NMDA receptors in axons: there's no coincidence
In the textbook view, N‐methyl‐d‐aspartate (NMDA) receptors are postsynaptically located detectors of coincident activity in Hebbian learning. However, controversial presynaptically located NMDA receptors (preNMDARs) have for decades been repeatedly reported in the literature. These preNMDARs have t...
Saved in:
Published in | The Journal of physiology Vol. 599; no. 2; pp. 367 - 387 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.01.2021
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the textbook view, N‐methyl‐d‐aspartate (NMDA) receptors are postsynaptically located detectors of coincident activity in Hebbian learning. However, controversial presynaptically located NMDA receptors (preNMDARs) have for decades been repeatedly reported in the literature. These preNMDARs have typically been implicated in the regulation of short‐term and long‐term plasticity, but precisely how they signal and what their functional roles are have been poorly understood. The functional roles of preNMDARs across several brain regions and different forms of plasticity can differ vastly, with recent discoveries showing key involvement of unusual subunit composition. Increasing evidence shows preNMDAR can signal through both ionotropic action by fluxing calcium and in metabotropic mode even in the presence of magnesium blockade. We argue that these unusual properties may explain why controversy has surrounded this receptor type. In addition, the expression of preNMDARs at some synapse types but not others can underlie synapse‐type‐specific plasticity. Last but not least, preNMDARs are emerging therapeutic targets in disease states such as neuropathic pain. We conclude that axonally located preNMDARs are required for specific purposes and do not end up there by accident.
figure legend Presynaptic NMDARs (preNMDARs) are present in axons of specific synapses to regulate different forms of neurotransmission and synaptic plasticity. PreNMDARs can signal through both ionotropic mode by fluxing calcium and metabotropic mode without calcium influx. |
---|---|
AbstractList | In the textbook view, N‐methyl‐d‐aspartate (NMDA) receptors are postsynaptically located detectors of coincident activity in Hebbian learning. However, controversial presynaptically located NMDA receptors (preNMDARs) have for decades been repeatedly reported in the literature. These preNMDARs have typically been implicated in the regulation of short‐term and long‐term plasticity, but precisely how they signal and what their functional roles are have been poorly understood. The functional roles of preNMDARs across several brain regions and different forms of plasticity can differ vastly, with recent discoveries showing key involvement of unusual subunit composition. Increasing evidence shows preNMDAR can signal through both ionotropic action by fluxing calcium and in metabotropic mode even in the presence of magnesium blockade. We argue that these unusual properties may explain why controversy has surrounded this receptor type. In addition, the expression of preNMDARs at some synapse types but not others can underlie synapse‐type‐specific plasticity. Last but not least, preNMDARs are emerging therapeutic targets in disease states such as neuropathic pain. We conclude that axonally located preNMDARs are required for specific purposes and do not end up there by accident.
figure legend Presynaptic NMDARs (preNMDARs) are present in axons of specific synapses to regulate different forms of neurotransmission and synaptic plasticity. PreNMDARs can signal through both ionotropic mode by fluxing calcium and metabotropic mode without calcium influx. In the textbook view, N‐methyl‐d‐aspartate (NMDA) receptors are postsynaptically located detectors of coincident activity in Hebbian learning. However, controversial presynaptically located NMDA receptors (preNMDARs) have for decades been repeatedly reported in the literature. These preNMDARs have typically been implicated in the regulation of short‐term and long‐term plasticity, but precisely how they signal and what their functional roles are have been poorly understood. The functional roles of preNMDARs across several brain regions and different forms of plasticity can differ vastly, with recent discoveries showing key involvement of unusual subunit composition. Increasing evidence shows preNMDAR can signal through both ionotropic action by fluxing calcium and in metabotropic mode even in the presence of magnesium blockade. We argue that these unusual properties may explain why controversy has surrounded this receptor type. In addition, the expression of preNMDARs at some synapse types but not others can underlie synapse‐type‐specific plasticity. Last but not least, preNMDARs are emerging therapeutic targets in disease states such as neuropathic pain. We conclude that axonally located preNMDARs are required for specific purposes and do not end up there by accident. In the textbook view, N ‐methyl‐ d ‐aspartate (NMDA) receptors are postsynaptically located detectors of coincident activity in Hebbian learning. However, controversial presynaptically located NMDA receptors (preNMDARs) have for decades been repeatedly reported in the literature. These preNMDARs have typically been implicated in the regulation of short‐term and long‐term plasticity, but precisely how they signal and what their functional roles are have been poorly understood. The functional roles of preNMDARs across several brain regions and different forms of plasticity can differ vastly, with recent discoveries showing key involvement of unusual subunit composition. Increasing evidence shows preNMDAR can signal through both ionotropic action by fluxing calcium and in metabotropic mode even in the presence of magnesium blockade. We argue that these unusual properties may explain why controversy has surrounded this receptor type. In addition, the expression of preNMDARs at some synapse types but not others can underlie synapse‐type‐specific plasticity. Last but not least, preNMDARs are emerging therapeutic targets in disease states such as neuropathic pain. We conclude that axonally located preNMDARs are required for specific purposes and do not end up there by accident. image |
Author | Wong, Hovy Ho‐Wai Sjöström, P. Jesper Rannio, Sabine Thomazeau, Aurore Jones, Victoria |
Author_xml | – sequence: 1 givenname: Hovy Ho‐Wai orcidid: 0000-0003-3317-478X surname: Wong fullname: Wong, Hovy Ho‐Wai email: ho.w.wong@mail.mcgill.ca organization: The Research Institute of the McGill University Health Centre, Montreal General Hospital – sequence: 2 givenname: Sabine orcidid: 0000-0003-0669-3680 surname: Rannio fullname: Rannio, Sabine organization: McGill University – sequence: 3 givenname: Victoria surname: Jones fullname: Jones, Victoria organization: McGill University – sequence: 4 givenname: Aurore orcidid: 0000-0002-7668-2867 surname: Thomazeau fullname: Thomazeau, Aurore email: aurore.thomazeau@mail.mcgill.ca organization: The Research Institute of the McGill University Health Centre, Montreal General Hospital – sequence: 5 givenname: P. Jesper orcidid: 0000-0001-7085-2223 surname: Sjöström fullname: Sjöström, P. Jesper email: jesper.sjostrom@mcgill.ca organization: The Research Institute of the McGill University Health Centre, Montreal General Hospital |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33141440$$D View this record in MEDLINE/PubMed https://hal.science/hal-03777468$$DView record in HAL |
BookMark | eNp10MtKAzEUBuAgFW1V8AlkwIW6mJrrZMZdqXeqdlHXIZOewSnTpCat2rc3pZeF4CohfPw55--glnUWEDoluEsIYdfPQ5pjLIo91CY8K1IpC9ZCbYwpTZkU5BB1QphgTBguigN0yBjhhHPcRtevL7e9xIOB2dz5kNQ20T_Ohptk_gEeLkJiXWJcbU09BmvgGO1XuglwsjmP0Pv93aj_mA7eHp76vUFqOMlFWpRjY1hMlblkFZUC69LoTJac4XjFLCtpVuQAYyo4lzSvclERLjBjuqwAsyN0tc790I2a-Xqq_VI5XavH3kCt3jCTUvIs_yLRXq7tzLvPBYS5mtbBQNNoC24RFOUi_sA4oZGe_6ETt_A2bhKVlHlsLw68CzTeheCh2k1AsFoVrraFR3q2CVyUUxjv4LbhCLpr8F03sPw3SI2eh9ELwX4BugyFvA |
CitedBy_id | crossref_primary_10_3390_ijms23147807 crossref_primary_10_3389_fnmol_2021_797253 crossref_primary_10_7554_eLife_71178 crossref_primary_10_1111_bph_16361 crossref_primary_10_1113_JP280879 crossref_primary_10_3389_fncel_2024_1389094 crossref_primary_10_1016_j_neubiorev_2022_104939 crossref_primary_10_7554_eLife_66612 crossref_primary_10_1016_j_pharmthera_2023_108539 crossref_primary_10_1038_s41583_022_00663_9 crossref_primary_10_3389_fnsyn_2021_748937 crossref_primary_10_1055_a_2005_5497 crossref_primary_10_1016_j_neuropharm_2023_109570 crossref_primary_10_3389_fnmol_2022_864502 crossref_primary_10_1126_sciadv_adf3885 crossref_primary_10_3390_ph16111535 crossref_primary_10_1016_j_neuron_2023_10_011 crossref_primary_10_1155_2022_2900875 |
Cites_doi | 10.1093/cercor/bhy194 10.1038/nrn1297 10.1016/0014-5793(90)80652-Y 10.1016/S0896-6273(03)00476-8 10.1126/science.279.5355.1368 10.7554/eLife.34202 10.1002/cne.903470112 10.1111/j.1469-7793.1998.237bu.x 10.1038/nn.2750 10.1523/JNEUROSCI.3713-04.2005 10.1113/jphysiol.2007.149203 10.1038/srep09035 10.1038/nature02194 10.1016/j.neuro.2010.12.013 10.3389/fnsyn.2015.00001 10.1016/j.neuint.2019.03.003 10.1038/81453 10.1016/j.conb.2018.03.005 10.1523/JNEUROSCI.14-09-05202.1994 10.1038/nature10360 10.1016/j.cell.2020.05.052 10.1038/emboj.2011.203 10.1007/s00424-010-0809-1 10.1038/nature715 10.1016/j.neuron.2017.07.016 10.1016/0166-2236(95)93920-S 10.1093/nar/gky092 10.1016/j.tins.2011.11.010 10.1152/physrev.00016.2007 10.1523/JNEUROSCI.4289-14.2015 10.1523/JNEUROSCI.0534-17.2017 10.1038/s41586-018-0039-9 10.1016/S0896-6273(00)80763-1 10.1016/j.conb.2017.12.020 10.1038/nrn3504 10.1038/s41598-019-43709-2 10.1098/rstb.2013.0145 10.1523/JNEUROSCI.2432-08.2008 10.1523/JNEUROSCI.0046-20.2020 10.1111/jnc.14627 10.1097/00001756-199611040-00073 10.1523/JNEUROSCI.19-02-00511.1999 10.1038/4548 10.1016/j.biopsych.2009.07.029 10.1016/j.neuron.2014.03.030 10.1124/pr.109.002451 10.1023/A:1013238809666 10.1177/1073858408322675 10.1523/JNEUROSCI.2354-08.2009 10.1038/nature13294 10.1523/JNEUROSCI.2530-06.2006 10.1016/S0896-6273(00)80379-7 10.1038/386721a0 10.1093/cercor/bhv002 10.1016/j.neuron.2017.09.030 10.1016/S0896-6273(01)00568-2 10.1007/s11481-016-9677-6 10.1016/S1474-4422(02)00164-3 10.1523/JNEUROSCI.2929-06.2006 10.1093/acprof:oso/9780198745273.003.0018 10.1073/pnas.200354297 10.1038/ng.677 10.1523/JNEUROSCI.4980-04.2005 10.1073/pnas.1219454110 10.1016/j.tins.2015.11.001 10.1016/j.cophys.2017.12.004 10.1152/jn.00661.2005 10.1038/s41380-019-0426-0 10.1016/j.ajhg.2011.02.001 10.1098/rspb.1992.0159 10.1113/jphysiol.2009.182980 10.1113/JP279645 10.1016/j.celrep.2020.107955 10.1093/cercor/bhw172 10.1523/JNEUROSCI.0473-04.2004 10.1016/j.neuron.2008.08.028 10.1016/j.neuron.2012.10.035 10.1523/JNEUROSCI.2159-12.2012 10.1126/science.1227764 10.1038/307460a0 10.1038/nn.4343 10.1016/S0896-6273(00)80970-8 10.1016/j.biopsych.2018.01.018 10.1038/nature10180 10.1016/S0021-9258(18)53849-7 10.1073/pnas.1219605110 10.1038/nn.2481 10.1126/science.1251915 10.1038/369744a0 10.1177/0883073807302611 10.1038/s41380-020-0821-6 10.1038/368144a0 10.1073/pnas.0904284106 10.1126/science.275.5297.213 10.1016/j.neuron.2014.10.045 10.1016/0304-3959(92)90198-K 10.1016/j.neuropharm.2006.07.021 10.1016/j.neuron.2013.11.033 10.1016/j.neuron.2018.01.047 10.1016/j.neuropharm.2020.108117 10.1016/j.neuron.2013.12.029 10.1111/j.1460-9568.2010.07312.x 10.1074/jbc.M117.818476 10.1073/pnas.91.18.8383 10.7554/eLife.29688 10.1152/jn.00687.2015 10.1002/1096-9861(20000724)423:2<330::AID-CNE10>3.0.CO;2-9 10.1073/pnas.1816013116 10.1523/JNEUROSCI.3915-07.2008 10.1038/nn1649 10.1098/rstb.2016.0153 10.1016/j.neuroscience.2007.10.024 10.1016/j.neuron.2012.06.017 10.1002/hipo.20890 10.1371/journal.pone.0063191 10.1212/WNL.57.9.1618 10.1007/s12035-018-1187-5 10.1113/JP279028 10.1016/S1367-5931(03)00078-4 10.1073/pnas.85.17.6547 10.1073/pnas.1520029112 10.1016/j.neuron.2014.07.039 10.1523/JNEUROSCI.0274-11.2011 10.1523/JNEUROSCI.5494-06.2007 10.1002/phy2.271 10.1523/JNEUROSCI.18-24-10464.1998 10.1016/j.celrep.2016.03.004 10.1016/j.neuron.2011.09.027 10.3389/fnsyn.2020.00011 10.1523/JNEUROSCI.1091-17.2017 10.1111/ejn.12098 10.1038/nn.3075 10.1523/JNEUROSCI.3967-04.2005 10.1073/pnas.1520023112 10.1126/science.aau3644 10.1523/JNEUROSCI.1749-06.2006 10.1007/s00018-019-03047-y 10.1016/j.conb.2015.08.001 10.1038/tp.2011.52 10.1126/science.256.5060.1217 10.1038/s41598-018-38264-1 10.1371/journal.pone.0039983 10.1016/j.conb.2006.05.008 10.1073/pnas.97.3.1293 10.1016/S0959-4388(02)00325-2 10.1523/JNEUROSCI.1825-17.2017 10.1002/cne.10314 10.1093/cercor/bhp067 10.1038/357070a0 10.1523/JNEUROSCI.0176-06.2006 10.1073/pnas.1111093108 10.1523/ENEURO.0046-14.2015 10.1038/nn1227 10.1523/JNEUROSCI.3910-11.2011 10.1016/0306-4522(96)00301-6 10.1074/jbc.RA118.003977 10.3389/fnsyn.2013.00011 10.1523/JNEUROSCI.2387-09.2009 10.1016/0896-6273(94)90210-0 10.1038/nn.2125 10.1111/j.1469-7793.2000.00041.x 10.1523/JNEUROSCI.16-11-03549.1996 10.1113/jphysiol.2012.250522 10.1098/rspb.1996.0159 |
ContentType | Journal Article |
Copyright | 2020 The Authors. The Journal of Physiology © 2020 The Physiological Society 2020 The Authors. The Journal of Physiology © 2020 The Physiological Society. Journal compilation © 2021 The Physiological Society Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2020 The Authors. The Journal of Physiology © 2020 The Physiological Society – notice: 2020 The Authors. The Journal of Physiology © 2020 The Physiological Society. – notice: Journal compilation © 2021 The Physiological Society – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 1XC |
DOI | 10.1113/JP280059 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Technology Research Database Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Technology Research Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1469-7793 |
EndPage | 387 |
ExternalDocumentID | oai_HAL_hal_03777468v1 10_1113_JP280059 33141440 TJP14455 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: CIHR NIA funderid: 288936 – fundername: NSERC DAS funderid: 2017‐507818 – fundername: NSERC DG funderid: 418546‐2 – fundername: FRQS CB funderid: 254033 – fundername: CIHR OG funderid: 126137 – fundername: Marie Skłodowska‐Curie Individual Fellowship funderid: 892837 – fundername: NSERC DG funderid: 2017‐04730 – fundername: CFI LOF funderid: 28331 – fundername: FRQS funderid: 259572 – fundername: CFI LOF grantid: 28331 – fundername: CIHR OG grantid: 126137 – fundername: CIHR NIA grantid: 288936 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 123 18M 1OC 24P 29L 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAFWJ AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABEML ABITZ ABIVO ABJNI ABOCM ABPPZ ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EBS EMOBN EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GX1 H.X HGLYW HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K RIG ROL RPM RX1 SUPJJ TEORI TLM TN5 TR2 UB1 UPT V8K VH1 W8F W8V W99 WBKPD WH7 WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ XG1 YBU YHG YKV YQT YSK YZZ ZZTAW ~IA ~WT .55 .GJ .Y3 0YM 1OB 31~ 3EH 3O- AASGY AAYJJ AFFNX C1A CAG CGR CHEAL COF CUY CVF ECM EIF EJD FA8 H13 HF~ H~9 IPNFZ LW6 MVM NEJ NPM OHT SAMSI UKR WHG X7M XOL YXB YYP ZGI ZXP AAMNL AAYXX CITATION 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 1XC |
ID | FETCH-LOGICAL-c4185-9bdcc3ece7873f2750abca67b4300ab036b2698eed2544728f85f145033abfe03 |
IEDL.DBID | DR2 |
ISSN | 0022-3751 |
IngestDate | Tue Oct 15 15:48:19 EDT 2024 Wed Dec 04 16:10:47 EST 2024 Thu Oct 10 16:37:15 EDT 2024 Fri Dec 06 05:28:12 EST 2024 Sat Sep 28 08:23:26 EDT 2024 Sat Aug 24 01:07:44 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | neuropathic pain long-term plasticity presynaptic terminal axon NMDA receptor neurotransmitter release metabotropic signalling short-term plasticity |
Language | English |
License | 2020 The Authors. The Journal of Physiology © 2020 The Physiological Society. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4185-9bdcc3ece7873f2750abca67b4300ab036b2698eed2544728f85f145033abfe03 |
Notes | This is an Editor's Choice article from the 15 January 2021 issue. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7668-2867 0000-0003-0669-3680 0000-0001-7085-2223 0000-0003-3317-478X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1113/JP280059 |
PMID | 33141440 |
PQID | 2477814687 |
PQPubID | 1086388 |
PageCount | 21 |
ParticipantIDs | hal_primary_oai_HAL_hal_03777468v1 proquest_miscellaneous_2457283412 proquest_journals_2477814687 crossref_primary_10_1113_JP280059 pubmed_primary_33141440 wiley_primary_10_1113_JP280059_TJP14455 |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | The Journal of physiology |
PublicationTitleAlternate | J Physiol |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2011; 477 2010; 13 2002; 12 2004; 7 1997; 275 2004; 24 2010; 460 2004; 5 2020; 12 1998; 279 1996; 263 2012; 15 2008; 586 2016; 39 2013; 8 2013; 5 2011; 475 1996; 75 2018; 46 2018; 7 1998; 18 2018; 2 2018; 293 2020; 176 2019; 24 2000; 525 1997; 386 2008; 28 2006; 26 2000; 97 2011; 72 1992; 357 2019; 29 2013; 591 1988; 85 2013; 110 1992; 49 2009; 19 2001; 57 2012; 22 2014b; 511 2010; 32 2019; 9 2016; 19 2011; 1 1992; 263 2020; 40 2002; 1 2002; 415 1999; 23 2003; 39 2017; 372 2020; 32 2012; 35 1996; 16 2016; 15 2012; 32 2016; 11 2010; 42 1992; 250 2013; 77 2015; 112 1992; 256 1994; 12 1994; 14 2011; 88 2005; 94 1994; 91 2016; 26 2018; 97 2009; 587 2001; 31 2009; 106 2015; 35 2017; 6 2000; 3 2019; 56 2019; 126 2018; 84 2011; 14 2019; 364 2010; 62 1990; 261 2005; 25 2010; 67 1994; 347 2013; 14 2014; 2 2017; 37 1999; 19 2021; 599 2003; 7 1997; 19 2019; 116 2016; 115 2007; 22 1949 2008; 60 2012; 338 2008; 151 2007; 27 1996; 7 2015; 2 2015; 5 2002; 450 2019; 76 2006; 16 2020; 182 2006; 9 2002; 33 2019; 148 2008; 14 2011; 31 2008 2011; 30 1984; 307 2017; 292 2011; 32 2008; 11 1999; 2 2007; 52 1995; 18 1993; 268 2014; 84 2014; 83 2015; 7 2014; 82 2012; 75 2009; 29 2017; 95 2017; 96 2013; 37 2014; 81 1994; 369 2011; 108 2003; 426 1994; 368 2018; 556 2000; 423 2020 1998; 507 2014a; 369 2016 2018; 51 2008; 88 2012; 7 2014; 344 e_1_2_2_24_1 e_1_2_2_6_1 e_1_2_2_20_1 e_1_2_2_109_1 e_1_2_2_2_1 e_1_2_2_62_1 e_1_2_2_105_1 e_1_2_2_43_1 e_1_2_2_85_1 e_1_2_2_28_1 e_1_2_2_66_1 e_1_2_2_101_1 e_1_2_2_150_1 e_1_2_2_47_1 e_1_2_2_89_1 e_1_2_2_131_1 e_1_2_2_143_1 e_1_2_2_124_1 e_1_2_2_166_1 e_1_2_2_147_1 e_1_2_2_81_1 e_1_2_2_128_1 e_1_2_2_13_1 e_1_2_2_59_1 e_1_2_2_97_1 e_1_2_2_51_1 e_1_2_2_32_1 e_1_2_2_74_1 e_1_2_2_113_1 e_1_2_2_17_1 e_1_2_2_55_1 e_1_2_2_36_1 e_1_2_2_78_1 e_1_2_2_120_1 e_1_2_2_162_1 e_1_2_2_132_1 e_1_2_2_155_1 e_1_2_2_70_1 e_1_2_2_93_1 e_1_2_2_136_1 e_1_2_2_159_1 Hebb DO (e_1_2_2_69_1) 1949 e_1_2_2_117_1 e_1_2_2_25_1 e_1_2_2_48_1 e_1_2_2_5_1 e_1_2_2_21_1 e_1_2_2_40_1 e_1_2_2_63_1 e_1_2_2_86_1 e_1_2_2_106_1 e_1_2_2_9_1 e_1_2_2_29_1 e_1_2_2_44_1 e_1_2_2_67_1 e_1_2_2_102_1 e_1_2_2_151_1 e_1_2_2_121_1 e_1_2_2_144_1 e_1_2_2_167_1 e_1_2_2_82_1 e_1_2_2_125_1 e_1_2_2_148_1 e_1_2_2_129_1 e_1_2_2_14_1 e_1_2_2_37_1 e_1_2_2_10_1 e_1_2_2_52_1 e_1_2_2_75_1 e_1_2_2_98_1 e_1_2_2_18_1 e_1_2_2_33_1 e_1_2_2_56_1 e_1_2_2_79_1 e_1_2_2_140_1 e_1_2_2_163_1 e_1_2_2_110_1 e_1_2_2_90_1 e_1_2_2_133_1 e_1_2_2_114_1 e_1_2_2_94_1 e_1_2_2_137_1 e_1_2_2_71_1 e_1_2_2_118_1 e_1_2_2_4_1 e_1_2_2_49_1 e_1_2_2_22_1 e_1_2_2_107_1 e_1_2_2_41_1 e_1_2_2_87_1 e_1_2_2_64_1 e_1_2_2_103_1 e_1_2_2_8_1 e_1_2_2_45_1 e_1_2_2_26_1 e_1_2_2_68_1 e_1_2_2_152_1 e_1_2_2_122_1 e_1_2_2_168_1 e_1_2_2_145_1 e_1_2_2_83_1 e_1_2_2_126_1 e_1_2_2_60_1 e_1_2_2_149_1 e_1_2_2_38_1 e_1_2_2_11_1 e_1_2_2_30_1 e_1_2_2_76_1 e_1_2_2_160_1 e_1_2_2_95_1 e_1_2_2_19_1 e_1_2_2_53_1 e_1_2_2_34_1 e_1_2_2_164_1 e_1_2_2_99_1 e_1_2_2_111_1 e_1_2_2_15_1 e_1_2_2_57_1 e_1_2_2_141_1 e_1_2_2_134_1 e_1_2_2_157_1 e_1_2_2_115_1 e_1_2_2_72_1 e_1_2_2_91_1 e_1_2_2_138_1 e_1_2_2_119_1 e_1_2_2_23_1 e_1_2_2_7_1 e_1_2_2_108_1 e_1_2_2_3_1 e_1_2_2_42_1 e_1_2_2_65_1 e_1_2_2_84_1 e_1_2_2_104_1 e_1_2_2_27_1 e_1_2_2_46_1 e_1_2_2_88_1 e_1_2_2_100_1 e_1_2_2_130_1 e_1_2_2_153_1 e_1_2_2_123_1 e_1_2_2_146_1 e_1_2_2_165_1 e_1_2_2_61_1 e_1_2_2_80_1 e_1_2_2_127_1 e_1_2_2_12_1 e_1_2_2_39_1 e_1_2_2_31_1 e_1_2_2_54_1 e_1_2_2_73_1 e_1_2_2_96_1 e_1_2_2_112_1 e_1_2_2_16_1 e_1_2_2_35_1 e_1_2_2_58_1 e_1_2_2_77_1 e_1_2_2_142_1 e_1_2_2_161_1 e_1_2_2_154_1 e_1_2_2_135_1 e_1_2_2_158_1 e_1_2_2_50_1 e_1_2_2_116_1 e_1_2_2_92_1 e_1_2_2_139_1 Ujihara H (e_1_2_2_156_1) 1992; 263 |
References_xml | – volume: 19 start-page: 893 year: 1997 end-page: 901 article-title: Kainate receptors presynaptically downregulate GABAergic inhibition in the rat hippocampus publication-title: Neuron – volume: 19 start-page: 511 year: 1999 end-page: 519 article-title: Presynaptic effects of NMDA in cerebellar Purkinje cells and interneurons publication-title: J Neurosci – volume: 82 start-page: 279 year: 2014 end-page: 293 article-title: Extrasynaptic NMDA receptor involvement in central nervous system disorders publication-title: Neuron – volume: 32 year: 2020 article-title: Postsynaptic and presynaptic NMDARs have distinct roles in visual circuit development publication-title: Cell Rep – volume: 1 start-page: 383 year: 2002 end-page: 386 article-title: Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? publication-title: Lancet Neurol – volume: 115 start-page: 271 year: 2016 end-page: 285 article-title: Presynaptic GluN2D receptors detect glutamate spillover and regulate cerebellar GABA release publication-title: J Neurophysiol – volume: 182 start-page: 357 year: 2020 end-page: 371.e13 article-title: Structural basis of functional transitions in mammalian NMDA receptors publication-title: Cell – volume: 126 start-page: 59 year: 2019 end-page: 63 article-title: Prolonged activation of CXCR4 hampers the release‐regulating activity of presynaptic NMDA receptors in rat hippocampal synaptosomes publication-title: Neurochem Int – volume: 15 start-page: 104 year: 2016 end-page: 116 article-title: Burst‐dependent bidirectional plasticity in the cerebellum is driven by presynaptic NMDA receptors publication-title: Cell Rep – volume: 364 year: 2019 article-title: Local protein synthesis is a ubiquitous feature of neuronal pre‐ and postsynaptic compartments publication-title: Science – volume: 12 start-page: 11 year: 2020 article-title: A practical guide to using CV analysis for determining the locus of synaptic plasticity publication-title: Front Synaptic Neurosci – volume: 148 start-page: 252 year: 2019 end-page: 274 article-title: Increased α2δ‐1‐NMDA receptor coupling potentiates glutamatergic input to spinal dorsal horn neurons in chemotherapy‐induced neuropathic pain publication-title: J Neurochem – volume: 110 start-page: 4033 year: 2013 end-page: 4038 article-title: Metabotropic NMDA receptor function is required for β‐amyloid‐induced synaptic depression publication-title: Proc Natl Acad Sci U S A – volume: 14 start-page: 609 year: 2008 end-page: 625 article-title: Presynaptic NMDA receptors: newly appreciated roles in cortical synaptic function and plasticity publication-title: Neuroscientist – volume: 57 start-page: 1618 year: 2001 end-page: 1628 article-title: Postmortem brain abnormalities of the glutamate neurotransmitter system in autism publication-title: Neurology – volume: 25 start-page: 2024 year: 2005 end-page: 2031 article-title: NMDA receptors increase the size of GABAergic terminals and enhance GABA release publication-title: J Neurosci – volume: 372 year: 2017 article-title: Functional consequences of pre‐ and postsynaptic expression of synaptic plasticity publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 52 start-page: 176 year: 2007 end-page: 184 article-title: Multiple forms of long‐term plasticity at unitary neocortical layer 5 synapses publication-title: Neuropharmacology – volume: 6 year: 2017 article-title: Glutamate is required for depression but not potentiation of long‐term presynaptic function publication-title: Elife – volume: 599 start-page: 485 year: 2021 end-page: 492 article-title: Kainate receptor regulation of synaptic inhibition in the hippocampus publication-title: J Physiol – volume: 279 start-page: 1368 year: 1998 end-page: 1371 article-title: Target‐specific expression of presynaptic mossy fiber plasticity publication-title: Science – volume: 84 start-page: 1009 year: 2014 end-page: 1022 article-title: Essential role of presynaptic NMDA receptors in activity‐dependent BDNF secretion and corticostriatal LTP publication-title: Neuron – volume: 7 start-page: 2773 year: 1996 end-page: 2776 article-title: Presynaptic NMDA receptors in the neocortex are both auto‐ and heteroreceptors publication-title: Neuroreport – year: 2008 – volume: 49 start-page: 121 year: 1992 end-page: 128 article-title: Spinal pharmacology of thermal hyperesthesia induced by constriction injury of sciatic nerve. Excitatory amino acid antagonists publication-title: Pain – year: 1949 – volume: 26 start-page: 9332 year: 2006 end-page: 9339 article-title: The activation of excitatory glutamate receptors evokes a long‐lasting increase in the release of GABA from cerebellar stellate cells publication-title: J Neurosci – volume: 22 start-page: 574 year: 2007 end-page: 579 article-title: Memantine as adjunctive therapy in children diagnosed with autistic spectrum disorders: an observation of initial clinical response and maintenance tolerability publication-title: J Child Neurol – volume: 30 start-page: 3134 year: 2011 end-page: 3146 article-title: Molecular basis of positive allosteric modulation of GluN2B NMDA receptors by polyamines publication-title: EMBO J – volume: 344 start-page: 992 year: 2014 end-page: 997 article-title: Crystal structure of a heterotetrameric NMDA receptor ion channel publication-title: Science – volume: 293 start-page: 19354 year: 2018 end-page: 19364 article-title: The α2δ‐1‐NMDA receptor coupling is essential for corticostriatal long‐term potentiation and is involved in learning and memory publication-title: J Biol Chem – volume: 176 year: 2020 article-title: Negative allosteric modulation of GluN1/GluN3 NMDA receptors publication-title: Neuropharmacology – volume: 75 start-page: 339 year: 1996 end-page: 344 article-title: Tonic facilitation of glutamate release by presynaptic N‐methyl‐D‐aspartate autoreceptors in the entorhinal cortex publication-title: Neuroscience – volume: 460 start-page: 525 year: 2010 end-page: 542 article-title: Glutamate receptors, neurotoxicity and neurodegeneration publication-title: Pflugers Arch – volume: 26 start-page: 1938 year: 2016 end-page: 1956 article-title: Mechanisms of functional hypoconnectivity in the medial prefrontal cortex of Mecp2 null mice publication-title: Cereb Cortex – volume: 51 start-page: 119 year: 2018 end-page: 126 article-title: Presynaptic origins of distinct modes of neurotransmitter release publication-title: Curr Opin Neurobiol – volume: 88 start-page: 306 year: 2011 end-page: 316 article-title: Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability publication-title: Am J Hum Genet – volume: 94 start-page: 4281 year: 2005 end-page: 4289 article-title: An NMDA receptor/nitric oxide cascade is involved in cerebellar LTD but is not localized to the parallel fiber terminal publication-title: J Neurophysiol – volume: 450 start-page: 303 year: 2002 end-page: 317 article-title: Temporal and regional expression of NMDA receptor subunit NR3A in the mammalian brain publication-title: J Comp Neurol – volume: 14 start-page: 338 year: 2011 end-page: 344 article-title: NR3A‐containing NMDARs promote neurotransmitter release and spike timing‐dependent plasticity publication-title: Nat Neurosci – volume: 338 start-page: 1619 year: 2012 end-page: 1622 article-title: Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders publication-title: Science – volume: 97 start-page: 1293 year: 2000 end-page: 1298 article-title: Two populations of kainate receptors with separate signaling mechanisms in hippocampal interneurons publication-title: Proc Natl Acad Sci U S A – volume: 475 start-page: 249 year: 2011 end-page: 253 article-title: Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors publication-title: Nature – volume: 85 start-page: 6547 year: 1988 end-page: 6550 article-title: 7‐Chlorokynurenic acid is a selective antagonist at the glycine modulatory site of the N‐methyl‐D‐aspartate receptor complex publication-title: Proc Natl Acad Sci U S A – volume: 25 start-page: 308 year: 2005 end-page: 317 article-title: The micromolar zinc‐binding domain on the NMDA receptor subunit NR2B publication-title: J Neurosci – volume: 39 start-page: 26 year: 2016 end-page: 39 article-title: Roles of presynaptic NMDA receptors in neurotransmission and plasticity publication-title: Trends Neurosci – volume: 35 start-page: 240 year: 2012 end-page: 249 article-title: GluN3 subunit‐containing NMDA receptors: not just one‐trick ponies publication-title: Trends Neurosci – volume: 37 start-page: 11455 year: 2017 end-page: 11468 article-title: Concerted interneuron activity in the cerebellar molecular layer during rhythmic oromotor behaviors publication-title: J Neurosci – volume: 426 start-page: 841 year: 2003 end-page: 845 article-title: Presynaptic induction of heterosynaptic associative plasticity in the mammalian brain publication-title: Nature – volume: 40 start-page: 3741 year: 2020 end-page: 3750 article-title: Molecular mechanisms of non‐ionotropic NMDA receptor signaling in dendritic spine shrinkage publication-title: J Neurosci – volume: 2 start-page: 1 year: 2018 end-page: 12 article-title: Triheteromeric NMDA receptors: from structure to synaptic physiology publication-title: Curr Opin Physiol – volume: 19 start-page: 665 year: 1997 end-page: 678 article-title: Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration publication-title: Neuron – volume: 108 start-page: 13764 year: 2011 end-page: 13769 article-title: Autism‐linked neuroligin‐3 R451C mutation differentially alters hippocampal and cortical synaptic function publication-title: Proc Natl Acad Sci U S A – volume: 591 start-page: 2001 year: 2013 end-page: 2019 article-title: Endogenous activation of presynaptic NMDA receptors enhances glutamate release from the primary afferents in the spinal dorsal horn in a rat model of neuropathic pain publication-title: J Physiol – volume: 151 start-page: 403 year: 2008 end-page: 409 article-title: Calcium influx through N‐methyl‐D‐aspartate receptors triggers GABA release at interneuron‐Purkinje cell synapse in rat cerebellum publication-title: Neuroscience – volume: 9 start-page: 7146 year: 2019 article-title: The selective disruption of presynaptic JNK2/STX1a interaction reduces NMDA receptor‐dependent glutamate release publication-title: Sci Rep – volume: 51 start-page: 1 year: 2018 end-page: 7 article-title: Towards resolving the presynaptic NMDA receptor debate publication-title: Curr Opin Neurobiol – volume: 2 year: 2014 article-title: Distinct mechanisms of spike timing‐dependent LTD at vertical and horizontal inputs onto L2/3 pyramidal neurons in mouse barrel cortex publication-title: Physiol Rep – volume: 76 start-page: 1889 year: 2019 end-page: 1899 article-title: Presynaptic NMDA receptors control nociceptive transmission at the spinal cord level in neuropathic pain publication-title: Cell Mol Life Sci – volume: 112 start-page: 14711 year: 2015 end-page: 14716 article-title: Conformational signaling required for synaptic plasticity by the NMDA receptor complex publication-title: Proc Natl Acad Sci U S A – volume: 29 start-page: 381 year: 2009 end-page: 392 article-title: Glutamatergic modulation of cerebellar interneuron activity is mediated by an enhancement of GABA release and requires protein kinase A/RIM1α signaling publication-title: J Neurosci – volume: 60 start-page: 298 year: 2008 end-page: 307 article-title: Dendritic NMDA receptors activate axonal calcium channels publication-title: Neuron – volume: 2 start-page: 44 year: 1999 end-page: 49 article-title: Miniature synaptic events maintain dendritic spines via AMPA receptor activation publication-title: Nat Neurosci – volume: 32 start-page: 598 year: 2010 end-page: 605 article-title: Activation of dopamine D1/D5 receptors facilitates the induction of presynaptic long‐term potentiation at hippocampal output synapses publication-title: Eur J Neurosci – volume: 263 start-page: 1079 year: 1996 end-page: 1086 article-title: Single‐channel currents from recombinant NMDA NR1a/NR2D receptors expressed in oocytes publication-title: Proc Biol Sci – volume: 14 start-page: 5202 year: 1994 end-page: 5222 article-title: Cellular and subcellular localization of NMDA‐R1 subunit immunoreactivity in the visual cortex of adult and neonatal rats publication-title: J Neurosci – volume: 586 start-page: 2725 year: 2008 end-page: 2734 article-title: Two different forms of long‐term potentiation at CA1‐subiculum synapses publication-title: J Physiol – volume: 19 start-page: 2959 year: 2009 end-page: 2969 article-title: Double dissociation of spike timing‐dependent potentiation and depression by subunit‐preferring NMDA receptor antagonists in mouse barrel cortex publication-title: Cereb Cortex – volume: 27 start-page: 9835 year: 2007 end-page: 9845 article-title: Developmental switch in the contribution of presynaptic and postsynaptic NMDA receptors to long‐term depression publication-title: J Neurosci – volume: 386 start-page: 721 year: 1997 end-page: 724 article-title: NMDA‐receptor regulation of substance P release from primary afferent nociceptors publication-title: Nature – volume: 26 start-page: 12033 year: 2006 end-page: 12042 article-title: Primary afferent NMDA receptors increase dorsal horn excitation and mediate opiate tolerance in neonatal rats publication-title: J Neurosci – volume: 81 start-page: 913 year: 2014 end-page: 929 article-title: Structured connectivity in cerebellar inhibitory networks publication-title: Neuron – volume: 11 start-page: 744 year: 2008 end-page: 745 article-title: Spike timing‐dependent long‐term depression requires presynaptic NMDA receptors publication-title: Nat Neurosci – volume: 9 start-page: 1742 year: 2019 article-title: Molecular layer interneurons shape the spike activity of cerebellar Purkinje cells publication-title: Sci Rep – volume: 525 start-page: 41 year: 2000 end-page: 51 article-title: Target‐specific expression of pre‐ and postsynaptic mechanisms publication-title: J Physiol – volume: 28 start-page: 2199 year: 2008 end-page: 2211 article-title: Synapse‐specific expression of functional presynaptic NMDA receptors in rat somatosensory cortex publication-title: J Neurosci – volume: 511 start-page: 348 year: 2014b end-page: 352 article-title: Engineering a memory with LTD and LTP publication-title: Nature – volume: 116 start-page: 13602 year: 2019 end-page: 13610 article-title: Circuit‐specific control of the medial entorhinal inputs to the dentate gyrus by atypical presynaptic NMDARs activated by astrocytes publication-title: Proc Natl Acad Sci U S A – volume: 32 start-page: 281 year: 2011 end-page: 289 article-title: Lead exposure during synaptogenesis alters NMDA receptor targeting via NMDA receptor inhibition publication-title: Neurotoxicology – volume: 5 start-page: 135 year: 2004 end-page: 145 article-title: Presynaptic ionotropic receptors and control of transmitter release publication-title: Nat Rev Neurosci – volume: 106 start-page: 14126 year: 2009 end-page: 14131 article-title: Presynaptic NR2A‐containing NMDA receptors implement a high‐pass filter synaptic plasticity rule publication-title: Proc Natl Acad Sci U S A – volume: 9 start-page: 372 year: 2006 end-page: 380 article-title: Visual stimuli‐induced LTD of GABAergic synapses mediated by presynaptic NMDA receptors publication-title: Nat Neurosci – volume: 35 start-page: 12303 year: 2015 end-page: 12308 article-title: Non‐ionotropic NMDA receptor signaling drives activity‐induced dendritic spine shrinkage publication-title: J Neurosci – volume: 7 start-page: 1 year: 2015 article-title: Properties and molecular identity of NMDA receptors at synaptic and non‐synaptic inputs in cerebellar molecular layer interneurons publication-title: Front Synaptic Neurosci – volume: 25 start-page: 1847 year: 2005 end-page: 1855 article-title: Activity‐dependent synaptic plasticity in the central nucleus of the amygdala publication-title: J Neurosci – volume: 477 start-page: 171 year: 2011 end-page: 178 article-title: Neocortical excitation/inhibition balance in information processing and social dysfunction publication-title: Nature – volume: 31 start-page: 16550 year: 2011 end-page: 16555 article-title: NMDA receptor agonists fail to alter release from cerebellar basket cells publication-title: J Neurosci – volume: 29 start-page: 3266 year: 2019 end-page: 3281 article-title: Adenosine receptor‐mediated developmental loss of spike timing‐dependent depression in the hippocampus publication-title: Cereb Cortex – volume: 33 start-page: 123 year: 2002 end-page: 130 article-title: Involvement of presynaptic N‐methyl‐D‐aspartate receptors in cerebellar long‐term depression publication-title: Neuron – volume: 357 start-page: 70 year: 1992 end-page: 74 article-title: Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs publication-title: Nature – volume: 19 start-page: 1218 year: 2016 end-page: 1224 article-title: Postsynaptic, not presynaptic NMDA receptors are required for spike‐timing‐dependent LTD induction publication-title: Nat Neurosci – volume: 37 start-page: 850 year: 2013 end-page: 859 article-title: GABA , NMDA and mGlu2 receptors tonically regulate inhibition and excitation in the thalamic reticular nucleus publication-title: Eur J Neurosci – volume: 24 start-page: 6920 year: 2004 end-page: 6927 article-title: Glutamate released from glial cells synchronizes neuronal activity in the hippocampus publication-title: J Neurosci – volume: 97 start-page: 1244 year: 2018 end-page: 1252.e5 article-title: Activity‐dependent downscaling of subthreshold synaptic inputs during slow‐wave‐sleep‐like activity in vivo publication-title: Neuron – year: 2020 article-title: Dissociation of functional and structural plasticity of dendritic spines during NMDAR and mGluR‐dependent long‐term synaptic depression in wild‐type and fragile X model mice publication-title: Mol Psychiatry – volume: 88 start-page: 769 year: 2008 end-page: 840 article-title: Dendritic excitability and synaptic plasticity publication-title: Physiol Rev – volume: 292 start-page: 20644 year: 2017 end-page: 20654 article-title: Presynaptic mGluR5 receptor controls glutamatergic input through protein kinase C‐NMDA receptors in paclitaxel‐induced neuropathic pain publication-title: J Biol Chem – volume: 16 start-page: 312 year: 2006 end-page: 322 article-title: Novel presynaptic mechanisms for coincidence detection in synaptic plasticity publication-title: Curr Opin Neurobiol – volume: 7 start-page: 452 year: 2003 end-page: 456 article-title: Advances in pain therapeutics publication-title: Curr Opin Chem Biol – volume: 1 year: 2011 article-title: Rare mutations in N‐methyl‐D‐aspartate glutamate receptors in autism spectrum disorders and schizophrenia publication-title: Transl Psychiatry – volume: 72 start-page: 231 year: 2011 end-page: 243 article-title: How inhibition shapes cortical activity publication-title: Neuron – volume: 263 start-page: 868 year: 1992 end-page: 875 article-title: Developmental change of the inhibition by lead of NMDA‐activated currents in cultured hippocampal neurons publication-title: J Pharmacol Exp Ther – volume: 369 start-page: 744 year: 1994 end-page: 747 article-title: Glutamate‐mediated astrocyte‐neuron signalling publication-title: Nature – volume: 37 start-page: 10800 year: 2017 end-page: 10807 article-title: Unconventional NMDA receptor signaling publication-title: J Neurosci – volume: 56 start-page: 1694 year: 2019 end-page: 1706 article-title: NMDA receptors containing GluN2B/2C/2D subunits mediate an increase in glutamate release at hippocampal CA3‐CA1 synapses publication-title: Mol Neurobiol – volume: 268 start-page: 2836 year: 1993 end-page: 2843 article-title: Molecular characterization of the family of the N‐methyl‐D‐aspartate receptor subunits publication-title: J Biol Chem – volume: 97 start-page: 11593 year: 2000 end-page: 11597 article-title: Presynaptic N‐methyl‐D‐aspartate receptors at the parallel fiber‐Purkinje cell synapse publication-title: Proc Natl Acad Sci U S A – volume: 35 start-page: 127 year: 2015 end-page: 135 article-title: Synapse‐type‐specific plasticity in local circuits publication-title: Curr Opin Neurobiol – volume: 423 start-page: 330 year: 2000 end-page: 347 article-title: Presynaptic NMDA receptor subunit immunoreactivity in GABAergic terminals in rat brain publication-title: J Comp Neurol – volume: 96 start-page: 839 year: 2017 end-page: 855.e5 article-title: Differential regulation of evoked and spontaneous release by presynaptic NMDA receptors publication-title: Neuron – volume: 12 start-page: 305 year: 2002 end-page: 314 article-title: Spike timing, calcium signals and synaptic plasticity publication-title: Curr Opin Neurobiol – volume: 67 start-page: 208 year: 2010 end-page: 216 article-title: Deficits in syntaxin 1 phosphorylation in schizophrenia prefrontal cortex publication-title: Biol Psychiatry – volume: 8 year: 2013 article-title: Metabolic turnover of synaptic proteins: kinetics, interdependencies and implications for synaptic maintenance publication-title: PLoS One – volume: 11 start-page: 645 year: 2016 end-page: 656 article-title: CXCR4 and NMDA receptors are functionally coupled in rat hippocampal noradrenergic and glutamatergic nerve endings publication-title: J Neuroimmune Pharmacol – volume: 37 start-page: 4751 year: 2017 end-page: 4765 article-title: Movement rate is encoded and influenced by widespread, coherent activity of cerebellar molecular layer interneurons publication-title: J Neurosci – volume: 24 start-page: 1248 year: 2019 end-page: 1257 article-title: Excitation‐inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders publication-title: Mol Psychiatry – volume: 2 start-page: ENEURO.0046 year: 2015 end-page: 14.2015 article-title: Presynaptic NR2A‐containing NMDARs are required for LTD between the amygdala and the perirhinal cortex: a potential mechanism for the emotional modulation of memory? publication-title: eNeuro – volume: 347 start-page: 150 year: 1994 end-page: 160 article-title: Differential expression of five N‐methyl‐D‐aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats publication-title: J Comp Neurol – volume: 556 start-page: 515 year: 2018 end-page: 519 article-title: Mechanism of NMDA receptor channel block by MK‐801 and memantine publication-title: Nature – volume: 587 start-page: 5301 year: 2009 end-page: 5302 article-title: A piece of the neocortical puzzle: the pyramid‐Martinotti cell reciprocating principle publication-title: J Physiol – volume: 415 start-page: 793 year: 2002 end-page: 798 article-title: Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits publication-title: Nature – volume: 256 start-page: 1217 year: 1992 end-page: 1221 article-title: Heteromeric NMDA receptors: molecular and functional distinction of subtypes publication-title: Science – volume: 26 start-page: 11001 year: 2006 end-page: 11013 article-title: Spine Ca signaling in spike‐timing‐dependent plasticity publication-title: J Neurosci – volume: 95 start-page: 852 year: 2017 end-page: 868.e858 article-title: RNA docking and local translation regulate site‐specific axon remodeling in vivo publication-title: Neuron – volume: 112 start-page: 14705 year: 2015 end-page: 14710 article-title: Agonist binding to the NMDA receptor drives movement of its cytoplasmic domain without ion flow publication-title: Proc Natl Acad Sci U S A – volume: 7 year: 2012 article-title: Current and calcium responses to local activation of axonal NMDA receptors in developing cerebellar molecular layer interneurons publication-title: PLoS One – volume: 81 start-page: 366 year: 2014 end-page: 378 article-title: Structural insights into competitive antagonism in NMDA receptors publication-title: Neuron – volume: 275 start-page: 213 year: 1997 end-page: 215 article-title: Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs publication-title: Science – volume: 307 start-page: 460 year: 1984 end-page: 462 article-title: L‐glutamate has higher affinity than other amino acids for [ H]‐D‐AP5 binding sites in rat brain membranes publication-title: Nature – volume: 91 start-page: 8383 year: 1994 end-page: 8387 article-title: Evidence for presynaptic N‐methyl‐D‐aspartate autoreceptors in the spinal cord dorsal horn publication-title: Proc Natl Acad Sci U S A – volume: 62 start-page: 405 year: 2010 end-page: 496 article-title: Glutamate receptor ion channels: structure, regulation, and function publication-title: Pharmacol Rev – volume: 16 start-page: 3549 year: 1996 end-page: 3558 article-title: Multiple structural elements determine subunit specificity of Mg block in NMDA receptor channels publication-title: J Neurosci – year: 2020 article-title: Architecture and function of NMDA receptors: an evolutionary perspective publication-title: J Physiol – volume: 75 start-page: 451 year: 2012 end-page: 466 article-title: Target‐specific expression of presynaptic NMDA receptors in neocortical microcircuits publication-title: Neuron – volume: 110 start-page: 4027 year: 2013 end-page: 4032 article-title: Metabotropic NMDA receptor function is required for NMDA receptor‐dependent long‐term depression publication-title: Proc Natl Acad Sci U S A – volume: 14 start-page: 383 year: 2013 end-page: 400 article-title: NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease publication-title: Nat Rev Neurosci – volume: 369 year: 2014a article-title: GluA1 trafficking and metabotropic NMDA: addressing results from other laboratories inconsistent with ours publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 261 start-page: 124 year: 1990 end-page: 130 article-title: Selective blockade of NMDA‐activated channel currents may be implicated in learning deficits caused by lead publication-title: FEBS Lett – volume: 28 start-page: 10151 year: 2008 end-page: 10166 article-title: Spontaneous and evoked glutamate release activates two populations of NMDA receptors with limited overlap publication-title: J Neurosci – volume: 5 start-page: 11 year: 2013 article-title: Target‐cell‐specific short‐term plasticity in local circuits publication-title: Front Synaptic Neurosci – volume: 22 start-page: 241 year: 2012 end-page: 254 article-title: NMDA receptor hypofunction in the dentate gyrus and impaired context discrimination in adult knockout mice publication-title: Hippocampus – volume: 31 start-page: 537 year: 2001 end-page: 543 article-title: Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study publication-title: J Autism Dev Disord – volume: 7 year: 2018 article-title: Local and global influences on protein turnover in neurons and glia publication-title: Elife – volume: 7 start-page: 525 year: 2004 end-page: 533 article-title: Retrograde activation of presynaptic NMDA receptors enhances GABA release at cerebellar interneuron‐Purkinje cell synapses publication-title: Nat Neurosci – volume: 32 start-page: 13860 year: 2012 end-page: 13872 article-title: Brain activity mapping in mutant mice reveals functional deficits in forebrain circuits, including key nodes in the default mode network, that are reversed with ketamine treatment publication-title: J Neurosci – start-page: 465 year: 2016 end-page: 498 – volume: 23 start-page: 171 year: 1999 end-page: 180 article-title: Identification and mechanism of action of two histidine residues underlying high‐affinity Zn inhibition of the NMDA receptor publication-title: Neuron – volume: 29 start-page: 11441 year: 2009 end-page: 11450 article-title: Selective expression of ligand‐gated ion channels in L5 pyramidal cell axons publication-title: J Neurosci – volume: 46 start-page: 2699 year: 2018 article-title: UniProt: the universal protein knowledgebase publication-title: Nucleic Acids Res – volume: 42 start-page: 1021 year: 2010 end-page: 1026 article-title: Mutations in and encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes publication-title: Nat Genet – volume: 15 start-page: 746 year: 2012 end-page: 753 article-title: Astrocyte signaling controls spike timing‐dependent depression at neocortical synapses publication-title: Nat Neurosci – volume: 77 start-page: 35 year: 2013 end-page: 42 article-title: Presynaptic self‐depression at developing neocortical synapses publication-title: Neuron – volume: 507 start-page: 237 year: 1998 end-page: 247 article-title: Long‐term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures publication-title: J Physiol – volume: 13 start-page: 197 year: 2010 end-page: 204 article-title: Synaptic activation of kainate receptors gates presynaptic CB signaling at GABAergic synapses publication-title: Nat Neurosci – volume: 18 start-page: 10464 year: 1998 end-page: 10472 article-title: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type publication-title: J Neurosci – volume: 84 start-page: 460 year: 2018 end-page: 470 article-title: Presynaptic effects of N‐methyl‐D‐aspartate receptors enhance parvalbumin cell‐mediated inhibition of pyramidal cells in mouse prefrontal cortex publication-title: Biol Psychiatry – volume: 31 start-page: 8564 year: 2011 end-page: 8569 article-title: Presynaptic induction and expression of timing‐dependent long‐term depression demonstrated by compartment‐specific photorelease of a use‐dependent NMDA receptor antagonist publication-title: J Neurosci – volume: 368 start-page: 144 year: 1994 end-page: 147 article-title: Changing subunit composition of heteromeric NMDA receptors during development of rat cortex publication-title: Nature – volume: 5 start-page: 9035 year: 2015 article-title: Presynaptic c‐Jun N‐terminal Kinase 2 regulates NMDA receptor‐dependent glutamate release publication-title: Sci Rep – volume: 26 start-page: 3637 year: 2016 end-page: 3654 article-title: Presynaptic spike timing‐dependent long‐term depression in the mouse hippocampus publication-title: Cereb Cortex – volume: 83 start-page: 879 year: 2014 end-page: 893 article-title: Synapse‐specific control of experience‐dependent plasticity by presynaptic NMDA receptors publication-title: Neuron – volume: 250 start-page: 271 year: 1992 end-page: 277 article-title: Single‐channel conductances of NMDA receptors expressed from cloned cDNAs: comparison with native receptors publication-title: Proc Biol Sci – volume: 26 start-page: 4166 year: 2006 end-page: 4177 article-title: Two coincidence detectors for spike timing‐dependent plasticity in somatosensory cortex publication-title: J Neurosci – volume: 3 start-page: 1178 year: 2000 end-page: 1183 article-title: Synaptic plasticity: taming the beast publication-title: Nat Neurosci – volume: 18 start-page: 306 year: 1995 end-page: 313 article-title: Alternatively spliced isoforms of the NMDARI receptor subunit publication-title: Trends Neurosci – volume: 12 start-page: 529 year: 1994 end-page: 540 article-title: Developmental and regional expression in the rat brain and functional properties of four NMDA receptors publication-title: Neuron – volume: 39 start-page: 641 year: 2003 end-page: 654 article-title: Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors publication-title: Neuron – ident: e_1_2_2_121_1 doi: 10.1093/cercor/bhy194 – ident: e_1_2_2_59_1 doi: 10.1038/nrn1297 – ident: e_1_2_2_5_1 doi: 10.1016/0014-5793(90)80652-Y – ident: e_1_2_2_142_1 doi: 10.1016/S0896-6273(03)00476-8 – ident: e_1_2_2_94_1 doi: 10.1126/science.279.5355.1368 – ident: e_1_2_2_53_1 doi: 10.7554/eLife.34202 – ident: e_1_2_2_4_1 doi: 10.1002/cne.903470112 – ident: e_1_2_2_47_1 doi: 10.1111/j.1469-7793.1998.237bu.x – volume-title: The Organization of Behavior: A Neuropsychological Theory year: 1949 ident: e_1_2_2_69_1 contributor: fullname: Hebb DO – ident: e_1_2_2_84_1 doi: 10.1038/nn.2750 – ident: e_1_2_2_135_1 doi: 10.1523/JNEUROSCI.3713-04.2005 – ident: e_1_2_2_159_1 doi: 10.1113/jphysiol.2007.149203 – ident: e_1_2_2_109_1 doi: 10.1038/srep09035 – ident: e_1_2_2_70_1 doi: 10.1038/nature02194 – ident: e_1_2_2_107_1 doi: 10.1016/j.neuro.2010.12.013 – ident: e_1_2_2_20_1 doi: 10.3389/fnsyn.2015.00001 – ident: e_1_2_2_110_1 doi: 10.1016/j.neuint.2019.03.003 – ident: e_1_2_2_2_1 doi: 10.1038/81453 – ident: e_1_2_2_34_1 doi: 10.1016/j.conb.2018.03.005 – ident: e_1_2_2_9_1 doi: 10.1523/JNEUROSCI.14-09-05202.1994 – ident: e_1_2_2_164_1 doi: 10.1038/nature10360 – ident: e_1_2_2_39_1 doi: 10.1016/j.cell.2020.05.052 – ident: e_1_2_2_101_1 doi: 10.1038/emboj.2011.203 – ident: e_1_2_2_87_1 doi: 10.1007/s00424-010-0809-1 – ident: e_1_2_2_35_1 doi: 10.1038/nature715 – ident: e_1_2_2_157_1 doi: 10.1016/j.neuron.2017.07.016 – ident: e_1_2_2_168_1 doi: 10.1016/0166-2236(95)93920-S – ident: e_1_2_2_152_1 doi: 10.1093/nar/gky092 – ident: e_1_2_2_113_1 doi: 10.1016/j.tins.2011.11.010 – ident: e_1_2_2_141_1 doi: 10.1152/physrev.00016.2007 – ident: e_1_2_2_146_1 doi: 10.1523/JNEUROSCI.4289-14.2015 – ident: e_1_2_2_62_1 doi: 10.1523/JNEUROSCI.0534-17.2017 – ident: e_1_2_2_145_1 doi: 10.1038/s41586-018-0039-9 – ident: e_1_2_2_38_1 doi: 10.1016/S0896-6273(00)80763-1 – ident: e_1_2_2_24_1 doi: 10.1016/j.conb.2017.12.020 – ident: e_1_2_2_116_1 doi: 10.1038/nrn3504 – ident: e_1_2_2_96_1 doi: 10.1038/s41598-019-43709-2 – ident: e_1_2_2_104_1 doi: 10.1098/rstb.2013.0145 – ident: e_1_2_2_12_1 doi: 10.1523/JNEUROSCI.2432-08.2008 – ident: e_1_2_2_147_1 doi: 10.1523/JNEUROSCI.0046-20.2020 – ident: e_1_2_2_36_1 doi: 10.1111/jnc.14627 – ident: e_1_2_2_48_1 doi: 10.1097/00001756-199611040-00073 – ident: e_1_2_2_63_1 doi: 10.1523/JNEUROSCI.19-02-00511.1999 – ident: e_1_2_2_98_1 doi: 10.1038/4548 – ident: e_1_2_2_33_1 doi: 10.1016/j.biopsych.2009.07.029 – ident: e_1_2_2_120_1 doi: 10.1016/j.neuron.2014.03.030 – ident: e_1_2_2_155_1 doi: 10.1124/pr.109.002451 – ident: e_1_2_2_22_1 doi: 10.1023/A:1013238809666 – ident: e_1_2_2_43_1 doi: 10.1177/1073858408322675 – ident: e_1_2_2_82_1 doi: 10.1523/JNEUROSCI.2354-08.2009 – ident: e_1_2_2_105_1 doi: 10.1038/nature13294 – volume: 263 start-page: 868 year: 1992 ident: e_1_2_2_156_1 article-title: Developmental change of the inhibition by lead of NMDA‐activated currents in cultured hippocampal neurons publication-title: J Pharmacol Exp Ther contributor: fullname: Ujihara H – ident: e_1_2_2_165_1 doi: 10.1523/JNEUROSCI.2530-06.2006 – ident: e_1_2_2_68_1 doi: 10.1016/S0896-6273(00)80379-7 – ident: e_1_2_2_89_1 doi: 10.1038/386721a0 – ident: e_1_2_2_137_1 doi: 10.1093/cercor/bhv002 – ident: e_1_2_2_3_1 doi: 10.1016/j.neuron.2017.09.030 – ident: e_1_2_2_32_1 doi: 10.1016/S0896-6273(01)00568-2 – ident: e_1_2_2_50_1 doi: 10.1007/s11481-016-9677-6 – ident: e_1_2_2_71_1 doi: 10.1016/S1474-4422(02)00164-3 – ident: e_1_2_2_91_1 doi: 10.1523/JNEUROSCI.2929-06.2006 – ident: e_1_2_2_95_1 doi: 10.1093/acprof:oso/9780198745273.003.0018 – ident: e_1_2_2_31_1 doi: 10.1073/pnas.200354297 – ident: e_1_2_2_58_1 doi: 10.1038/ng.677 – ident: e_1_2_2_61_1 doi: 10.1523/JNEUROSCI.4980-04.2005 – ident: e_1_2_2_106_1 doi: 10.1073/pnas.1219454110 – ident: e_1_2_2_14_1 doi: 10.1016/j.tins.2015.11.001 – ident: e_1_2_2_149_1 doi: 10.1016/j.cophys.2017.12.004 – ident: e_1_2_2_139_1 doi: 10.1152/jn.00661.2005 – ident: e_1_2_2_144_1 doi: 10.1038/s41380-019-0426-0 – ident: e_1_2_2_67_1 doi: 10.1016/j.ajhg.2011.02.001 – ident: e_1_2_2_148_1 doi: 10.1098/rspb.1992.0159 – ident: e_1_2_2_29_1 doi: 10.1113/jphysiol.2009.182980 – ident: e_1_2_2_122_1 doi: 10.1113/JP279645 – ident: e_1_2_2_78_1 doi: 10.1016/j.celrep.2020.107955 – ident: e_1_2_2_7_1 doi: 10.1093/cercor/bhw172 – ident: e_1_2_2_8_1 doi: 10.1523/JNEUROSCI.0473-04.2004 – ident: e_1_2_2_40_1 doi: 10.1016/j.neuron.2008.08.028 – ident: e_1_2_2_129_1 doi: 10.1016/j.neuron.2012.10.035 – ident: e_1_2_2_80_1 doi: 10.1523/JNEUROSCI.2159-12.2012 – ident: e_1_2_2_112_1 doi: 10.1126/science.1227764 – ident: e_1_2_2_111_1 doi: 10.1038/307460a0 – ident: e_1_2_2_30_1 doi: 10.1038/nn.4343 – ident: e_1_2_2_128_1 doi: 10.1016/S0896-6273(00)80970-8 – ident: e_1_2_2_115_1 doi: 10.1016/j.biopsych.2018.01.018 – ident: e_1_2_2_76_1 doi: 10.1038/nature10180 – ident: e_1_2_2_73_1 doi: 10.1016/S0021-9258(18)53849-7 – ident: e_1_2_2_79_1 doi: 10.1073/pnas.1219605110 – ident: e_1_2_2_93_1 doi: 10.1038/nn.2481 – ident: e_1_2_2_75_1 doi: 10.1126/science.1251915 – ident: e_1_2_2_119_1 doi: 10.1038/369744a0 – ident: e_1_2_2_37_1 doi: 10.1177/0883073807302611 – ident: e_1_2_2_153_1 doi: 10.1038/s41380-020-0821-6 – ident: e_1_2_2_138_1 doi: 10.1038/368144a0 – ident: e_1_2_2_19_1 doi: 10.1073/pnas.0904284106 – ident: e_1_2_2_97_1 doi: 10.1126/science.275.5297.213 – ident: e_1_2_2_118_1 doi: 10.1016/j.neuron.2014.10.045 – ident: e_1_2_2_162_1 doi: 10.1016/0304-3959(92)90198-K – ident: e_1_2_2_143_1 doi: 10.1016/j.neuropharm.2006.07.021 – ident: e_1_2_2_74_1 doi: 10.1016/j.neuron.2013.11.033 – ident: e_1_2_2_65_1 doi: 10.1016/j.neuron.2018.01.047 – ident: e_1_2_2_167_1 doi: 10.1016/j.neuropharm.2020.108117 – ident: e_1_2_2_127_1 doi: 10.1016/j.neuron.2013.12.029 – ident: e_1_2_2_133_1 doi: 10.1111/j.1460-9568.2010.07312.x – ident: e_1_2_2_161_1 doi: 10.1074/jbc.M117.818476 – ident: e_1_2_2_90_1 doi: 10.1073/pnas.91.18.8383 – ident: e_1_2_2_114_1 doi: 10.7554/eLife.29688 – ident: e_1_2_2_54_1 doi: 10.1152/jn.00687.2015 – ident: e_1_2_2_117_1 doi: 10.1002/1096-9861(20000724)423:2<330::AID-CNE10>3.0.CO;2-9 – ident: e_1_2_2_136_1 doi: 10.1073/pnas.1816013116 – ident: e_1_2_2_25_1 doi: 10.1523/JNEUROSCI.3915-07.2008 – ident: e_1_2_2_88_1 doi: 10.1038/nn1649 – ident: e_1_2_2_45_1 doi: 10.1098/rstb.2016.0153 – ident: e_1_2_2_64_1 doi: 10.1016/j.neuroscience.2007.10.024 – ident: e_1_2_2_28_1 doi: 10.1016/j.neuron.2012.06.017 – ident: e_1_2_2_57_1 doi: 10.1002/hipo.20890 – ident: e_1_2_2_42_1 doi: 10.1371/journal.pone.0063191 – ident: e_1_2_2_125_1 doi: 10.1212/WNL.57.9.1618 – ident: e_1_2_2_6_1 – ident: e_1_2_2_123_1 doi: 10.1007/s12035-018-1187-5 – ident: e_1_2_2_150_1 doi: 10.1113/JP279028 – ident: e_1_2_2_92_1 doi: 10.1016/S1367-5931(03)00078-4 – ident: e_1_2_2_77_1 doi: 10.1073/pnas.85.17.6547 – ident: e_1_2_2_10_1 doi: 10.1073/pnas.1520029112 – ident: e_1_2_2_86_1 doi: 10.1016/j.neuron.2014.07.039 – ident: e_1_2_2_130_1 doi: 10.1523/JNEUROSCI.0274-11.2011 – ident: e_1_2_2_44_1 doi: 10.1523/JNEUROSCI.5494-06.2007 – ident: e_1_2_2_13_1 doi: 10.1002/phy2.271 – ident: e_1_2_2_18_1 doi: 10.1523/JNEUROSCI.18-24-10464.1998 – ident: e_1_2_2_23_1 doi: 10.1016/j.celrep.2016.03.004 – ident: e_1_2_2_72_1 doi: 10.1016/j.neuron.2011.09.027 – ident: e_1_2_2_26_1 doi: 10.3389/fnsyn.2020.00011 – ident: e_1_2_2_11_1 doi: 10.1523/JNEUROSCI.1091-17.2017 – ident: e_1_2_2_46_1 doi: 10.1111/ejn.12098 – ident: e_1_2_2_100_1 doi: 10.1038/nn.3075 – ident: e_1_2_2_126_1 doi: 10.1523/JNEUROSCI.3967-04.2005 – ident: e_1_2_2_51_1 doi: 10.1073/pnas.1520023112 – ident: e_1_2_2_66_1 doi: 10.1126/science.aau3644 – ident: e_1_2_2_108_1 doi: 10.1523/JNEUROSCI.1749-06.2006 – ident: e_1_2_2_49_1 doi: 10.1007/s00018-019-03047-y – ident: e_1_2_2_85_1 doi: 10.1016/j.conb.2015.08.001 – ident: e_1_2_2_151_1 doi: 10.1038/tp.2011.52 – ident: e_1_2_2_103_1 doi: 10.1126/science.256.5060.1217 – ident: e_1_2_2_27_1 doi: 10.1038/s41598-018-38264-1 – ident: e_1_2_2_134_1 doi: 10.1371/journal.pone.0039983 – ident: e_1_2_2_55_1 doi: 10.1016/j.conb.2006.05.008 – ident: e_1_2_2_131_1 doi: 10.1073/pnas.97.3.1293 – ident: e_1_2_2_140_1 doi: 10.1016/S0959-4388(02)00325-2 – ident: e_1_2_2_52_1 doi: 10.1523/JNEUROSCI.1825-17.2017 – ident: e_1_2_2_158_1 doi: 10.1002/cne.10314 – ident: e_1_2_2_15_1 doi: 10.1093/cercor/bhp067 – ident: e_1_2_2_99_1 doi: 10.1038/357070a0 – ident: e_1_2_2_16_1 doi: 10.1523/JNEUROSCI.0176-06.2006 – ident: e_1_2_2_60_1 doi: 10.1073/pnas.1111093108 – ident: e_1_2_2_83_1 doi: 10.1523/ENEURO.0046-14.2015 – ident: e_1_2_2_56_1 doi: 10.1038/nn1227 – ident: e_1_2_2_124_1 doi: 10.1523/JNEUROSCI.3910-11.2011 – ident: e_1_2_2_17_1 doi: 10.1016/0306-4522(96)00301-6 – ident: e_1_2_2_166_1 doi: 10.1074/jbc.RA118.003977 – ident: e_1_2_2_21_1 doi: 10.3389/fnsyn.2013.00011 – ident: e_1_2_2_41_1 doi: 10.1523/JNEUROSCI.2387-09.2009 – ident: e_1_2_2_102_1 doi: 10.1016/0896-6273(94)90210-0 – ident: e_1_2_2_132_1 doi: 10.1038/nn.2125 – ident: e_1_2_2_154_1 doi: 10.1111/j.1469-7793.2000.00041.x – ident: e_1_2_2_81_1 doi: 10.1523/JNEUROSCI.16-11-03549.1996 – ident: e_1_2_2_163_1 doi: 10.1113/jphysiol.2012.250522 – ident: e_1_2_2_160_1 doi: 10.1098/rspb.1996.0159 |
SSID | ssj0013099 |
Score | 2.5012257 |
Snippet | In the textbook view, N‐methyl‐d‐aspartate (NMDA) receptors are postsynaptically located detectors of coincident activity in Hebbian learning. However,... In the textbook view, N-methyl-d-aspartate (NMDA) receptors are postsynaptically located detectors of coincident activity in Hebbian learning. However,... In the textbook view, N ‐methyl‐ d ‐aspartate (NMDA) receptors are postsynaptically located detectors of coincident activity in Hebbian learning. However,... |
SourceID | hal proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 367 |
SubjectTerms | axon Axons Calcium Glutamic acid receptors (ionotropic) Life Sciences long‐term plasticity Magnesium Metabotropic receptors metabotropic signalling N-Methyl-D-aspartic acid receptors Neuralgia Neurons and Cognition neuropathic pain neurotransmitter release NMDA receptor presynaptic terminal Receptors, N-Methyl-D-Aspartate short‐term plasticity Subunit structure Synapses Therapeutic targets |
Title | NMDA receptors in axons: there's no coincidence |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP280059 https://www.ncbi.nlm.nih.gov/pubmed/33141440 https://www.proquest.com/docview/2477814687 https://search.proquest.com/docview/2457283412 https://hal.science/hal-03777468 |
Volume | 599 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEC4ST7kYHzEZ3UhHJJ5GZ7rn1d6WqCxLlCWsIHgYunt6UMTZxd0V9ddb1fMQI0LIbZh-P6qruqr6K4BdpQUyYav8xMrIj2ypfI23Dl9yw8tQBZl1quzTs2RwHg0v4ovGq5LewtT4EJ3CjSjDnddE4Eo3UUhCAhsYjnhGTyfx-A1FSt58R3_4iwEhkLIDCk_jsMGdxaIHbcFXnOjjFflBvhUyX8usjumcfIbLtru1r8nN_mKu983TX0iO_zeeFVhuZFHWrzfPKnyw1Rqs9yu8h98-sp_MeYc6tfs6HJydHvUZHo92SvF52HXF1APu2ENGEqTdm7FqwsyENPcuSukXOD85Hv8a-E2wBd8Qfo0vdWGMwFqQgkVJqO9KG5WkOhIBfiKj0zyRGbJUAjVLeVZmcRlGZAVVurSB2IClalLZb8BsUaDQFWIpWUTSYBWl5AU32pZCiTj14Ec78fm0xtTI67uIyNtZ8GAHV6RLJhDsQf93Tv8CkaLMmmT3oQe9dsHyhvRmOY9SgvFKMmqnS0aiIUuIquxkQXliHAEycO7B13qhu6aECCOyeHuw55br3S7m4-EIM8bx5j_n3IJPnHxinAqnB0vzu4X9jkLNXG-77bvttE3PbTLtsQ |
link.rule.ids | 230,314,780,784,885,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ8APugLIiguH1qMkaeF3Xa_Ck8XkRzH3YWYI-HBZNN2u5EY9wjcGeCvZ6b7QdCYGN822-9OpzOdmf4K8FFpgULYKj-xMvIjWypf46nDl9zwMlRBZp0pezRO-ufR4CK-WIDD9i5MjQ_RGdyIM9x-TQxOBumGywltYHDGM7o7uQjPkNtDiuc6-sofXQiBlB1UeBqHDfIslt1vSz6RRYvfKRLyTzXzqdbqxM7xS_jWdriONvmxN5_pPXP_G5bjf45oBZYbdZT16vXzChZstQprvQqP4j_v2CfmAkSd5X0N9sejox7DHdJe0RM97LJi6hYX7QEjJdLu3rBqysyUjPfuodLXcH78ZfK57zfvLfiGIGx8qQtjBNaCTCxKAn5X2qgk1ZEI8BNlneaJzFCqEq5ZyrMyi8swIkeo0qUNxBtYqqaVfQvMFgXqXSGWkkUkDVZRSl5wo20plIhTD3bamc-valiNvD6OiLydBQ8-IEm6ZMLB7veGOf0LRIpqa5L9Cj3YaimWN9x3k_MoJSSvJKN2umTkG3KGqMpO55QnxhGgDOcerNeU7poSIozI6e3BrqPXX7uYTwZnmDGON_4553t43p-MhvnwZHy6CS84hcg4i84WLM2u53YbdZyZfufW8gPKZPDC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9sBfGlflTb1apRxD5tu5tkP-Lb4XmcZ3sc0kLBhyXJJiji3mHvRP3rncl-SBVBfFs235lMZjIz-QXguTYChbDTce6UjKXzOjZ46ogVt9ynOildMGWfzvPpuZxdZBddVCXdhWnxIQaDG3FG2K-JwVe175icwAZmC17S1cktuC5zrgg3f_yO__IgJEoNSOFFlnbAs1j2uC95RRRtfaBAyD-1zKtKa5A6k1vwvu9vG2zy6WizNkf2x29Qjv83oNuw0ymjbNSunjtwzTV3YXfU4EH883f2goXw0GB334Xj-el4xHB_dCt6oId9bJj-hkv2JSMV0h1esmbJ7JJM9-GZ0ntwPnl99moad68txJYAbGJlamsF1oIsLDzBvmtjdV4YKRL8RElneK5KlKmEalbw0peZTyW5QbXxLhH3YbtZNm4fmKtr1LpSLKVqqSxW4RWvuTXOCy2yIoKn_cRXqxZUo2oPI6LqZyGCZ0iRIZlQsKejk4r-JaJApTUvv6YRHPQEqzreu6y4LAjHKy-pnSEZuYZcIbpxyw3lyXAEKMF5BHstoYemhEglubwjOAzk-msXq7PZAjNm2YN_zvkEbizGk-rkzfztQ7jJKT4mmHMOYHv9ZeMeoYKzNo_DSv4J--_vcQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NMDA+receptors+in+axons%3A+there%27s+no+coincidence&rft.jtitle=The+Journal+of+physiology&rft.au=Hovy+Ho%E2%80%90Wai+Wong&rft.au=Rannio%2C+Sabine&rft.au=Jones%2C+Victoria&rft.au=Thomazeau%2C+Aurore&rft.date=2021-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=599&rft.issue=2&rft.spage=367&rft.epage=387&rft_id=info:doi/10.1113%2FJP280059&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon |