Regulation of epithelial‐to‐mesenchymal transition in hypoxia by the HIF‐1α network

Epithelial‐to‐mesenchymal transition (EMT) plays a significant role in cancer metastasis. A series of models have focused on EMT regulation by TGF‐β network. However, how EMT is regulated under hypoxia is less understood. We developed a model of HIF‐1α network to explore the potential link between E...

Full description

Saved in:
Bibliographic Details
Published inFEBS letters Vol. 596; no. 3; pp. 338 - 349
Main Authors Wang, Hang‐Yu, Zhang, Xiao‐Peng, Wang, Wei
Format Journal Article
LanguageEnglish
Published England 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Epithelial‐to‐mesenchymal transition (EMT) plays a significant role in cancer metastasis. A series of models have focused on EMT regulation by TGF‐β network. However, how EMT is regulated under hypoxia is less understood. We developed a model of HIF‐1α network to explore the potential link between EMT and the network topology. Our results revealed that three positive feedback loops, composed of HIF‐1α and its three targets SNAIL, TWIST, and miR‐210, should be sequentially activated to induce EMT under aggravating hypoxia. We suggested that the number of the positive feedback loops is critical for determining the number of stable states in EMT. Our work may advance the understanding of the significance of network topology in the regulation of EMT. This study reveals the mechanism of hypoxia‐induced epithelial‐to‐mesenchymal transition (EMT) by modeling. Under aggravating hypoxia, hypoxia‐inducible factor‐1α (HIF‐1α) induces snail, twist, and miR‐210 so that three positive feedback loops are triggered sequentially to push forward EMT. Our results suggested that the number of positive feedback loops may be associated with the number of stable states in EMT.
AbstractList Epithelial-to-mesenchymal transition (EMT) plays a significant role in cancer metastasis. A series of models have focused on EMT regulation by TGF-β network. However, how EMT is regulated under hypoxia is less understood. We developed a model of HIF-1α network to explore the potential link between EMT and the network topology. Our results revealed that three positive feedback loops, composed of HIF-1α and its three targets SNAIL, TWIST, and miR-210, should be sequentially activated to induce EMT under aggravating hypoxia. We suggested that the number of the positive feedback loops is critical for determining the number of stable states in EMT. Our work may advance the understanding of the significance of network topology in the regulation of EMT.Epithelial-to-mesenchymal transition (EMT) plays a significant role in cancer metastasis. A series of models have focused on EMT regulation by TGF-β network. However, how EMT is regulated under hypoxia is less understood. We developed a model of HIF-1α network to explore the potential link between EMT and the network topology. Our results revealed that three positive feedback loops, composed of HIF-1α and its three targets SNAIL, TWIST, and miR-210, should be sequentially activated to induce EMT under aggravating hypoxia. We suggested that the number of the positive feedback loops is critical for determining the number of stable states in EMT. Our work may advance the understanding of the significance of network topology in the regulation of EMT.
Epithelial-to-mesenchymal transition (EMT) plays a significant role in cancer metastasis. A series of models have focused on EMT regulation by TGF-β network. However, how EMT is regulated under hypoxia is less understood. We developed a model of HIF-1α network to explore the potential link between EMT and the network topology. Our results revealed that three positive feedback loops, composed of HIF-1α and its three targets SNAIL, TWIST, and miR-210, should be sequentially activated to induce EMT under aggravating hypoxia. We suggested that the number of the positive feedback loops is critical for determining the number of stable states in EMT. Our work may advance the understanding of the significance of network topology in the regulation of EMT.
Epithelial‐to‐mesenchymal transition (EMT) plays a significant role in cancer metastasis. A series of models have focused on EMT regulation by TGF‐β network. However, how EMT is regulated under hypoxia is less understood. We developed a model of HIF‐1α network to explore the potential link between EMT and the network topology. Our results revealed that three positive feedback loops, composed of HIF‐1α and its three targets SNAIL, TWIST, and miR‐210, should be sequentially activated to induce EMT under aggravating hypoxia. We suggested that the number of the positive feedback loops is critical for determining the number of stable states in EMT. Our work may advance the understanding of the significance of network topology in the regulation of EMT. This study reveals the mechanism of hypoxia‐induced epithelial‐to‐mesenchymal transition (EMT) by modeling. Under aggravating hypoxia, hypoxia‐inducible factor‐1α (HIF‐1α) induces snail, twist, and miR‐210 so that three positive feedback loops are triggered sequentially to push forward EMT. Our results suggested that the number of positive feedback loops may be associated with the number of stable states in EMT.
Author Wang, Wei
Zhang, Xiao‐Peng
Wang, Hang‐Yu
Author_xml – sequence: 1
  givenname: Hang‐Yu
  surname: Wang
  fullname: Wang, Hang‐Yu
  organization: Nanjing University
– sequence: 2
  givenname: Xiao‐Peng
  orcidid: 0000-0001-8170-1236
  surname: Zhang
  fullname: Zhang, Xiao‐Peng
  email: zhangxp@nju.edu.cn
  organization: Nanjing University
– sequence: 3
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  email: zhangxp@nju.edu.cn, wangwei@nju.edu.cn
  organization: Nanjing University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34905218$$D View this record in MEDLINE/PubMed
BookMark eNqFkbFOHDEQhq2IKByQOl20ZZoFj727tkuCOEBCQkKhobFs31zOiXd9rPcE2_EIvEpeJA-RJ4nvDlJEQjRjjfV9U_z_HtnpYoeEfAJ6CJSyI5CCl7xq5CFUrJbvyOTfzw6ZUApVWQvFd8leSj9o3iWoD2SXV4rWDOSE3F7j91Uwg49dEecFLv2wwOBN-PP4NMQ8WkzYucXYmlAMvemS37C-KxbjMj54U9ixyE5xfjHNOPz-VXQ43Mf-5wF5Pzch4cfnd5_cTE-_nZyXl1dnFyfHl6WrQMpSmWpmrWKSSQAGljtFrTWUCmxEYyk4bJirzUxwOUNac2bACVZb5RxtUPF98mV7d9nHuxWmQbc-OQzBdBhXSTMBknMlKvY22uRUhaglZPTzM7qyLc70svet6Uf9El0G6i3g-phSj3Pt_LAJMsfkgwaq1xXpdSF6XYjeVJS9o_-8l9OvG83WuPcBx7dwPT39yrbiXyONo-8
CitedBy_id crossref_primary_10_1038_s41540_025_00504_2
crossref_primary_10_1038_s41420_022_01096_0
crossref_primary_10_1016_j_jtbi_2023_111558
crossref_primary_10_1038_s41540_024_00470_1
crossref_primary_10_1016_j_bbcan_2024_189137
crossref_primary_10_3390_cancers14092291
crossref_primary_10_3389_fphy_2022_1017218
crossref_primary_10_1016_j_jocs_2024_102464
Cites_doi 10.1371/journal.pcbi.1004569
10.1016/j.bbrc.2017.06.030
10.1016/j.ceb.2013.01.008
10.18632/oncotarget.5406
10.18632/oncotarget.3186
10.1038/sj.bjc.6605369
10.1158/0008-5472.CAN-18-3151
10.1016/j.trecan.2016.11.008
10.18632/oncotarget.14484
10.1371/journal.pone.0129603
10.1038/nrc2131
10.1073/pnas.1318192110
10.1016/j.bpj.2013.07.011
10.1038/ncb2976
10.1103/PhysRevE.97.042412
10.1016/j.cell.2009.11.007
10.1038/s41388-018-0382-1
10.4161/cc.10.24.18552
10.1101/gad.14.1.34
10.4142/jvs.2013.14.1.69
10.1002/1873-3468.13525
10.1038/s41586-018-0040-3
10.1128/MCB.01276-10
10.1016/S0092-8674(01)00518-9
10.1371/journal.pone.0030771
10.1038/s41540-018-0068-x
10.1126/scisignal.2005304
10.1259/bjr.20130676
10.1016/j.coisb.2017.02.004
10.1152/ajpcell.1996.271.4.C1172
10.1016/j.molcel.2009.09.006
10.1016/j.ejphar.2020.173282
10.1128/MCB.01242-10
10.1016/j.tcb.2018.12.001
10.1073/pnas.1100600108
10.1002/cam4.2667
10.1002/jgm.3200
10.1038/nrc3447
10.1371/journal.pcbi.1007682
10.1038/ncb2173
10.1083/jcb.201103097
10.1016/j.cell.2011.02.013
10.1164/rccm.201109-1706OC
10.1016/j.biopha.2017.12.058
10.1093/abbs/gmt141
10.1111/jcmm.13264
10.1038/ncb1691
10.18632/oncotarget.3623
10.1042/BJ20040620
10.1038/nrc1187
ContentType Journal Article
Copyright 2021 Federation of European Biochemical Societies
2021 Federation of European Biochemical Societies.
Copyright_xml – notice: 2021 Federation of European Biochemical Societies
– notice: 2021 Federation of European Biochemical Societies.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1002/1873-3468.14258
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
AGRICOLA
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1873-3468
EndPage 349
ExternalDocumentID 34905218
10_1002_1873_3468_14258
FEB214258
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 11574139; 12090052
GroupedDBID ---
--K
-~X
.55
.~1
0R~
0SF
1B1
1OC
1~.
1~5
24P
29H
2WC
33P
4.4
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
AABNK
AACTN
AAEDW
AAESR
AAFTH
AAHBH
AAHHS
AAHQN
AAIKJ
AAIPD
AALRI
AAMNL
AANLZ
AAQXK
AASGY
AAXRX
AAXUO
AAYCA
AAZKR
ABBQC
ABCUV
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABQWH
ABVKL
ABWVN
ABXDB
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIUM
ACMXC
ACNCT
ACPOU
ACRPL
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADEZE
ADIYS
ADKYN
ADMGS
ADMUD
ADNMO
ADOZA
ADQTV
ADUVX
ADVLN
ADXAS
ADZMN
ADZOD
AEEZP
AEFWE
AEGXH
AEKER
AENEX
AEQDE
AEQOU
AEUYR
AEXQZ
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AGHFR
AGYEJ
AHBTC
AI.
AIACR
AIAGR
AITUG
AITYG
AIURR
AIWBW
AJBDE
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMRAJ
AMYDB
AZFZN
AZVAB
BAWUL
BFHJK
BMXJE
C45
CS3
DCZOG
DIK
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FUBAC
G-Q
GBLVA
GI5
GX1
HGLYW
HVGLF
HZ~
IHE
IXB
J1W
KBYEO
L7B
LATKE
LEEKS
LITHE
LOXES
LUTES
LX3
LYRES
M41
MEWTI
MO0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N9A
NCXOZ
O-L
O9-
OK1
OVD
OZT
P-8
P-9
P2P
P2W
PC.
Q38
R2-
R9-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SFE
SSZ
SUPJJ
SV3
TEORI
TR2
UHB
UNMZH
VH1
WBKPD
WH7
WIH
WIJ
WIK
WIN
WOHZO
WXSBR
X7M
Y6R
YK3
ZGI
ZZTAW
~02
AAYWO
AAYXX
ACVFH
ADCNI
ADXHL
AEUPX
AEYWJ
AFPUW
AGHNM
AGQPQ
AGYGG
AIGII
AKBMS
AKYEP
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c4188-9a4dbb928281121b3c90bba007e676b01ce62c5ad738de0532a1c725b9cc06e93
ISSN 0014-5793
1873-3468
IngestDate Fri Jul 11 18:30:13 EDT 2025
Fri Jul 11 04:53:26 EDT 2025
Mon Jul 21 05:58:32 EDT 2025
Thu Apr 24 23:07:30 EDT 2025
Tue Jul 01 02:46:52 EDT 2025
Wed Jan 22 16:27:28 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords HIF-1α network
intermediate state
positive feedback loop
topology
epithelial-to-mesenchymal transition
Language English
License 2021 Federation of European Biochemical Societies.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4188-9a4dbb928281121b3c90bba007e676b01ce62c5ad738de0532a1c725b9cc06e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8170-1236
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/1873-3468.14258
PMID 34905218
PQID 2610077581
PQPubID 23479
PageCount 349
ParticipantIDs proquest_miscellaneous_2718339742
proquest_miscellaneous_2610077581
pubmed_primary_34905218
crossref_citationtrail_10_1002_1873_3468_14258
crossref_primary_10_1002_1873_3468_14258
wiley_primary_10_1002_1873_3468_14258_FEB214258
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
2022-Feb
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle FEBS letters
PublicationTitleAlternate FEBS Lett
PublicationYear 2022
References 2019; 8
2012; 185
2017; 8
2015; 6
2013; 25
2017; 3
2013; 105
2019; 79
2017; 21
2015; 11
2004; 381
2015; 10
2011; 31
2020; 16
2011; 10
2014; 46
2008; 10
2011; 13
2020; 881
2001; 107
2011; 195
2015; 8
2014; 87
2009; 139
2009; 35
2013; 14
2011; 108
2018; 4
2000; 14
2018; 556
2013; 13
2018; 498
2014; 16
2003; 3
1996; 271
2009; 101
2019; 29
2007; 7
2020; 22
2013; 110
2012; 7
2018; 98
2014; 7
2018; 97
2011; 144
2018; 37
2019; 593
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
Ding L (e_1_2_9_42_1) 2015; 8
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 13
  start-page: 97
  year: 2013
  article-title: Regulatory networks defining EMT during cancer initiation and progression
  publication-title: Nat Rev Cancer
– volume: 6
  start-page: 15436
  issue: 17
  year: 2015
  end-page: 48
  article-title: OVOL guides the epithelial‐hybrid‐mesenchymal transition
  publication-title: Oncotarget
– volume: 4
  start-page: 34
  year: 2018
  article-title: A landscape view on the interplay between EMT and cancer metastasis
  publication-title: NPJ Sys Biol Appl
– volume: 31
  start-page: 2696
  issue: 13
  year: 2011
  end-page: 706
  article-title: A hypoxia‐induced positive feedback loop promotes hypoxia‐inducible factor 1α stability through miR‐210 suppression of glycerol‐3‐phosphate dehydrogenase 1‐Like
  publication-title: Mol Cell Biol
– volume: 79
  start-page: 2962
  issue: 11
  year: 2019
  end-page: 77
  article-title: Targeting the temporal dynamics of hypoxia‐induced tumor‐secreted factors halts tumor migration
  publication-title: Can Res
– volume: 593
  start-page: 2596
  issue: 18
  year: 2019
  end-page: 611
  article-title: Modeling the regulation of p53 activation by HIF‐1 upon hypoxia
  publication-title: FEBS Lett
– volume: 110
  start-page: 18144
  issue: 45
  year: 2013
  end-page: 9
  article-title: MicroRNA‐based regulation of epithelial‐hybrid‐mesenchymal fate determination
  publication-title: Proc Natl Acad Sci
– volume: 3
  start-page: 1
  year: 2017
  end-page: 6
  article-title: Computational systems biology of epithelial‐hybrid‐mesenchymal transitions
  publication-title: Curr Opinion Sys Biol
– volume: 10
  issue: 6
  year: 2015
  article-title: HIF‐1α promotes epithelial‐mesenchymal transition and metastasis through direct regulation of ZEB1 in colorectal cancer
  publication-title: PLoS One
– volume: 16
  start-page: 488
  year: 2014
  end-page: 94
  article-title: Oncogenic roles of EMT‐inducing transcription factors
  publication-title: Nat Cell Biol
– volume: 556
  start-page: 463
  issue: 7702
  year: 2018
  end-page: 8
  article-title: Identification of the tumour transition states occurring during EMT
  publication-title: Nature
– volume: 14
  start-page: 69
  issue: 1
  year: 2013
  end-page: 76
  article-title: Survival of hypoxic human mesenchymal stem cells is enhanced by a positive feedback loop involving miR‐210 and hypoxia‐inducible factor 1
  publication-title: J Vet Sci
– volume: 139
  start-page: 871
  issue: 5
  year: 2009
  end-page: 90
  article-title: Epithelial‐mesenchymal transitions in development and disease
  publication-title: Cell
– volume: 22
  issue: 8
  year: 2020
  article-title: miR‐129‐5p attenuates hypoxia‐induced apoptosis in rat H9c2 cardiomyocytes by activating autophagy
  publication-title: J Gene Med
– volume: 195
  start-page: 417
  issue: 3
  year: 2011
  end-page: 33
  article-title: A p53/miRNA‐34 axis regulates Snail1‐dependent cancer cell epithelial‐mesenchymal transition
  publication-title: J Cell Biol
– volume: 6
  start-page: 34423
  issue: 33
  year: 2015
  end-page: 36
  article-title: Down‐regulation of miR‐129‐5p via the Twist1‐Snail feedback loop stimulates the epithelial‐mesenchymal transition and is associated with poor prognosis in breast cancer
  publication-title: Oncotarget
– volume: 10
  start-page: 4256
  issue: 24
  year: 2011
  end-page: 71
  article-title: miR‐34 and SNAIL form a double‐negative feedback loop to regulate epithelial‐mesenchymal transitions
  publication-title: Cell Cycle
– volume: 31
  start-page: 4087
  issue: 19
  year: 2011
  end-page: 96
  article-title: MicroRNA‐155 promotes resolution of hypoxia‐inducible factor 1α activity during prolonged hypoxia
  publication-title: Mol Cell Biol
– volume: 25
  start-page: 200
  issue: 2
  year: 2013
  end-page: 7
  article-title: Regulation of epithelial‐mesenchymal and mesenchymal‐epithelial transitions by microRNAs
  publication-title: Curr Opin Cell Biol
– volume: 498
  start-page: 375
  issue: 3
  year: 2018
  end-page: 81
  article-title: Attenuation of the hypoxia‐induced miR‐34a protects cardiomyocytes through maintenance of glucose metabolism
  publication-title: Biochem Biophys Res Comm
– volume: 8
  start-page: 7822
  issue: 18
  year: 2019
  end-page: 32
  article-title: Hypoxia‐induced HIF1α and ZEB1 are critical for the malignant transformation of ameloblastoma via TGF‐β‐dependent EMT
  publication-title: Cancer Med
– volume: 8
  start-page: 2299
  issue: 2
  year: 2015
  end-page: 307
  article-title: miR‐210, a modulator of hypoxia‐induced epithelial‐mesenchymal transition in ovarian cancer cell
  publication-title: Int J Clin Exp Med
– volume: 185
  start-page: 944
  issue: 9
  year: 2012
  end-page: 54
  article-title: Hypoxia‐inducible factor 1 mediates nasal polypogenesis by inducing epithelial‐to‐mesenchymal transition
  publication-title: Am J Respir Crit Care Med
– volume: 16
  issue: 3
  year: 2020
  article-title: A plausible accelerating function of intermediate states in cancer metastasis
  publication-title: PLoS Comput Biol
– volume: 3
  start-page: 56
  issue: 1
  year: 2017
  end-page: 71
  article-title: Targeting TGF‐β signaling in cancer
  publication-title: Trends Cancer
– volume: 144
  start-page: 646
  issue: 5
  year: 2011
  end-page: 74
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell
– volume: 881
  start-page: 173282
  year: 2020
  article-title: Inhibitory effect of melatonin on hypoxia‐induced vasculogenic mimicry via suppressing epithelial‐mesenchymal transition (EMT) in breast cancer stem cells
  publication-title: Eur J Pharmacol
– volume: 7
  start-page: ra91
  issue: 345
  year: 2014
  article-title: TGF‐β‐induced epithelial‐to‐mesenchymal transition proceeds through stepwise activation of multiple feedback loops
  publication-title: Sci Signal
– volume: 381
  start-page: 761
  issue: 3
  year: 2004
  end-page: 7
  article-title: Hypoxia‐inducible factor‐1 (HIF‐1) promotes its degradation by induction of HIF‐α‐prolyl‐4‐hydroxylases
  publication-title: Biochem J
– volume: 98
  start-page: 433
  year: 2018
  end-page: 9
  article-title: LncRNA HIF1A‐AS2 positively affects the progression and EMT formation of colorectal cancer through regulating miR‐129‐5p and DNMT3A
  publication-title: Biomed Pharmacother
– volume: 6
  start-page: 8271
  issue: 10
  year: 2015
  end-page: 85
  article-title: A novel HIF‐1α‐integrin‐linked kinase regulatory loop that facilitates hypoxia‐induced HIF‐1α expression and epithelial‐mesenchymal transition in cancer cells
  publication-title: Oncotarget
– volume: 8
  start-page: 9535
  issue: 6
  year: 2017
  end-page: 45
  article-title: HIF‐1α induces the epithelial‐mesenchymal transition in gastric cancer stem cells through the Snail pathway
  publication-title: Oncotarget
– volume: 87
  start-page: 20130676
  issue: 1035
  year: 2014
  article-title: Defining normoxia, physoxia and hypoxia in tumours—implications for treatment response
  publication-title: British J Radiol
– volume: 97
  start-page: 42412
  issue: 4
  year: 2018
  article-title: Modulation of dynamic modes by interplay between positive and negative feedback loops in gene regulatory networks
  publication-title: Phys Rev E
– volume: 107
  start-page: 1
  issue: 1
  year: 2001
  end-page: 3
  article-title: HIF‐1, O , and the 3 PHDs: How animal cells signal hypoxia to the nucleus
  publication-title: Cell
– volume: 21
  start-page: 3529
  issue: 12
  year: 2017
  end-page: 39
  article-title: A positive feedback loop promotes HIF‐1α stability through miR‐210‐Mediated suppression of RUNX3 in paraquat‐induced EMT
  publication-title: J Cell Mol Med
– volume: 14
  start-page: 34
  issue: 1
  year: 2000
  end-page: 44
  article-title: Regulation of tumor angiogenesis by p53‐induced degradation of hypoxia‐inducible factor 1α
  publication-title: Genes Dev
– volume: 7
  issue: 2
  year: 2012
  article-title: Hypoxia‐induced down‐regulation of microRNA‐34a promotes EMT by targeting the Notch signaling pathway in tubular epithelial cells
  publication-title: PLoS One
– volume: 11
  issue: 11
  year: 2015
  article-title: An Ovol2‐Zeb1 mutual inhibitory circuit governs bidirectional and multi‐step transition between epithelial and mesenchymal states
  publication-title: PLoS Comput Biol
– volume: 101
  start-page: 1769
  issue: 10
  year: 2009
  end-page: 81
  article-title: Hypoxia, Snail and incomplete epithelial‐mesenchymal transition in breast cancer
  publication-title: Br J Cancer
– volume: 35
  start-page: 856
  issue: 6
  year: 2009
  end-page: 67
  article-title: Hypoxia‐inducible mir‐210 regulates normoxic gene expression involved in tumor initiation
  publication-title: Mol Cell
– volume: 13
  start-page: 317
  issue: 3
  year: 2011
  end-page: 23
  article-title: p53 regulates Epithelial‐Mesenchymal transition and stem cell properties through modulating miRNAs
  publication-title: Nat Cell Biol
– volume: 105
  start-page: 1079
  issue: 4
  year: 2013
  end-page: 89
  article-title: Coupled reversible and irreversible bistable switches underlying TGFβ‐induced epithelial to mesenchymal transition
  publication-title: Biophys J
– volume: 10
  start-page: 295
  year: 2008
  end-page: 305
  article-title: Direct regulation of TWIST by HIF‐1α promotes metastasis
  publication-title: Nat Cell Biol
– volume: 271
  start-page: C1172
  issue: 4 PART 1
  year: 1996
  end-page: 80
  article-title: Hypoxia‐inducible factor 1 levels vary exponentially over a physiologically relevant range of O tension
  publication-title: Am J Physiol‐Cell Physiol
– volume: 29
  start-page: 212
  issue: 3
  year: 2019
  end-page: 26
  article-title: EMT Transition states during tumor progression and metastasis
  publication-title: Trends Cell Biol
– volume: 3
  start-page: 721
  issue: 10
  year: 2003
  end-page: 32
  article-title: Targeting HIF‐1 for cancer therapy
  publication-title: Nat Rev Cancer
– volume: 46
  start-page: 220
  issue: 3
  year: 2014
  end-page: 32
  article-title: Emerging roles of miR‐210 and other non‐coding RNAs in the hypoxic response
  publication-title: Acta Biochim Biophys Sin
– volume: 37
  start-page: 5811
  issue: 44
  year: 2018
  end-page: 28
  article-title: Hypoxia‐induced LncRNA‐BX111 promotes metastasis and progression of pancreatic cancer through regulating ZEB1 transcription
  publication-title: Oncogene
– volume: 7
  start-page: 415
  issue: 6
  year: 2007
  end-page: 28
  article-title: Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?
  publication-title: Nat Rev Cancer
– volume: 108
  start-page: 8990
  issue: 22
  year: 2011
  end-page: 5
  article-title: Two‐phase dynamics of p53 in the DNA damage response
  publication-title: Proc Natl Acad Sci USA
– ident: e_1_2_9_27_1
  doi: 10.1371/journal.pcbi.1004569
– ident: e_1_2_9_34_1
  doi: 10.1016/j.bbrc.2017.06.030
– ident: e_1_2_9_8_1
  doi: 10.1016/j.ceb.2013.01.008
– ident: e_1_2_9_7_1
  doi: 10.18632/oncotarget.5406
– ident: e_1_2_9_38_1
  doi: 10.18632/oncotarget.3186
– ident: e_1_2_9_18_1
  doi: 10.1038/sj.bjc.6605369
– ident: e_1_2_9_50_1
  doi: 10.1158/0008-5472.CAN-18-3151
– ident: e_1_2_9_10_1
  doi: 10.1016/j.trecan.2016.11.008
– ident: e_1_2_9_33_1
  doi: 10.18632/oncotarget.14484
– ident: e_1_2_9_11_1
  doi: 10.1371/journal.pone.0129603
– ident: e_1_2_9_6_1
  doi: 10.1038/nrc2131
– ident: e_1_2_9_26_1
  doi: 10.1073/pnas.1318192110
– ident: e_1_2_9_25_1
  doi: 10.1016/j.bpj.2013.07.011
– ident: e_1_2_9_9_1
  doi: 10.1038/ncb2976
– volume: 8
  start-page: 2299
  issue: 2
  year: 2015
  ident: e_1_2_9_42_1
  article-title: miR‐210, a modulator of hypoxia‐induced epithelial‐mesenchymal transition in ovarian cancer cell
  publication-title: Int J Clin Exp Med
– ident: e_1_2_9_49_1
  doi: 10.1103/PhysRevE.97.042412
– ident: e_1_2_9_3_1
  doi: 10.1016/j.cell.2009.11.007
– ident: e_1_2_9_12_1
  doi: 10.1038/s41388-018-0382-1
– ident: e_1_2_9_23_1
  doi: 10.4161/cc.10.24.18552
– ident: e_1_2_9_43_1
  doi: 10.1101/gad.14.1.34
– ident: e_1_2_9_31_1
  doi: 10.4142/jvs.2013.14.1.69
– ident: e_1_2_9_44_1
  doi: 10.1002/1873-3468.13525
– ident: e_1_2_9_39_1
  doi: 10.1038/s41586-018-0040-3
– ident: e_1_2_9_47_1
  doi: 10.1128/MCB.01276-10
– ident: e_1_2_9_17_1
  doi: 10.1016/S0092-8674(01)00518-9
– ident: e_1_2_9_19_1
  doi: 10.1371/journal.pone.0030771
– ident: e_1_2_9_29_1
  doi: 10.1038/s41540-018-0068-x
– ident: e_1_2_9_52_1
  doi: 10.1126/scisignal.2005304
– ident: e_1_2_9_40_1
  doi: 10.1259/bjr.20130676
– ident: e_1_2_9_24_1
  doi: 10.1016/j.coisb.2017.02.004
– ident: e_1_2_9_41_1
  doi: 10.1152/ajpcell.1996.271.4.C1172
– ident: e_1_2_9_21_1
  doi: 10.1016/j.molcel.2009.09.006
– ident: e_1_2_9_14_1
  doi: 10.1016/j.ejphar.2020.173282
– ident: e_1_2_9_22_1
  doi: 10.1128/MCB.01242-10
– ident: e_1_2_9_2_1
  doi: 10.1016/j.tcb.2018.12.001
– ident: e_1_2_9_48_1
  doi: 10.1073/pnas.1100600108
– ident: e_1_2_9_13_1
  doi: 10.1002/cam4.2667
– ident: e_1_2_9_20_1
  doi: 10.1002/jgm.3200
– ident: e_1_2_9_5_1
  doi: 10.1038/nrc3447
– ident: e_1_2_9_51_1
  doi: 10.1371/journal.pcbi.1007682
– ident: e_1_2_9_45_1
  doi: 10.1038/ncb2173
– ident: e_1_2_9_36_1
  doi: 10.1083/jcb.201103097
– ident: e_1_2_9_4_1
  doi: 10.1016/j.cell.2011.02.013
– ident: e_1_2_9_37_1
  doi: 10.1164/rccm.201109-1706OC
– ident: e_1_2_9_35_1
  doi: 10.1016/j.biopha.2017.12.058
– ident: e_1_2_9_30_1
  doi: 10.1093/abbs/gmt141
– ident: e_1_2_9_32_1
  doi: 10.1111/jcmm.13264
– ident: e_1_2_9_15_1
  doi: 10.1038/ncb1691
– ident: e_1_2_9_28_1
  doi: 10.18632/oncotarget.3623
– ident: e_1_2_9_46_1
  doi: 10.1042/BJ20040620
– ident: e_1_2_9_16_1
  doi: 10.1038/nrc1187
SSID ssj0001819
Score 2.443946
Snippet Epithelial‐to‐mesenchymal transition (EMT) plays a significant role in cancer metastasis. A series of models have focused on EMT regulation by TGF‐β network....
Epithelial-to-mesenchymal transition (EMT) plays a significant role in cancer metastasis. A series of models have focused on EMT regulation by TGF-β network....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 338
SubjectTerms Cell Hypoxia
Epithelial-Mesenchymal Transition - genetics
epithelial‐to‐mesenchymal transition
Feedback, Physiological
HIF‐1α network
Humans
hypoxia
Hypoxia-Inducible Factor 1, alpha Subunit - genetics
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
intermediate state
metastasis
MicroRNAs - genetics
MicroRNAs - metabolism
Models, Biological
Nuclear Proteins
positive feedback loop
Snail Family Transcription Factors - genetics
Snail Family Transcription Factors - metabolism
topology
Twist-Related Protein 1 - genetics
Twist-Related Protein 1 - metabolism
Title Regulation of epithelial‐to‐mesenchymal transition in hypoxia by the HIF‐1α network
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1873-3468.14258
https://www.ncbi.nlm.nih.gov/pubmed/34905218
https://www.proquest.com/docview/2610077581
https://www.proquest.com/docview/2718339742
Volume 596
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgE7AXBBuXcpORGEKavCWOc_FjW7UqTCA0OrU8RbbjapXapIJWovwr_gi_iRM7TltKub2kVurYkb9j-zvOuSD0IpDai6nWJGGCExaqhMgsywinI8GiUSjpqPRGfvsu6l2yN8Nw6HK4V94lc3mqvv7Sr-R_UIV7gGvpJfsPyNaNwg0oA75wBYTh-lcYX9hE8hXn07PSv2IC3ZJ5QaalW5G6Wk6NNTlsSGNn1ni1nBVfxsIQTxCS3usu8Y_bneOWf5Jbo_B1xtrttD6cTIzTT02_B9Uhcw9-ycfF1uHzcCwK8l5Xm-LaAwM9Xj9mAA3Vq002tF0akzggAbNJcNzaGdp0tJWQBGsrYWCDtmyt0Dbia90YrNQ03KgJQzybGsACxkvX4mS1VdUGhO6v62ifgn4AC9x-8_xicF5vwkBcuIvk5NGzn_o7QDddC5t8ZEvJ2NRZDOno30G3K20BNy30d9E1nR-io2Yu5sV0iV9iY79rPowcohstV7rVdln8jlB_JSO4GOGdMoJXMoLHOa5kBMslhvrYyMj3b7iSj3vostvpt3ukyqRBFPNh0nDBMil5qV4Dv_ZloLgnpQB-qKM4kp6vdERVKLI4SDKTLET4Kqah5Ep5kebBfbSXF7l-iLBQZURHySIdUiZCKrj2M50wL1F8pOOogU7deKaqCjNfZjuZpDZANk1LLNISi9Rg0UCv6gdmNsLK7qrPHUApDGP5aUvkulh8Tmnkm2COif-bOkDDAqDfjDbQA4tu3aGThgY6M3D_6U1SmHzUlB7tbOsxOlhNpCdob_5poZ8Cg53LZ5W0_gBVy5O3
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+epithelial-to-mesenchymal+transition+in+hypoxia+by+the+HIF-1%CE%B1+network&rft.jtitle=FEBS+letters&rft.au=Wang%2C+Hang-Yu&rft.au=Zhang%2C+Xiao-Peng&rft.au=Wang%2C+Wei&rft.date=2022-02-01&rft.eissn=1873-3468&rft.volume=596&rft.issue=3&rft.spage=338&rft_id=info:doi/10.1002%2F1873-3468.14258&rft_id=info%3Apmid%2F34905218&rft.externalDocID=34905218
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-5793&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-5793&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-5793&client=summon