Machine learning-based predictive model for thermal comfort and energy optimization in smart buildings
In the current context of energy transition and increasing climate change, optimizing building performance has become a critical objective. Efficient energy use and occupant comfort are paramount considerations in building design and operation. To address these challenges, this study introduces a pr...
Saved in:
Published in | Results in engineering Vol. 22; p. 102148 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the current context of energy transition and increasing climate change, optimizing building performance has become a critical objective. Efficient energy use and occupant comfort are paramount considerations in building design and operation. To address these challenges, this study introduces a predictive model leveraging Machine Learning (ML) algorithms. The model aims to predict thermal comfort levels and optimize energy consumption in Heating, Ventilation, and Air Conditioning (HVAC) systems. Four distinct ML algorithms Support Vector Machine (SVM), Artificial Neural Network (ANN), Random Forest (RF), and EXtreme Gradient Boosting (XGBOOST) are employed for this purpose. Data for the model is collected using a network of Raspberry Pi boards equipped with multiple sensors. Performance evaluation of the ML algorithms is conducted using statistical error metrics, including, Root Mean Square Error (RMSE), Mean Square Error (MSE), Mean Absolute Error (MAE), and coefficient of determination (R2). Results reveal that the RF and XGBOOST algorithms exhibit superior performance, achieving accuracies of 96.7 % and 9.64 % respectively. In contrast, the SVM algorithm demonstrates inferior performance with a R2 of 81.1 %. These findings underscore the predictive capability of the RF and XGBOOST model in forecasting Predicted Mean Vote (PMV) values. The proposed model holds promise for enhancing occupant thermal comfort in buildings while simultaneously optimizing energy consumption in HVAC systems. Further research could explore the practical applications of these findings in building design and operation.
•A predictive model leveraging ML methodologies has been devised.•The objective entails forecasting thermal comfort levels and mitigating energy utilization within HVAC frameworks.•Four distinct algorithms, namely SVM, ANN, RF, and XGBOOST, are employed.•The efficacy of ML algorithms is assessed through RMSE, MSE, MAE, and R2.•Notably, RF and XGBOOST algorithms exhibit superior performance, attaining accuracies of 0.967 and 0.964, respectively. |
---|---|
AbstractList | In the current context of energy transition and increasing climate change, optimizing building performance has become a critical objective. Efficient energy use and occupant comfort are paramount considerations in building design and operation. To address these challenges, this study introduces a predictive model leveraging Machine Learning (ML) algorithms. The model aims to predict thermal comfort levels and optimize energy consumption in Heating, Ventilation, and Air Conditioning (HVAC) systems. Four distinct ML algorithms Support Vector Machine (SVM), Artificial Neural Network (ANN), Random Forest (RF), and EXtreme Gradient Boosting (XGBOOST) are employed for this purpose. Data for the model is collected using a network of Raspberry Pi boards equipped with multiple sensors. Performance evaluation of the ML algorithms is conducted using statistical error metrics, including, Root Mean Square Error (RMSE), Mean Square Error (MSE), Mean Absolute Error (MAE), and coefficient of determination (R2). Results reveal that the RF and XGBOOST algorithms exhibit superior performance, achieving accuracies of 96.7 % and 9.64 % respectively. In contrast, the SVM algorithm demonstrates inferior performance with a R2 of 81.1 %. These findings underscore the predictive capability of the RF and XGBOOST model in forecasting Predicted Mean Vote (PMV) values. The proposed model holds promise for enhancing occupant thermal comfort in buildings while simultaneously optimizing energy consumption in HVAC systems. Further research could explore the practical applications of these findings in building design and operation. In the current context of energy transition and increasing climate change, optimizing building performance has become a critical objective. Efficient energy use and occupant comfort are paramount considerations in building design and operation. To address these challenges, this study introduces a predictive model leveraging Machine Learning (ML) algorithms. The model aims to predict thermal comfort levels and optimize energy consumption in Heating, Ventilation, and Air Conditioning (HVAC) systems. Four distinct ML algorithms Support Vector Machine (SVM), Artificial Neural Network (ANN), Random Forest (RF), and EXtreme Gradient Boosting (XGBOOST) are employed for this purpose. Data for the model is collected using a network of Raspberry Pi boards equipped with multiple sensors. Performance evaluation of the ML algorithms is conducted using statistical error metrics, including, Root Mean Square Error (RMSE), Mean Square Error (MSE), Mean Absolute Error (MAE), and coefficient of determination (R2). Results reveal that the RF and XGBOOST algorithms exhibit superior performance, achieving accuracies of 96.7 % and 9.64 % respectively. In contrast, the SVM algorithm demonstrates inferior performance with a R2 of 81.1 %. These findings underscore the predictive capability of the RF and XGBOOST model in forecasting Predicted Mean Vote (PMV) values. The proposed model holds promise for enhancing occupant thermal comfort in buildings while simultaneously optimizing energy consumption in HVAC systems. Further research could explore the practical applications of these findings in building design and operation. •A predictive model leveraging ML methodologies has been devised.•The objective entails forecasting thermal comfort levels and mitigating energy utilization within HVAC frameworks.•Four distinct algorithms, namely SVM, ANN, RF, and XGBOOST, are employed.•The efficacy of ML algorithms is assessed through RMSE, MSE, MAE, and R2.•Notably, RF and XGBOOST algorithms exhibit superior performance, attaining accuracies of 0.967 and 0.964, respectively. |
ArticleNumber | 102148 |
Author | Boutahri, Youssef Tilioua, Amine |
Author_xml | – sequence: 1 givenname: Youssef surname: Boutahri fullname: Boutahri, Youssef email: yo.boutahri@edu.umi.ac.ma – sequence: 2 givenname: Amine surname: Tilioua fullname: Tilioua, Amine email: a.tilioua@umi.ac.ma |
BookMark | eNqFkc9qHSEUh6Wk0DTNG3ThC8yteh11uiiUkKaBhGyStfjneONlRi9qA8nT19wppXTRrtTD-X2c8_kenaScAKGPlGwooeLTflNigrTbMMJ4LzHK1Rt0ysaJDJRtyckf93fovNY9IYSpnt3KUxRujXvseTyDKSmm3WBNBY8PBXx0LT4BXrKHGYdccHuEspgZu7z0Z8MmeQwJyu4Z50OLS3wxLeaEY8J1Mb3B_oiz79D6Ab0NZq5w_us8Qw_fLu8vvg83d1fXF19vBsepagMdJReGWOal94qGyQVpvbVCSD4FZplijoxqpIJJNwlq6UiEBcWoVY6B3Z6h65Xrs9nrQ4l9jGedTdTHQi473eeKbgbtvCVCKjmNQXLihWEK-GhEsEowrnxn8ZXlSq61QPjNo0S_qtd7varXr-r1qr7HPv8Vc7EdvbRi4vy_8Jc1DF3SU4Siq4uQXP-MAq71LeK_AT8BeNik1g |
CitedBy_id | crossref_primary_10_1016_j_rineng_2024_102747 crossref_primary_10_1016_j_rineng_2024_102766 crossref_primary_10_1016_j_rineng_2024_102544 crossref_primary_10_1016_j_rineng_2024_102643 crossref_primary_10_17721_tppe_2024_49_14 crossref_primary_10_3390_buildings15010039 crossref_primary_10_3390_su17072916 crossref_primary_10_2139_ssrn_4642529 crossref_primary_10_1016_j_enbuild_2025_115599 crossref_primary_10_3390_en17235965 crossref_primary_10_3390_buildings15040630 crossref_primary_10_1016_j_rineng_2025_104057 crossref_primary_10_1016_j_rineng_2024_103165 crossref_primary_10_1177_01445987241268075 crossref_primary_10_1016_j_rineng_2024_103380 crossref_primary_10_1016_j_rineng_2024_102614 crossref_primary_10_1016_j_rineng_2024_103508 crossref_primary_10_1016_j_buildenv_2025_112681 crossref_primary_10_1063_5_0243565 crossref_primary_10_1016_j_rineng_2024_102698 crossref_primary_10_1016_j_uclim_2024_102210 crossref_primary_10_1111_exsy_70000 crossref_primary_10_1016_j_rineng_2024_103765 crossref_primary_10_1016_j_rineng_2024_102818 crossref_primary_10_3390_en18061408 crossref_primary_10_1016_j_apenergy_2024_125188 crossref_primary_10_1140_epjp_s13360_024_05687_x crossref_primary_10_51646_jsesd_v14iSI_MSMS2E_396 crossref_primary_10_1016_j_rineng_2025_104086 crossref_primary_10_1016_j_rineng_2025_104045 crossref_primary_10_1016_j_rineng_2025_104540 crossref_primary_10_47172_2965_730X_SDGsReview_v5_n03_pe05010 crossref_primary_10_3390_en17194965 |
Cites_doi | 10.1109/JIOT.2020.3042783 10.1016/j.buildenv.2010.10.021 10.3763/aber.2009.0304 10.1016/j.buildenv.2009.06.020 10.1023/B:STCO.0000035301.49549.88 10.1016/j.buildenv.2022.109462 10.1016/j.apenergy.2017.12.002 10.1016/j.autcon.2018.07.007 10.1016/j.enconman.2013.10.023 10.1177/1420326X221110046 10.3390/s19173691 10.1016/j.future.2020.07.047 10.1016/j.enbuild.2012.05.022 10.1016/j.renene.2021.05.155 10.1016/j.enbuild.2021.111297 10.1016/j.rser.2014.03.027 10.1016/j.buildenv.2022.109735 10.1016/j.enbuild.2009.08.009 10.1109/JIOT.2018.2871461 10.1016/j.apergo.2010.04.003 10.1016/j.enbuild.2017.10.022 10.1080/00049536608255722 10.1016/j.ijsbe.2016.03.006 10.1016/j.enbuild.2012.03.010 10.1016/j.apenergy.2021.116648 10.1016/j.enbuild.2021.110860 10.5271/sjweh.2646 10.1007/s43621-023-00140-y 10.3390/s21134401 10.1023/A:1010933404324 10.1016/j.buildenv.2019.106615 10.1016/j.scs.2021.102816 10.1016/j.buildenv.2018.11.017 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.rineng.2024.102148 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2590-1230 |
ExternalDocumentID | oai_doaj_org_article_cdb0678795f740d6a28e45a6fb86248d 10_1016_j_rineng_2024_102148 S259012302400402X |
GroupedDBID | 0R~ 6I. AAEDW AAFTH AALRI AAXUO ADBBV ADVLN AEXQZ AFJKZ AFTJW AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION |
ID | FETCH-LOGICAL-c418t-15746a0b2d7dd81f9cf7bdbb66749f2b282c05851627c961b1506be821b8c2eb3 |
IEDL.DBID | DOA |
ISSN | 2590-1230 |
IngestDate | Wed Aug 27 01:32:23 EDT 2025 Thu Apr 24 23:05:36 EDT 2025 Tue Jul 01 05:10:02 EDT 2025 Sat Apr 26 15:41:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Model predictive control Thermal comfort Energy efficiency Smart building HVAC systems Machine learning |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-15746a0b2d7dd81f9cf7bdbb66749f2b282c05851627c961b1506be821b8c2eb3 |
OpenAccessLink | https://doaj.org/article/cdb0678795f740d6a28e45a6fb86248d |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cdb0678795f740d6a28e45a6fb86248d crossref_primary_10_1016_j_rineng_2024_102148 crossref_citationtrail_10_1016_j_rineng_2024_102148 elsevier_sciencedirect_doi_10_1016_j_rineng_2024_102148 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2024 2024-06-00 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationTitle | Results in engineering |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Peng, Rysanek, Nagy, Schlüter (bib22) 2018; 211 Cigler, Prívara, Váňa, Žáčeková, Ferkl (bib17) 2012; 52 Elnaklah (bib42) 2020 Ali, El-Sappagh, Islam, Ali, Attique, Imran, Kwak (bib41) 2021; 114 Ardabili, Mosavi, Várkonyi-Kóczy (bib2) 2020; vol. 101 Jung, Jazizadeh, Diller (bib15) 2019; 19 Elnour, Meskin, Khan, Jain (bib48) 2021; 69 Huang, Lu, Li, Chen (bib36) 2022; 32 (bib40) 2010 Gong, Cai, Zhou, Zhang, Chen, Sharples (bib46) 2022; 45 Gan, Luo, Tan, Deng, Kwok (bib33) 2021; 21 Edwards, New, Parker (bib24) 2012; 49 Romeu, Zamora-Martínez, Botella-Rocamora, Pardo (bib21) 2013; 8131 Zhang, Hu, Wen (bib32) 2019; 6 Wang, Chen, Hong (bib23) 2018; 94 Yan, Ji, Yan (bib35) 2022; 226 Liu, Sun, Mo, Liu (bib28) 2021; 250 Lan, Lian, Pan (bib8) 2010; 45 Gao, Li, Wen (bib34) 2020; vol. 7 Yang, Wan, Chen, Ng, Dubey (bib29) 2021; 288 Benesty, Chen, Huang, Cohen (bib50) 2009; 2 Breiman (bib44) 2001; 45 Deng, Chen (bib30) 2021; 238 Bai, Liu, Wang (bib19) 2022; 223 Hensen (bib37) 1991 Arif, Katafygiotou, Mazroei, Kaushik, Elsarrag (bib9) 2016; 5 Provins (bib10) 1966; 18 Eia (bib4) December 2022 Ghahramani, Dutta, Yang, Ozcelik, Becerik-Gerber (bib13) 2015 (bib16) 2020 Chaudhuri, Soh, Hua, Li, Xie (bib27) 2020; 170 Vakiloroaya, Samali, Fakhar, Pishghadam (bib11) 2014; 77 Chen, Guestrin (bib47) 2016 Masoso, Grobler (bib12) 2010; 42 Kalogirou (bib20) 2009; 3 Mansour, Tilioua, Touzani (bib45) 2022 Zhang, Arens, Hueizenga, Han (bib38) 2010; 45 Eugene (bib39) 1970; vol. 244 Devi, Reddy, Kumar, Reddy, Nayak (bib25) 2012; 3 (bib14) 2013 Shaikh, Bin Mohd Nor, Nallagownden, Elamvazuthi, Ibrahim (bib3) 2014; 34 Wyon, Andersen, Lundqvist (bib7) 1979; 5 Zhang, Wen, Tseng (bib31) 2021; 8 Tien, Wei, Liu, Calautit, Darkwa, Wood (bib5) 2021; 177 Frontczak, Wargocki (bib6) 2011; 46 Cosma, Simha (bib26) 2019; 148 Royapoor, Antony, Roskilly (bib18) 2018; 158 Smola, Scholkopf (bib43) 2004; 14 Al-Raeei (bib1) 2023; 4 Mansour, Tilioua, Touzani (bib49) 2024 Kalogirou (10.1016/j.rineng.2024.102148_bib20) 2009; 3 Cosma (10.1016/j.rineng.2024.102148_bib26) 2019; 148 Ali (10.1016/j.rineng.2024.102148_bib41) 2021; 114 Zhang (10.1016/j.rineng.2024.102148_bib32) 2019; 6 Royapoor (10.1016/j.rineng.2024.102148_bib18) 2018; 158 Eia (10.1016/j.rineng.2024.102148_bib4) 2022 Bai (10.1016/j.rineng.2024.102148_bib19) 2022; 223 Gong (10.1016/j.rineng.2024.102148_bib46) 2022; 45 Jung (10.1016/j.rineng.2024.102148_bib15) 2019; 19 Mansour (10.1016/j.rineng.2024.102148_bib45) 2022 Devi (10.1016/j.rineng.2024.102148_bib25) 2012; 3 Frontczak (10.1016/j.rineng.2024.102148_bib6) 2011; 46 Wyon (10.1016/j.rineng.2024.102148_bib7) 1979; 5 Wang (10.1016/j.rineng.2024.102148_bib23) 2018; 94 Chen (10.1016/j.rineng.2024.102148_bib47) 2016 Cigler (10.1016/j.rineng.2024.102148_bib17) 2012; 52 Hensen (10.1016/j.rineng.2024.102148_bib37) 1991 Al-Raeei (10.1016/j.rineng.2024.102148_bib1) 2023; 4 Edwards (10.1016/j.rineng.2024.102148_bib24) 2012; 49 (10.1016/j.rineng.2024.102148_bib40) 2010 Romeu (10.1016/j.rineng.2024.102148_bib21) 2013; 8131 Tien (10.1016/j.rineng.2024.102148_bib5) 2021; 177 Masoso (10.1016/j.rineng.2024.102148_bib12) 2010; 42 Arif (10.1016/j.rineng.2024.102148_bib9) 2016; 5 Yan (10.1016/j.rineng.2024.102148_bib35) 2022; 226 Yang (10.1016/j.rineng.2024.102148_bib29) 2021; 288 Elnaklah (10.1016/j.rineng.2024.102148_bib42) 2020 Provins (10.1016/j.rineng.2024.102148_bib10) 1966; 18 Vakiloroaya (10.1016/j.rineng.2024.102148_bib11) 2014; 77 Ardabili (10.1016/j.rineng.2024.102148_bib2) 2020; vol. 101 Huang (10.1016/j.rineng.2024.102148_bib36) 2022; 32 Gao (10.1016/j.rineng.2024.102148_bib34) 2020; vol. 7 Breiman (10.1016/j.rineng.2024.102148_bib44) 2001; 45 Benesty (10.1016/j.rineng.2024.102148_bib50) 2009; 2 (10.1016/j.rineng.2024.102148_bib14) 2013 Zhang (10.1016/j.rineng.2024.102148_bib31) 2021; 8 Lan (10.1016/j.rineng.2024.102148_bib8) 2010; 45 Peng (10.1016/j.rineng.2024.102148_bib22) 2018; 211 Gan (10.1016/j.rineng.2024.102148_bib33) 2021; 21 Ghahramani (10.1016/j.rineng.2024.102148_bib13) 2015 Smola (10.1016/j.rineng.2024.102148_bib43) 2004; 14 Shaikh (10.1016/j.rineng.2024.102148_bib3) 2014; 34 Liu (10.1016/j.rineng.2024.102148_bib28) 2021; 250 Eugene (10.1016/j.rineng.2024.102148_bib39) 1970; vol. 244 Deng (10.1016/j.rineng.2024.102148_bib30) 2021; 238 Mansour (10.1016/j.rineng.2024.102148_bib49) 2024 Elnour (10.1016/j.rineng.2024.102148_bib48) 2021; 69 Chaudhuri (10.1016/j.rineng.2024.102148_bib27) 2020; 170 Zhang (10.1016/j.rineng.2024.102148_bib38) 2010; 45 |
References_xml | – volume: 148 start-page: 372 year: 2019 end-page: 383 ident: bib26 article-title: Machine learning method for real-time non-invasive prediction of individual thermal preference in transient conditions publication-title: Build. Environ. – volume: 238 year: 2021 ident: bib30 article-title: Reinforcement learning of occupant behavior model for cross-building transfer learning to various HVAC control systems publication-title: Energy Build. – volume: 34 start-page: 409 year: 2014 end-page: 429 ident: bib3 article-title: A review on optimized control systems for building energy and comfort management of smart sustainable buildings publication-title: Renew. Sustain. Energy Rev. – volume: 5 start-page: 1 year: 2016 end-page: 11 ident: bib9 article-title: Impact of indoor environmental quality on occupant well-being and comfort: a review of the literature publication-title: International Journal of Sustainable Built Environment – volume: 158 start-page: 453 year: 2018 end-page: 465 ident: bib18 article-title: A review of building climate and plant controls, and a survey of industry perspectives publication-title: Energy Build. – volume: 223 year: 2022 ident: bib19 article-title: Comparative analysis of thermal preference prediction performance in different conditions using ensemble learning models based on ASHRAE Comfort Database II publication-title: Build. Environ. – volume: 45 start-page: 399 year: 2010 end-page: 410 ident: bib38 article-title: Thermal sensation and comfort models for non-uniform and transient environments, part III: whole-body sensation and comfort publication-title: Build. Environ. – volume: 45 year: 2022 ident: bib46 article-title: Investigating spatial impact on indoor personal thermal comfort publication-title: J. Build. Eng. – volume: 170 year: 2020 ident: bib27 article-title: Machine learning driven personal comfort prediction by wearable sensing of pulse rate and skin temperature publication-title: Build. Environ. – volume: 94 year: 2018 ident: bib23 article-title: Occupancy prediction through machine learning and data fusion of environmental sensing and Wi-Fi sensing in buildings publication-title: Autom. ConStruct. – volume: 5 start-page: 352 year: 1979 end-page: 361 ident: bib7 article-title: The effects of moderate heat stress on mental performance publication-title: Scand. J. Work. Environ. Health – volume: 32 start-page: 343 year: 2022 end-page: 354 ident: bib36 article-title: Using random forests to predict passengers' thermal comfort in underground train carriages publication-title: Indoor Built Environ. – year: 2013 ident: bib14 publication-title: Thermal Environmental Conditions for Human Occupancy, ANSI/ASHRAE Standard: 55–2013 – volume: 19 start-page: 3691 year: 2019 ident: bib15 article-title: Heat flux sensing for machine-learning-based personal thermal comfort modeling publication-title: Sensors – volume: 4 start-page: 24 year: 2023 ident: bib1 article-title: Analysing of the sustainable development goals in Damascus University during Syrian crisis using the strategy in the university and the bibliometrics data from SciVal publication-title: Discover Sustainability – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib44 article-title: Random forests publication-title: Mach. Learn. – year: 1991 ident: bib37 article-title: On the Thermal Interaction of Building Structure and Heating and Ventilation System, [Ph.D. Thesis] – start-page: 1000 year: 2015 end-page: 1011 ident: bib13 article-title: Quantifying the Influence of Temperature Setpoints, Building and System Features on Energy Consumption – volume: 3 start-page: 83 year: 2009 end-page: 119 ident: bib20 article-title: Artificial neural networks and genetic algorithms in energy applications in buildings publication-title: Adv. Build. Energy Res. – year: 2022 ident: bib45 article-title: Implementation of artificial intelligence methods for solar energy prediction publication-title: The International Conference on Artificial Intelligence and Smart Environment – volume: 14 start-page: 199 year: 2004 end-page: 222 ident: bib43 article-title: A tutorial on support vector regression publication-title: Stat. Comput. – volume: 77 start-page: 738 year: 2014 end-page: 754 ident: bib11 article-title: A review of different strategies for HVAC energy saving publication-title: Energy Convers. Manag. – volume: 250 year: 2021 ident: bib28 article-title: Analysis and modeling of air conditioner usage behavior in residential buildings using monitoring data during hot and humid season publication-title: Energy Build. – volume: 288 year: 2021 ident: bib29 article-title: Experiment study of machine-learning-based approximate model predictive control for energy-efficient building control publication-title: Appl. Energy – volume: 226 year: 2022 ident: bib35 article-title: Data-driven prediction and optimization of residential building performance in Singapore considering the impact of climate change publication-title: Build. Environ. – volume: 6 start-page: 2540 year: 2019 end-page: 2549 ident: bib32 article-title: Thermal comfort modeling for smart buildings: a fine-grained deep learning approach publication-title: IEEE Internet Things J. – volume: 8131 start-page: 451 year: 2013 end-page: 458 ident: bib21 article-title: Time-series forecasting of indoor temperature using pre-trained deep neural networks, publication-title: Artificial Neural Networks and Machine Learning – ICANN – volume: 42 start-page: 173 year: 2010 end-page: 177 ident: bib12 article-title: The dark side of occupants' behaviour on building energy use publication-title: Energy Build. – volume: 8 start-page: 8021 year: 2021 end-page: 8031 ident: bib31 article-title: Demystifying thermal comfort in smart buildings: an interpretable machine learning approach publication-title: IEEE Internet Things J. – volume: 49 start-page: 591 year: 2012 end-page: 603 ident: bib24 article-title: Predicting future hourly residential electrical consumption: a machine learning case study publication-title: Energy Build. – volume: 46 start-page: 922 year: 2011 end-page: 937 ident: bib6 article-title: Literature survey on how different factors influence human comfort in indoor environments publication-title: Build. Environ. – volume: 2 start-page: 1 year: 2009 end-page: 4 ident: bib50 article-title: Pearson correlation coefficient, noise reduction in speech processing publication-title: Springer Topics in Signal Processing – volume: 211 start-page: 1343 year: 2018 end-page: 1358 ident: bib22 article-title: Using machine learning techniques for occupancy-prediction-based cooling control in office buildings publication-title: Appl. Energy – volume: 69 year: 2021 ident: bib48 article-title: Application of data-driven attack detection framework for secure operation in smart buildings publication-title: Sustain. Cities Soc. – volume: vol. 244 year: 1970 ident: bib39 publication-title: Thermal Comfort: Analysis and Applications in Environmental Engineering – year: 2010 ident: bib40 article-title: ISO7730:2010. Ergonomics of the Thermal Environment-Analytical Determination and Interpretation of Thermal Comfort Using Calculation of PMV and PPD Indices and Local Thermal Comfort Criteria – year: December 2022 ident: bib4 article-title: Commercial Buildings Energy Consumption Survey (CBECS) – year: 2020 ident: bib42 article-title: Dataset for "Indoor Environment Quality and Work Performance in ‘green’ Office Buildings in the Middle East – start-page: 785 year: 2016 end-page: 794 ident: bib47 article-title: Xgboost: a scalable tree boosting system publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 3 start-page: 19 year: 2012 end-page: 23 ident: bib25 article-title: ANN approach for weather prediction using back propagation publication-title: Int. J. Eng. Trends Technol. – volume: 52 start-page: 39 year: 2012 end-page: 49 ident: bib17 article-title: Optimization of predicted mean vote index within model predictive control framework: computationally tractable solution publication-title: Energy Build. – volume: 114 start-page: 23 year: 2021 end-page: 43 ident: bib41 article-title: An intelligent healthcare monitoring framework using wearable sensors and social networking data publication-title: Future Generat. Comput. Syst. – volume: vol. 101 year: 2020 ident: bib2 article-title: Building energy information: demand and consumption prediction with machine learning models for sustainable and smart cities publication-title: Lecture Notes in Networks and Systems – year: 2020 ident: bib16 article-title: Environmental protection agency – volume: vol. 7 start-page: 8472 year: 2020 end-page: 8484 ident: bib34 article-title: DeepComfort: energy-efficient thermal comfort control in buildings via reinforcement learning publication-title: IEEE Internet of Things Journal – volume: 45 start-page: 29 year: 2010 end-page: 36 ident: bib8 article-title: The effects of air temperature on office workers' well-being, workload and productivity-evaluated with subjective ratings publication-title: Appl. Ergon. – volume: 21 start-page: 4401 year: 2021 ident: bib33 article-title: BIM and data-driven predictive analysis of optimum thermal comfort for indoor environment publication-title: Sensors – volume: 177 start-page: 603 year: 2021 end-page: 625 ident: bib5 article-title: A deep learning approach towards the detection and recognition of opening of windows for effective management of building ventilation heat losses and reducing space heating demand publication-title: Renew. Energy – volume: 18 start-page: 118 year: 1966 end-page: 129 ident: bib10 article-title: Environmental heat, body temperature and behaviour: an hypothesis 1 publication-title: Aust. J. Psychol. – year: 2024 ident: bib49 article-title: Bi-LSTM, GRU and 1D-CNN models for short-term photovoltaic panel efficiency forecasting case amorphous silicon grid-connected PV system publication-title: Results in Engineering – volume: 8 start-page: 8021 issue: 10 year: 2021 ident: 10.1016/j.rineng.2024.102148_bib31 article-title: Demystifying thermal comfort in smart buildings: an interpretable machine learning approach publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3042783 – volume: 46 start-page: 922 issue: 4 year: 2011 ident: 10.1016/j.rineng.2024.102148_bib6 article-title: Literature survey on how different factors influence human comfort in indoor environments publication-title: Build. Environ. doi: 10.1016/j.buildenv.2010.10.021 – volume: 3 start-page: 83 issue: 1 year: 2009 ident: 10.1016/j.rineng.2024.102148_bib20 article-title: Artificial neural networks and genetic algorithms in energy applications in buildings publication-title: Adv. Build. Energy Res. doi: 10.3763/aber.2009.0304 – volume: 45 start-page: 399 issue: 2 year: 2010 ident: 10.1016/j.rineng.2024.102148_bib38 article-title: Thermal sensation and comfort models for non-uniform and transient environments, part III: whole-body sensation and comfort publication-title: Build. Environ. doi: 10.1016/j.buildenv.2009.06.020 – volume: 14 start-page: 199 year: 2004 ident: 10.1016/j.rineng.2024.102148_bib43 article-title: A tutorial on support vector regression publication-title: Stat. Comput. doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 223 year: 2022 ident: 10.1016/j.rineng.2024.102148_bib19 article-title: Comparative analysis of thermal preference prediction performance in different conditions using ensemble learning models based on ASHRAE Comfort Database II publication-title: Build. Environ. doi: 10.1016/j.buildenv.2022.109462 – volume: 211 start-page: 1343 year: 2018 ident: 10.1016/j.rineng.2024.102148_bib22 article-title: Using machine learning techniques for occupancy-prediction-based cooling control in office buildings publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.12.002 – volume: 94 year: 2018 ident: 10.1016/j.rineng.2024.102148_bib23 article-title: Occupancy prediction through machine learning and data fusion of environmental sensing and Wi-Fi sensing in buildings publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2018.07.007 – volume: 77 start-page: 738 year: 2014 ident: 10.1016/j.rineng.2024.102148_bib11 article-title: A review of different strategies for HVAC energy saving publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2013.10.023 – start-page: 1000 year: 2015 ident: 10.1016/j.rineng.2024.102148_bib13 – volume: vol. 244 year: 1970 ident: 10.1016/j.rineng.2024.102148_bib39 – volume: 45 year: 2022 ident: 10.1016/j.rineng.2024.102148_bib46 article-title: Investigating spatial impact on indoor personal thermal comfort publication-title: J. Build. Eng. – volume: 8131 start-page: 451 year: 2013 ident: 10.1016/j.rineng.2024.102148_bib21 article-title: Time-series forecasting of indoor temperature using pre-trained deep neural networks, International conference on artificial neural networks publication-title: Artificial Neural Networks and Machine Learning – ICANN – volume: 32 start-page: 343 issue: 2 year: 2022 ident: 10.1016/j.rineng.2024.102148_bib36 article-title: Using random forests to predict passengers' thermal comfort in underground train carriages publication-title: Indoor Built Environ. doi: 10.1177/1420326X221110046 – volume: 19 start-page: 3691 issue: 17 year: 2019 ident: 10.1016/j.rineng.2024.102148_bib15 article-title: Heat flux sensing for machine-learning-based personal thermal comfort modeling publication-title: Sensors doi: 10.3390/s19173691 – volume: 114 start-page: 23 year: 2021 ident: 10.1016/j.rineng.2024.102148_bib41 article-title: An intelligent healthcare monitoring framework using wearable sensors and social networking data publication-title: Future Generat. Comput. Syst. doi: 10.1016/j.future.2020.07.047 – volume: 52 start-page: 39 year: 2012 ident: 10.1016/j.rineng.2024.102148_bib17 article-title: Optimization of predicted mean vote index within model predictive control framework: computationally tractable solution publication-title: Energy Build. doi: 10.1016/j.enbuild.2012.05.022 – volume: 177 start-page: 603 year: 2021 ident: 10.1016/j.rineng.2024.102148_bib5 article-title: A deep learning approach towards the detection and recognition of opening of windows for effective management of building ventilation heat losses and reducing space heating demand publication-title: Renew. Energy doi: 10.1016/j.renene.2021.05.155 – volume: 250 year: 2021 ident: 10.1016/j.rineng.2024.102148_bib28 article-title: Analysis and modeling of air conditioner usage behavior in residential buildings using monitoring data during hot and humid season publication-title: Energy Build. doi: 10.1016/j.enbuild.2021.111297 – volume: 34 start-page: 409 year: 2014 ident: 10.1016/j.rineng.2024.102148_bib3 article-title: A review on optimized control systems for building energy and comfort management of smart sustainable buildings publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.03.027 – volume: 226 year: 2022 ident: 10.1016/j.rineng.2024.102148_bib35 article-title: Data-driven prediction and optimization of residential building performance in Singapore considering the impact of climate change publication-title: Build. Environ. doi: 10.1016/j.buildenv.2022.109735 – year: 2022 ident: 10.1016/j.rineng.2024.102148_bib45 article-title: Implementation of artificial intelligence methods for solar energy prediction – volume: 42 start-page: 173 year: 2010 ident: 10.1016/j.rineng.2024.102148_bib12 article-title: The dark side of occupants' behaviour on building energy use publication-title: Energy Build. doi: 10.1016/j.enbuild.2009.08.009 – year: 2022 ident: 10.1016/j.rineng.2024.102148_bib4 – volume: 6 start-page: 2540 issue: 2 year: 2019 ident: 10.1016/j.rineng.2024.102148_bib32 article-title: Thermal comfort modeling for smart buildings: a fine-grained deep learning approach publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2871461 – volume: 45 start-page: 29 issue: 1 year: 2010 ident: 10.1016/j.rineng.2024.102148_bib8 article-title: The effects of air temperature on office workers' well-being, workload and productivity-evaluated with subjective ratings publication-title: Appl. Ergon. doi: 10.1016/j.apergo.2010.04.003 – volume: 158 start-page: 453 year: 2018 ident: 10.1016/j.rineng.2024.102148_bib18 article-title: A review of building climate and plant controls, and a survey of industry perspectives publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.10.022 – year: 1991 ident: 10.1016/j.rineng.2024.102148_bib37 – year: 2010 ident: 10.1016/j.rineng.2024.102148_bib40 – volume: 18 start-page: 118 year: 1966 ident: 10.1016/j.rineng.2024.102148_bib10 article-title: Environmental heat, body temperature and behaviour: an hypothesis 1 publication-title: Aust. J. Psychol. doi: 10.1080/00049536608255722 – volume: 5 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.rineng.2024.102148_bib9 article-title: Impact of indoor environmental quality on occupant well-being and comfort: a review of the literature publication-title: International Journal of Sustainable Built Environment doi: 10.1016/j.ijsbe.2016.03.006 – volume: 49 start-page: 591 year: 2012 ident: 10.1016/j.rineng.2024.102148_bib24 article-title: Predicting future hourly residential electrical consumption: a machine learning case study publication-title: Energy Build. doi: 10.1016/j.enbuild.2012.03.010 – volume: 288 year: 2021 ident: 10.1016/j.rineng.2024.102148_bib29 article-title: Experiment study of machine-learning-based approximate model predictive control for energy-efficient building control publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116648 – year: 2024 ident: 10.1016/j.rineng.2024.102148_bib49 article-title: Bi-LSTM, GRU and 1D-CNN models for short-term photovoltaic panel efficiency forecasting case amorphous silicon grid-connected PV system publication-title: Results in Engineering – volume: 3 start-page: 19 issue: 1 year: 2012 ident: 10.1016/j.rineng.2024.102148_bib25 article-title: ANN approach for weather prediction using back propagation publication-title: Int. J. Eng. Trends Technol. – start-page: 785 year: 2016 ident: 10.1016/j.rineng.2024.102148_bib47 article-title: Xgboost: a scalable tree boosting system – volume: 238 year: 2021 ident: 10.1016/j.rineng.2024.102148_bib30 article-title: Reinforcement learning of occupant behavior model for cross-building transfer learning to various HVAC control systems publication-title: Energy Build. doi: 10.1016/j.enbuild.2021.110860 – volume: 5 start-page: 352 year: 1979 ident: 10.1016/j.rineng.2024.102148_bib7 article-title: The effects of moderate heat stress on mental performance publication-title: Scand. J. Work. Environ. Health doi: 10.5271/sjweh.2646 – volume: 4 start-page: 24 year: 2023 ident: 10.1016/j.rineng.2024.102148_bib1 article-title: Analysing of the sustainable development goals in Damascus University during Syrian crisis using the strategy in the university and the bibliometrics data from SciVal publication-title: Discover Sustainability doi: 10.1007/s43621-023-00140-y – volume: vol. 101 year: 2020 ident: 10.1016/j.rineng.2024.102148_bib2 article-title: Building energy information: demand and consumption prediction with machine learning models for sustainable and smart cities – volume: 21 start-page: 4401 issue: 13 year: 2021 ident: 10.1016/j.rineng.2024.102148_bib33 article-title: BIM and data-driven predictive analysis of optimum thermal comfort for indoor environment publication-title: Sensors doi: 10.3390/s21134401 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.rineng.2024.102148_bib44 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: vol. 7 start-page: 8472 year: 2020 ident: 10.1016/j.rineng.2024.102148_bib34 article-title: DeepComfort: energy-efficient thermal comfort control in buildings via reinforcement learning – year: 2013 ident: 10.1016/j.rineng.2024.102148_bib14 – year: 2020 ident: 10.1016/j.rineng.2024.102148_bib42 – volume: 2 start-page: 1 year: 2009 ident: 10.1016/j.rineng.2024.102148_bib50 article-title: Pearson correlation coefficient, noise reduction in speech processing publication-title: Springer Topics in Signal Processing – volume: 170 year: 2020 ident: 10.1016/j.rineng.2024.102148_bib27 article-title: Machine learning driven personal comfort prediction by wearable sensing of pulse rate and skin temperature publication-title: Build. Environ. doi: 10.1016/j.buildenv.2019.106615 – volume: 69 year: 2021 ident: 10.1016/j.rineng.2024.102148_bib48 article-title: Application of data-driven attack detection framework for secure operation in smart buildings publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2021.102816 – volume: 148 start-page: 372 year: 2019 ident: 10.1016/j.rineng.2024.102148_bib26 article-title: Machine learning method for real-time non-invasive prediction of individual thermal preference in transient conditions publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.11.017 |
SSID | ssj0002810137 |
Score | 2.4818554 |
Snippet | In the current context of energy transition and increasing climate change, optimizing building performance has become a critical objective. Efficient energy... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 102148 |
SubjectTerms | Energy efficiency HVAC systems Machine learning Model predictive control Smart building Thermal comfort |
Title | Machine learning-based predictive model for thermal comfort and energy optimization in smart buildings |
URI | https://dx.doi.org/10.1016/j.rineng.2024.102148 https://doaj.org/article/cdb0678795f740d6a28e45a6fb86248d |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWA1JMGxnRFQqwqpTFTqFvmVqhVNqzas_HbunKQKC11YIiVy7Oh8ukd8932E3DuBnNo2ZUYLy7jKONMytixTCZdCe1dk2Jw8ehfDMX-bpJMO1RfWhNXwwLXgHq0zaFBllhaSR07oRHmealEYbG1QDq0v-LxOMjUPv4xixNJre-VCQRd205VTSAkT_hAIrdUvXxQg-zsuqeNmBsfkqIkP6XP9XSdkz5en5LCDGnhGilEogPS0YXyYMnRFjq7WeOiC5osGfhsK8SjF-G4BE4JiwW1FdemoD_1-dAnWYtG0YdJZSTcLkAY1DU_25pyMB_2P1yFr6BKY5bGqWJxKLnRkEiedUzEIuZDGGSOE5FmRGEiubISngCKRNhOxQXBB41USG2UTSKovyH65LP0loV6DIbDeQG4C-bNNDZhT2AEfF8Jq4aMeeWoFl9sGSxwpLT7ztmhsntfizlHceS3uHmHbt1Y1lsaO8S-4J9uxiIQdHoB-5I1-5Lv0o0dku6N5E1TUwQJMNftz-av_WP6aHOCUdXHZDdmv1l_-FsKYytwFjYXr6Lv_AxcE8mY |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+predictive+model+for+thermal+comfort+and+energy+optimization+in+smart+buildings&rft.jtitle=Results+in+engineering&rft.au=Boutahri%2C+Youssef&rft.au=Tilioua%2C+Amine&rft.date=2024-06-01&rft.pub=Elsevier+B.V&rft.issn=2590-1230&rft.eissn=2590-1230&rft.volume=22&rft_id=info:doi/10.1016%2Fj.rineng.2024.102148&rft.externalDocID=S259012302400402X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon |