Understanding Indirect Causal Relationships in Node‐Link Graphs

To find correlations and cause and effect relationships in multivariate data sets is central in many data analysis problems. A common way of representing causal relations among variables is to use node‐link diagrams, where nodes depict variables and edges show relationships between them. When perfor...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 36; no. 3; pp. 411 - 421
Main Authors Bae, Juhee, Helldin, Tove, Riveiro, Maria
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.06.2017
Subjects
Online AccessGet full text
ISSN0167-7055
1467-8659
1467-8659
DOI10.1111/cgf.13198

Cover

Loading…
Abstract To find correlations and cause and effect relationships in multivariate data sets is central in many data analysis problems. A common way of representing causal relations among variables is to use node‐link diagrams, where nodes depict variables and edges show relationships between them. When performing a causal analysis, analysts may be biased by the position of collected evidences, especially when they are at the top of a list. This is of crucial importance since finding a root cause or a derived effect, and searching for causal chains of inferences are essential analytic tasks when investigating causal relationships. In this paper, we examine whether sequential ordering influences understanding of indirect causal relationships and whether it improves readability of multi‐attribute causal diagrams. Moreover, we see how people reason to identify a root cause or a derived effect. The results of our design study show that sequential ordering does not play a crucial role when analyzing causal relationships, but many connections from/to a variable and higher strength/certainty values may influence the process of finding a root cause and a derived effect.
AbstractList To find correlations and cause and effect relationships in multivariate data sets is central in many data analysis problems. A common way of representing causal relations among variables is to use node-link diagrams, where nodes depict variables and edges show relationships between them. When performing a causal analysis, analysts may be biased by the position of collected evidences, especially when they are at the top of a list. This is of crucial importance since finding a root cause or a derived effect, and searching for causal chains of inferences are essential analytic tasks when investigating causal relationships. In this paper, we examine whether sequential ordering influences understanding of indirect causal relationships and whether it improves readability of multi-attribute causal diagrams. Moreover, we see how people reason to identify a root cause or a derived effect. The results of our design study show that sequential ordering does not play a crucial role when analyzing causal relationships, but many connections from/to a variable and higher strength/certainty values may influence the process of finding a root cause and a derived effect.
Author Helldin, Tove
Bae, Juhee
Riveiro, Maria
Author_xml – sequence: 1
  givenname: Juhee
  surname: Bae
  fullname: Bae, Juhee
  email: juhee.bae@his.se
  organization: University of Skövde
– sequence: 2
  givenname: Tove
  surname: Helldin
  fullname: Helldin, Tove
  email: tove.helldin@his.se
  organization: University of Skövde
– sequence: 3
  givenname: Maria
  surname: Riveiro
  fullname: Riveiro, Maria
  email: maria.riveiro@his.se
  organization: University of Skövde
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-13970$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-43246$$DView record from Swedish Publication Index
BookMark eNqNkUFOwzAQRS0EEqWw4AaRWCFosRvbiZdVgVKpAgkBW8txJq1LcIKdqGLHETgjJ8GQskEgMZs_i_dHM_P30LatLCB0SPCQhDrTi2JIYiLSLdQjlCeDlDOxjXqYhD7BjO2iPe9XGGOacNZD43ubg_ONsrmxi2gWxIFuoolqvSqjWyhVYyrrl6b2kbHRdZXD--vb3NjHaOpUvfT7aKdQpYeDjfbR_eXF3eRqML-Zzibj-UBTkqYDCqAwS0dZQZUQiqaZ0jojOfCCxXSU5ppqnjPFSQGCAiWYc5qCFgknGQgV99FJN9evoW4zWTvzpNyLrJSR5-ZhLCu3kMuVpPGI8kCf_oM2XpJYJDjgRx1eu-q5Bd_IVdU6G-6RRBDGeBx-F6izjtKu8t5BIbVpvv7TOGVKSbD8DEGGEORXCMFx_MPxvchv7Gb62pTw8jcoJ9PLzvEBb_mZZA
CitedBy_id crossref_primary_10_1109_TVCG_2023_3327376
crossref_primary_10_1109_TVCG_2022_3207929
crossref_primary_10_1109_TVCG_2024_3456346
crossref_primary_10_1007_s12650_024_01041_6
crossref_primary_10_1109_TVCG_2021_3114875
crossref_primary_10_1109_TVCG_2022_3166071
crossref_primary_10_1109_TVCG_2019_2940580
crossref_primary_10_1016_j_visinf_2018_12_006
crossref_primary_10_1109_ACCESS_2020_3047616
crossref_primary_10_1109_TVCG_2020_3028957
crossref_primary_10_1109_TVCG_2020_3030465
crossref_primary_10_1109_TVCG_2020_3030358
crossref_primary_10_1016_j_cag_2024_104123
crossref_primary_10_1007_s11704_020_0088_8
crossref_primary_10_1109_TVCG_2023_3282801
Cites_doi 10.1109/INFVIS.2004.1
10.1109/MC.2011.313
10.1109/TVCG.2015.2467931
10.1006/ijhc.2002.1017
10.1109/TVCG.2015.2424872
10.1007/978-3-642-32677-6_15
10.1145/238386.238482
10.1109/HICSS.2013.58
10.1037/xlm0000061
10.1186/1753-6561-9-S6-S6
10.1109/TVCG.2012.279
10.1145/1518701.1519054
10.1080/13658810701517096
10.1109/PACIFICVIS.2011.5742390
10.1145/774833.774836
10.1177/1473871615576758
10.1002/spe.4380211102
10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N
10.1037/a0014928
10.1109/TVCG.2007.70528
10.1109/PACIFICVIS.2009.4906848
10.1109/APVIS.2007.329282
ContentType Journal Article
Copyright 2017 The Author(s) Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2017 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2017 The Author(s) Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2017 The Eurographics Association and John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
DF6
D8X
DOI 10.1111/cgf.13198
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SwePub Articles
SWEPUB Högskolan i Skövde
SWEPUB Högskolan i Jönköping
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts


CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 421
ExternalDocumentID oai_DiVA_org_hj_43246
oai_DiVA_org_his_13970
10_1111_cgf_13198
CGF13198
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
DF6
D8X
ID FETCH-LOGICAL-c4188-4eea0582bf4a99a48baccb1de6f53428dc4c6d5a61fe94e4106648ec9761be9a3
IEDL.DBID DR2
ISSN 0167-7055
1467-8659
IngestDate Thu Jul 03 05:21:56 EDT 2025
Thu Aug 21 06:47:13 EDT 2025
Mon Jul 14 09:06:19 EDT 2025
Thu Apr 24 23:06:21 EDT 2025
Thu Jul 03 08:26:22 EDT 2025
Wed Jan 22 16:28:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4188-4eea0582bf4a99a48baccb1de6f53428dc4c6d5a61fe94e4106648ec9761be9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1915563705
PQPubID 30877
PageCount 11
ParticipantIDs swepub_primary_oai_DiVA_org_hj_43246
swepub_primary_oai_DiVA_org_his_13970
proquest_journals_1915563705
crossref_citationtrail_10_1111_cgf_13198
crossref_primary_10_1111_cgf_13198
wiley_primary_10_1111_cgf_13198_CGF13198
PublicationCentury 2000
PublicationDate June 2017
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: June 2017
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2017
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2010; 11
2012
2011
2002; 57
2009
2007
1996
2012; 18
2004
2003
2015; 9
2016; 15
2007; 13
2005; 45
2009; 35
1991; 21
2015; 41
2000; 30
2015; 21
2011; 44
2017
2016
2008; 22
2013
2016; 22
e_1_2_9_10_2
e_1_2_9_12_2
e_1_2_9_11_2
Spirtes P. (e_1_2_9_26_2) 2010; 11
Huang W. (e_1_2_9_16_2) 2005
e_1_2_9_14_2
e_1_2_9_13_2
e_1_2_9_15_2
e_1_2_9_18_2
e_1_2_9_17_2
e_1_2_9_19_2
e_1_2_9_21_2
e_1_2_9_20_2
e_1_2_9_23_2
e_1_2_9_22_2
Zhao B. (e_1_2_9_29_2) 2016
e_1_2_9_7_2
e_1_2_9_6_2
e_1_2_9_5_2
e_1_2_9_4_2
e_1_2_9_3_2
e_1_2_9_2_2
e_1_2_9_9_2
e_1_2_9_8_2
e_1_2_9_25_2
e_1_2_9_24_2
e_1_2_9_27_2
e_1_2_9_28_2
References_xml – volume: 44
  start-page: 84
  issue: 10
  year: 2011
  end-page: 87
  article-title: From data analysis and visualization to causality discovery
  publication-title: Computer
– volume: 9
  start-page: 1
  year: 2015
– start-page: 2299
  year: 2009
  end-page: 2308
– volume: 18
  start-page: 2496
  issue: 12
  year: 2012
  end-page: 2505
  article-title: Visual semiotics & uncertainty visualization: An empirical study
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 22
  start-page: 230
  issue: 1
  year: 2016
  end-page: 239
  article-title: The visual causality analyst: An interactive interface for causal reasoning
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– start-page: 137
  year: 2009
  end-page: 144
– year: 2007
– start-page: 195
  year: 2011
  end-page: 202
– volume: 35
  start-page: 678
  issue: 3
  year: 2009
  article-title: Causal learning with local computations
  publication-title: Journal of experimental psychology: Learning, memory, and cognition
– volume: 21
  start-page: 1129
  issue: 11
  year: 1991
  end-page: 1164
  article-title: Graph drawing by force‐directed placement
  publication-title: Software: Practice and Experience
– volume: 15
  start-page: 51
  issue: 1
  year: 2016
  end-page: 63
  article-title: On the effective visualisation of dynamic attribute cascades
  publication-title: Information Visualization
– start-page: 17
  year: 2003
  end-page: 26
– volume: 13
  start-page: 1254
  issue: 6
  year: 2007
  end-page: 1261
  article-title: Visualizing causal semantics using animations
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– start-page: 17
  year: 2004
  end-page: 24
– volume: 45
  start-page: 51
  year: 2005
  end-page: 58
– volume: 21
  start-page: 1173
  issue: 10
  year: 2015
  end-page: 1186
  article-title: Representing uncertainty in graph edges: An evaluation of paired visual variables
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 57
  start-page: 247
  issue: 4
  year: 2002
  end-page: 262
  article-title: Animation: can it facilitate?
  publication-title: International Journal of Human‐Computer Studies
– start-page: 97
  year: 2007
  end-page: 100
– volume: 30
  start-page: 1203
  issue: 11
  year: 2000
  end-page: 1233
  article-title: An open graph visualization system and its applications to software engineering
  publication-title: SOFTWARE ‐ PRACTICE AND EXPERIENCE
– volume: 41
  start-page: 708
  issue: 3
  year: 2015
  article-title: Conservative forgetful scholars: How people learn causal structure through sequences of interventions
  publication-title: Journal of Experimental Psychology: Learning, Memory, and Cognition
– volume: 11
  start-page: 1643
  year: 2010
  end-page: 1662
  article-title: Introduction to causal inference
  publication-title: Journal of Machine Learning Research
– start-page: 359
  year: 2016
  end-page: 368
– year: 2017
– start-page: 1495
  year: 2013
  end-page: 1504
– start-page: 226
  year: 2012
  end-page: 249
– volume: 22
  start-page: 463
  issue: 4
  year: 2008
  end-page: 478
  article-title: The effect of instructions on distance and similarity judgements in information spatializations
  publication-title: Int. Journal of Geographical Information Science
– start-page: 197
  year: 1996
  end-page: 204
– year: 2013
– ident: e_1_2_9_5_2
– ident: e_1_2_9_2_2
– ident: e_1_2_9_12_2
  doi: 10.1109/INFVIS.2004.1
– ident: e_1_2_9_6_2
  doi: 10.1109/MC.2011.313
– ident: e_1_2_9_28_2
  doi: 10.1109/TVCG.2015.2467931
– ident: e_1_2_9_27_2
  doi: 10.1006/ijhc.2002.1017
– volume: 11
  start-page: 1643
  year: 2010
  ident: e_1_2_9_26_2
  article-title: Introduction to causal inference
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_9_13_2
  doi: 10.1109/TVCG.2015.2424872
– ident: e_1_2_9_24_2
  doi: 10.1007/978-3-642-32677-6_15
– ident: e_1_2_9_23_2
  doi: 10.1145/238386.238482
– ident: e_1_2_9_14_2
  doi: 10.1109/HICSS.2013.58
– ident: e_1_2_9_4_2
  doi: 10.1037/xlm0000061
– start-page: 51
  volume-title: proceedings of the 2005 Asia‐Pacific symposium on Information visualisation‐Volume
  year: 2005
  ident: e_1_2_9_16_2
– ident: e_1_2_9_25_2
– ident: e_1_2_9_7_2
  doi: 10.1186/1753-6561-9-S6-S6
– ident: e_1_2_9_22_2
  doi: 10.1109/TVCG.2012.279
– ident: e_1_2_9_20_2
  doi: 10.1145/1518701.1519054
– ident: e_1_2_9_9_2
  doi: 10.1080/13658810701517096
– ident: e_1_2_9_18_2
  doi: 10.1109/PACIFICVIS.2011.5742390
– ident: e_1_2_9_8_2
  doi: 10.1145/774833.774836
– ident: e_1_2_9_3_2
  doi: 10.1177/1473871615576758
– ident: e_1_2_9_10_2
  doi: 10.1002/spe.4380211102
– ident: e_1_2_9_15_2
  doi: 10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N
– ident: e_1_2_9_11_2
  doi: 10.1037/a0014928
– start-page: 359
  volume-title: An Alarm Correlation Algorithm Based on Similarity Distance and Deep Network
  year: 2016
  ident: e_1_2_9_29_2
– ident: e_1_2_9_21_2
  doi: 10.1109/TVCG.2007.70528
– ident: e_1_2_9_17_2
  doi: 10.1109/PACIFICVIS.2009.4906848
– ident: e_1_2_9_19_2
  doi: 10.1109/APVIS.2007.329282
SSID ssj0004765
Score 2.3448539
Snippet To find correlations and cause and effect relationships in multivariate data sets is central in many data analysis problems. A common way of representing...
SourceID swepub
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 411
SubjectTerms Categories and Subject Descriptors (according to ACM CCS)
Data analysis
Graphs
H.5.2 [Information Interfaces and Presentation]: User Interfaces—Evaluation/methodology
INF301 Data Science
Multivariate analysis
Skövde Artificial Intelligence Lab (SAIL)
Title Understanding Indirect Causal Relationships in Node‐Link Graphs
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.13198
https://www.proquest.com/docview/1915563705
https://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-13970
https://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-43246
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ07T8MwEMdPFSww8EaUlyIEEkuqhtp5iKkUymNgQBR1QLJsx2kLKEWkXZj4CHxGPgl3eVEQIMSW4eI4ts_-n3X-GWCXS7r5xHftMIh8mzET2EoRgdYLI26UT2s6ZVtcumcddtHl3QocFmdhMj5EueFGnpHO1-TgUiUTTq57Uc3BAUQHfSlXiwTR1Qc6inkuL7jeRIzJqUKUxVO--XktmhCYGTT0s15NF5z2PNwWVc3yTO5r45Gq6ecvFMd__ssCzOVC1GpmI2cRKiZegtkJPOEyNDuTJ1-s8zhb_6yWHCf4aplH1x88JtYgti6HoXl7eaXw1jolEHayAp32yXXrzM6vXLA1c9BnmDGyzv0DFTEZBJL5SmqtnNC4EW9gpBJqpt2QS9eJTMAMw4DSZb7RKGocZQLZWIWpeBibNbDqXhBFWA4KRh9nCS_QJmQco8PQ4ygCvSrsF40vdM4jp2sxHkQRl2CriLRVqrBTmj5mEI7vjDaLHhS5HybCIfw9fqzOq7CX9WpZAoG1jwc3TTF86on-AI1Rm9WrsPur3Z0ghqGLtU879Of6iNZpO31Y_7vpBswckGxId3k2YWr0NDZbKHpGahumm0fHR-3tdJS_AzsI_1M
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3JTsMwEIZHLAfgwI4oa4SKxCVVA3YWiUtVKC1LD6hFXJAVOw4UUIpoe-HEI_CMPAkz2WgRIMQth4nj2B77H8v-BqDIfcp84tpm4IWuyZj2TCmJQOsEIdfSpTWdTls07XqbnV7z6zE4zO7CJHyIfMONPCOer8nBaUN6yMvVbViycAS54zBJGb3JLY8uP-FRzLF5RvYmZkzKFaJzPPmro6vRkMRMsKGjijVecmpzcJNVNjlp8lAa9GVJvXzhOP73b-ZhNtWiRiUZPAswpqNFmBkiFC5BpT18-cVoRMkSaFT9QQ9fzY_S3XWeekYnMprdQL-_vlGEa5wQC7u3DO3acataN9OsC6ZiFroN09ovc3dfhsz3PJ-50ldKWoG2Q36AwUqgmLID7ttWqD2mGcaUNnO1Ql1jSe35ByswEXUjvQpG2fHCEMtBzejiROF4SgeMY4AYOBx1oFOAvaz1hUqR5JQZ41FkoQm2iohbpQA7uelTwuH4zmgj60KRumJPWETAx4-VeQF2k27NSyC29lHnqiK6z7firoPGKM_KBSj-ancvCGNoY-3jHv25PqJ6Uosf1v5uug1T9dbFuThvNM_WYXqfVES86bMBE_3ngd5EDdSXW_FQ_wAQCAIJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LTxsxEMdHlEqoPdCWhxqgZYVA6mWjXbC9XnGKEgIUFCFEKg5I1voVAmgTkeTCiY_Qz9hPwnhfhAoQ4raHWa_X9nj-Y9k_A2zSxN18wpmvY8t9QkzsS-kItJG21EjuYrrbbdFhB13y-5yez8BueRYm50NUC27OM7L52jn4UNspJ1c9Ww9xAPEP8JGwgLvMq3X6yI4iEaMl2NshYwqskNvGU736NBhNKcycGvpUsGYRp_0FLsq65htNruuTsayru_8wju_8ma8wXyhRr5EPnW8wY9IF-DzFJ1yERnf66It3mOYB0GsmkxG-Wm2ku-wPR14_9ToDbf7d_3X5rbfvSNijJei2986aB35x54KvSIhOQ4xJAsq3pSVJHCeEy0QpGWrDLN3BVEUropimCQutiYkhmFEywo1CVRNKEyc7yzCbDlLzHbwgiq3FclAxcpwmolgZTSimhzqiqAKjGvwqG1-oAkju7sW4EWVigq0islapwUZlOswpHM8ZrZU9KApHHInQ8e_xYwGtwVbeq1UJjqzd6v9piMFtT1z20RjFWVCDzVftroSDGDKsfdahL9dHNPfb2cPK203XYe6k1RbHh52jVfi07SREtuKzBrPj24n5gQJoLH9mA_0BKzUAwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+Indirect+Causal+Relationships+in+Node-Link+Graphs&rft.jtitle=Computer+graphics+forum&rft.au=Bae%2C+Juhee&rft.au=Helldin%2C+Tove&rft.au=Riveiro%2C+Maria&rft.date=2017-06-01&rft.issn=0167-7055&rft.volume=36&rft.issue=3&rft.spage=411&rft_id=info:doi/10.1111%2Fcgf.13198&rft.externalDocID=oai_DiVA_org_hj_43246
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon