Understanding Indirect Causal Relationships in Node‐Link Graphs
To find correlations and cause and effect relationships in multivariate data sets is central in many data analysis problems. A common way of representing causal relations among variables is to use node‐link diagrams, where nodes depict variables and edges show relationships between them. When perfor...
Saved in:
Published in | Computer graphics forum Vol. 36; no. 3; pp. 411 - 421 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.06.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0167-7055 1467-8659 1467-8659 |
DOI | 10.1111/cgf.13198 |
Cover
Loading…
Abstract | To find correlations and cause and effect relationships in multivariate data sets is central in many data analysis problems. A common way of representing causal relations among variables is to use node‐link diagrams, where nodes depict variables and edges show relationships between them. When performing a causal analysis, analysts may be biased by the position of collected evidences, especially when they are at the top of a list. This is of crucial importance since finding a root cause or a derived effect, and searching for causal chains of inferences are essential analytic tasks when investigating causal relationships. In this paper, we examine whether sequential ordering influences understanding of indirect causal relationships and whether it improves readability of multi‐attribute causal diagrams. Moreover, we see how people reason to identify a root cause or a derived effect. The results of our design study show that sequential ordering does not play a crucial role when analyzing causal relationships, but many connections from/to a variable and higher strength/certainty values may influence the process of finding a root cause and a derived effect. |
---|---|
AbstractList | To find correlations and cause and effect relationships in multivariate data sets is central in many data analysis problems. A common way of representing causal relations among variables is to use node-link diagrams, where nodes depict variables and edges show relationships between them. When performing a causal analysis, analysts may be biased by the position of collected evidences, especially when they are at the top of a list. This is of crucial importance since finding a root cause or a derived effect, and searching for causal chains of inferences are essential analytic tasks when investigating causal relationships. In this paper, we examine whether sequential ordering influences understanding of indirect causal relationships and whether it improves readability of multi-attribute causal diagrams. Moreover, we see how people reason to identify a root cause or a derived effect. The results of our design study show that sequential ordering does not play a crucial role when analyzing causal relationships, but many connections from/to a variable and higher strength/certainty values may influence the process of finding a root cause and a derived effect. |
Author | Helldin, Tove Bae, Juhee Riveiro, Maria |
Author_xml | – sequence: 1 givenname: Juhee surname: Bae fullname: Bae, Juhee email: juhee.bae@his.se organization: University of Skövde – sequence: 2 givenname: Tove surname: Helldin fullname: Helldin, Tove email: tove.helldin@his.se organization: University of Skövde – sequence: 3 givenname: Maria surname: Riveiro fullname: Riveiro, Maria email: maria.riveiro@his.se organization: University of Skövde |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-13970$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-43246$$DView record from Swedish Publication Index |
BookMark | eNqNkUFOwzAQRS0EEqWw4AaRWCFosRvbiZdVgVKpAgkBW8txJq1LcIKdqGLHETgjJ8GQskEgMZs_i_dHM_P30LatLCB0SPCQhDrTi2JIYiLSLdQjlCeDlDOxjXqYhD7BjO2iPe9XGGOacNZD43ubg_ONsrmxi2gWxIFuoolqvSqjWyhVYyrrl6b2kbHRdZXD--vb3NjHaOpUvfT7aKdQpYeDjfbR_eXF3eRqML-Zzibj-UBTkqYDCqAwS0dZQZUQiqaZ0jojOfCCxXSU5ppqnjPFSQGCAiWYc5qCFgknGQgV99FJN9evoW4zWTvzpNyLrJSR5-ZhLCu3kMuVpPGI8kCf_oM2XpJYJDjgRx1eu-q5Bd_IVdU6G-6RRBDGeBx-F6izjtKu8t5BIbVpvv7TOGVKSbD8DEGGEORXCMFx_MPxvchv7Gb62pTw8jcoJ9PLzvEBb_mZZA |
CitedBy_id | crossref_primary_10_1109_TVCG_2023_3327376 crossref_primary_10_1109_TVCG_2022_3207929 crossref_primary_10_1109_TVCG_2024_3456346 crossref_primary_10_1007_s12650_024_01041_6 crossref_primary_10_1109_TVCG_2021_3114875 crossref_primary_10_1109_TVCG_2022_3166071 crossref_primary_10_1109_TVCG_2019_2940580 crossref_primary_10_1016_j_visinf_2018_12_006 crossref_primary_10_1109_ACCESS_2020_3047616 crossref_primary_10_1109_TVCG_2020_3028957 crossref_primary_10_1109_TVCG_2020_3030465 crossref_primary_10_1109_TVCG_2020_3030358 crossref_primary_10_1016_j_cag_2024_104123 crossref_primary_10_1007_s11704_020_0088_8 crossref_primary_10_1109_TVCG_2023_3282801 |
Cites_doi | 10.1109/INFVIS.2004.1 10.1109/MC.2011.313 10.1109/TVCG.2015.2467931 10.1006/ijhc.2002.1017 10.1109/TVCG.2015.2424872 10.1007/978-3-642-32677-6_15 10.1145/238386.238482 10.1109/HICSS.2013.58 10.1037/xlm0000061 10.1186/1753-6561-9-S6-S6 10.1109/TVCG.2012.279 10.1145/1518701.1519054 10.1080/13658810701517096 10.1109/PACIFICVIS.2011.5742390 10.1145/774833.774836 10.1177/1473871615576758 10.1002/spe.4380211102 10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N 10.1037/a0014928 10.1109/TVCG.2007.70528 10.1109/PACIFICVIS.2009.4906848 10.1109/APVIS.2007.329282 |
ContentType | Journal Article |
Copyright | 2017 The Author(s) Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. 2017 The Eurographics Association and John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2017 The Author(s) Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. – notice: 2017 The Eurographics Association and John Wiley & Sons Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D ADTPV AOWAS DF6 D8X |
DOI | 10.1111/cgf.13198 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional SwePub SwePub Articles SWEPUB Högskolan i Skövde SWEPUB Högskolan i Jönköping |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1467-8659 |
EndPage | 421 |
ExternalDocumentID | oai_DiVA_org_hj_43246 oai_DiVA_org_his_13970 10_1111_cgf_13198 CGF13198 |
Genre | article |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AHQJS AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION 7SC 8FD JQ2 L7M L~C L~D ADTPV AOWAS DF6 D8X |
ID | FETCH-LOGICAL-c4188-4eea0582bf4a99a48baccb1de6f53428dc4c6d5a61fe94e4106648ec9761be9a3 |
IEDL.DBID | DR2 |
ISSN | 0167-7055 1467-8659 |
IngestDate | Thu Jul 03 05:21:56 EDT 2025 Thu Aug 21 06:47:13 EDT 2025 Mon Jul 14 09:06:19 EDT 2025 Thu Apr 24 23:06:21 EDT 2025 Thu Jul 03 08:26:22 EDT 2025 Wed Jan 22 16:28:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4188-4eea0582bf4a99a48baccb1de6f53428dc4c6d5a61fe94e4106648ec9761be9a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1915563705 |
PQPubID | 30877 |
PageCount | 11 |
ParticipantIDs | swepub_primary_oai_DiVA_org_hj_43246 swepub_primary_oai_DiVA_org_his_13970 proquest_journals_1915563705 crossref_citationtrail_10_1111_cgf_13198 crossref_primary_10_1111_cgf_13198 wiley_primary_10_1111_cgf_13198_CGF13198 |
PublicationCentury | 2000 |
PublicationDate | June 2017 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: June 2017 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Computer graphics forum |
PublicationYear | 2017 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2010; 11 2012 2011 2002; 57 2009 2007 1996 2012; 18 2004 2003 2015; 9 2016; 15 2007; 13 2005; 45 2009; 35 1991; 21 2015; 41 2000; 30 2015; 21 2011; 44 2017 2016 2008; 22 2013 2016; 22 e_1_2_9_10_2 e_1_2_9_12_2 e_1_2_9_11_2 Spirtes P. (e_1_2_9_26_2) 2010; 11 Huang W. (e_1_2_9_16_2) 2005 e_1_2_9_14_2 e_1_2_9_13_2 e_1_2_9_15_2 e_1_2_9_18_2 e_1_2_9_17_2 e_1_2_9_19_2 e_1_2_9_21_2 e_1_2_9_20_2 e_1_2_9_23_2 e_1_2_9_22_2 Zhao B. (e_1_2_9_29_2) 2016 e_1_2_9_7_2 e_1_2_9_6_2 e_1_2_9_5_2 e_1_2_9_4_2 e_1_2_9_3_2 e_1_2_9_2_2 e_1_2_9_9_2 e_1_2_9_8_2 e_1_2_9_25_2 e_1_2_9_24_2 e_1_2_9_27_2 e_1_2_9_28_2 |
References_xml | – volume: 44 start-page: 84 issue: 10 year: 2011 end-page: 87 article-title: From data analysis and visualization to causality discovery publication-title: Computer – volume: 9 start-page: 1 year: 2015 – start-page: 2299 year: 2009 end-page: 2308 – volume: 18 start-page: 2496 issue: 12 year: 2012 end-page: 2505 article-title: Visual semiotics & uncertainty visualization: An empirical study publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 22 start-page: 230 issue: 1 year: 2016 end-page: 239 article-title: The visual causality analyst: An interactive interface for causal reasoning publication-title: IEEE Transactions on Visualization and Computer Graphics – start-page: 137 year: 2009 end-page: 144 – year: 2007 – start-page: 195 year: 2011 end-page: 202 – volume: 35 start-page: 678 issue: 3 year: 2009 article-title: Causal learning with local computations publication-title: Journal of experimental psychology: Learning, memory, and cognition – volume: 21 start-page: 1129 issue: 11 year: 1991 end-page: 1164 article-title: Graph drawing by force‐directed placement publication-title: Software: Practice and Experience – volume: 15 start-page: 51 issue: 1 year: 2016 end-page: 63 article-title: On the effective visualisation of dynamic attribute cascades publication-title: Information Visualization – start-page: 17 year: 2003 end-page: 26 – volume: 13 start-page: 1254 issue: 6 year: 2007 end-page: 1261 article-title: Visualizing causal semantics using animations publication-title: IEEE Transactions on Visualization and Computer Graphics – start-page: 17 year: 2004 end-page: 24 – volume: 45 start-page: 51 year: 2005 end-page: 58 – volume: 21 start-page: 1173 issue: 10 year: 2015 end-page: 1186 article-title: Representing uncertainty in graph edges: An evaluation of paired visual variables publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 57 start-page: 247 issue: 4 year: 2002 end-page: 262 article-title: Animation: can it facilitate? publication-title: International Journal of Human‐Computer Studies – start-page: 97 year: 2007 end-page: 100 – volume: 30 start-page: 1203 issue: 11 year: 2000 end-page: 1233 article-title: An open graph visualization system and its applications to software engineering publication-title: SOFTWARE ‐ PRACTICE AND EXPERIENCE – volume: 41 start-page: 708 issue: 3 year: 2015 article-title: Conservative forgetful scholars: How people learn causal structure through sequences of interventions publication-title: Journal of Experimental Psychology: Learning, Memory, and Cognition – volume: 11 start-page: 1643 year: 2010 end-page: 1662 article-title: Introduction to causal inference publication-title: Journal of Machine Learning Research – start-page: 359 year: 2016 end-page: 368 – year: 2017 – start-page: 1495 year: 2013 end-page: 1504 – start-page: 226 year: 2012 end-page: 249 – volume: 22 start-page: 463 issue: 4 year: 2008 end-page: 478 article-title: The effect of instructions on distance and similarity judgements in information spatializations publication-title: Int. Journal of Geographical Information Science – start-page: 197 year: 1996 end-page: 204 – year: 2013 – ident: e_1_2_9_5_2 – ident: e_1_2_9_2_2 – ident: e_1_2_9_12_2 doi: 10.1109/INFVIS.2004.1 – ident: e_1_2_9_6_2 doi: 10.1109/MC.2011.313 – ident: e_1_2_9_28_2 doi: 10.1109/TVCG.2015.2467931 – ident: e_1_2_9_27_2 doi: 10.1006/ijhc.2002.1017 – volume: 11 start-page: 1643 year: 2010 ident: e_1_2_9_26_2 article-title: Introduction to causal inference publication-title: Journal of Machine Learning Research – ident: e_1_2_9_13_2 doi: 10.1109/TVCG.2015.2424872 – ident: e_1_2_9_24_2 doi: 10.1007/978-3-642-32677-6_15 – ident: e_1_2_9_23_2 doi: 10.1145/238386.238482 – ident: e_1_2_9_14_2 doi: 10.1109/HICSS.2013.58 – ident: e_1_2_9_4_2 doi: 10.1037/xlm0000061 – start-page: 51 volume-title: proceedings of the 2005 Asia‐Pacific symposium on Information visualisation‐Volume year: 2005 ident: e_1_2_9_16_2 – ident: e_1_2_9_25_2 – ident: e_1_2_9_7_2 doi: 10.1186/1753-6561-9-S6-S6 – ident: e_1_2_9_22_2 doi: 10.1109/TVCG.2012.279 – ident: e_1_2_9_20_2 doi: 10.1145/1518701.1519054 – ident: e_1_2_9_9_2 doi: 10.1080/13658810701517096 – ident: e_1_2_9_18_2 doi: 10.1109/PACIFICVIS.2011.5742390 – ident: e_1_2_9_8_2 doi: 10.1145/774833.774836 – ident: e_1_2_9_3_2 doi: 10.1177/1473871615576758 – ident: e_1_2_9_10_2 doi: 10.1002/spe.4380211102 – ident: e_1_2_9_15_2 doi: 10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N – ident: e_1_2_9_11_2 doi: 10.1037/a0014928 – start-page: 359 volume-title: An Alarm Correlation Algorithm Based on Similarity Distance and Deep Network year: 2016 ident: e_1_2_9_29_2 – ident: e_1_2_9_21_2 doi: 10.1109/TVCG.2007.70528 – ident: e_1_2_9_17_2 doi: 10.1109/PACIFICVIS.2009.4906848 – ident: e_1_2_9_19_2 doi: 10.1109/APVIS.2007.329282 |
SSID | ssj0004765 |
Score | 2.3448539 |
Snippet | To find correlations and cause and effect relationships in multivariate data sets is central in many data analysis problems. A common way of representing... |
SourceID | swepub proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 411 |
SubjectTerms | Categories and Subject Descriptors (according to ACM CCS) Data analysis Graphs H.5.2 [Information Interfaces and Presentation]: User Interfaces—Evaluation/methodology INF301 Data Science Multivariate analysis Skövde Artificial Intelligence Lab (SAIL) |
Title | Understanding Indirect Causal Relationships in Node‐Link Graphs |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.13198 https://www.proquest.com/docview/1915563705 https://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-13970 https://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-43246 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ07T8MwEMdPFSww8EaUlyIEEkuqhtp5iKkUymNgQBR1QLJsx2kLKEWkXZj4CHxGPgl3eVEQIMSW4eI4ts_-n3X-GWCXS7r5xHftMIh8mzET2EoRgdYLI26UT2s6ZVtcumcddtHl3QocFmdhMj5EueFGnpHO1-TgUiUTTq57Uc3BAUQHfSlXiwTR1Qc6inkuL7jeRIzJqUKUxVO--XktmhCYGTT0s15NF5z2PNwWVc3yTO5r45Gq6ecvFMd__ssCzOVC1GpmI2cRKiZegtkJPOEyNDuTJ1-s8zhb_6yWHCf4aplH1x88JtYgti6HoXl7eaXw1jolEHayAp32yXXrzM6vXLA1c9BnmDGyzv0DFTEZBJL5SmqtnNC4EW9gpBJqpt2QS9eJTMAMw4DSZb7RKGocZQLZWIWpeBibNbDqXhBFWA4KRh9nCS_QJmQco8PQ4ygCvSrsF40vdM4jp2sxHkQRl2CriLRVqrBTmj5mEI7vjDaLHhS5HybCIfw9fqzOq7CX9WpZAoG1jwc3TTF86on-AI1Rm9WrsPur3Z0ghqGLtU879Of6iNZpO31Y_7vpBswckGxId3k2YWr0NDZbKHpGahumm0fHR-3tdJS_AzsI_1M |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3JTsMwEIZHLAfgwI4oa4SKxCVVA3YWiUtVKC1LD6hFXJAVOw4UUIpoe-HEI_CMPAkz2WgRIMQth4nj2B77H8v-BqDIfcp84tpm4IWuyZj2TCmJQOsEIdfSpTWdTls07XqbnV7z6zE4zO7CJHyIfMONPCOer8nBaUN6yMvVbViycAS54zBJGb3JLY8uP-FRzLF5RvYmZkzKFaJzPPmro6vRkMRMsKGjijVecmpzcJNVNjlp8lAa9GVJvXzhOP73b-ZhNtWiRiUZPAswpqNFmBkiFC5BpT18-cVoRMkSaFT9QQ9fzY_S3XWeekYnMprdQL-_vlGEa5wQC7u3DO3acataN9OsC6ZiFroN09ovc3dfhsz3PJ-50ldKWoG2Q36AwUqgmLID7ttWqD2mGcaUNnO1Ql1jSe35ByswEXUjvQpG2fHCEMtBzejiROF4SgeMY4AYOBx1oFOAvaz1hUqR5JQZ41FkoQm2iohbpQA7uelTwuH4zmgj60KRumJPWETAx4-VeQF2k27NSyC29lHnqiK6z7firoPGKM_KBSj-ancvCGNoY-3jHv25PqJ6Uosf1v5uug1T9dbFuThvNM_WYXqfVES86bMBE_3ngd5EDdSXW_FQ_wAQCAIJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LTxsxEMdHlEqoPdCWhxqgZYVA6mWjXbC9XnGKEgIUFCFEKg5I1voVAmgTkeTCiY_Qz9hPwnhfhAoQ4raHWa_X9nj-Y9k_A2zSxN18wpmvY8t9QkzsS-kItJG21EjuYrrbbdFhB13y-5yez8BueRYm50NUC27OM7L52jn4UNspJ1c9Ww9xAPEP8JGwgLvMq3X6yI4iEaMl2NshYwqskNvGU736NBhNKcycGvpUsGYRp_0FLsq65htNruuTsayru_8wju_8ma8wXyhRr5EPnW8wY9IF-DzFJ1yERnf66It3mOYB0GsmkxG-Wm2ku-wPR14_9ToDbf7d_3X5rbfvSNijJei2986aB35x54KvSIhOQ4xJAsq3pSVJHCeEy0QpGWrDLN3BVEUropimCQutiYkhmFEywo1CVRNKEyc7yzCbDlLzHbwgiq3FclAxcpwmolgZTSimhzqiqAKjGvwqG1-oAkju7sW4EWVigq0islapwUZlOswpHM8ZrZU9KApHHInQ8e_xYwGtwVbeq1UJjqzd6v9piMFtT1z20RjFWVCDzVftroSDGDKsfdahL9dHNPfb2cPK203XYe6k1RbHh52jVfi07SREtuKzBrPj24n5gQJoLH9mA_0BKzUAwQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+Indirect+Causal+Relationships+in+Node-Link+Graphs&rft.jtitle=Computer+graphics+forum&rft.au=Bae%2C+Juhee&rft.au=Helldin%2C+Tove&rft.au=Riveiro%2C+Maria&rft.date=2017-06-01&rft.issn=0167-7055&rft.volume=36&rft.issue=3&rft.spage=411&rft_id=info:doi/10.1111%2Fcgf.13198&rft.externalDocID=oai_DiVA_org_hj_43246 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |