Regulation of epithelial‐to‐mesenchymal transition in hypoxia by the HIF‐1α network
Epithelial‐to‐mesenchymal transition (EMT) plays a significant role in cancer metastasis. A series of models have focused on EMT regulation by TGF‐β network. However, how EMT is regulated under hypoxia is less understood. We developed a model of HIF‐1α network to explore the potential link between E...
Saved in:
Published in | FEBS letters Vol. 596; no. 3; pp. 338 - 349 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Epithelial‐to‐mesenchymal transition (EMT) plays a significant role in cancer metastasis. A series of models have focused on EMT regulation by TGF‐β network. However, how EMT is regulated under hypoxia is less understood. We developed a model of HIF‐1α network to explore the potential link between EMT and the network topology. Our results revealed that three positive feedback loops, composed of HIF‐1α and its three targets SNAIL, TWIST, and miR‐210, should be sequentially activated to induce EMT under aggravating hypoxia. We suggested that the number of the positive feedback loops is critical for determining the number of stable states in EMT. Our work may advance the understanding of the significance of network topology in the regulation of EMT.
This study reveals the mechanism of hypoxia‐induced epithelial‐to‐mesenchymal transition (EMT) by modeling. Under aggravating hypoxia, hypoxia‐inducible factor‐1α (HIF‐1α) induces snail, twist, and miR‐210 so that three positive feedback loops are triggered sequentially to push forward EMT. Our results suggested that the number of positive feedback loops may be associated with the number of stable states in EMT. |
---|---|
AbstractList | Epithelial-to-mesenchymal transition (EMT) plays a significant role in cancer metastasis. A series of models have focused on EMT regulation by TGF-β network. However, how EMT is regulated under hypoxia is less understood. We developed a model of HIF-1α network to explore the potential link between EMT and the network topology. Our results revealed that three positive feedback loops, composed of HIF-1α and its three targets SNAIL, TWIST, and miR-210, should be sequentially activated to induce EMT under aggravating hypoxia. We suggested that the number of the positive feedback loops is critical for determining the number of stable states in EMT. Our work may advance the understanding of the significance of network topology in the regulation of EMT.Epithelial-to-mesenchymal transition (EMT) plays a significant role in cancer metastasis. A series of models have focused on EMT regulation by TGF-β network. However, how EMT is regulated under hypoxia is less understood. We developed a model of HIF-1α network to explore the potential link between EMT and the network topology. Our results revealed that three positive feedback loops, composed of HIF-1α and its three targets SNAIL, TWIST, and miR-210, should be sequentially activated to induce EMT under aggravating hypoxia. We suggested that the number of the positive feedback loops is critical for determining the number of stable states in EMT. Our work may advance the understanding of the significance of network topology in the regulation of EMT. Epithelial-to-mesenchymal transition (EMT) plays a significant role in cancer metastasis. A series of models have focused on EMT regulation by TGF-β network. However, how EMT is regulated under hypoxia is less understood. We developed a model of HIF-1α network to explore the potential link between EMT and the network topology. Our results revealed that three positive feedback loops, composed of HIF-1α and its three targets SNAIL, TWIST, and miR-210, should be sequentially activated to induce EMT under aggravating hypoxia. We suggested that the number of the positive feedback loops is critical for determining the number of stable states in EMT. Our work may advance the understanding of the significance of network topology in the regulation of EMT. Epithelial‐to‐mesenchymal transition (EMT) plays a significant role in cancer metastasis. A series of models have focused on EMT regulation by TGF‐β network. However, how EMT is regulated under hypoxia is less understood. We developed a model of HIF‐1α network to explore the potential link between EMT and the network topology. Our results revealed that three positive feedback loops, composed of HIF‐1α and its three targets SNAIL, TWIST, and miR‐210, should be sequentially activated to induce EMT under aggravating hypoxia. We suggested that the number of the positive feedback loops is critical for determining the number of stable states in EMT. Our work may advance the understanding of the significance of network topology in the regulation of EMT. This study reveals the mechanism of hypoxia‐induced epithelial‐to‐mesenchymal transition (EMT) by modeling. Under aggravating hypoxia, hypoxia‐inducible factor‐1α (HIF‐1α) induces snail, twist, and miR‐210 so that three positive feedback loops are triggered sequentially to push forward EMT. Our results suggested that the number of positive feedback loops may be associated with the number of stable states in EMT. |
Author | Wang, Wei Zhang, Xiao‐Peng Wang, Hang‐Yu |
Author_xml | – sequence: 1 givenname: Hang‐Yu surname: Wang fullname: Wang, Hang‐Yu organization: Nanjing University – sequence: 2 givenname: Xiao‐Peng orcidid: 0000-0001-8170-1236 surname: Zhang fullname: Zhang, Xiao‐Peng email: zhangxp@nju.edu.cn organization: Nanjing University – sequence: 3 givenname: Wei surname: Wang fullname: Wang, Wei email: zhangxp@nju.edu.cn, wangwei@nju.edu.cn organization: Nanjing University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34905218$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkbFOHDEQhq2IKByQOl20ZZoFj727tkuCOEBCQkKhobFs31zOiXd9rPcE2_EIvEpeJA-RJ4nvDlJEQjRjjfV9U_z_HtnpYoeEfAJ6CJSyI5CCl7xq5CFUrJbvyOTfzw6ZUApVWQvFd8leSj9o3iWoD2SXV4rWDOSE3F7j91Uwg49dEecFLv2wwOBN-PP4NMQ8WkzYucXYmlAMvemS37C-KxbjMj54U9ixyE5xfjHNOPz-VXQ43Mf-5wF5Pzch4cfnd5_cTE-_nZyXl1dnFyfHl6WrQMpSmWpmrWKSSQAGljtFrTWUCmxEYyk4bJirzUxwOUNac2bACVZb5RxtUPF98mV7d9nHuxWmQbc-OQzBdBhXSTMBknMlKvY22uRUhaglZPTzM7qyLc70svet6Uf9El0G6i3g-phSj3Pt_LAJMsfkgwaq1xXpdSF6XYjeVJS9o_-8l9OvG83WuPcBx7dwPT39yrbiXyONo-8 |
CitedBy_id | crossref_primary_10_1038_s41540_025_00504_2 crossref_primary_10_1038_s41420_022_01096_0 crossref_primary_10_1016_j_jtbi_2023_111558 crossref_primary_10_1038_s41540_024_00470_1 crossref_primary_10_1016_j_bbcan_2024_189137 crossref_primary_10_3390_cancers14092291 crossref_primary_10_3389_fphy_2022_1017218 crossref_primary_10_1016_j_jocs_2024_102464 |
Cites_doi | 10.1371/journal.pcbi.1004569 10.1016/j.bbrc.2017.06.030 10.1016/j.ceb.2013.01.008 10.18632/oncotarget.5406 10.18632/oncotarget.3186 10.1038/sj.bjc.6605369 10.1158/0008-5472.CAN-18-3151 10.1016/j.trecan.2016.11.008 10.18632/oncotarget.14484 10.1371/journal.pone.0129603 10.1038/nrc2131 10.1073/pnas.1318192110 10.1016/j.bpj.2013.07.011 10.1038/ncb2976 10.1103/PhysRevE.97.042412 10.1016/j.cell.2009.11.007 10.1038/s41388-018-0382-1 10.4161/cc.10.24.18552 10.1101/gad.14.1.34 10.4142/jvs.2013.14.1.69 10.1002/1873-3468.13525 10.1038/s41586-018-0040-3 10.1128/MCB.01276-10 10.1016/S0092-8674(01)00518-9 10.1371/journal.pone.0030771 10.1038/s41540-018-0068-x 10.1126/scisignal.2005304 10.1259/bjr.20130676 10.1016/j.coisb.2017.02.004 10.1152/ajpcell.1996.271.4.C1172 10.1016/j.molcel.2009.09.006 10.1016/j.ejphar.2020.173282 10.1128/MCB.01242-10 10.1016/j.tcb.2018.12.001 10.1073/pnas.1100600108 10.1002/cam4.2667 10.1002/jgm.3200 10.1038/nrc3447 10.1371/journal.pcbi.1007682 10.1038/ncb2173 10.1083/jcb.201103097 10.1016/j.cell.2011.02.013 10.1164/rccm.201109-1706OC 10.1016/j.biopha.2017.12.058 10.1093/abbs/gmt141 10.1111/jcmm.13264 10.1038/ncb1691 10.18632/oncotarget.3623 10.1042/BJ20040620 10.1038/nrc1187 |
ContentType | Journal Article |
Copyright | 2021 Federation of European Biochemical Societies 2021 Federation of European Biochemical Societies. |
Copyright_xml | – notice: 2021 Federation of European Biochemical Societies – notice: 2021 Federation of European Biochemical Societies. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1002/1873-3468.14258 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1873-3468 |
EndPage | 349 |
ExternalDocumentID | 34905218 10_1002_1873_3468_14258 FEB214258 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 11574139; 12090052 |
GroupedDBID | --- --K -~X .55 .~1 0R~ 0SF 1B1 1OC 1~. 1~5 24P 29H 2WC 33P 4.4 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 8P~ AABNK AACTN AAEDW AAESR AAFTH AAHBH AAHHS AAHQN AAIKJ AAIPD AALRI AAMNL AANLZ AAQXK AASGY AAXRX AAXUO AAYCA AAZKR ABBQC ABCUV ABEFU ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABQWH ABVKL ABWVN ABXDB ABXGK ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIUM ACMXC ACNCT ACPOU ACRPL ACXBN ACXQS ADBBV ADBTR ADEOM ADEZE ADIYS ADKYN ADMGS ADMUD ADNMO ADOZA ADQTV ADUVX ADVLN ADXAS ADZMN ADZOD AEEZP AEFWE AEGXH AEKER AENEX AEQDE AEQOU AEUYR AEXQZ AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AGHFR AGYEJ AHBTC AI. AIACR AIAGR AITUG AITYG AIURR AIWBW AJBDE AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMRAJ AMYDB AZFZN AZVAB BAWUL BFHJK BMXJE C45 CS3 DCZOG DIK DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FUBAC G-Q GBLVA GI5 GX1 HGLYW HVGLF HZ~ IHE IXB J1W KBYEO L7B LATKE LEEKS LITHE LOXES LUTES LX3 LYRES M41 MEWTI MO0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N9A NCXOZ O-L O9- OK1 OVD OZT P-8 P-9 P2P P2W PC. Q38 R2- R9- RIG RNS ROL RPZ SCC SDF SDG SDP SEL SES SEW SFE SSZ SUPJJ SV3 TEORI TR2 UHB UNMZH VH1 WBKPD WH7 WIH WIJ WIK WIN WOHZO WXSBR X7M Y6R YK3 ZGI ZZTAW ~02 AAYWO AAYXX ACVFH ADCNI ADXHL AEUPX AEYWJ AFPUW AGHNM AGQPQ AGYGG AIGII AKBMS AKYEP CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4188-9a4dbb928281121b3c90bba007e676b01ce62c5ad738de0532a1c725b9cc06e93 |
ISSN | 0014-5793 1873-3468 |
IngestDate | Fri Jul 11 18:30:13 EDT 2025 Fri Jul 11 04:53:26 EDT 2025 Mon Jul 21 05:58:32 EDT 2025 Thu Apr 24 23:07:30 EDT 2025 Tue Jul 01 02:46:52 EDT 2025 Wed Jan 22 16:27:28 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | HIF-1α network intermediate state positive feedback loop topology epithelial-to-mesenchymal transition |
Language | English |
License | 2021 Federation of European Biochemical Societies. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4188-9a4dbb928281121b3c90bba007e676b01ce62c5ad738de0532a1c725b9cc06e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8170-1236 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/1873-3468.14258 |
PMID | 34905218 |
PQID | 2610077581 |
PQPubID | 23479 |
PageCount | 349 |
ParticipantIDs | proquest_miscellaneous_2718339742 proquest_miscellaneous_2610077581 pubmed_primary_34905218 crossref_citationtrail_10_1002_1873_3468_14258 crossref_primary_10_1002_1873_3468_14258 wiley_primary_10_1002_1873_3468_14258_FEB214258 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 2022-Feb 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | FEBS letters |
PublicationTitleAlternate | FEBS Lett |
PublicationYear | 2022 |
References | 2019; 8 2012; 185 2017; 8 2015; 6 2013; 25 2017; 3 2013; 105 2019; 79 2017; 21 2015; 11 2004; 381 2015; 10 2011; 31 2020; 16 2011; 10 2014; 46 2008; 10 2011; 13 2020; 881 2001; 107 2011; 195 2015; 8 2014; 87 2009; 139 2009; 35 2013; 14 2011; 108 2018; 4 2000; 14 2018; 556 2013; 13 2018; 498 2014; 16 2003; 3 1996; 271 2009; 101 2019; 29 2007; 7 2020; 22 2013; 110 2012; 7 2018; 98 2014; 7 2018; 97 2011; 144 2018; 37 2019; 593 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 Ding L (e_1_2_9_42_1) 2015; 8 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 13 start-page: 97 year: 2013 article-title: Regulatory networks defining EMT during cancer initiation and progression publication-title: Nat Rev Cancer – volume: 6 start-page: 15436 issue: 17 year: 2015 end-page: 48 article-title: OVOL guides the epithelial‐hybrid‐mesenchymal transition publication-title: Oncotarget – volume: 4 start-page: 34 year: 2018 article-title: A landscape view on the interplay between EMT and cancer metastasis publication-title: NPJ Sys Biol Appl – volume: 31 start-page: 2696 issue: 13 year: 2011 end-page: 706 article-title: A hypoxia‐induced positive feedback loop promotes hypoxia‐inducible factor 1α stability through miR‐210 suppression of glycerol‐3‐phosphate dehydrogenase 1‐Like publication-title: Mol Cell Biol – volume: 79 start-page: 2962 issue: 11 year: 2019 end-page: 77 article-title: Targeting the temporal dynamics of hypoxia‐induced tumor‐secreted factors halts tumor migration publication-title: Can Res – volume: 593 start-page: 2596 issue: 18 year: 2019 end-page: 611 article-title: Modeling the regulation of p53 activation by HIF‐1 upon hypoxia publication-title: FEBS Lett – volume: 110 start-page: 18144 issue: 45 year: 2013 end-page: 9 article-title: MicroRNA‐based regulation of epithelial‐hybrid‐mesenchymal fate determination publication-title: Proc Natl Acad Sci – volume: 3 start-page: 1 year: 2017 end-page: 6 article-title: Computational systems biology of epithelial‐hybrid‐mesenchymal transitions publication-title: Curr Opinion Sys Biol – volume: 10 issue: 6 year: 2015 article-title: HIF‐1α promotes epithelial‐mesenchymal transition and metastasis through direct regulation of ZEB1 in colorectal cancer publication-title: PLoS One – volume: 16 start-page: 488 year: 2014 end-page: 94 article-title: Oncogenic roles of EMT‐inducing transcription factors publication-title: Nat Cell Biol – volume: 556 start-page: 463 issue: 7702 year: 2018 end-page: 8 article-title: Identification of the tumour transition states occurring during EMT publication-title: Nature – volume: 14 start-page: 69 issue: 1 year: 2013 end-page: 76 article-title: Survival of hypoxic human mesenchymal stem cells is enhanced by a positive feedback loop involving miR‐210 and hypoxia‐inducible factor 1 publication-title: J Vet Sci – volume: 139 start-page: 871 issue: 5 year: 2009 end-page: 90 article-title: Epithelial‐mesenchymal transitions in development and disease publication-title: Cell – volume: 22 issue: 8 year: 2020 article-title: miR‐129‐5p attenuates hypoxia‐induced apoptosis in rat H9c2 cardiomyocytes by activating autophagy publication-title: J Gene Med – volume: 195 start-page: 417 issue: 3 year: 2011 end-page: 33 article-title: A p53/miRNA‐34 axis regulates Snail1‐dependent cancer cell epithelial‐mesenchymal transition publication-title: J Cell Biol – volume: 6 start-page: 34423 issue: 33 year: 2015 end-page: 36 article-title: Down‐regulation of miR‐129‐5p via the Twist1‐Snail feedback loop stimulates the epithelial‐mesenchymal transition and is associated with poor prognosis in breast cancer publication-title: Oncotarget – volume: 10 start-page: 4256 issue: 24 year: 2011 end-page: 71 article-title: miR‐34 and SNAIL form a double‐negative feedback loop to regulate epithelial‐mesenchymal transitions publication-title: Cell Cycle – volume: 31 start-page: 4087 issue: 19 year: 2011 end-page: 96 article-title: MicroRNA‐155 promotes resolution of hypoxia‐inducible factor 1α activity during prolonged hypoxia publication-title: Mol Cell Biol – volume: 25 start-page: 200 issue: 2 year: 2013 end-page: 7 article-title: Regulation of epithelial‐mesenchymal and mesenchymal‐epithelial transitions by microRNAs publication-title: Curr Opin Cell Biol – volume: 498 start-page: 375 issue: 3 year: 2018 end-page: 81 article-title: Attenuation of the hypoxia‐induced miR‐34a protects cardiomyocytes through maintenance of glucose metabolism publication-title: Biochem Biophys Res Comm – volume: 8 start-page: 7822 issue: 18 year: 2019 end-page: 32 article-title: Hypoxia‐induced HIF1α and ZEB1 are critical for the malignant transformation of ameloblastoma via TGF‐β‐dependent EMT publication-title: Cancer Med – volume: 8 start-page: 2299 issue: 2 year: 2015 end-page: 307 article-title: miR‐210, a modulator of hypoxia‐induced epithelial‐mesenchymal transition in ovarian cancer cell publication-title: Int J Clin Exp Med – volume: 185 start-page: 944 issue: 9 year: 2012 end-page: 54 article-title: Hypoxia‐inducible factor 1 mediates nasal polypogenesis by inducing epithelial‐to‐mesenchymal transition publication-title: Am J Respir Crit Care Med – volume: 16 issue: 3 year: 2020 article-title: A plausible accelerating function of intermediate states in cancer metastasis publication-title: PLoS Comput Biol – volume: 3 start-page: 56 issue: 1 year: 2017 end-page: 71 article-title: Targeting TGF‐β signaling in cancer publication-title: Trends Cancer – volume: 144 start-page: 646 issue: 5 year: 2011 end-page: 74 article-title: Hallmarks of cancer: the next generation publication-title: Cell – volume: 881 start-page: 173282 year: 2020 article-title: Inhibitory effect of melatonin on hypoxia‐induced vasculogenic mimicry via suppressing epithelial‐mesenchymal transition (EMT) in breast cancer stem cells publication-title: Eur J Pharmacol – volume: 7 start-page: ra91 issue: 345 year: 2014 article-title: TGF‐β‐induced epithelial‐to‐mesenchymal transition proceeds through stepwise activation of multiple feedback loops publication-title: Sci Signal – volume: 381 start-page: 761 issue: 3 year: 2004 end-page: 7 article-title: Hypoxia‐inducible factor‐1 (HIF‐1) promotes its degradation by induction of HIF‐α‐prolyl‐4‐hydroxylases publication-title: Biochem J – volume: 98 start-page: 433 year: 2018 end-page: 9 article-title: LncRNA HIF1A‐AS2 positively affects the progression and EMT formation of colorectal cancer through regulating miR‐129‐5p and DNMT3A publication-title: Biomed Pharmacother – volume: 6 start-page: 8271 issue: 10 year: 2015 end-page: 85 article-title: A novel HIF‐1α‐integrin‐linked kinase regulatory loop that facilitates hypoxia‐induced HIF‐1α expression and epithelial‐mesenchymal transition in cancer cells publication-title: Oncotarget – volume: 8 start-page: 9535 issue: 6 year: 2017 end-page: 45 article-title: HIF‐1α induces the epithelial‐mesenchymal transition in gastric cancer stem cells through the Snail pathway publication-title: Oncotarget – volume: 87 start-page: 20130676 issue: 1035 year: 2014 article-title: Defining normoxia, physoxia and hypoxia in tumours—implications for treatment response publication-title: British J Radiol – volume: 97 start-page: 42412 issue: 4 year: 2018 article-title: Modulation of dynamic modes by interplay between positive and negative feedback loops in gene regulatory networks publication-title: Phys Rev E – volume: 107 start-page: 1 issue: 1 year: 2001 end-page: 3 article-title: HIF‐1, O , and the 3 PHDs: How animal cells signal hypoxia to the nucleus publication-title: Cell – volume: 21 start-page: 3529 issue: 12 year: 2017 end-page: 39 article-title: A positive feedback loop promotes HIF‐1α stability through miR‐210‐Mediated suppression of RUNX3 in paraquat‐induced EMT publication-title: J Cell Mol Med – volume: 14 start-page: 34 issue: 1 year: 2000 end-page: 44 article-title: Regulation of tumor angiogenesis by p53‐induced degradation of hypoxia‐inducible factor 1α publication-title: Genes Dev – volume: 7 issue: 2 year: 2012 article-title: Hypoxia‐induced down‐regulation of microRNA‐34a promotes EMT by targeting the Notch signaling pathway in tubular epithelial cells publication-title: PLoS One – volume: 11 issue: 11 year: 2015 article-title: An Ovol2‐Zeb1 mutual inhibitory circuit governs bidirectional and multi‐step transition between epithelial and mesenchymal states publication-title: PLoS Comput Biol – volume: 101 start-page: 1769 issue: 10 year: 2009 end-page: 81 article-title: Hypoxia, Snail and incomplete epithelial‐mesenchymal transition in breast cancer publication-title: Br J Cancer – volume: 35 start-page: 856 issue: 6 year: 2009 end-page: 67 article-title: Hypoxia‐inducible mir‐210 regulates normoxic gene expression involved in tumor initiation publication-title: Mol Cell – volume: 13 start-page: 317 issue: 3 year: 2011 end-page: 23 article-title: p53 regulates Epithelial‐Mesenchymal transition and stem cell properties through modulating miRNAs publication-title: Nat Cell Biol – volume: 105 start-page: 1079 issue: 4 year: 2013 end-page: 89 article-title: Coupled reversible and irreversible bistable switches underlying TGFβ‐induced epithelial to mesenchymal transition publication-title: Biophys J – volume: 10 start-page: 295 year: 2008 end-page: 305 article-title: Direct regulation of TWIST by HIF‐1α promotes metastasis publication-title: Nat Cell Biol – volume: 271 start-page: C1172 issue: 4 PART 1 year: 1996 end-page: 80 article-title: Hypoxia‐inducible factor 1 levels vary exponentially over a physiologically relevant range of O tension publication-title: Am J Physiol‐Cell Physiol – volume: 29 start-page: 212 issue: 3 year: 2019 end-page: 26 article-title: EMT Transition states during tumor progression and metastasis publication-title: Trends Cell Biol – volume: 3 start-page: 721 issue: 10 year: 2003 end-page: 32 article-title: Targeting HIF‐1 for cancer therapy publication-title: Nat Rev Cancer – volume: 46 start-page: 220 issue: 3 year: 2014 end-page: 32 article-title: Emerging roles of miR‐210 and other non‐coding RNAs in the hypoxic response publication-title: Acta Biochim Biophys Sin – volume: 37 start-page: 5811 issue: 44 year: 2018 end-page: 28 article-title: Hypoxia‐induced LncRNA‐BX111 promotes metastasis and progression of pancreatic cancer through regulating ZEB1 transcription publication-title: Oncogene – volume: 7 start-page: 415 issue: 6 year: 2007 end-page: 28 article-title: Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? publication-title: Nat Rev Cancer – volume: 108 start-page: 8990 issue: 22 year: 2011 end-page: 5 article-title: Two‐phase dynamics of p53 in the DNA damage response publication-title: Proc Natl Acad Sci USA – ident: e_1_2_9_27_1 doi: 10.1371/journal.pcbi.1004569 – ident: e_1_2_9_34_1 doi: 10.1016/j.bbrc.2017.06.030 – ident: e_1_2_9_8_1 doi: 10.1016/j.ceb.2013.01.008 – ident: e_1_2_9_7_1 doi: 10.18632/oncotarget.5406 – ident: e_1_2_9_38_1 doi: 10.18632/oncotarget.3186 – ident: e_1_2_9_18_1 doi: 10.1038/sj.bjc.6605369 – ident: e_1_2_9_50_1 doi: 10.1158/0008-5472.CAN-18-3151 – ident: e_1_2_9_10_1 doi: 10.1016/j.trecan.2016.11.008 – ident: e_1_2_9_33_1 doi: 10.18632/oncotarget.14484 – ident: e_1_2_9_11_1 doi: 10.1371/journal.pone.0129603 – ident: e_1_2_9_6_1 doi: 10.1038/nrc2131 – ident: e_1_2_9_26_1 doi: 10.1073/pnas.1318192110 – ident: e_1_2_9_25_1 doi: 10.1016/j.bpj.2013.07.011 – ident: e_1_2_9_9_1 doi: 10.1038/ncb2976 – volume: 8 start-page: 2299 issue: 2 year: 2015 ident: e_1_2_9_42_1 article-title: miR‐210, a modulator of hypoxia‐induced epithelial‐mesenchymal transition in ovarian cancer cell publication-title: Int J Clin Exp Med – ident: e_1_2_9_49_1 doi: 10.1103/PhysRevE.97.042412 – ident: e_1_2_9_3_1 doi: 10.1016/j.cell.2009.11.007 – ident: e_1_2_9_12_1 doi: 10.1038/s41388-018-0382-1 – ident: e_1_2_9_23_1 doi: 10.4161/cc.10.24.18552 – ident: e_1_2_9_43_1 doi: 10.1101/gad.14.1.34 – ident: e_1_2_9_31_1 doi: 10.4142/jvs.2013.14.1.69 – ident: e_1_2_9_44_1 doi: 10.1002/1873-3468.13525 – ident: e_1_2_9_39_1 doi: 10.1038/s41586-018-0040-3 – ident: e_1_2_9_47_1 doi: 10.1128/MCB.01276-10 – ident: e_1_2_9_17_1 doi: 10.1016/S0092-8674(01)00518-9 – ident: e_1_2_9_19_1 doi: 10.1371/journal.pone.0030771 – ident: e_1_2_9_29_1 doi: 10.1038/s41540-018-0068-x – ident: e_1_2_9_52_1 doi: 10.1126/scisignal.2005304 – ident: e_1_2_9_40_1 doi: 10.1259/bjr.20130676 – ident: e_1_2_9_24_1 doi: 10.1016/j.coisb.2017.02.004 – ident: e_1_2_9_41_1 doi: 10.1152/ajpcell.1996.271.4.C1172 – ident: e_1_2_9_21_1 doi: 10.1016/j.molcel.2009.09.006 – ident: e_1_2_9_14_1 doi: 10.1016/j.ejphar.2020.173282 – ident: e_1_2_9_22_1 doi: 10.1128/MCB.01242-10 – ident: e_1_2_9_2_1 doi: 10.1016/j.tcb.2018.12.001 – ident: e_1_2_9_48_1 doi: 10.1073/pnas.1100600108 – ident: e_1_2_9_13_1 doi: 10.1002/cam4.2667 – ident: e_1_2_9_20_1 doi: 10.1002/jgm.3200 – ident: e_1_2_9_5_1 doi: 10.1038/nrc3447 – ident: e_1_2_9_51_1 doi: 10.1371/journal.pcbi.1007682 – ident: e_1_2_9_45_1 doi: 10.1038/ncb2173 – ident: e_1_2_9_36_1 doi: 10.1083/jcb.201103097 – ident: e_1_2_9_4_1 doi: 10.1016/j.cell.2011.02.013 – ident: e_1_2_9_37_1 doi: 10.1164/rccm.201109-1706OC – ident: e_1_2_9_35_1 doi: 10.1016/j.biopha.2017.12.058 – ident: e_1_2_9_30_1 doi: 10.1093/abbs/gmt141 – ident: e_1_2_9_32_1 doi: 10.1111/jcmm.13264 – ident: e_1_2_9_15_1 doi: 10.1038/ncb1691 – ident: e_1_2_9_28_1 doi: 10.18632/oncotarget.3623 – ident: e_1_2_9_46_1 doi: 10.1042/BJ20040620 – ident: e_1_2_9_16_1 doi: 10.1038/nrc1187 |
SSID | ssj0001819 |
Score | 2.443946 |
Snippet | Epithelial‐to‐mesenchymal transition (EMT) plays a significant role in cancer metastasis. A series of models have focused on EMT regulation by TGF‐β network.... Epithelial-to-mesenchymal transition (EMT) plays a significant role in cancer metastasis. A series of models have focused on EMT regulation by TGF-β network.... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 338 |
SubjectTerms | Cell Hypoxia Epithelial-Mesenchymal Transition - genetics epithelial‐to‐mesenchymal transition Feedback, Physiological HIF‐1α network Humans hypoxia Hypoxia-Inducible Factor 1, alpha Subunit - genetics Hypoxia-Inducible Factor 1, alpha Subunit - metabolism intermediate state metastasis MicroRNAs - genetics MicroRNAs - metabolism Models, Biological Nuclear Proteins positive feedback loop Snail Family Transcription Factors - genetics Snail Family Transcription Factors - metabolism topology Twist-Related Protein 1 - genetics Twist-Related Protein 1 - metabolism |
Title | Regulation of epithelial‐to‐mesenchymal transition in hypoxia by the HIF‐1α network |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1873-3468.14258 https://www.ncbi.nlm.nih.gov/pubmed/34905218 https://www.proquest.com/docview/2610077581 https://www.proquest.com/docview/2718339742 |
Volume | 596 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgE7AXBBuXcpORGEKavCWOc_FjW7UqTCA0OrU8RbbjapXapIJWovwr_gi_iRM7TltKub2kVurYkb9j-zvOuSD0IpDai6nWJGGCExaqhMgsywinI8GiUSjpqPRGfvsu6l2yN8Nw6HK4V94lc3mqvv7Sr-R_UIV7gGvpJfsPyNaNwg0oA75wBYTh-lcYX9hE8hXn07PSv2IC3ZJ5QaalW5G6Wk6NNTlsSGNn1ni1nBVfxsIQTxCS3usu8Y_bneOWf5Jbo_B1xtrttD6cTIzTT02_B9Uhcw9-ycfF1uHzcCwK8l5Xm-LaAwM9Xj9mAA3Vq002tF0akzggAbNJcNzaGdp0tJWQBGsrYWCDtmyt0Dbia90YrNQ03KgJQzybGsACxkvX4mS1VdUGhO6v62ifgn4AC9x-8_xicF5vwkBcuIvk5NGzn_o7QDddC5t8ZEvJ2NRZDOno30G3K20BNy30d9E1nR-io2Yu5sV0iV9iY79rPowcohstV7rVdln8jlB_JSO4GOGdMoJXMoLHOa5kBMslhvrYyMj3b7iSj3vostvpt3ukyqRBFPNh0nDBMil5qV4Dv_ZloLgnpQB-qKM4kp6vdERVKLI4SDKTLET4Kqah5Ep5kebBfbSXF7l-iLBQZURHySIdUiZCKrj2M50wL1F8pOOogU7deKaqCjNfZjuZpDZANk1LLNISi9Rg0UCv6gdmNsLK7qrPHUApDGP5aUvkulh8Tmnkm2COif-bOkDDAqDfjDbQA4tu3aGThgY6M3D_6U1SmHzUlB7tbOsxOlhNpCdob_5poZ8Cg53LZ5W0_gBVy5O3 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+epithelial-to-mesenchymal+transition+in+hypoxia+by+the+HIF-1%CE%B1+network&rft.jtitle=FEBS+letters&rft.au=Wang%2C+Hang-Yu&rft.au=Zhang%2C+Xiao-Peng&rft.au=Wang%2C+Wei&rft.date=2022-02-01&rft.eissn=1873-3468&rft.volume=596&rft.issue=3&rft.spage=338&rft_id=info:doi/10.1002%2F1873-3468.14258&rft_id=info%3Apmid%2F34905218&rft.externalDocID=34905218 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-5793&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-5793&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-5793&client=summon |