Orderly disorder in magic-angle twisted trilayer graphene

Magic-angle twisted trilayer graphene (TTG) has recently emerged as a platform to engineer strongly correlated flat bands. We reveal the normal-state structural and electronic properties of TTG using low-temperature scanning tunneling microscopy at twist angles for which superconductivity has been o...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 376; no. 6589; pp. 193 - 199
Main Authors Turkel, Simon, Swann, Joshua, Zhu, Ziyan, Christos, Maine, Watanabe, K., Taniguchi, T., Sachdev, Subir, Scheurer, Mathias S., Kaxiras, Efthimios, Dean, Cory R., Pasupathy, Abhay N.
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 08.04.2022
AAAS
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Magic-angle twisted trilayer graphene (TTG) has recently emerged as a platform to engineer strongly correlated flat bands. We reveal the normal-state structural and electronic properties of TTG using low-temperature scanning tunneling microscopy at twist angles for which superconductivity has been observed. Real trilayer samples undergo a strong reconstruction of the moiré lattice, which locks layers into near–magic-angle, mirror symmetric domains comparable in size with the superconducting coherence length. This relaxation introduces an array of localized twist-angle faults, termed twistons and moiré solitons, whose electronic structure deviates strongly from the background regions, leading to a doping-dependent, spatially granular electronic landscape. The Fermi-level density of states is maximally uniform at dopings for which superconductivity has been observed in transport measurements. Stacking and twisting graphene layers with respect to each other can lead to exotic transport effects. Recently, superconductivity was observed in graphene trilayers in which the top and bottom layers are twisted with respect to the middle layer by the same, “magic” angle. Turkel et al . used scanning tunneling microscopy to take a closer look into the stacking structure. They found that a small misalignment between the top and bottom layers caused the lattice to rearrange itself into a pattern of triangular domains. The domains had a magic-angle twisted trilayer structure and were separated by a network of line and point defects. —JS Scanning tunneling microscopy reveals lattice reconstruction in a moire material.
AbstractList Magic-angle twisted trilayer graphene (TTG) has recently emerged as a platform to engineer strongly correlated flat bands. We reveal the normal-state structural and electronic properties of TTG using low-temperature scanning tunneling microscopy at twist angles for which superconductivity has been observed. Real trilayer samples undergo a strong reconstruction of the moiré lattice, which locks layers into near–magic-angle, mirror symmetric domains comparable in size with the superconducting coherence length. This relaxation introduces an array of localized twist-angle faults, termed twistons and moiré solitons, whose electronic structure deviates strongly from the background regions, leading to a doping-dependent, spatially granular electronic landscape. The Fermi-level density of states is maximally uniform at dopings for which superconductivity has been observed in transport measurements. Stacking and twisting graphene layers with respect to each other can lead to exotic transport effects. Recently, superconductivity was observed in graphene trilayers in which the top and bottom layers are twisted with respect to the middle layer by the same, “magic” angle. Turkel et al . used scanning tunneling microscopy to take a closer look into the stacking structure. They found that a small misalignment between the top and bottom layers caused the lattice to rearrange itself into a pattern of triangular domains. The domains had a magic-angle twisted trilayer structure and were separated by a network of line and point defects. —JS Scanning tunneling microscopy reveals lattice reconstruction in a moire material.
Magic-angle twisted trilayer graphene (TTG) has recently emerged as a platform to engineer strongly correlated flat bands. We reveal the normal-state structural and electronic properties of TTG using low-temperature scanning tunneling microscopy at twist angles for which superconductivity has been observed. Real trilayer samples undergo a strong reconstruction of the moiré lattice, which locks layers into near-magic-angle, mirror symmetric domains comparable in size with the superconducting coherence length. This relaxation introduces an array of localized twist-angle faults, termed twistons and moiré solitons, whose electronic structure deviates strongly from the background regions, leading to a doping-dependent, spatially granular electronic landscape. The Fermi-level density of states is maximally uniform at dopings for which superconductivity has been observed in transport measurements.Magic-angle twisted trilayer graphene (TTG) has recently emerged as a platform to engineer strongly correlated flat bands. We reveal the normal-state structural and electronic properties of TTG using low-temperature scanning tunneling microscopy at twist angles for which superconductivity has been observed. Real trilayer samples undergo a strong reconstruction of the moiré lattice, which locks layers into near-magic-angle, mirror symmetric domains comparable in size with the superconducting coherence length. This relaxation introduces an array of localized twist-angle faults, termed twistons and moiré solitons, whose electronic structure deviates strongly from the background regions, leading to a doping-dependent, spatially granular electronic landscape. The Fermi-level density of states is maximally uniform at dopings for which superconductivity has been observed in transport measurements.
Zooming into trilayer grapheneStacking and twisting graphene layers with respect to each other can lead to exotic transport effects. Recently, superconductivity was observed in graphene trilayers in which the top and bottom layers are twisted with respect to the middle layer by the same, “magic” angle. Turkel et al. used scanning tunneling microscopy to take a closer look into the stacking structure. They found that a small misalignment between the top and bottom layers caused the lattice to rearrange itself into a pattern of triangular domains. The domains had a magic-angle twisted trilayer structure and were separated by a network of line and point defects. —JS
Magic-angle twisted trilayer graphene (TTG) has recently emerged as a platform to engineer strongly correlated flat bands. We reveal the normal-state structural and electronic properties of TTG using low-temperature scanning tunneling microscopy at twist angles for which superconductivity has been observed. Real trilayer samples undergo a strong reconstruction of the moiré lattice, which locks layers into near-magic-angle, mirror symmetric domains comparable in size with the superconducting coherence length. This relaxation introduces an array of localized twist-angle faults, termed twistons and moiré solitons, whose electronic structure deviates strongly from the background regions, leading to a doping-dependent, spatially granular electronic landscape. The Fermi-level density of states is maximally uniform at dopings for which superconductivity has been observed in transport measurements.
Author Turkel, Simon
Swann, Joshua
Zhu, Ziyan
Kaxiras, Efthimios
Scheurer, Mathias S.
Sachdev, Subir
Dean, Cory R.
Christos, Maine
Watanabe, K.
Taniguchi, T.
Pasupathy, Abhay N.
Author_xml – sequence: 1
  givenname: Simon
  orcidid: 0000-0002-5011-7579
  surname: Turkel
  fullname: Turkel, Simon
  organization: Department of Physics, Columbia University, New York, NY 10027, USA
– sequence: 2
  givenname: Joshua
  surname: Swann
  fullname: Swann, Joshua
  organization: Department of Physics, Columbia University, New York, NY 10027, USA
– sequence: 3
  givenname: Ziyan
  orcidid: 0000-0003-4463-5828
  surname: Zhu
  fullname: Zhu, Ziyan
  organization: Department of Physics, Harvard University, Cambridge, MA 02138, USA
– sequence: 4
  givenname: Maine
  orcidid: 0000-0003-0116-5977
  surname: Christos
  fullname: Christos, Maine
  organization: Department of Physics, Harvard University, Cambridge, MA 02138, USA
– sequence: 5
  givenname: K.
  orcidid: 0000-0003-3701-8119
  surname: Watanabe
  fullname: Watanabe, K.
  organization: Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
– sequence: 6
  givenname: T.
  orcidid: 0000-0002-1467-3105
  surname: Taniguchi
  fullname: Taniguchi, T.
  organization: International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
– sequence: 7
  givenname: Subir
  orcidid: 0000-0002-2432-7070
  surname: Sachdev
  fullname: Sachdev, Subir
  organization: Department of Physics, Harvard University, Cambridge, MA 02138, USA., School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA
– sequence: 8
  givenname: Mathias S.
  orcidid: 0000-0002-9439-5159
  surname: Scheurer
  fullname: Scheurer, Mathias S.
  organization: Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria
– sequence: 9
  givenname: Efthimios
  orcidid: 0000-0002-4682-0165
  surname: Kaxiras
  fullname: Kaxiras, Efthimios
  organization: Department of Physics, Harvard University, Cambridge, MA 02138, USA., John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
– sequence: 10
  givenname: Cory R.
  orcidid: 0000-0003-2967-5960
  surname: Dean
  fullname: Dean, Cory R.
  organization: Department of Physics, Columbia University, New York, NY 10027, USA
– sequence: 11
  givenname: Abhay N.
  orcidid: 0000-0002-2744-0634
  surname: Pasupathy
  fullname: Pasupathy, Abhay N.
  organization: Department of Physics, Columbia University, New York, NY 10027, USA., Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35389784$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1980734$$D View this record in Osti.gov
BookMark eNp1kTlPAzEQhS0URA6o6dAKGppNfOxhlyjikiKlgdqyvd7EYWMH2xHKv8chgSIS1Via783M8xuCnnVWA3CN4BghXE2CMtoqPRbyA1FWnoEBgqzMGYakBwYQkiqnsC77YBjCCsLUY-QC9ElJKKtpMQBs7hvtu13WmOD2z8zYbC0WRuXCLjqdxS8Tom6y6E0ndqm_8GKz1FZfgvNWdEFfHesIvD89vk1f8tn8-XX6MMtVgWjMEWlopeqWQUZVBXEjCiIJlOmQliFYyworJZWUFNVEkUqyBpGywHUFJWYtJiNwe5jrQjQ8GY5aLZWzVqvIEUv2SJGg-wO08e5zq0PkaxOU7jphtdsGjquCUkYYqxN6d4Ku3NbbZOGHwnXavh94c6S2cq0bvvFmLfyO__5cAiYHQHkXgtftH4Ig32fDj9nwYzZJUZ4okhcRjbPRC9P9q_sGVw6T-g
CitedBy_id crossref_primary_10_1038_s41563_022_01286_2
crossref_primary_10_1103_PhysRevB_106_L201403
crossref_primary_10_1002_smll_202401559
crossref_primary_10_1038_s41563_023_01783_y
crossref_primary_10_1126_science_abk1895
crossref_primary_10_1016_j_nantod_2023_101829
crossref_primary_10_1103_PhysRevA_109_033505
crossref_primary_10_1088_2053_1583_ad3b0e
crossref_primary_10_1002_adma_202209457
crossref_primary_10_1002_advs_202305059
crossref_primary_10_1126_sciadv_adq7445
crossref_primary_10_1038_s41586_023_06763_5
crossref_primary_10_1038_s41578_024_00671_4
crossref_primary_10_1002_adfm_202314439
crossref_primary_10_1103_PhysRevB_109_035159
crossref_primary_10_1016_j_physleta_2023_129048
crossref_primary_10_1103_PhysRevLett_131_016003
crossref_primary_10_1039_D3TA02283H
crossref_primary_10_1126_science_ade9995
crossref_primary_10_1016_j_xinn_2022_100334
crossref_primary_10_1002_smll_202311185
crossref_primary_10_21468_SciPostPhys_13_3_052
crossref_primary_10_1103_PhysRevB_108_195119
crossref_primary_10_1103_PhysRevB_109_L201119
crossref_primary_10_1103_PhysRevResearch_6_023203
crossref_primary_10_1103_PhysRevB_110_205144
crossref_primary_10_1126_sciadv_adi6063
crossref_primary_10_7498_aps_71_20220872
crossref_primary_10_1007_s12274_023_5716_9
crossref_primary_10_1103_PhysRevB_110_085160
crossref_primary_10_1038_s41563_022_01287_1
crossref_primary_10_1039_D3NR00651D
crossref_primary_10_1103_PhysRevB_108_155106
crossref_primary_10_1093_micmic_ozad067_844
crossref_primary_10_1002_adma_202205996
crossref_primary_10_1103_PhysRevB_107_125413
crossref_primary_10_1007_s12274_023_5529_x
crossref_primary_10_1103_PhysRevResearch_5_043079
crossref_primary_10_1002_adma_202202408
crossref_primary_10_1016_j_diamond_2024_111485
crossref_primary_10_1021_acsanm_2c04566
crossref_primary_10_1038_s41586_024_07589_5
crossref_primary_10_1016_j_jcis_2023_10_030
crossref_primary_10_1021_acscentsci_3c00326
crossref_primary_10_1103_PhysRevB_110_125143
crossref_primary_10_1088_2053_1583_ad9d59
crossref_primary_10_1103_PhysRevB_107_125423
crossref_primary_10_1002_smll_202204380
crossref_primary_10_1088_1361_648X_ad1f8c
crossref_primary_10_1103_PhysRevB_110_115404
crossref_primary_10_7498_aps_72_20230079
crossref_primary_10_1002_idm2_12058
crossref_primary_10_1088_0256_307X_41_4_047403
crossref_primary_10_1038_s41467_024_52784_7
crossref_primary_10_1038_s41467_022_35213_5
crossref_primary_10_1002_apxr_202300048
crossref_primary_10_1088_2053_1583_adac74
crossref_primary_10_1016_j_cej_2022_140977
crossref_primary_10_1103_PhysRevLett_133_196401
crossref_primary_10_1038_s41563_024_01805_3
crossref_primary_10_1021_acs_nanolett_2c01710
crossref_primary_10_1002_adma_202305175
crossref_primary_10_1038_s41586_023_06663_8
crossref_primary_10_1038_s41567_025_02786_z
crossref_primary_10_1007_s12274_022_5025_8
crossref_primary_10_1063_5_0223777
crossref_primary_10_1016_j_diamond_2025_112212
crossref_primary_10_1021_acsnano_4c08302
crossref_primary_10_1016_j_mtcomm_2024_110618
crossref_primary_10_1103_PhysRevB_108_035129
crossref_primary_10_1016_j_cpc_2024_109356
crossref_primary_10_1038_s42005_023_01512_6
crossref_primary_10_1103_PhysRevB_108_125429
crossref_primary_10_1016_j_diamond_2024_111853
crossref_primary_10_1126_science_abn8585
crossref_primary_10_1002_adma_202416480
crossref_primary_10_3390_c10040091
crossref_primary_10_1103_PhysRevB_106_075423
crossref_primary_10_1103_PhysRevLett_129_147001
crossref_primary_10_1038_s41586_024_08444_3
crossref_primary_10_1103_PhysRevB_108_L081124
crossref_primary_10_1088_1361_6633_ad67ed
crossref_primary_10_1103_PhysRevB_106_205134
crossref_primary_10_1103_PhysRevB_110_235402
crossref_primary_10_1103_PhysRevLett_130_066001
crossref_primary_10_3390_appliedchem2030012
crossref_primary_10_1039_D4NJ03755C
crossref_primary_10_1002_advs_202400817
crossref_primary_10_1103_PhysRevB_110_115434
crossref_primary_10_1103_PhysRevB_108_235418
crossref_primary_10_1103_PhysRevB_109_125141
crossref_primary_10_1103_PhysRevB_107_075431
crossref_primary_10_1063_5_0244791
crossref_primary_10_1088_0256_307X_41_3_037401
crossref_primary_10_1103_PhysRevX_13_041007
crossref_primary_10_1038_s41586_023_06294_z
crossref_primary_10_1021_acsnano_3c01740
crossref_primary_10_1021_acsanm_2c03150
crossref_primary_10_1021_acs_nanolett_2c04710
Cites_doi 10.1103/PhysRevB.85.214509
10.1103/PhysRevB.59.1758
10.1038/s41467-021-22711-1
10.1103/PhysRevB.100.035448
10.1007/s00205-019-01444-y
10.1038/s41586-021-03192-0
10.1038/s41567-020-01062-6
10.1038/s41535-021-00410-w
10.1126/science.abk1895
10.1103/PhysRevX.8.031087
10.1073/pnas.1108174108
10.1038/s41586-019-1422-x
10.1137/16M1088363
10.1038/s41586-021-03685-y
10.1038/s41567-021-01438-2
10.1038/s41563-021-00973-w
10.1103/PhysRevB.54.11169
10.1063/1.3521275
10.1103/PhysRevB.92.155438
10.1103/PhysRevB.100.085109
10.1103/PhysRevB.92.155409
10.1103/PhysRevB.98.224102
10.1038/nature26160
10.1126/science.abg0399
10.1103/PhysRevB.104.035139
10.1038/s41586-020-2373-y
10.1103/PhysRevLett.92.246401
10.1007/s11433-020-1690-4
10.1016/0022-3697(59)90036-8
10.1103/PhysRevB.83.195131
10.1038/s41567-019-0606-5
10.21105/joss.00615
10.1038/nphys2272
10.1126/science.abg5641
10.1038/s41586-019-1431-9
10.1038/s41586-019-1695-0
10.1038/s41586-019-1460-4
10.1073/pnas.2017366118
10.1103/PhysRevB.98.035425
10.1103/PhysRevLett.80.161
10.1143/JPSJ.62.274
10.1038/nphys1463
10.1103/PhysRevResearch.2.033062
10.1103/PhysRevLett.122.257002
10.1021/acs.nanolett.9b04979
10.1103/PhysRevX.6.041005
10.1103/PhysRevB.99.165112
10.1103/PhysRevB.101.224107
10.1103/PhysRevLett.127.097001
10.1137/16M1076198
ContentType Journal Article
Copyright Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
CorporateAuthor Columbia Univ., New York, NY (United States)
CorporateAuthor_xml – name: Columbia Univ., New York, NY (United States)
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
OTOTI
DOI 10.1126/science.abk1895
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Materials Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 199
ExternalDocumentID 1980734
35389784
10_1126_science_abk1895
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
0B8
AEUPB
ESX
GX1
IGG
NPM
OK1
PKN
UIG
VQA
YCJ
YIF
YIN
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
63O
6XO
ABPTK
ABQIS
AEXZC
AFOSN
AFUVZ
ANJGP
B-7
OTOTI
PK8
PQEST
PV9
XFK
YJ6
ZA5
ID FETCH-LOGICAL-c418t-13d86c7f9098c602da43b30b593f9107b62ccbcbb8173c36b9d13542760b29f23
ISSN 0036-8075
1095-9203
IngestDate Mon Jun 12 04:07:14 EDT 2023
Thu Jul 10 17:14:09 EDT 2025
Fri Jul 25 19:27:06 EDT 2025
Wed Feb 19 02:26:29 EST 2025
Thu Apr 24 22:50:02 EDT 2025
Tue Jul 01 02:24:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6589
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c418t-13d86c7f9098c602da43b30b593f9107b62ccbcbb8173c36b9d13542760b29f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
SC0019443
USDOE Office of Science (SC)
ORCID 0000-0002-1467-3105
0000-0002-2432-7070
0000-0002-4682-0165
0000-0002-5011-7579
0000-0003-0116-5977
0000-0002-9439-5159
0000-0003-4463-5828
0000-0003-3701-8119
0000-0002-2744-0634
0000-0003-2967-5960
0000000344635828
0000000224327070
0000000227440634
0000000337018119
0000000301165977
0000000329675960
0000000250117579
0000000294395159
0000000214673105
0000000246820165
PMID 35389784
PQID 2648273544
PQPubID 1256
PageCount 7
ParticipantIDs osti_scitechconnect_1980734
proquest_miscellaneous_2648893997
proquest_journals_2648273544
pubmed_primary_35389784
crossref_primary_10_1126_science_abk1895
crossref_citationtrail_10_1126_science_abk1895
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-08
20220408
PublicationDateYYYYMMDD 2022-04-08
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-08
  day: 08
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2022
Publisher The American Association for the Advancement of Science
AAAS
Publisher_xml – name: The American Association for the Advancement of Science
– name: AAAS
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
References_xml – ident: e_1_3_2_37_2
  doi: 10.1103/PhysRevB.85.214509
– ident: e_1_3_2_46_2
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_3_2_33_2
  doi: 10.1038/s41467-021-22711-1
– ident: e_1_3_2_26_2
  doi: 10.1103/PhysRevB.100.035448
– ident: e_1_3_2_42_2
  doi: 10.1007/s00205-019-01444-y
– ident: e_1_3_2_4_2
  doi: 10.1038/s41586-021-03192-0
– ident: e_1_3_2_40_2
  doi: 10.1038/s41567-020-01062-6
– ident: e_1_3_2_9_2
  doi: 10.1038/s41535-021-00410-w
– ident: e_1_3_2_39_2
  doi: 10.1126/science.abk1895
– ident: e_1_3_2_16_2
  doi: 10.1103/PhysRevX.8.031087
– ident: e_1_3_2_18_2
  doi: 10.1073/pnas.1108174108
– ident: e_1_3_2_21_2
  doi: 10.1038/s41586-019-1422-x
– ident: e_1_3_2_8_2
– ident: e_1_3_2_52_2
  doi: 10.1137/16M1088363
– ident: e_1_3_2_6_2
  doi: 10.1038/s41586-021-03685-y
– ident: e_1_3_2_27_2
  doi: 10.1038/s41567-021-01438-2
– ident: e_1_3_2_25_2
  doi: 10.1038/s41563-021-00973-w
– ident: e_1_3_2_45_2
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_3_2_48_2
  doi: 10.1063/1.3521275
– ident: e_1_3_2_44_2
  doi: 10.1103/PhysRevB.92.155438
– ident: e_1_3_2_2_2
  doi: 10.1103/PhysRevB.100.085109
– ident: e_1_3_2_13_2
  doi: 10.1103/PhysRevB.92.155409
– ident: e_1_3_2_43_2
  doi: 10.1103/PhysRevB.98.224102
– ident: e_1_3_2_30_2
  doi: 10.1038/nature26160
– ident: e_1_3_2_5_2
  doi: 10.1126/science.abg0399
– ident: e_1_3_2_14_2
  doi: 10.1103/PhysRevB.104.035139
– ident: e_1_3_2_28_2
  doi: 10.1038/s41586-020-2373-y
– ident: e_1_3_2_47_2
  doi: 10.1103/PhysRevLett.92.246401
– ident: e_1_3_2_3_2
– ident: e_1_3_2_15_2
  doi: 10.1007/s11433-020-1690-4
– ident: e_1_3_2_35_2
  doi: 10.1016/0022-3697(59)90036-8
– ident: e_1_3_2_49_2
  doi: 10.1103/PhysRevB.83.195131
– ident: e_1_3_2_32_2
  doi: 10.1038/s41567-019-0606-5
– ident: e_1_3_2_41_2
  doi: 10.21105/joss.00615
– ident: e_1_3_2_11_2
  doi: 10.1038/nphys2272
– ident: e_1_3_2_7_2
  doi: 10.1126/science.abg5641
– ident: e_1_3_2_20_2
  doi: 10.1038/s41586-019-1431-9
– ident: e_1_3_2_22_2
  doi: 10.1038/s41586-019-1695-0
– ident: e_1_3_2_31_2
  doi: 10.1038/s41586-019-1460-4
– ident: e_1_3_2_53_2
  doi: 10.1073/pnas.2017366118
– ident: e_1_3_2_54_2
  doi: 10.1103/PhysRevB.98.035425
– ident: e_1_3_2_36_2
  doi: 10.1103/PhysRevLett.80.161
– ident: e_1_3_2_38_2
  doi: 10.1143/JPSJ.62.274
– ident: e_1_3_2_12_2
  doi: 10.1038/nphys1463
– ident: e_1_3_2_34_2
  doi: 10.1103/PhysRevResearch.2.033062
– ident: e_1_3_2_23_2
  doi: 10.1103/PhysRevLett.122.257002
– ident: e_1_3_2_17_2
  doi: 10.1021/acs.nanolett.9b04979
– ident: e_1_3_2_50_2
  doi: 10.1103/PhysRevX.6.041005
– ident: e_1_3_2_24_2
  doi: 10.1103/PhysRevB.99.165112
– ident: e_1_3_2_29_2
  doi: 10.1103/PhysRevB.101.224107
– ident: e_1_3_2_10_2
  doi: 10.1103/PhysRevLett.127.097001
– ident: e_1_3_2_51_2
  doi: 10.1137/16M1076198
SSID ssj0009593
Score 2.667621
Snippet Magic-angle twisted trilayer graphene (TTG) has recently emerged as a platform to engineer strongly correlated flat bands. We reveal the normal-state...
Zooming into trilayer grapheneStacking and twisting graphene layers with respect to each other can lead to exotic transport effects. Recently,...
SourceID osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 193
SubjectTerms Domains
Graphene
Misalignment
Point defects
Scanning tunneling microscopy
Science & Technology - Other Topics
Stacking
Superconductivity
Zooming
Title Orderly disorder in magic-angle twisted trilayer graphene
URI https://www.ncbi.nlm.nih.gov/pubmed/35389784
https://www.proquest.com/docview/2648273544
https://www.proquest.com/docview/2648893997
https://www.osti.gov/biblio/1980734
Volume 376
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFBZbymCXsXa_snbDgx06goMtKbZ1TLeGMrr20ATCLkaSpTY0dUZiU7K_fk-W7DhdC90uJsh24uh7ev6k9_Q9hD5jHWulgtiPqYh8mhHl80hHfhgLoOtaaVGV8_lxFp1M6PfpYHpnd0kh-vL3vftK_gdVaANczS7Zf0C2-VJogM-ALxwBYTg-CuNzo5s5X5soSyWhaRYvbjj4Mp_nl3PVK24NiFmvWM7mHLh1r5KnVvlW-k89uoFqNuGbFmhNHuLQZgvUyQPuttZKwrhcXtuY_8XsZhPdv7it6zAvVldl8xb4eVVWgZHZemOfTunALoDzOuLv1iRgOmtSWdpuNDAVIHFgXZe6p835XmKLvzgjAzbEWs40tLUT_3byrbKUqs_FdZjYQp3bctpn5-locnqajo-n46doB8M8AnfQzvDo29Hori5z83BO_am1r6r-gS3i0lmAA354UlKRk_FL9MLNKryhNZFd9ETle-iZrTO63kO7DqyVd-hkxr-8QsxZj1dbjzfLvZb1eM56vNp6vNp6XqPJ6Hj89cR3hTR8ScOk8EOSJZGMNQtYIqMAZ5wSQQIB_10DXYRhiaUUUogkjIkkkWBZSAYUx1EgMNOYvEGdfJGrd8gbhFxLlRGaUUWFzjjXQSRJZmT9qWJhF_XrXkqlU5k3xU7maTXbxFHqujV13dpFh80Nv6zAysOX7ptuN81G4FiaTDBZpCFL4D1Fu-igRiN1Y3SVmvxNIOgDCqc_NafBg5qwGM_VorTXAGtnLO6itxbF5kkI8AEWJ_T9I-7eR883Y-EAdYplqT4AYy3ER2d1fwDdjJpI
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orderly+disorder+in+magic-angle+twisted+trilayer+graphene&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Turkel%2C+Simon&rft.au=Swann%2C+Joshua&rft.au=Zhu%2C+Ziyan&rft.au=Christos%2C+Maine&rft.date=2022-04-08&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=376&rft.issue=6589&rft.spage=193&rft_id=info:doi/10.1126%2Fscience.abk1895&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon