Orderly disorder in magic-angle twisted trilayer graphene
Magic-angle twisted trilayer graphene (TTG) has recently emerged as a platform to engineer strongly correlated flat bands. We reveal the normal-state structural and electronic properties of TTG using low-temperature scanning tunneling microscopy at twist angles for which superconductivity has been o...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 376; no. 6589; pp. 193 - 199 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
08.04.2022
AAAS |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Magic-angle twisted trilayer graphene (TTG) has recently emerged as a platform to engineer strongly correlated flat bands. We reveal the normal-state structural and electronic properties of TTG using low-temperature scanning tunneling microscopy at twist angles for which superconductivity has been observed. Real trilayer samples undergo a strong reconstruction of the moiré lattice, which locks layers into near–magic-angle, mirror symmetric domains comparable in size with the superconducting coherence length. This relaxation introduces an array of localized twist-angle faults, termed twistons and moiré solitons, whose electronic structure deviates strongly from the background regions, leading to a doping-dependent, spatially granular electronic landscape. The Fermi-level density of states is maximally uniform at dopings for which superconductivity has been observed in transport measurements.
Stacking and twisting graphene layers with respect to each other can lead to exotic transport effects. Recently, superconductivity was observed in graphene trilayers in which the top and bottom layers are twisted with respect to the middle layer by the same, “magic” angle. Turkel
et al
. used scanning tunneling microscopy to take a closer look into the stacking structure. They found that a small misalignment between the top and bottom layers caused the lattice to rearrange itself into a pattern of triangular domains. The domains had a magic-angle twisted trilayer structure and were separated by a network of line and point defects. —JS
Scanning tunneling microscopy reveals lattice reconstruction in a moire material. |
---|---|
AbstractList | Magic-angle twisted trilayer graphene (TTG) has recently emerged as a platform to engineer strongly correlated flat bands. We reveal the normal-state structural and electronic properties of TTG using low-temperature scanning tunneling microscopy at twist angles for which superconductivity has been observed. Real trilayer samples undergo a strong reconstruction of the moiré lattice, which locks layers into near–magic-angle, mirror symmetric domains comparable in size with the superconducting coherence length. This relaxation introduces an array of localized twist-angle faults, termed twistons and moiré solitons, whose electronic structure deviates strongly from the background regions, leading to a doping-dependent, spatially granular electronic landscape. The Fermi-level density of states is maximally uniform at dopings for which superconductivity has been observed in transport measurements.
Stacking and twisting graphene layers with respect to each other can lead to exotic transport effects. Recently, superconductivity was observed in graphene trilayers in which the top and bottom layers are twisted with respect to the middle layer by the same, “magic” angle. Turkel
et al
. used scanning tunneling microscopy to take a closer look into the stacking structure. They found that a small misalignment between the top and bottom layers caused the lattice to rearrange itself into a pattern of triangular domains. The domains had a magic-angle twisted trilayer structure and were separated by a network of line and point defects. —JS
Scanning tunneling microscopy reveals lattice reconstruction in a moire material. Magic-angle twisted trilayer graphene (TTG) has recently emerged as a platform to engineer strongly correlated flat bands. We reveal the normal-state structural and electronic properties of TTG using low-temperature scanning tunneling microscopy at twist angles for which superconductivity has been observed. Real trilayer samples undergo a strong reconstruction of the moiré lattice, which locks layers into near-magic-angle, mirror symmetric domains comparable in size with the superconducting coherence length. This relaxation introduces an array of localized twist-angle faults, termed twistons and moiré solitons, whose electronic structure deviates strongly from the background regions, leading to a doping-dependent, spatially granular electronic landscape. The Fermi-level density of states is maximally uniform at dopings for which superconductivity has been observed in transport measurements.Magic-angle twisted trilayer graphene (TTG) has recently emerged as a platform to engineer strongly correlated flat bands. We reveal the normal-state structural and electronic properties of TTG using low-temperature scanning tunneling microscopy at twist angles for which superconductivity has been observed. Real trilayer samples undergo a strong reconstruction of the moiré lattice, which locks layers into near-magic-angle, mirror symmetric domains comparable in size with the superconducting coherence length. This relaxation introduces an array of localized twist-angle faults, termed twistons and moiré solitons, whose electronic structure deviates strongly from the background regions, leading to a doping-dependent, spatially granular electronic landscape. The Fermi-level density of states is maximally uniform at dopings for which superconductivity has been observed in transport measurements. Zooming into trilayer grapheneStacking and twisting graphene layers with respect to each other can lead to exotic transport effects. Recently, superconductivity was observed in graphene trilayers in which the top and bottom layers are twisted with respect to the middle layer by the same, “magic” angle. Turkel et al. used scanning tunneling microscopy to take a closer look into the stacking structure. They found that a small misalignment between the top and bottom layers caused the lattice to rearrange itself into a pattern of triangular domains. The domains had a magic-angle twisted trilayer structure and were separated by a network of line and point defects. —JS Magic-angle twisted trilayer graphene (TTG) has recently emerged as a platform to engineer strongly correlated flat bands. We reveal the normal-state structural and electronic properties of TTG using low-temperature scanning tunneling microscopy at twist angles for which superconductivity has been observed. Real trilayer samples undergo a strong reconstruction of the moiré lattice, which locks layers into near-magic-angle, mirror symmetric domains comparable in size with the superconducting coherence length. This relaxation introduces an array of localized twist-angle faults, termed twistons and moiré solitons, whose electronic structure deviates strongly from the background regions, leading to a doping-dependent, spatially granular electronic landscape. The Fermi-level density of states is maximally uniform at dopings for which superconductivity has been observed in transport measurements. |
Author | Turkel, Simon Swann, Joshua Zhu, Ziyan Kaxiras, Efthimios Scheurer, Mathias S. Sachdev, Subir Dean, Cory R. Christos, Maine Watanabe, K. Taniguchi, T. Pasupathy, Abhay N. |
Author_xml | – sequence: 1 givenname: Simon orcidid: 0000-0002-5011-7579 surname: Turkel fullname: Turkel, Simon organization: Department of Physics, Columbia University, New York, NY 10027, USA – sequence: 2 givenname: Joshua surname: Swann fullname: Swann, Joshua organization: Department of Physics, Columbia University, New York, NY 10027, USA – sequence: 3 givenname: Ziyan orcidid: 0000-0003-4463-5828 surname: Zhu fullname: Zhu, Ziyan organization: Department of Physics, Harvard University, Cambridge, MA 02138, USA – sequence: 4 givenname: Maine orcidid: 0000-0003-0116-5977 surname: Christos fullname: Christos, Maine organization: Department of Physics, Harvard University, Cambridge, MA 02138, USA – sequence: 5 givenname: K. orcidid: 0000-0003-3701-8119 surname: Watanabe fullname: Watanabe, K. organization: Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan – sequence: 6 givenname: T. orcidid: 0000-0002-1467-3105 surname: Taniguchi fullname: Taniguchi, T. organization: International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan – sequence: 7 givenname: Subir orcidid: 0000-0002-2432-7070 surname: Sachdev fullname: Sachdev, Subir organization: Department of Physics, Harvard University, Cambridge, MA 02138, USA., School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA – sequence: 8 givenname: Mathias S. orcidid: 0000-0002-9439-5159 surname: Scheurer fullname: Scheurer, Mathias S. organization: Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria – sequence: 9 givenname: Efthimios orcidid: 0000-0002-4682-0165 surname: Kaxiras fullname: Kaxiras, Efthimios organization: Department of Physics, Harvard University, Cambridge, MA 02138, USA., John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA – sequence: 10 givenname: Cory R. orcidid: 0000-0003-2967-5960 surname: Dean fullname: Dean, Cory R. organization: Department of Physics, Columbia University, New York, NY 10027, USA – sequence: 11 givenname: Abhay N. orcidid: 0000-0002-2744-0634 surname: Pasupathy fullname: Pasupathy, Abhay N. organization: Department of Physics, Columbia University, New York, NY 10027, USA., Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35389784$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1980734$$D View this record in Osti.gov |
BookMark | eNp1kTlPAzEQhS0URA6o6dAKGppNfOxhlyjikiKlgdqyvd7EYWMH2xHKv8chgSIS1Via783M8xuCnnVWA3CN4BghXE2CMtoqPRbyA1FWnoEBgqzMGYakBwYQkiqnsC77YBjCCsLUY-QC9ElJKKtpMQBs7hvtu13WmOD2z8zYbC0WRuXCLjqdxS8Tom6y6E0ndqm_8GKz1FZfgvNWdEFfHesIvD89vk1f8tn8-XX6MMtVgWjMEWlopeqWQUZVBXEjCiIJlOmQliFYyworJZWUFNVEkUqyBpGywHUFJWYtJiNwe5jrQjQ8GY5aLZWzVqvIEUv2SJGg-wO08e5zq0PkaxOU7jphtdsGjquCUkYYqxN6d4Ku3NbbZOGHwnXavh94c6S2cq0bvvFmLfyO__5cAiYHQHkXgtftH4Ig32fDj9nwYzZJUZ4okhcRjbPRC9P9q_sGVw6T-g |
CitedBy_id | crossref_primary_10_1038_s41563_022_01286_2 crossref_primary_10_1103_PhysRevB_106_L201403 crossref_primary_10_1002_smll_202401559 crossref_primary_10_1038_s41563_023_01783_y crossref_primary_10_1126_science_abk1895 crossref_primary_10_1016_j_nantod_2023_101829 crossref_primary_10_1103_PhysRevA_109_033505 crossref_primary_10_1088_2053_1583_ad3b0e crossref_primary_10_1002_adma_202209457 crossref_primary_10_1002_advs_202305059 crossref_primary_10_1126_sciadv_adq7445 crossref_primary_10_1038_s41586_023_06763_5 crossref_primary_10_1038_s41578_024_00671_4 crossref_primary_10_1002_adfm_202314439 crossref_primary_10_1103_PhysRevB_109_035159 crossref_primary_10_1016_j_physleta_2023_129048 crossref_primary_10_1103_PhysRevLett_131_016003 crossref_primary_10_1039_D3TA02283H crossref_primary_10_1126_science_ade9995 crossref_primary_10_1016_j_xinn_2022_100334 crossref_primary_10_1002_smll_202311185 crossref_primary_10_21468_SciPostPhys_13_3_052 crossref_primary_10_1103_PhysRevB_108_195119 crossref_primary_10_1103_PhysRevB_109_L201119 crossref_primary_10_1103_PhysRevResearch_6_023203 crossref_primary_10_1103_PhysRevB_110_205144 crossref_primary_10_1126_sciadv_adi6063 crossref_primary_10_7498_aps_71_20220872 crossref_primary_10_1007_s12274_023_5716_9 crossref_primary_10_1103_PhysRevB_110_085160 crossref_primary_10_1038_s41563_022_01287_1 crossref_primary_10_1039_D3NR00651D crossref_primary_10_1103_PhysRevB_108_155106 crossref_primary_10_1093_micmic_ozad067_844 crossref_primary_10_1002_adma_202205996 crossref_primary_10_1103_PhysRevB_107_125413 crossref_primary_10_1007_s12274_023_5529_x crossref_primary_10_1103_PhysRevResearch_5_043079 crossref_primary_10_1002_adma_202202408 crossref_primary_10_1016_j_diamond_2024_111485 crossref_primary_10_1021_acsanm_2c04566 crossref_primary_10_1038_s41586_024_07589_5 crossref_primary_10_1016_j_jcis_2023_10_030 crossref_primary_10_1021_acscentsci_3c00326 crossref_primary_10_1103_PhysRevB_110_125143 crossref_primary_10_1088_2053_1583_ad9d59 crossref_primary_10_1103_PhysRevB_107_125423 crossref_primary_10_1002_smll_202204380 crossref_primary_10_1088_1361_648X_ad1f8c crossref_primary_10_1103_PhysRevB_110_115404 crossref_primary_10_7498_aps_72_20230079 crossref_primary_10_1002_idm2_12058 crossref_primary_10_1088_0256_307X_41_4_047403 crossref_primary_10_1038_s41467_024_52784_7 crossref_primary_10_1038_s41467_022_35213_5 crossref_primary_10_1002_apxr_202300048 crossref_primary_10_1088_2053_1583_adac74 crossref_primary_10_1016_j_cej_2022_140977 crossref_primary_10_1103_PhysRevLett_133_196401 crossref_primary_10_1038_s41563_024_01805_3 crossref_primary_10_1021_acs_nanolett_2c01710 crossref_primary_10_1002_adma_202305175 crossref_primary_10_1038_s41586_023_06663_8 crossref_primary_10_1038_s41567_025_02786_z crossref_primary_10_1007_s12274_022_5025_8 crossref_primary_10_1063_5_0223777 crossref_primary_10_1016_j_diamond_2025_112212 crossref_primary_10_1021_acsnano_4c08302 crossref_primary_10_1016_j_mtcomm_2024_110618 crossref_primary_10_1103_PhysRevB_108_035129 crossref_primary_10_1016_j_cpc_2024_109356 crossref_primary_10_1038_s42005_023_01512_6 crossref_primary_10_1103_PhysRevB_108_125429 crossref_primary_10_1016_j_diamond_2024_111853 crossref_primary_10_1126_science_abn8585 crossref_primary_10_1002_adma_202416480 crossref_primary_10_3390_c10040091 crossref_primary_10_1103_PhysRevB_106_075423 crossref_primary_10_1103_PhysRevLett_129_147001 crossref_primary_10_1038_s41586_024_08444_3 crossref_primary_10_1103_PhysRevB_108_L081124 crossref_primary_10_1088_1361_6633_ad67ed crossref_primary_10_1103_PhysRevB_106_205134 crossref_primary_10_1103_PhysRevB_110_235402 crossref_primary_10_1103_PhysRevLett_130_066001 crossref_primary_10_3390_appliedchem2030012 crossref_primary_10_1039_D4NJ03755C crossref_primary_10_1002_advs_202400817 crossref_primary_10_1103_PhysRevB_110_115434 crossref_primary_10_1103_PhysRevB_108_235418 crossref_primary_10_1103_PhysRevB_109_125141 crossref_primary_10_1103_PhysRevB_107_075431 crossref_primary_10_1063_5_0244791 crossref_primary_10_1088_0256_307X_41_3_037401 crossref_primary_10_1103_PhysRevX_13_041007 crossref_primary_10_1038_s41586_023_06294_z crossref_primary_10_1021_acsnano_3c01740 crossref_primary_10_1021_acsanm_2c03150 crossref_primary_10_1021_acs_nanolett_2c04710 |
Cites_doi | 10.1103/PhysRevB.85.214509 10.1103/PhysRevB.59.1758 10.1038/s41467-021-22711-1 10.1103/PhysRevB.100.035448 10.1007/s00205-019-01444-y 10.1038/s41586-021-03192-0 10.1038/s41567-020-01062-6 10.1038/s41535-021-00410-w 10.1126/science.abk1895 10.1103/PhysRevX.8.031087 10.1073/pnas.1108174108 10.1038/s41586-019-1422-x 10.1137/16M1088363 10.1038/s41586-021-03685-y 10.1038/s41567-021-01438-2 10.1038/s41563-021-00973-w 10.1103/PhysRevB.54.11169 10.1063/1.3521275 10.1103/PhysRevB.92.155438 10.1103/PhysRevB.100.085109 10.1103/PhysRevB.92.155409 10.1103/PhysRevB.98.224102 10.1038/nature26160 10.1126/science.abg0399 10.1103/PhysRevB.104.035139 10.1038/s41586-020-2373-y 10.1103/PhysRevLett.92.246401 10.1007/s11433-020-1690-4 10.1016/0022-3697(59)90036-8 10.1103/PhysRevB.83.195131 10.1038/s41567-019-0606-5 10.21105/joss.00615 10.1038/nphys2272 10.1126/science.abg5641 10.1038/s41586-019-1431-9 10.1038/s41586-019-1695-0 10.1038/s41586-019-1460-4 10.1073/pnas.2017366118 10.1103/PhysRevB.98.035425 10.1103/PhysRevLett.80.161 10.1143/JPSJ.62.274 10.1038/nphys1463 10.1103/PhysRevResearch.2.033062 10.1103/PhysRevLett.122.257002 10.1021/acs.nanolett.9b04979 10.1103/PhysRevX.6.041005 10.1103/PhysRevB.99.165112 10.1103/PhysRevB.101.224107 10.1103/PhysRevLett.127.097001 10.1137/16M1076198 |
ContentType | Journal Article |
Copyright | Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
CorporateAuthor | Columbia Univ., New York, NY (United States) |
CorporateAuthor_xml | – name: Columbia Univ., New York, NY (United States) |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 OTOTI |
DOI | 10.1126/science.abk1895 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 199 |
ExternalDocumentID | 1980734 35389784 10_1126_science_abk1895 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ 0B8 AEUPB ESX GX1 IGG NPM OK1 PKN UIG VQA YCJ YIF YIN 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 63O 6XO ABPTK ABQIS AEXZC AFOSN AFUVZ ANJGP B-7 OTOTI PK8 PQEST PV9 XFK YJ6 ZA5 |
ID | FETCH-LOGICAL-c418t-13d86c7f9098c602da43b30b593f9107b62ccbcbb8173c36b9d13542760b29f23 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Mon Jun 12 04:07:14 EDT 2023 Thu Jul 10 17:14:09 EDT 2025 Fri Jul 25 19:27:06 EDT 2025 Wed Feb 19 02:26:29 EST 2025 Thu Apr 24 22:50:02 EDT 2025 Tue Jul 01 02:24:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6589 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c418t-13d86c7f9098c602da43b30b593f9107b62ccbcbb8173c36b9d13542760b29f23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 SC0019443 USDOE Office of Science (SC) |
ORCID | 0000-0002-1467-3105 0000-0002-2432-7070 0000-0002-4682-0165 0000-0002-5011-7579 0000-0003-0116-5977 0000-0002-9439-5159 0000-0003-4463-5828 0000-0003-3701-8119 0000-0002-2744-0634 0000-0003-2967-5960 0000000344635828 0000000224327070 0000000227440634 0000000337018119 0000000301165977 0000000329675960 0000000250117579 0000000294395159 0000000214673105 0000000246820165 |
PMID | 35389784 |
PQID | 2648273544 |
PQPubID | 1256 |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_1980734 proquest_miscellaneous_2648893997 proquest_journals_2648273544 pubmed_primary_35389784 crossref_primary_10_1126_science_abk1895 crossref_citationtrail_10_1126_science_abk1895 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-08 20220408 |
PublicationDateYYYYMMDD | 2022-04-08 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2022 |
Publisher | The American Association for the Advancement of Science AAAS |
Publisher_xml | – name: The American Association for the Advancement of Science – name: AAAS |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 |
References_xml | – ident: e_1_3_2_37_2 doi: 10.1103/PhysRevB.85.214509 – ident: e_1_3_2_46_2 doi: 10.1103/PhysRevB.59.1758 – ident: e_1_3_2_33_2 doi: 10.1038/s41467-021-22711-1 – ident: e_1_3_2_26_2 doi: 10.1103/PhysRevB.100.035448 – ident: e_1_3_2_42_2 doi: 10.1007/s00205-019-01444-y – ident: e_1_3_2_4_2 doi: 10.1038/s41586-021-03192-0 – ident: e_1_3_2_40_2 doi: 10.1038/s41567-020-01062-6 – ident: e_1_3_2_9_2 doi: 10.1038/s41535-021-00410-w – ident: e_1_3_2_39_2 doi: 10.1126/science.abk1895 – ident: e_1_3_2_16_2 doi: 10.1103/PhysRevX.8.031087 – ident: e_1_3_2_18_2 doi: 10.1073/pnas.1108174108 – ident: e_1_3_2_21_2 doi: 10.1038/s41586-019-1422-x – ident: e_1_3_2_8_2 – ident: e_1_3_2_52_2 doi: 10.1137/16M1088363 – ident: e_1_3_2_6_2 doi: 10.1038/s41586-021-03685-y – ident: e_1_3_2_27_2 doi: 10.1038/s41567-021-01438-2 – ident: e_1_3_2_25_2 doi: 10.1038/s41563-021-00973-w – ident: e_1_3_2_45_2 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_3_2_48_2 doi: 10.1063/1.3521275 – ident: e_1_3_2_44_2 doi: 10.1103/PhysRevB.92.155438 – ident: e_1_3_2_2_2 doi: 10.1103/PhysRevB.100.085109 – ident: e_1_3_2_13_2 doi: 10.1103/PhysRevB.92.155409 – ident: e_1_3_2_43_2 doi: 10.1103/PhysRevB.98.224102 – ident: e_1_3_2_30_2 doi: 10.1038/nature26160 – ident: e_1_3_2_5_2 doi: 10.1126/science.abg0399 – ident: e_1_3_2_14_2 doi: 10.1103/PhysRevB.104.035139 – ident: e_1_3_2_28_2 doi: 10.1038/s41586-020-2373-y – ident: e_1_3_2_47_2 doi: 10.1103/PhysRevLett.92.246401 – ident: e_1_3_2_3_2 – ident: e_1_3_2_15_2 doi: 10.1007/s11433-020-1690-4 – ident: e_1_3_2_35_2 doi: 10.1016/0022-3697(59)90036-8 – ident: e_1_3_2_49_2 doi: 10.1103/PhysRevB.83.195131 – ident: e_1_3_2_32_2 doi: 10.1038/s41567-019-0606-5 – ident: e_1_3_2_41_2 doi: 10.21105/joss.00615 – ident: e_1_3_2_11_2 doi: 10.1038/nphys2272 – ident: e_1_3_2_7_2 doi: 10.1126/science.abg5641 – ident: e_1_3_2_20_2 doi: 10.1038/s41586-019-1431-9 – ident: e_1_3_2_22_2 doi: 10.1038/s41586-019-1695-0 – ident: e_1_3_2_31_2 doi: 10.1038/s41586-019-1460-4 – ident: e_1_3_2_53_2 doi: 10.1073/pnas.2017366118 – ident: e_1_3_2_54_2 doi: 10.1103/PhysRevB.98.035425 – ident: e_1_3_2_36_2 doi: 10.1103/PhysRevLett.80.161 – ident: e_1_3_2_38_2 doi: 10.1143/JPSJ.62.274 – ident: e_1_3_2_12_2 doi: 10.1038/nphys1463 – ident: e_1_3_2_34_2 doi: 10.1103/PhysRevResearch.2.033062 – ident: e_1_3_2_23_2 doi: 10.1103/PhysRevLett.122.257002 – ident: e_1_3_2_17_2 doi: 10.1021/acs.nanolett.9b04979 – ident: e_1_3_2_50_2 doi: 10.1103/PhysRevX.6.041005 – ident: e_1_3_2_24_2 doi: 10.1103/PhysRevB.99.165112 – ident: e_1_3_2_29_2 doi: 10.1103/PhysRevB.101.224107 – ident: e_1_3_2_10_2 doi: 10.1103/PhysRevLett.127.097001 – ident: e_1_3_2_51_2 doi: 10.1137/16M1076198 |
SSID | ssj0009593 |
Score | 2.667621 |
Snippet | Magic-angle twisted trilayer graphene (TTG) has recently emerged as a platform to engineer strongly correlated flat bands. We reveal the normal-state... Zooming into trilayer grapheneStacking and twisting graphene layers with respect to each other can lead to exotic transport effects. Recently,... |
SourceID | osti proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 193 |
SubjectTerms | Domains Graphene Misalignment Point defects Scanning tunneling microscopy Science & Technology - Other Topics Stacking Superconductivity Zooming |
Title | Orderly disorder in magic-angle twisted trilayer graphene |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35389784 https://www.proquest.com/docview/2648273544 https://www.proquest.com/docview/2648893997 https://www.osti.gov/biblio/1980734 |
Volume | 376 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFBZbymCXsXa_snbDgx06goMtKbZ1TLeGMrr20ATCLkaSpTY0dUZiU7K_fk-W7DhdC90uJsh24uh7ev6k9_Q9hD5jHWulgtiPqYh8mhHl80hHfhgLoOtaaVGV8_lxFp1M6PfpYHpnd0kh-vL3vftK_gdVaANczS7Zf0C2-VJogM-ALxwBYTg-CuNzo5s5X5soSyWhaRYvbjj4Mp_nl3PVK24NiFmvWM7mHLh1r5KnVvlW-k89uoFqNuGbFmhNHuLQZgvUyQPuttZKwrhcXtuY_8XsZhPdv7it6zAvVldl8xb4eVVWgZHZemOfTunALoDzOuLv1iRgOmtSWdpuNDAVIHFgXZe6p835XmKLvzgjAzbEWs40tLUT_3byrbKUqs_FdZjYQp3bctpn5-locnqajo-n46doB8M8AnfQzvDo29Hori5z83BO_am1r6r-gS3i0lmAA354UlKRk_FL9MLNKryhNZFd9ETle-iZrTO63kO7DqyVd-hkxr-8QsxZj1dbjzfLvZb1eM56vNp6vNp6XqPJ6Hj89cR3hTR8ScOk8EOSJZGMNQtYIqMAZ5wSQQIB_10DXYRhiaUUUogkjIkkkWBZSAYUx1EgMNOYvEGdfJGrd8gbhFxLlRGaUUWFzjjXQSRJZmT9qWJhF_XrXkqlU5k3xU7maTXbxFHqujV13dpFh80Nv6zAysOX7ptuN81G4FiaTDBZpCFL4D1Fu-igRiN1Y3SVmvxNIOgDCqc_NafBg5qwGM_VorTXAGtnLO6itxbF5kkI8AEWJ_T9I-7eR883Y-EAdYplqT4AYy3ER2d1fwDdjJpI |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orderly+disorder+in+magic-angle+twisted+trilayer+graphene&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Turkel%2C+Simon&rft.au=Swann%2C+Joshua&rft.au=Zhu%2C+Ziyan&rft.au=Christos%2C+Maine&rft.date=2022-04-08&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=376&rft.issue=6589&rft.spage=193&rft_id=info:doi/10.1126%2Fscience.abk1895&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |