberry Pi boards equipped with multiple sensors. Performance evaluation of the ML algorithms is conducted using statistical error metrics, including, Root Mean Square Error (RMSE), Mean Square Error (MSE), Mean Absolute Error (MAE), and coefficient of determination (R2). Results reveal that the RF and XGBOOST algorithms exhibit superior performance, achieving accuracies of 96.7 % and 9.64 % respectively. In contrast, the SVM algorithm demonstrates inferior performance with a R2 of 81.1 %. These findings underscore the predictive capability of the RF and XGBOOST model in forecasting Predicted Mean Vote (PMV) values. The proposed model holds promise for enhancing occupant thermal comfort in buildings while simultaneously optimizing energy consumption in HVAC systems. Further research could explore the practical applications of these findings in building design and operation. •A predictive model leveraging ML methodologies has been devised.•The objective entails forecasting thermal comfort levels and mitigating energy utilization within HVAC frameworks.•Four distinct algorithms, namely SVM, ANN, RF, and XGBOOST, are employed.•The efficacy of ML algorithms is assessed through RMSE, MSE, MAE, and R2.•Notably, RF and XGBOOST algorithms exhibit superior performance, attaining accuracies of 0.967 and 0.964, respectively.
ArticleNumber 102148
Author Boutahri, Youssef
Tilioua, Amine
Author_xml – sequence: 1
  givenname: Youssef
  surname: Boutahri
  fullname: Boutahri, Youssef
  email: yo.boutahri@edu.umi.ac.ma
– sequence: 2
  givenname: Amine
  surname: Tilioua
  fullname: Tilioua, Amine
  email: a.tilioua@umi.ac.ma
BookMark eNqFkc9qHSEUh6Wk0DTNG3ThC8yteh11uiiUkKaBhGyStfjneONlRi9qA8nT19wppXTRrtTD-X2c8_kenaScAKGPlGwooeLTflNigrTbMMJ4LzHK1Rt0ysaJDJRtyckf93fovNY9IYSpnt3KUxRujXvseTyDKSmm3WBNBY8PBXx0LT4BXrKHGYdccHuEspgZu7z0Z8MmeQwJyu4Z50OLS3wxLeaEY8J1Mb3B_oiz79D6Ab0NZq5w_us8Qw_fLu8vvg83d1fXF19vBsepagMdJReGWOal94qGyQVpvbVCSD4FZplijoxqpIJJNwlq6UiEBcWoVY6B3Z6h65Xrs9nrQ4l9jGedTdTHQi473eeKbgbtvCVCKjmNQXLihWEK-GhEsEowrnxn8ZXlSq61QPjNo0S_qtd7varXr-r1qr7HPv8Vc7EdvbRi4vy_8Jc1DF3SU4Siq4uQXP-MAq71LeK_AT8BeNik1g
CitedBy_id crossref_primary_10_1016_j_rineng_2024_102747
crossref_primary_10_1016_j_rineng_2024_102766
crossref_primary_10_1016_j_rineng_2024_102544
crossref_primary_10_1016_j_rineng_2024_102643
crossref_primary_10_17721_tppe_2024_49_14
crossref_primary_10_3390_buildings15010039
crossref_primary_10_3390_su17072916
crossref_primary_10_2139_ssrn_4642529
crossref_primary_10_1016_j_enbuild_2025_115599
crossref_primary_10_3390_en17235965
crossref_primary_10_3390_buildings15040630
crossref_primary_10_1016_j_rineng_2025_104057
crossref_primary_10_1016_j_rineng_2024_103165
crossref_primary_10_1177_01445987241268075
crossref_primary_10_1016_j_rineng_2024_103380
crossref_primary_10_1016_j_rineng_2024_102614
crossref_primary_10_1016_j_rineng_2024_103508
crossref_primary_10_1016_j_buildenv_2025_112681
crossref_primary_10_1063_5_0243565
crossref_primary_10_1016_j_rineng_2024_102698
crossref_primary_10_1016_j_uclim_2024_102210
crossref_primary_10_1111_exsy_70000
crossref_primary_10_1016_j_rineng_2024_103765
crossref_primary_10_1016_j_rineng_2024_102818
crossref_primary_10_3390_en18061408
crossref_primary_10_1016_j_apenergy_2024_125188
crossref_primary_10_1140_epjp_s13360_024_05687_x
crossref_primary_10_51646_jsesd_v14iSI_MSMS2E_396
crossref_primary_10_1016_j_rineng_2025_104086
crossref_primary_10_1016_j_rineng_2025_104045
crossref_primary_10_1016_j_rineng_2025_104540
crossref_primary_10_47172_2965_730X_SDGsReview_v5_n03_pe05010
crossref_primary_10_3390_en17194965
Cites_doi 10.1109/JIOT.2020.3042783
10.1016/j.buildenv.2010.10.021
10.3763/aber.2009.0304
10.1016/j.buildenv.2009.06.020
10.1023/B:STCO.0000035301.49549.88
10.1016/j.buildenv.2022.109462
10.1016/j.apenergy.2017.12.002
10.1016/j.autcon.2018.07.007
10.1016/j.enconman.2013.10.023
10.1177/1420326X221110046
10.3390/s19173691
10.1016/j.future.2020.07.047
10.1016/j.enbuild.2012.05.022
10.1016/j.renene.2021.05.155
10.1016/j.enbuild.2021.111297
10.1016/j.rser.2014.03.027
10.1016/j.buildenv.2022.109735
10.1016/j.enbuild.2009.08.009
10.1109/JIOT.2018.2871461
10.1016/j.apergo.2010.04.003
10.1016/j.enbuild.2017.10.022
10.1080/00049536608255722
10.1016/j.ijsbe.2016.03.006
10.1016/j.enbuild.2012.03.010
10.1016/j.apenergy.2021.116648
10.1016/j.enbuild.2021.110860
10.5271/sjweh.2646
10.1007/s43621-023-00140-y
10.3390/s21134401
10.1023/A:1010933404324
10.1016/j.buildenv.2019.106615
10.1016/j.scs.2021.102816
10.1016/j.buildenv.2018.11.017
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rineng.2024.102148
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2590-1230
ExternalDocumentID oai_doaj_org_article_cdb0678795f740d6a28e45a6fb86248d
10_1016_j_rineng_2024_102148
S259012302400402X
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AALRI
AAXUO
ADBBV
ADVLN
AEXQZ
AFJKZ
AFTJW
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
ID FETCH-LOGICAL-c418t-15746a0b2d7dd81f9cf7bdbb66749f2b282c05851627c961b1506be821b8c2eb3
IEDL.DBID DOA
ISSN 2590-1230
IngestDate Wed Aug 27 01:32:23 EDT 2025
Thu Apr 24 23:05:36 EDT 2025
Tue Jul 01 05:10:02 EDT 2025
Sat Apr 26 15:41:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Model predictive control
Thermal comfort
Energy efficiency
Smart building
HVAC systems
Machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-15746a0b2d7dd81f9cf7bdbb66749f2b282c05851627c961b1506be821b8c2eb3
OpenAccessLink https://doaj.org/article/cdb0678795f740d6a28e45a6fb86248d
ParticipantIDs doaj_primary_oai_doaj_org_article_cdb0678795f740d6a28e45a6fb86248d
crossref_primary_10_1016_j_rineng_2024_102148
crossref_citationtrail_10_1016_j_rineng_2024_102148
elsevier_sciencedirect_doi_10_1016_j_rineng_2024_102148
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Results in engineering
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Peng, Rysanek, Nagy, Schlüter (bib22) 2018; 211
Cigler, Prívara, Váňa, Žáčeková, Ferkl (bib17) 2012; 52
Elnaklah (bib42) 2020
Ali, El-Sappagh, Islam, Ali, Attique, Imran, Kwak (bib41) 2021; 114
Ardabili, Mosavi, Várkonyi-Kóczy (bib2) 2020; vol. 101
Jung, Jazizadeh, Diller (bib15) 2019; 19
Elnour, Meskin, Khan, Jain (bib48) 2021; 69
Huang, Lu, Li, Chen (bib36) 2022; 32
(bib40) 2010
Gong, Cai, Zhou, Zhang, Chen, Sharples (bib46) 2022; 45
Gan, Luo, Tan, Deng, Kwok (bib33) 2021; 21
Edwards, New, Parker (bib24) 2012; 49
Romeu, Zamora-Martínez, Botella-Rocamora, Pardo (bib21) 2013; 8131
Zhang, Hu, Wen (bib32) 2019; 6
Wang, Chen, Hong (bib23) 2018; 94
Yan, Ji, Yan (bib35) 2022; 226
Liu, Sun, Mo, Liu (bib28) 2021; 250
Lan, Lian, Pan (bib8) 2010; 45
Gao, Li, Wen (bib34) 2020; vol. 7
Yang, Wan, Chen, Ng, Dubey (bib29) 2021; 288
Benesty, Chen, Huang, Cohen (bib50) 2009; 2
Breiman (bib44) 2001; 45
Deng, Chen (bib30) 2021; 238
Bai, Liu, Wang (bib19) 2022; 223
Hensen (bib37) 1991
Arif, Katafygiotou, Mazroei, Kaushik, Elsarrag (bib9) 2016; 5
Provins (bib10) 1966; 18
Eia (bib4) December 2022
Ghahramani, Dutta, Yang, Ozcelik, Becerik-Gerber (bib13) 2015
(bib16) 2020
Chaudhuri, Soh, Hua, Li, Xie (bib27) 2020; 170
Vakiloroaya, Samali, Fakhar, Pishghadam (bib11) 2014; 77
Chen, Guestrin (bib47) 2016
Masoso, Grobler (bib12) 2010; 42
Kalogirou (bib20) 2009; 3
Mansour, Tilioua, Touzani (bib45) 2022
Zhang, Arens, Hueizenga, Han (bib38) 2010; 45
Eugene (bib39) 1970; vol. 244
Devi, Reddy, Kumar, Reddy, Nayak (bib25) 2012; 3
(bib14) 2013
Shaikh, Bin Mohd Nor, Nallagownden, Elamvazuthi, Ibrahim (bib3) 2014; 34
Wyon, Andersen, Lundqvist (bib7) 1979; 5
Zhang, Wen, Tseng (bib31) 2021; 8
Tien, Wei, Liu, Calautit, Darkwa, Wood (bib5) 2021; 177
Frontczak, Wargocki (bib6) 2011; 46
Cosma, Simha (bib26) 2019; 148
Royapoor, Antony, Roskilly (bib18) 2018; 158
Smola, Scholkopf (bib43) 2004; 14
Al-Raeei (bib1) 2023; 4
Mansour, Tilioua, Touzani (bib49) 2024
Kalogirou (10.1016/j.rineng.2024.102148_bib20) 2009; 3
Cosma (10.1016/j.rineng.2024.102148_bib26) 2019; 148
Ali (10.1016/j.rineng.2024.102148_bib41) 2021; 114
Zhang (10.1016/j.rineng.2024.102148_bib32) 2019; 6
Royapoor (10.1016/j.rineng.2024.102148_bib18) 2018; 158
Eia (10.1016/j.rineng.2024.102148_bib4) 2022
Bai (10.1016/j.rineng.2024.102148_bib19) 2022; 223
Gong (10.1016/j.rineng.2024.102148_bib46) 2022; 45
Jung (10.1016/j.rineng.2024.102148_bib15) 2019; 19
Mansour (10.1016/j.rineng.2024.102148_bib45) 2022
Devi (10.1016/j.rineng.2024.102148_bib25) 2012; 3
Frontczak (10.1016/j.rineng.2024.102148_bib6) 2011; 46
Wyon (10.1016/j.rineng.2024.102148_bib7) 1979; 5
Wang (10.1016/j.rineng.2024.102148_bib23) 2018; 94
Chen (10.1016/j.rineng.2024.102148_bib47) 2016
Cigler (10.1016/j.rineng.2024.102148_bib17) 2012; 52
Hensen (10.1016/j.rineng.2024.102148_bib37) 1991
Al-Raeei (10.1016/j.rineng.2024.102148_bib1) 2023; 4
Edwards (10.1016/j.rineng.2024.102148_bib24) 2012; 49
(10.1016/j.rineng.2024.102148_bib40) 2010
Romeu (10.1016/j.rineng.2024.102148_bib21) 2013; 8131
Tien (10.1016/j.rineng.2024.102148_bib5) 2021; 177
Masoso (10.1016/j.rineng.2024.102148_bib12) 2010; 42
Arif (10.1016/j.rineng.2024.102148_bib9) 2016; 5
Yan (10.1016/j.rineng.2024.102148_bib35) 2022; 226
Yang (10.1016/j.rineng.2024.102148_bib29) 2021; 288
Elnaklah (10.1016/j.rineng.2024.102148_bib42) 2020
Provins (10.1016/j.rineng.2024.102148_bib10) 1966; 18
Vakiloroaya (10.1016/j.rineng.2024.102148_bib11) 2014; 77
Ardabili (10.1016/j.rineng.2024.102148_bib2) 2020; vol. 101
Huang (10.1016/j.rineng.2024.102148_bib36) 2022; 32
Gao (10.1016/j.rineng.2024.102148_bib34) 2020; vol. 7
Breiman (10.1016/j.rineng.2024.102148_bib44) 2001; 45
Benesty (10.1016/j.rineng.2024.102148_bib50) 2009; 2
(10.1016/j.rineng.2024.102148_bib14) 2013
Zhang (10.1016/j.rineng.2024.102148_bib31) 2021; 8
Lan (10.1016/j.rineng.2024.102148_bib8) 2010; 45
Peng (10.1016/j.rineng.2024.102148_bib22) 2018; 211
Gan (10.1016/j.rineng.2024.102148_bib33) 2021; 21
Ghahramani (10.1016/j.rineng.2024.102148_bib13) 2015
Smola (10.1016/j.rineng.2024.102148_bib43) 2004; 14
Shaikh (10.1016/j.rineng.2024.102148_bib3) 2014; 34
Liu (10.1016/j.rineng.2024.102148_bib28) 2021; 250
Eugene (10.1016/j.rineng.2024.102148_bib39) 1970; vol. 244
Deng (10.1016/j.rineng.2024.102148_bib30) 2021; 238
Mansour (10.1016/j.rineng.2024.102148_bib49) 2024
Elnour (10.1016/j.rineng.2024.102148_bib48) 2021; 69
Chaudhuri (10.1016/j.rineng.2024.102148_bib27) 2020; 170
Zhang (10.1016/j.rineng.2024.102148_bib38) 2010; 45
References_xml – volume: 148
  start-page: 372
  year: 2019
  end-page: 383
  ident: bib26
  article-title: Machine learning method for real-time non-invasive prediction of individual thermal preference in transient conditions
  publication-title: Build. Environ.
– volume: 238
  year: 2021
  ident: bib30
  article-title: Reinforcement learning of occupant behavior model for cross-building transfer learning to various HVAC control systems
  publication-title: Energy Build.
– volume: 34
  start-page: 409
  year: 2014
  end-page: 429
  ident: bib3
  article-title: A review on optimized control systems for building energy and comfort management of smart sustainable buildings
  publication-title: Renew. Sustain. Energy Rev.
– volume: 5
  start-page: 1
  year: 2016
  end-page: 11
  ident: bib9
  article-title: Impact of indoor environmental quality on occupant well-being and comfort: a review of the literature
  publication-title: International Journal of Sustainable Built Environment
– volume: 158
  start-page: 453
  year: 2018
  end-page: 465
  ident: bib18
  article-title: A review of building climate and plant controls, and a survey of industry perspectives
  publication-title: Energy Build.
– volume: 223
  year: 2022
  ident: bib19
  article-title: Comparative analysis of thermal preference prediction performance in different conditions using ensemble learning models based on ASHRAE Comfort Database II
  publication-title: Build. Environ.
– volume: 45
  start-page: 399
  year: 2010
  end-page: 410
  ident: bib38
  article-title: Thermal sensation and comfort models for non-uniform and transient environments, part III: whole-body sensation and comfort
  publication-title: Build. Environ.
– volume: 45
  year: 2022
  ident: bib46
  article-title: Investigating spatial impact on indoor personal thermal comfort
  publication-title: J. Build. Eng.
– volume: 170
  year: 2020
  ident: bib27
  article-title: Machine learning driven personal comfort prediction by wearable sensing of pulse rate and skin temperature
  publication-title: Build. Environ.
– volume: 94
  year: 2018
  ident: bib23
  article-title: Occupancy prediction through machine learning and data fusion of environmental sensing and Wi-Fi sensing in buildings
  publication-title: Autom. ConStruct.
– volume: 5
  start-page: 352
  year: 1979
  end-page: 361
  ident: bib7
  article-title: The effects of moderate heat stress on mental performance
  publication-title: Scand. J. Work. Environ. Health
– volume: 32
  start-page: 343
  year: 2022
  end-page: 354
  ident: bib36
  article-title: Using random forests to predict passengers' thermal comfort in underground train carriages
  publication-title: Indoor Built Environ.
– year: 2013
  ident: bib14
  publication-title: Thermal Environmental Conditions for Human Occupancy, ANSI/ASHRAE Standard: 55–2013
– volume: 19
  start-page: 3691
  year: 2019
  ident: bib15
  article-title: Heat flux sensing for machine-learning-based personal thermal comfort modeling
  publication-title: Sensors
– volume: 4
  start-page: 24
  year: 2023
  ident: bib1
  article-title: Analysing of the sustainable development goals in Damascus University during Syrian crisis using the strategy in the university and the bibliometrics data from SciVal
  publication-title: Discover Sustainability
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib44
  article-title: Random forests
  publication-title: Mach. Learn.
– year: 1991
  ident: bib37
  article-title: On the Thermal Interaction of Building Structure and Heating and Ventilation System, [Ph.D. Thesis]
– start-page: 1000
  year: 2015
  end-page: 1011
  ident: bib13
  article-title: Quantifying the Influence of Temperature Setpoints, Building and System Features on Energy Consumption
– volume: 3
  start-page: 83
  year: 2009
  end-page: 119
  ident: bib20
  article-title: Artificial neural networks and genetic algorithms in energy applications in buildings
  publication-title: Adv. Build. Energy Res.
– year: 2022
  ident: bib45
  article-title: Implementation of artificial intelligence methods for solar energy prediction
  publication-title: The International Conference on Artificial Intelligence and Smart Environment
– volume: 14
  start-page: 199
  year: 2004
  end-page: 222
  ident: bib43
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
– volume: 77
  start-page: 738
  year: 2014
  end-page: 754
  ident: bib11
  article-title: A review of different strategies for HVAC energy saving
  publication-title: Energy Convers. Manag.
– volume: 250
  year: 2021
  ident: bib28
  article-title: Analysis and modeling of air conditioner usage behavior in residential buildings using monitoring data during hot and humid season
  publication-title: Energy Build.
– volume: 288
  year: 2021
  ident: bib29
  article-title: Experiment study of machine-learning-based approximate model predictive control for energy-efficient building control
  publication-title: Appl. Energy
– volume: 226
  year: 2022
  ident: bib35
  article-title: Data-driven prediction and optimization of residential building performance in Singapore considering the impact of climate change
  publication-title: Build. Environ.
– volume: 6
  start-page: 2540
  year: 2019
  end-page: 2549
  ident: bib32
  article-title: Thermal comfort modeling for smart buildings: a fine-grained deep learning approach
  publication-title: IEEE Internet Things J.
– volume: 8131
  start-page: 451
  year: 2013
  end-page: 458
  ident: bib21
  article-title: Time-series forecasting of indoor temperature using pre-trained deep neural networks,
  publication-title: Artificial Neural Networks and Machine Learning – ICANN
– volume: 42
  start-page: 173
  year: 2010
  end-page: 177
  ident: bib12
  article-title: The dark side of occupants' behaviour on building energy use
  publication-title: Energy Build.
– volume: 8
  start-page: 8021
  year: 2021
  end-page: 8031
  ident: bib31
  article-title: Demystifying thermal comfort in smart buildings: an interpretable machine learning approach
  publication-title: IEEE Internet Things J.
– volume: 49
  start-page: 591
  year: 2012
  end-page: 603
  ident: bib24
  article-title: Predicting future hourly residential electrical consumption: a machine learning case study
  publication-title: Energy Build.
– volume: 46
  start-page: 922
  year: 2011
  end-page: 937
  ident: bib6
  article-title: Literature survey on how different factors influence human comfort in indoor environments
  publication-title: Build. Environ.
– volume: 2
  start-page: 1
  year: 2009
  end-page: 4
  ident: bib50
  article-title: Pearson correlation coefficient, noise reduction in speech processing
  publication-title: Springer Topics in Signal Processing
– volume: 211
  start-page: 1343
  year: 2018
  end-page: 1358
  ident: bib22
  article-title: Using machine learning techniques for occupancy-prediction-based cooling control in office buildings
  publication-title: Appl. Energy
– volume: 69
  year: 2021
  ident: bib48
  article-title: Application of data-driven attack detection framework for secure operation in smart buildings
  publication-title: Sustain. Cities Soc.
– volume: vol. 244
  year: 1970
  ident: bib39
  publication-title: Thermal Comfort: Analysis and Applications in Environmental Engineering
– year: 2010
  ident: bib40
  article-title: ISO7730:2010. Ergonomics of the Thermal Environment-Analytical Determination and Interpretation of Thermal Comfort Using Calculation of PMV and PPD Indices and Local Thermal Comfort Criteria
– year: December 2022
  ident: bib4
  article-title: Commercial Buildings Energy Consumption Survey (CBECS)
– year: 2020
  ident: bib42
  article-title: Dataset for "Indoor Environment Quality and Work Performance in ‘green’ Office Buildings in the Middle East
– start-page: 785
  year: 2016
  end-page: 794
  ident: bib47
  article-title: Xgboost: a scalable tree boosting system
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 3
  start-page: 19
  year: 2012
  end-page: 23
  ident: bib25
  article-title: ANN approach for weather prediction using back propagation
  publication-title: Int. J. Eng. Trends Technol.
– volume: 52
  start-page: 39
  year: 2012
  end-page: 49
  ident: bib17
  article-title: Optimization of predicted mean vote index within model predictive control framework: computationally tractable solution
  publication-title: Energy Build.
– volume: 114
  start-page: 23
  year: 2021
  end-page: 43
  ident: bib41
  article-title: An intelligent healthcare monitoring framework using wearable sensors and social networking data
  publication-title: Future Generat. Comput. Syst.
– volume: vol. 101
  year: 2020
  ident: bib2
  article-title: Building energy information: demand and consumption prediction with machine learning models for sustainable and smart cities
  publication-title: Lecture Notes in Networks and Systems
– year: 2020
  ident: bib16
  article-title: Environmental protection agency
– volume: vol. 7
  start-page: 8472
  year: 2020
  end-page: 8484
  ident: bib34
  article-title: DeepComfort: energy-efficient thermal comfort control in buildings via reinforcement learning
  publication-title: IEEE Internet of Things Journal
– volume: 45
  start-page: 29
  year: 2010
  end-page: 36
  ident: bib8
  article-title: The effects of air temperature on office workers' well-being, workload and productivity-evaluated with subjective ratings
  publication-title: Appl. Ergon.
– volume: 21
  start-page: 4401
  year: 2021
  ident: bib33
  article-title: BIM and data-driven predictive analysis of optimum thermal comfort for indoor environment
  publication-title: Sensors
– volume: 177
  start-page: 603
  year: 2021
  end-page: 625
  ident: bib5
  article-title: A deep learning approach towards the detection and recognition of opening of windows for effective management of building ventilation heat losses and reducing space heating demand
  publication-title: Renew. Energy
– volume: 18
  start-page: 118
  year: 1966
  end-page: 129
  ident: bib10
  article-title: Environmental heat, body temperature and behaviour: an hypothesis 1
  publication-title: Aust. J. Psychol.
– year: 2024
  ident: bib49
  article-title: Bi-LSTM, GRU and 1D-CNN models for short-term photovoltaic panel efficiency forecasting case amorphous silicon grid-connected PV system
  publication-title: Results in Engineering
– volume: 8
  start-page: 8021
  issue: 10
  year: 2021
  ident: 10.1016/j.rineng.2024.102148_bib31
  article-title: Demystifying thermal comfort in smart buildings: an interpretable machine learning approach
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3042783
– volume: 46
  start-page: 922
  issue: 4
  year: 2011
  ident: 10.1016/j.rineng.2024.102148_bib6
  article-title: Literature survey on how different factors influence human comfort in indoor environments
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2010.10.021
– volume: 3
  start-page: 83
  issue: 1
  year: 2009
  ident: 10.1016/j.rineng.2024.102148_bib20
  article-title: Artificial neural networks and genetic algorithms in energy applications in buildings
  publication-title: Adv. Build. Energy Res.
  doi: 10.3763/aber.2009.0304
– volume: 45
  start-page: 399
  issue: 2
  year: 2010
  ident: 10.1016/j.rineng.2024.102148_bib38
  article-title: Thermal sensation and comfort models for non-uniform and transient environments, part III: whole-body sensation and comfort
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2009.06.020
– volume: 14
  start-page: 199
  year: 2004
  ident: 10.1016/j.rineng.2024.102148_bib43
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 223
  year: 2022
  ident: 10.1016/j.rineng.2024.102148_bib19
  article-title: Comparative analysis of thermal preference prediction performance in different conditions using ensemble learning models based on ASHRAE Comfort Database II
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2022.109462
– volume: 211
  start-page: 1343
  year: 2018
  ident: 10.1016/j.rineng.2024.102148_bib22
  article-title: Using machine learning techniques for occupancy-prediction-based cooling control in office buildings
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.12.002
– volume: 94
  year: 2018
  ident: 10.1016/j.rineng.2024.102148_bib23
  article-title: Occupancy prediction through machine learning and data fusion of environmental sensing and Wi-Fi sensing in buildings
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2018.07.007
– volume: 77
  start-page: 738
  year: 2014
  ident: 10.1016/j.rineng.2024.102148_bib11
  article-title: A review of different strategies for HVAC energy saving
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2013.10.023
– start-page: 1000
  year: 2015
  ident: 10.1016/j.rineng.2024.102148_bib13
– volume: vol. 244
  year: 1970
  ident: 10.1016/j.rineng.2024.102148_bib39
– volume: 45
  year: 2022
  ident: 10.1016/j.rineng.2024.102148_bib46
  article-title: Investigating spatial impact on indoor personal thermal comfort
  publication-title: J. Build. Eng.
– volume: 8131
  start-page: 451
  year: 2013
  ident: 10.1016/j.rineng.2024.102148_bib21
  article-title: Time-series forecasting of indoor temperature using pre-trained deep neural networks, International conference on artificial neural networks
  publication-title: Artificial Neural Networks and Machine Learning – ICANN
– volume: 32
  start-page: 343
  issue: 2
  year: 2022
  ident: 10.1016/j.rineng.2024.102148_bib36
  article-title: Using random forests to predict passengers' thermal comfort in underground train carriages
  publication-title: Indoor Built Environ.
  doi: 10.1177/1420326X221110046
– volume: 19
  start-page: 3691
  issue: 17
  year: 2019
  ident: 10.1016/j.rineng.2024.102148_bib15
  article-title: Heat flux sensing for machine-learning-based personal thermal comfort modeling
  publication-title: Sensors
  doi: 10.3390/s19173691
– volume: 114
  start-page: 23
  year: 2021
  ident: 10.1016/j.rineng.2024.102148_bib41
  article-title: An intelligent healthcare monitoring framework using wearable sensors and social networking data
  publication-title: Future Generat. Comput. Syst.
  doi: 10.1016/j.future.2020.07.047
– volume: 52
  start-page: 39
  year: 2012
  ident: 10.1016/j.rineng.2024.102148_bib17
  article-title: Optimization of predicted mean vote index within model predictive control framework: computationally tractable solution
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2012.05.022
– volume: 177
  start-page: 603
  year: 2021
  ident: 10.1016/j.rineng.2024.102148_bib5
  article-title: A deep learning approach towards the detection and recognition of opening of windows for effective management of building ventilation heat losses and reducing space heating demand
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.05.155
– volume: 250
  year: 2021
  ident: 10.1016/j.rineng.2024.102148_bib28
  article-title: Analysis and modeling of air conditioner usage behavior in residential buildings using monitoring data during hot and humid season
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2021.111297
– volume: 34
  start-page: 409
  year: 2014
  ident: 10.1016/j.rineng.2024.102148_bib3
  article-title: A review on optimized control systems for building energy and comfort management of smart sustainable buildings
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.03.027
– volume: 226
  year: 2022
  ident: 10.1016/j.rineng.2024.102148_bib35
  article-title: Data-driven prediction and optimization of residential building performance in Singapore considering the impact of climate change
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2022.109735
– year: 2022
  ident: 10.1016/j.rineng.2024.102148_bib45
  article-title: Implementation of artificial intelligence methods for solar energy prediction
– volume: 42
  start-page: 173
  year: 2010
  ident: 10.1016/j.rineng.2024.102148_bib12
  article-title: The dark side of occupants' behaviour on building energy use
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2009.08.009
– year: 2022
  ident: 10.1016/j.rineng.2024.102148_bib4
– volume: 6
  start-page: 2540
  issue: 2
  year: 2019
  ident: 10.1016/j.rineng.2024.102148_bib32
  article-title: Thermal comfort modeling for smart buildings: a fine-grained deep learning approach
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2871461
– volume: 45
  start-page: 29
  issue: 1
  year: 2010
  ident: 10.1016/j.rineng.2024.102148_bib8
  article-title: The effects of air temperature on office workers' well-being, workload and productivity-evaluated with subjective ratings
  publication-title: Appl. Ergon.
  doi: 10.1016/j.apergo.2010.04.003
– volume: 158
  start-page: 453
  year: 2018
  ident: 10.1016/j.rineng.2024.102148_bib18
  article-title: A review of building climate and plant controls, and a survey of industry perspectives
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.10.022
– year: 1991
  ident: 10.1016/j.rineng.2024.102148_bib37
– year: 2010
  ident: 10.1016/j.rineng.2024.102148_bib40
– volume: 18
  start-page: 118
  year: 1966
  ident: 10.1016/j.rineng.2024.102148_bib10
  article-title: Environmental heat, body temperature and behaviour: an hypothesis 1
  publication-title: Aust. J. Psychol.
  doi: 10.1080/00049536608255722
– volume: 5
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.rineng.2024.102148_bib9
  article-title: Impact of indoor environmental quality on occupant well-being and comfort: a review of the literature
  publication-title: International Journal of Sustainable Built Environment
  doi: 10.1016/j.ijsbe.2016.03.006
– volume: 49
  start-page: 591
  year: 2012
  ident: 10.1016/j.rineng.2024.102148_bib24
  article-title: Predicting future hourly residential electrical consumption: a machine learning case study
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2012.03.010
– volume: 288
  year: 2021
  ident: 10.1016/j.rineng.2024.102148_bib29
  article-title: Experiment study of machine-learning-based approximate model predictive control for energy-efficient building control
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116648
– year: 2024
  ident: 10.1016/j.rineng.2024.102148_bib49
  article-title: Bi-LSTM, GRU and 1D-CNN models for short-term photovoltaic panel efficiency forecasting case amorphous silicon grid-connected PV system
  publication-title: Results in Engineering
– volume: 3
  start-page: 19
  issue: 1
  year: 2012
  ident: 10.1016/j.rineng.2024.102148_bib25
  article-title: ANN approach for weather prediction using back propagation
  publication-title: Int. J. Eng. Trends Technol.
– start-page: 785
  year: 2016
  ident: 10.1016/j.rineng.2024.102148_bib47
  article-title: Xgboost: a scalable tree boosting system
– volume: 238
  year: 2021
  ident: 10.1016/j.rineng.2024.102148_bib30
  article-title: Reinforcement learning of occupant behavior model for cross-building transfer learning to various HVAC control systems
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2021.110860
– volume: 5
  start-page: 352
  year: 1979
  ident: 10.1016/j.rineng.2024.102148_bib7
  article-title: The effects of moderate heat stress on mental performance
  publication-title: Scand. J. Work. Environ. Health
  doi: 10.5271/sjweh.2646
– volume: 4
  start-page: 24
  year: 2023
  ident: 10.1016/j.rineng.2024.102148_bib1
  article-title: Analysing of the sustainable development goals in Damascus University during Syrian crisis using the strategy in the university and the bibliometrics data from SciVal
  publication-title: Discover Sustainability
  doi: 10.1007/s43621-023-00140-y
– volume: vol. 101
  year: 2020
  ident: 10.1016/j.rineng.2024.102148_bib2
  article-title: Building energy information: demand and consumption prediction with machine learning models for sustainable and smart cities
– volume: 21
  start-page: 4401
  issue: 13
  year: 2021
  ident: 10.1016/j.rineng.2024.102148_bib33
  article-title: BIM and data-driven predictive analysis of optimum thermal comfort for indoor environment
  publication-title: Sensors
  doi: 10.3390/s21134401
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.rineng.2024.102148_bib44
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: vol. 7
  start-page: 8472
  year: 2020
  ident: 10.1016/j.rineng.2024.102148_bib34
  article-title: DeepComfort: energy-efficient thermal comfort control in buildings via reinforcement learning
– year: 2013
  ident: 10.1016/j.rineng.2024.102148_bib14
– year: 2020
  ident: 10.1016/j.rineng.2024.102148_bib42
– volume: 2
  start-page: 1
  year: 2009
  ident: 10.1016/j.rineng.2024.102148_bib50
  article-title: Pearson correlation coefficient, noise reduction in speech processing
  publication-title: Springer Topics in Signal Processing
– volume: 170
  year: 2020
  ident: 10.1016/j.rineng.2024.102148_bib27
  article-title: Machine learning driven personal comfort prediction by wearable sensing of pulse rate and skin temperature
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.106615
– volume: 69
  year: 2021
  ident: 10.1016/j.rineng.2024.102148_bib48
  article-title: Application of data-driven attack detection framework for secure operation in smart buildings
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2021.102816
– volume: 148
  start-page: 372
  year: 2019
  ident: 10.1016/j.rineng.2024.102148_bib26
  article-title: Machine learning method for real-time non-invasive prediction of individual thermal preference in transient conditions
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.11.017
SSID ssj0002810137
Score 2.4818554
Snippet In the current context of energy transition and increasing climate change, optimizing building performance has become a critical objective. Efficient energy...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 102148
SubjectTerms Energy efficiency
HVAC systems
Machine learning
Model predictive control
Smart building
Thermal comfort
Title Machine learning-based predictive model for thermal comfort and energy optimization in smart buildings
URI https://dx.doi.org/10.1016/j.rineng.2024.102148
https://doaj.org/article/cdb0678795f740d6a28e45a6fb86248d
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWA1JMGxnRFQqwqpTFTqFvmVqhVNqzas_HbunKQKC11YIiVy7Oh8ukd8932E3DuBnNo2ZUYLy7jKONMytixTCZdCe1dk2Jw8ehfDMX-bpJMO1RfWhNXwwLXgHq0zaFBllhaSR07oRHmealEYbG1QDq0v-LxOMjUPv4xixNJre-VCQRd205VTSAkT_hAIrdUvXxQg-zsuqeNmBsfkqIkP6XP9XSdkz5en5LCDGnhGilEogPS0YXyYMnRFjq7WeOiC5osGfhsK8SjF-G4BE4JiwW1FdemoD_1-dAnWYtG0YdJZSTcLkAY1DU_25pyMB_2P1yFr6BKY5bGqWJxKLnRkEiedUzEIuZDGGSOE5FmRGEiubISngCKRNhOxQXBB41USG2UTSKovyH65LP0loV6DIbDeQG4C-bNNDZhT2AEfF8Jq4aMeeWoFl9sGSxwpLT7ztmhsntfizlHceS3uHmHbt1Y1lsaO8S-4J9uxiIQdHoB-5I1-5Lv0o0dku6N5E1TUwQJMNftz-av_WP6aHOCUdXHZDdmv1l_-FsKYytwFjYXr6Lv_AxcE8mY
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+predictive+model+for+thermal+comfort+and+energy+optimization+in+smart+buildings&rft.jtitle=Results+in+engineering&rft.au=Boutahri%2C+Youssef&rft.au=Tilioua%2C+Amine&rft.date=2024-06-01&rft.pub=Elsevier+B.V&rft.issn=2590-1230&rft.eissn=2590-1230&rft.volume=22&rft_id=info:doi/10.1016%2Fj.rineng.2024.102148&rft.externalDocID=S259012302400402X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon