NMDA receptors in axons: there's no coincidence

In the textbook view, N‐methyl‐d‐aspartate (NMDA) receptors are postsynaptically located detectors of coincident activity in Hebbian learning. However, controversial presynaptically located NMDA receptors (preNMDARs) have for decades been repeatedly reported in the literature. These preNMDARs have t...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 599; no. 2; pp. 367 - 387
Main Authors Wong, Hovy Ho‐Wai, Rannio, Sabine, Jones, Victoria, Thomazeau, Aurore, Sjöström, P. Jesper
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.01.2021
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the textbook view, N‐methyl‐d‐aspartate (NMDA) receptors are postsynaptically located detectors of coincident activity in Hebbian learning. However, controversial presynaptically located NMDA receptors (preNMDARs) have for decades been repeatedly reported in the literature. These preNMDARs have typically been implicated in the regulation of short‐term and long‐term plasticity, but precisely how they signal and what their functional roles are have been poorly understood. The functional roles of preNMDARs across several brain regions and different forms of plasticity can differ vastly, with recent discoveries showing key involvement of unusual subunit composition. Increasing evidence shows preNMDAR can signal through both ionotropic action by fluxing calcium and in metabotropic mode even in the presence of magnesium blockade. We argue that these unusual properties may explain why controversy has surrounded this receptor type. In addition, the expression of preNMDARs at some synapse types but not others can underlie synapse‐type‐specific plasticity. Last but not least, preNMDARs are emerging therapeutic targets in disease states such as neuropathic pain. We conclude that axonally located preNMDARs are required for specific purposes and do not end up there by accident. figure legend Presynaptic NMDARs (preNMDARs) are present in axons of specific synapses to regulate different forms of neurotransmission and synaptic plasticity. PreNMDARs can signal through both ionotropic mode by fluxing calcium and metabotropic mode without calcium influx.
AbstractList In the textbook view, N‐methyl‐d‐aspartate (NMDA) receptors are postsynaptically located detectors of coincident activity in Hebbian learning. However, controversial presynaptically located NMDA receptors (preNMDARs) have for decades been repeatedly reported in the literature. These preNMDARs have typically been implicated in the regulation of short‐term and long‐term plasticity, but precisely how they signal and what their functional roles are have been poorly understood. The functional roles of preNMDARs across several brain regions and different forms of plasticity can differ vastly, with recent discoveries showing key involvement of unusual subunit composition. Increasing evidence shows preNMDAR can signal through both ionotropic action by fluxing calcium and in metabotropic mode even in the presence of magnesium blockade. We argue that these unusual properties may explain why controversy has surrounded this receptor type. In addition, the expression of preNMDARs at some synapse types but not others can underlie synapse‐type‐specific plasticity. Last but not least, preNMDARs are emerging therapeutic targets in disease states such as neuropathic pain. We conclude that axonally located preNMDARs are required for specific purposes and do not end up there by accident. figure legend Presynaptic NMDARs (preNMDARs) are present in axons of specific synapses to regulate different forms of neurotransmission and synaptic plasticity. PreNMDARs can signal through both ionotropic mode by fluxing calcium and metabotropic mode without calcium influx.
In the textbook view, N‐methyl‐d‐aspartate (NMDA) receptors are postsynaptically located detectors of coincident activity in Hebbian learning. However, controversial presynaptically located NMDA receptors (preNMDARs) have for decades been repeatedly reported in the literature. These preNMDARs have typically been implicated in the regulation of short‐term and long‐term plasticity, but precisely how they signal and what their functional roles are have been poorly understood. The functional roles of preNMDARs across several brain regions and different forms of plasticity can differ vastly, with recent discoveries showing key involvement of unusual subunit composition. Increasing evidence shows preNMDAR can signal through both ionotropic action by fluxing calcium and in metabotropic mode even in the presence of magnesium blockade. We argue that these unusual properties may explain why controversy has surrounded this receptor type. In addition, the expression of preNMDARs at some synapse types but not others can underlie synapse‐type‐specific plasticity. Last but not least, preNMDARs are emerging therapeutic targets in disease states such as neuropathic pain. We conclude that axonally located preNMDARs are required for specific purposes and do not end up there by accident.
In the textbook view, N ‐methyl‐ d ‐aspartate (NMDA) receptors are postsynaptically located detectors of coincident activity in Hebbian learning. However, controversial presynaptically located NMDA receptors (preNMDARs) have for decades been repeatedly reported in the literature. These preNMDARs have typically been implicated in the regulation of short‐term and long‐term plasticity, but precisely how they signal and what their functional roles are have been poorly understood. The functional roles of preNMDARs across several brain regions and different forms of plasticity can differ vastly, with recent discoveries showing key involvement of unusual subunit composition. Increasing evidence shows preNMDAR can signal through both ionotropic action by fluxing calcium and in metabotropic mode even in the presence of magnesium blockade. We argue that these unusual properties may explain why controversy has surrounded this receptor type. In addition, the expression of preNMDARs at some synapse types but not others can underlie synapse‐type‐specific plasticity. Last but not least, preNMDARs are emerging therapeutic targets in disease states such as neuropathic pain. We conclude that axonally located preNMDARs are required for specific purposes and do not end up there by accident. image
Author Wong, Hovy Ho‐Wai
Sjöström, P. Jesper
Rannio, Sabine
Thomazeau, Aurore
Jones, Victoria
Author_xml – sequence: 1
  givenname: Hovy Ho‐Wai
  orcidid: 0000-0003-3317-478X
  surname: Wong
  fullname: Wong, Hovy Ho‐Wai
  email: ho.w.wong@mail.mcgill.ca
  organization: The Research Institute of the McGill University Health Centre, Montreal General Hospital
– sequence: 2
  givenname: Sabine
  orcidid: 0000-0003-0669-3680
  surname: Rannio
  fullname: Rannio, Sabine
  organization: McGill University
– sequence: 3
  givenname: Victoria
  surname: Jones
  fullname: Jones, Victoria
  organization: McGill University
– sequence: 4
  givenname: Aurore
  orcidid: 0000-0002-7668-2867
  surname: Thomazeau
  fullname: Thomazeau, Aurore
  email: aurore.thomazeau@mail.mcgill.ca
  organization: The Research Institute of the McGill University Health Centre, Montreal General Hospital
– sequence: 5
  givenname: P. Jesper
  orcidid: 0000-0001-7085-2223
  surname: Sjöström
  fullname: Sjöström, P. Jesper
  email: jesper.sjostrom@mcgill.ca
  organization: The Research Institute of the McGill University Health Centre, Montreal General Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33141440$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03777468$$DView record in HAL
BookMark eNp10MtKAzEUBuAgFW1V8AlkwIW6mJrrZMZdqXeqdlHXIZOewSnTpCat2rc3pZeF4CohfPw55--glnUWEDoluEsIYdfPQ5pjLIo91CY8K1IpC9ZCbYwpTZkU5BB1QphgTBguigN0yBjhhHPcRtevL7e9xIOB2dz5kNQ20T_Ohptk_gEeLkJiXWJcbU09BmvgGO1XuglwsjmP0Pv93aj_mA7eHp76vUFqOMlFWpRjY1hMlblkFZUC69LoTJac4XjFLCtpVuQAYyo4lzSvclERLjBjuqwAsyN0tc790I2a-Xqq_VI5XavH3kCt3jCTUvIs_yLRXq7tzLvPBYS5mtbBQNNoC24RFOUi_sA4oZGe_6ETt_A2bhKVlHlsLw68CzTeheCh2k1AsFoVrraFR3q2CVyUUxjv4LbhCLpr8F03sPw3SI2eh9ELwX4BugyFvA
CitedBy_id crossref_primary_10_3390_ijms23147807
crossref_primary_10_3389_fnmol_2021_797253
crossref_primary_10_7554_eLife_71178
crossref_primary_10_1111_bph_16361
crossref_primary_10_1113_JP280879
crossref_primary_10_3389_fncel_2024_1389094
crossref_primary_10_1016_j_neubiorev_2022_104939
crossref_primary_10_7554_eLife_66612
crossref_primary_10_1016_j_pharmthera_2023_108539
crossref_primary_10_1038_s41583_022_00663_9
crossref_primary_10_3389_fnsyn_2021_748937
crossref_primary_10_1055_a_2005_5497
crossref_primary_10_1016_j_neuropharm_2023_109570
crossref_primary_10_3389_fnmol_2022_864502
crossref_primary_10_1126_sciadv_adf3885
crossref_primary_10_3390_ph16111535
crossref_primary_10_1016_j_neuron_2023_10_011
crossref_primary_10_1155_2022_2900875
Cites_doi 10.1093/cercor/bhy194
10.1038/nrn1297
10.1016/0014-5793(90)80652-Y
10.1016/S0896-6273(03)00476-8
10.1126/science.279.5355.1368
10.7554/eLife.34202
10.1002/cne.903470112
10.1111/j.1469-7793.1998.237bu.x
10.1038/nn.2750
10.1523/JNEUROSCI.3713-04.2005
10.1113/jphysiol.2007.149203
10.1038/srep09035
10.1038/nature02194
10.1016/j.neuro.2010.12.013
10.3389/fnsyn.2015.00001
10.1016/j.neuint.2019.03.003
10.1038/81453
10.1016/j.conb.2018.03.005
10.1523/JNEUROSCI.14-09-05202.1994
10.1038/nature10360
10.1016/j.cell.2020.05.052
10.1038/emboj.2011.203
10.1007/s00424-010-0809-1
10.1038/nature715
10.1016/j.neuron.2017.07.016
10.1016/0166-2236(95)93920-S
10.1093/nar/gky092
10.1016/j.tins.2011.11.010
10.1152/physrev.00016.2007
10.1523/JNEUROSCI.4289-14.2015
10.1523/JNEUROSCI.0534-17.2017
10.1038/s41586-018-0039-9
10.1016/S0896-6273(00)80763-1
10.1016/j.conb.2017.12.020
10.1038/nrn3504
10.1038/s41598-019-43709-2
10.1098/rstb.2013.0145
10.1523/JNEUROSCI.2432-08.2008
10.1523/JNEUROSCI.0046-20.2020
10.1111/jnc.14627
10.1097/00001756-199611040-00073
10.1523/JNEUROSCI.19-02-00511.1999
10.1038/4548
10.1016/j.biopsych.2009.07.029
10.1016/j.neuron.2014.03.030
10.1124/pr.109.002451
10.1023/A:1013238809666
10.1177/1073858408322675
10.1523/JNEUROSCI.2354-08.2009
10.1038/nature13294
10.1523/JNEUROSCI.2530-06.2006
10.1016/S0896-6273(00)80379-7
10.1038/386721a0
10.1093/cercor/bhv002
10.1016/j.neuron.2017.09.030
10.1016/S0896-6273(01)00568-2
10.1007/s11481-016-9677-6
10.1016/S1474-4422(02)00164-3
10.1523/JNEUROSCI.2929-06.2006
10.1093/acprof:oso/9780198745273.003.0018
10.1073/pnas.200354297
10.1038/ng.677
10.1523/JNEUROSCI.4980-04.2005
10.1073/pnas.1219454110
10.1016/j.tins.2015.11.001
10.1016/j.cophys.2017.12.004
10.1152/jn.00661.2005
10.1038/s41380-019-0426-0
10.1016/j.ajhg.2011.02.001
10.1098/rspb.1992.0159
10.1113/jphysiol.2009.182980
10.1113/JP279645
10.1016/j.celrep.2020.107955
10.1093/cercor/bhw172
10.1523/JNEUROSCI.0473-04.2004
10.1016/j.neuron.2008.08.028
10.1016/j.neuron.2012.10.035
10.1523/JNEUROSCI.2159-12.2012
10.1126/science.1227764
10.1038/307460a0
10.1038/nn.4343
10.1016/S0896-6273(00)80970-8
10.1016/j.biopsych.2018.01.018
10.1038/nature10180
10.1016/S0021-9258(18)53849-7
10.1073/pnas.1219605110
10.1038/nn.2481
10.1126/science.1251915
10.1038/369744a0
10.1177/0883073807302611
10.1038/s41380-020-0821-6
10.1038/368144a0
10.1073/pnas.0904284106
10.1126/science.275.5297.213
10.1016/j.neuron.2014.10.045
10.1016/0304-3959(92)90198-K
10.1016/j.neuropharm.2006.07.021
10.1016/j.neuron.2013.11.033
10.1016/j.neuron.2018.01.047
10.1016/j.neuropharm.2020.108117
10.1016/j.neuron.2013.12.029
10.1111/j.1460-9568.2010.07312.x
10.1074/jbc.M117.818476
10.1073/pnas.91.18.8383
10.7554/eLife.29688
10.1152/jn.00687.2015
10.1002/1096-9861(20000724)423:2<330::AID-CNE10>3.0.CO;2-9
10.1073/pnas.1816013116
10.1523/JNEUROSCI.3915-07.2008
10.1038/nn1649
10.1098/rstb.2016.0153
10.1016/j.neuroscience.2007.10.024
10.1016/j.neuron.2012.06.017
10.1002/hipo.20890
10.1371/journal.pone.0063191
10.1212/WNL.57.9.1618
10.1007/s12035-018-1187-5
10.1113/JP279028
10.1016/S1367-5931(03)00078-4
10.1073/pnas.85.17.6547
10.1073/pnas.1520029112
10.1016/j.neuron.2014.07.039
10.1523/JNEUROSCI.0274-11.2011
10.1523/JNEUROSCI.5494-06.2007
10.1002/phy2.271
10.1523/JNEUROSCI.18-24-10464.1998
10.1016/j.celrep.2016.03.004
10.1016/j.neuron.2011.09.027
10.3389/fnsyn.2020.00011
10.1523/JNEUROSCI.1091-17.2017
10.1111/ejn.12098
10.1038/nn.3075
10.1523/JNEUROSCI.3967-04.2005
10.1073/pnas.1520023112
10.1126/science.aau3644
10.1523/JNEUROSCI.1749-06.2006
10.1007/s00018-019-03047-y
10.1016/j.conb.2015.08.001
10.1038/tp.2011.52
10.1126/science.256.5060.1217
10.1038/s41598-018-38264-1
10.1371/journal.pone.0039983
10.1016/j.conb.2006.05.008
10.1073/pnas.97.3.1293
10.1016/S0959-4388(02)00325-2
10.1523/JNEUROSCI.1825-17.2017
10.1002/cne.10314
10.1093/cercor/bhp067
10.1038/357070a0
10.1523/JNEUROSCI.0176-06.2006
10.1073/pnas.1111093108
10.1523/ENEURO.0046-14.2015
10.1038/nn1227
10.1523/JNEUROSCI.3910-11.2011
10.1016/0306-4522(96)00301-6
10.1074/jbc.RA118.003977
10.3389/fnsyn.2013.00011
10.1523/JNEUROSCI.2387-09.2009
10.1016/0896-6273(94)90210-0
10.1038/nn.2125
10.1111/j.1469-7793.2000.00041.x
10.1523/JNEUROSCI.16-11-03549.1996
10.1113/jphysiol.2012.250522
10.1098/rspb.1996.0159
ContentType Journal Article
Copyright 2020 The Authors. The Journal of Physiology © 2020 The Physiological Society
2020 The Authors. The Journal of Physiology © 2020 The Physiological Society.
Journal compilation © 2021 The Physiological Society
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 The Authors. The Journal of Physiology © 2020 The Physiological Society
– notice: 2020 The Authors. The Journal of Physiology © 2020 The Physiological Society.
– notice: Journal compilation © 2021 The Physiological Society
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
1XC
DOI 10.1113/JP280059
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-7793
EndPage 387
ExternalDocumentID oai_HAL_hal_03777468v1
10_1113_JP280059
33141440
TJP14455
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: CIHR NIA
  funderid: 288936
– fundername: NSERC DAS
  funderid: 2017‐507818
– fundername: NSERC DG
  funderid: 418546‐2
– fundername: FRQS CB
  funderid: 254033
– fundername: CIHR OG
  funderid: 126137
– fundername: Marie Skłodowska‐Curie Individual Fellowship
  funderid: 892837
– fundername: NSERC DG
  funderid: 2017‐04730
– fundername: CFI LOF
  funderid: 28331
– fundername: FRQS
  funderid: 259572
– fundername: CFI LOF
  grantid: 28331
– fundername: CIHR OG
  grantid: 126137
– fundername: CIHR NIA
  grantid: 288936
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
123
18M
1OC
24P
29L
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABITZ
ABIVO
ABJNI
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EMOBN
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RPM
RX1
SUPJJ
TEORI
TLM
TN5
TR2
UB1
UPT
V8K
VH1
W8F
W8V
W99
WBKPD
WH7
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
XG1
YBU
YHG
YKV
YQT
YSK
YZZ
ZZTAW
~IA
~WT
.55
.GJ
.Y3
0YM
1OB
31~
3EH
3O-
AASGY
AAYJJ
AFFNX
C1A
CAG
CGR
CHEAL
COF
CUY
CVF
ECM
EIF
EJD
FA8
H13
HF~
H~9
IPNFZ
LW6
MVM
NEJ
NPM
OHT
SAMSI
UKR
WHG
X7M
XOL
YXB
YYP
ZGI
ZXP
AAMNL
AAYXX
CITATION
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
1XC
ID FETCH-LOGICAL-c4185-9bdcc3ece7873f2750abca67b4300ab036b2698eed2544728f85f145033abfe03
IEDL.DBID DR2
ISSN 0022-3751
IngestDate Tue Oct 15 15:48:19 EDT 2024
Wed Dec 04 16:10:47 EST 2024
Thu Oct 10 16:37:15 EDT 2024
Fri Dec 06 05:28:12 EST 2024
Sat Sep 28 08:23:26 EDT 2024
Sat Aug 24 01:07:44 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords neuropathic pain
long-term plasticity
presynaptic terminal
axon
NMDA receptor
neurotransmitter release
metabotropic signalling
short-term plasticity
Language English
License 2020 The Authors. The Journal of Physiology © 2020 The Physiological Society.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4185-9bdcc3ece7873f2750abca67b4300ab036b2698eed2544728f85f145033abfe03
Notes This is an Editor's Choice article from the 15 January 2021 issue.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7668-2867
0000-0003-0669-3680
0000-0001-7085-2223
0000-0003-3317-478X
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1113/JP280059
PMID 33141440
PQID 2477814687
PQPubID 1086388
PageCount 21
ParticipantIDs hal_primary_oai_HAL_hal_03777468v1
proquest_miscellaneous_2457283412
proquest_journals_2477814687
crossref_primary_10_1113_JP280059
pubmed_primary_33141440
wiley_primary_10_1113_JP280059_TJP14455
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2011; 477
2010; 13
2002; 12
2004; 7
1997; 275
2004; 24
2010; 460
2004; 5
2020; 12
1998; 279
1996; 263
2012; 15
2008; 586
2016; 39
2013; 8
2013; 5
2011; 475
1996; 75
2018; 46
2018; 7
1998; 18
2018; 2
2018; 293
2020; 176
2019; 24
2000; 525
1997; 386
2008; 28
2006; 26
2000; 97
2011; 72
1992; 357
2019; 29
2013; 591
1988; 85
2013; 110
1992; 49
2009; 19
2001; 57
2012; 22
2014b; 511
2010; 32
2019; 9
2016; 19
2011; 1
1992; 263
2020; 40
2002; 1
2002; 415
1999; 23
2003; 39
2017; 372
2020; 32
2012; 35
1996; 16
2016; 15
2012; 32
2016; 11
2010; 42
1992; 250
2013; 77
2015; 112
1992; 256
1994; 12
1994; 14
2011; 88
2005; 94
1994; 91
2016; 26
2018; 97
2009; 587
2001; 31
2009; 106
2015; 35
2017; 6
2000; 3
2019; 56
2019; 126
2018; 84
2011; 14
2019; 364
2010; 62
1990; 261
2005; 25
2010; 67
1994; 347
2013; 14
2014; 2
2017; 37
1999; 19
2021; 599
2003; 7
1997; 19
2019; 116
2016; 115
2007; 22
1949
2008; 60
2012; 338
2008; 151
2007; 27
1996; 7
2015; 2
2015; 5
2002; 450
2019; 76
2006; 16
2020; 182
2006; 9
2002; 33
2019; 148
2008; 14
2011; 31
2008
2011; 30
1984; 307
2017; 292
2011; 32
2008; 11
1999; 2
2007; 52
1995; 18
1993; 268
2014; 84
2014; 83
2015; 7
2014; 82
2012; 75
2009; 29
2017; 95
2017; 96
2013; 37
2014; 81
1994; 369
2011; 108
2003; 426
1994; 368
2018; 556
2000; 423
2020
1998; 507
2014a; 369
2016
2018; 51
2008; 88
2012; 7
2014; 344
e_1_2_2_24_1
e_1_2_2_6_1
e_1_2_2_20_1
e_1_2_2_109_1
e_1_2_2_2_1
e_1_2_2_62_1
e_1_2_2_105_1
e_1_2_2_43_1
e_1_2_2_85_1
e_1_2_2_28_1
e_1_2_2_66_1
e_1_2_2_101_1
e_1_2_2_150_1
e_1_2_2_47_1
e_1_2_2_89_1
e_1_2_2_131_1
e_1_2_2_143_1
e_1_2_2_124_1
e_1_2_2_166_1
e_1_2_2_147_1
e_1_2_2_81_1
e_1_2_2_128_1
e_1_2_2_13_1
e_1_2_2_59_1
e_1_2_2_97_1
e_1_2_2_51_1
e_1_2_2_32_1
e_1_2_2_74_1
e_1_2_2_113_1
e_1_2_2_17_1
e_1_2_2_55_1
e_1_2_2_36_1
e_1_2_2_78_1
e_1_2_2_120_1
e_1_2_2_162_1
e_1_2_2_132_1
e_1_2_2_155_1
e_1_2_2_70_1
e_1_2_2_93_1
e_1_2_2_136_1
e_1_2_2_159_1
Hebb DO (e_1_2_2_69_1) 1949
e_1_2_2_117_1
e_1_2_2_25_1
e_1_2_2_48_1
e_1_2_2_5_1
e_1_2_2_21_1
e_1_2_2_40_1
e_1_2_2_63_1
e_1_2_2_86_1
e_1_2_2_106_1
e_1_2_2_9_1
e_1_2_2_29_1
e_1_2_2_44_1
e_1_2_2_67_1
e_1_2_2_102_1
e_1_2_2_151_1
e_1_2_2_121_1
e_1_2_2_144_1
e_1_2_2_167_1
e_1_2_2_82_1
e_1_2_2_125_1
e_1_2_2_148_1
e_1_2_2_129_1
e_1_2_2_14_1
e_1_2_2_37_1
e_1_2_2_10_1
e_1_2_2_52_1
e_1_2_2_75_1
e_1_2_2_98_1
e_1_2_2_18_1
e_1_2_2_33_1
e_1_2_2_56_1
e_1_2_2_79_1
e_1_2_2_140_1
e_1_2_2_163_1
e_1_2_2_110_1
e_1_2_2_90_1
e_1_2_2_133_1
e_1_2_2_114_1
e_1_2_2_94_1
e_1_2_2_137_1
e_1_2_2_71_1
e_1_2_2_118_1
e_1_2_2_4_1
e_1_2_2_49_1
e_1_2_2_22_1
e_1_2_2_107_1
e_1_2_2_41_1
e_1_2_2_87_1
e_1_2_2_64_1
e_1_2_2_103_1
e_1_2_2_8_1
e_1_2_2_45_1
e_1_2_2_26_1
e_1_2_2_68_1
e_1_2_2_152_1
e_1_2_2_122_1
e_1_2_2_168_1
e_1_2_2_145_1
e_1_2_2_83_1
e_1_2_2_126_1
e_1_2_2_60_1
e_1_2_2_149_1
e_1_2_2_38_1
e_1_2_2_11_1
e_1_2_2_30_1
e_1_2_2_76_1
e_1_2_2_160_1
e_1_2_2_95_1
e_1_2_2_19_1
e_1_2_2_53_1
e_1_2_2_34_1
e_1_2_2_164_1
e_1_2_2_99_1
e_1_2_2_111_1
e_1_2_2_15_1
e_1_2_2_57_1
e_1_2_2_141_1
e_1_2_2_134_1
e_1_2_2_157_1
e_1_2_2_115_1
e_1_2_2_72_1
e_1_2_2_91_1
e_1_2_2_138_1
e_1_2_2_119_1
e_1_2_2_23_1
e_1_2_2_7_1
e_1_2_2_108_1
e_1_2_2_3_1
e_1_2_2_42_1
e_1_2_2_65_1
e_1_2_2_84_1
e_1_2_2_104_1
e_1_2_2_27_1
e_1_2_2_46_1
e_1_2_2_88_1
e_1_2_2_100_1
e_1_2_2_130_1
e_1_2_2_153_1
e_1_2_2_123_1
e_1_2_2_146_1
e_1_2_2_165_1
e_1_2_2_61_1
e_1_2_2_80_1
e_1_2_2_127_1
e_1_2_2_12_1
e_1_2_2_39_1
e_1_2_2_31_1
e_1_2_2_54_1
e_1_2_2_73_1
e_1_2_2_96_1
e_1_2_2_112_1
e_1_2_2_16_1
e_1_2_2_35_1
e_1_2_2_58_1
e_1_2_2_77_1
e_1_2_2_142_1
e_1_2_2_161_1
e_1_2_2_154_1
e_1_2_2_135_1
e_1_2_2_158_1
e_1_2_2_50_1
e_1_2_2_116_1
e_1_2_2_92_1
e_1_2_2_139_1
Ujihara H (e_1_2_2_156_1) 1992; 263
References_xml – volume: 19
  start-page: 893
  year: 1997
  end-page: 901
  article-title: Kainate receptors presynaptically downregulate GABAergic inhibition in the rat hippocampus
  publication-title: Neuron
– volume: 19
  start-page: 511
  year: 1999
  end-page: 519
  article-title: Presynaptic effects of NMDA in cerebellar Purkinje cells and interneurons
  publication-title: J Neurosci
– volume: 82
  start-page: 279
  year: 2014
  end-page: 293
  article-title: Extrasynaptic NMDA receptor involvement in central nervous system disorders
  publication-title: Neuron
– volume: 32
  year: 2020
  article-title: Postsynaptic and presynaptic NMDARs have distinct roles in visual circuit development
  publication-title: Cell Rep
– volume: 1
  start-page: 383
  year: 2002
  end-page: 386
  article-title: Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury?
  publication-title: Lancet Neurol
– volume: 115
  start-page: 271
  year: 2016
  end-page: 285
  article-title: Presynaptic GluN2D receptors detect glutamate spillover and regulate cerebellar GABA release
  publication-title: J Neurophysiol
– volume: 182
  start-page: 357
  year: 2020
  end-page: 371.e13
  article-title: Structural basis of functional transitions in mammalian NMDA receptors
  publication-title: Cell
– volume: 126
  start-page: 59
  year: 2019
  end-page: 63
  article-title: Prolonged activation of CXCR4 hampers the release‐regulating activity of presynaptic NMDA receptors in rat hippocampal synaptosomes
  publication-title: Neurochem Int
– volume: 15
  start-page: 104
  year: 2016
  end-page: 116
  article-title: Burst‐dependent bidirectional plasticity in the cerebellum is driven by presynaptic NMDA receptors
  publication-title: Cell Rep
– volume: 364
  year: 2019
  article-title: Local protein synthesis is a ubiquitous feature of neuronal pre‐ and postsynaptic compartments
  publication-title: Science
– volume: 12
  start-page: 11
  year: 2020
  article-title: A practical guide to using CV analysis for determining the locus of synaptic plasticity
  publication-title: Front Synaptic Neurosci
– volume: 148
  start-page: 252
  year: 2019
  end-page: 274
  article-title: Increased α2δ‐1‐NMDA receptor coupling potentiates glutamatergic input to spinal dorsal horn neurons in chemotherapy‐induced neuropathic pain
  publication-title: J Neurochem
– volume: 110
  start-page: 4033
  year: 2013
  end-page: 4038
  article-title: Metabotropic NMDA receptor function is required for β‐amyloid‐induced synaptic depression
  publication-title: Proc Natl Acad Sci U S A
– volume: 14
  start-page: 609
  year: 2008
  end-page: 625
  article-title: Presynaptic NMDA receptors: newly appreciated roles in cortical synaptic function and plasticity
  publication-title: Neuroscientist
– volume: 57
  start-page: 1618
  year: 2001
  end-page: 1628
  article-title: Postmortem brain abnormalities of the glutamate neurotransmitter system in autism
  publication-title: Neurology
– volume: 25
  start-page: 2024
  year: 2005
  end-page: 2031
  article-title: NMDA receptors increase the size of GABAergic terminals and enhance GABA release
  publication-title: J Neurosci
– volume: 372
  year: 2017
  article-title: Functional consequences of pre‐ and postsynaptic expression of synaptic plasticity
  publication-title: Philos Trans R Soc Lond B Biol Sci
– volume: 52
  start-page: 176
  year: 2007
  end-page: 184
  article-title: Multiple forms of long‐term plasticity at unitary neocortical layer 5 synapses
  publication-title: Neuropharmacology
– volume: 6
  year: 2017
  article-title: Glutamate is required for depression but not potentiation of long‐term presynaptic function
  publication-title: Elife
– volume: 599
  start-page: 485
  year: 2021
  end-page: 492
  article-title: Kainate receptor regulation of synaptic inhibition in the hippocampus
  publication-title: J Physiol
– volume: 279
  start-page: 1368
  year: 1998
  end-page: 1371
  article-title: Target‐specific expression of presynaptic mossy fiber plasticity
  publication-title: Science
– volume: 84
  start-page: 1009
  year: 2014
  end-page: 1022
  article-title: Essential role of presynaptic NMDA receptors in activity‐dependent BDNF secretion and corticostriatal LTP
  publication-title: Neuron
– volume: 7
  start-page: 2773
  year: 1996
  end-page: 2776
  article-title: Presynaptic NMDA receptors in the neocortex are both auto‐ and heteroreceptors
  publication-title: Neuroreport
– year: 2008
– volume: 49
  start-page: 121
  year: 1992
  end-page: 128
  article-title: Spinal pharmacology of thermal hyperesthesia induced by constriction injury of sciatic nerve. Excitatory amino acid antagonists
  publication-title: Pain
– year: 1949
– volume: 26
  start-page: 9332
  year: 2006
  end-page: 9339
  article-title: The activation of excitatory glutamate receptors evokes a long‐lasting increase in the release of GABA from cerebellar stellate cells
  publication-title: J Neurosci
– volume: 22
  start-page: 574
  year: 2007
  end-page: 579
  article-title: Memantine as adjunctive therapy in children diagnosed with autistic spectrum disorders: an observation of initial clinical response and maintenance tolerability
  publication-title: J Child Neurol
– volume: 30
  start-page: 3134
  year: 2011
  end-page: 3146
  article-title: Molecular basis of positive allosteric modulation of GluN2B NMDA receptors by polyamines
  publication-title: EMBO J
– volume: 344
  start-page: 992
  year: 2014
  end-page: 997
  article-title: Crystal structure of a heterotetrameric NMDA receptor ion channel
  publication-title: Science
– volume: 293
  start-page: 19354
  year: 2018
  end-page: 19364
  article-title: The α2δ‐1‐NMDA receptor coupling is essential for corticostriatal long‐term potentiation and is involved in learning and memory
  publication-title: J Biol Chem
– volume: 176
  year: 2020
  article-title: Negative allosteric modulation of GluN1/GluN3 NMDA receptors
  publication-title: Neuropharmacology
– volume: 75
  start-page: 339
  year: 1996
  end-page: 344
  article-title: Tonic facilitation of glutamate release by presynaptic N‐methyl‐D‐aspartate autoreceptors in the entorhinal cortex
  publication-title: Neuroscience
– volume: 460
  start-page: 525
  year: 2010
  end-page: 542
  article-title: Glutamate receptors, neurotoxicity and neurodegeneration
  publication-title: Pflugers Arch
– volume: 26
  start-page: 1938
  year: 2016
  end-page: 1956
  article-title: Mechanisms of functional hypoconnectivity in the medial prefrontal cortex of Mecp2 null mice
  publication-title: Cereb Cortex
– volume: 51
  start-page: 119
  year: 2018
  end-page: 126
  article-title: Presynaptic origins of distinct modes of neurotransmitter release
  publication-title: Curr Opin Neurobiol
– volume: 88
  start-page: 306
  year: 2011
  end-page: 316
  article-title: Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability
  publication-title: Am J Hum Genet
– volume: 94
  start-page: 4281
  year: 2005
  end-page: 4289
  article-title: An NMDA receptor/nitric oxide cascade is involved in cerebellar LTD but is not localized to the parallel fiber terminal
  publication-title: J Neurophysiol
– volume: 450
  start-page: 303
  year: 2002
  end-page: 317
  article-title: Temporal and regional expression of NMDA receptor subunit NR3A in the mammalian brain
  publication-title: J Comp Neurol
– volume: 14
  start-page: 338
  year: 2011
  end-page: 344
  article-title: NR3A‐containing NMDARs promote neurotransmitter release and spike timing‐dependent plasticity
  publication-title: Nat Neurosci
– volume: 338
  start-page: 1619
  year: 2012
  end-page: 1622
  article-title: Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders
  publication-title: Science
– volume: 97
  start-page: 1293
  year: 2000
  end-page: 1298
  article-title: Two populations of kainate receptors with separate signaling mechanisms in hippocampal interneurons
  publication-title: Proc Natl Acad Sci U S A
– volume: 475
  start-page: 249
  year: 2011
  end-page: 253
  article-title: Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors
  publication-title: Nature
– volume: 85
  start-page: 6547
  year: 1988
  end-page: 6550
  article-title: 7‐Chlorokynurenic acid is a selective antagonist at the glycine modulatory site of the N‐methyl‐D‐aspartate receptor complex
  publication-title: Proc Natl Acad Sci U S A
– volume: 25
  start-page: 308
  year: 2005
  end-page: 317
  article-title: The micromolar zinc‐binding domain on the NMDA receptor subunit NR2B
  publication-title: J Neurosci
– volume: 39
  start-page: 26
  year: 2016
  end-page: 39
  article-title: Roles of presynaptic NMDA receptors in neurotransmission and plasticity
  publication-title: Trends Neurosci
– volume: 35
  start-page: 240
  year: 2012
  end-page: 249
  article-title: GluN3 subunit‐containing NMDA receptors: not just one‐trick ponies
  publication-title: Trends Neurosci
– volume: 37
  start-page: 11455
  year: 2017
  end-page: 11468
  article-title: Concerted interneuron activity in the cerebellar molecular layer during rhythmic oromotor behaviors
  publication-title: J Neurosci
– volume: 426
  start-page: 841
  year: 2003
  end-page: 845
  article-title: Presynaptic induction of heterosynaptic associative plasticity in the mammalian brain
  publication-title: Nature
– volume: 40
  start-page: 3741
  year: 2020
  end-page: 3750
  article-title: Molecular mechanisms of non‐ionotropic NMDA receptor signaling in dendritic spine shrinkage
  publication-title: J Neurosci
– volume: 2
  start-page: 1
  year: 2018
  end-page: 12
  article-title: Triheteromeric NMDA receptors: from structure to synaptic physiology
  publication-title: Curr Opin Physiol
– volume: 19
  start-page: 665
  year: 1997
  end-page: 678
  article-title: Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration
  publication-title: Neuron
– volume: 108
  start-page: 13764
  year: 2011
  end-page: 13769
  article-title: Autism‐linked neuroligin‐3 R451C mutation differentially alters hippocampal and cortical synaptic function
  publication-title: Proc Natl Acad Sci U S A
– volume: 591
  start-page: 2001
  year: 2013
  end-page: 2019
  article-title: Endogenous activation of presynaptic NMDA receptors enhances glutamate release from the primary afferents in the spinal dorsal horn in a rat model of neuropathic pain
  publication-title: J Physiol
– volume: 151
  start-page: 403
  year: 2008
  end-page: 409
  article-title: Calcium influx through N‐methyl‐D‐aspartate receptors triggers GABA release at interneuron‐Purkinje cell synapse in rat cerebellum
  publication-title: Neuroscience
– volume: 9
  start-page: 7146
  year: 2019
  article-title: The selective disruption of presynaptic JNK2/STX1a interaction reduces NMDA receptor‐dependent glutamate release
  publication-title: Sci Rep
– volume: 51
  start-page: 1
  year: 2018
  end-page: 7
  article-title: Towards resolving the presynaptic NMDA receptor debate
  publication-title: Curr Opin Neurobiol
– volume: 2
  year: 2014
  article-title: Distinct mechanisms of spike timing‐dependent LTD at vertical and horizontal inputs onto L2/3 pyramidal neurons in mouse barrel cortex
  publication-title: Physiol Rep
– volume: 76
  start-page: 1889
  year: 2019
  end-page: 1899
  article-title: Presynaptic NMDA receptors control nociceptive transmission at the spinal cord level in neuropathic pain
  publication-title: Cell Mol Life Sci
– volume: 112
  start-page: 14711
  year: 2015
  end-page: 14716
  article-title: Conformational signaling required for synaptic plasticity by the NMDA receptor complex
  publication-title: Proc Natl Acad Sci U S A
– volume: 29
  start-page: 381
  year: 2009
  end-page: 392
  article-title: Glutamatergic modulation of cerebellar interneuron activity is mediated by an enhancement of GABA release and requires protein kinase A/RIM1α signaling
  publication-title: J Neurosci
– volume: 60
  start-page: 298
  year: 2008
  end-page: 307
  article-title: Dendritic NMDA receptors activate axonal calcium channels
  publication-title: Neuron
– volume: 2
  start-page: 44
  year: 1999
  end-page: 49
  article-title: Miniature synaptic events maintain dendritic spines via AMPA receptor activation
  publication-title: Nat Neurosci
– volume: 32
  start-page: 598
  year: 2010
  end-page: 605
  article-title: Activation of dopamine D1/D5 receptors facilitates the induction of presynaptic long‐term potentiation at hippocampal output synapses
  publication-title: Eur J Neurosci
– volume: 263
  start-page: 1079
  year: 1996
  end-page: 1086
  article-title: Single‐channel currents from recombinant NMDA NR1a/NR2D receptors expressed in oocytes
  publication-title: Proc Biol Sci
– volume: 14
  start-page: 5202
  year: 1994
  end-page: 5222
  article-title: Cellular and subcellular localization of NMDA‐R1 subunit immunoreactivity in the visual cortex of adult and neonatal rats
  publication-title: J Neurosci
– volume: 586
  start-page: 2725
  year: 2008
  end-page: 2734
  article-title: Two different forms of long‐term potentiation at CA1‐subiculum synapses
  publication-title: J Physiol
– volume: 19
  start-page: 2959
  year: 2009
  end-page: 2969
  article-title: Double dissociation of spike timing‐dependent potentiation and depression by subunit‐preferring NMDA receptor antagonists in mouse barrel cortex
  publication-title: Cereb Cortex
– volume: 27
  start-page: 9835
  year: 2007
  end-page: 9845
  article-title: Developmental switch in the contribution of presynaptic and postsynaptic NMDA receptors to long‐term depression
  publication-title: J Neurosci
– volume: 386
  start-page: 721
  year: 1997
  end-page: 724
  article-title: NMDA‐receptor regulation of substance P release from primary afferent nociceptors
  publication-title: Nature
– volume: 26
  start-page: 12033
  year: 2006
  end-page: 12042
  article-title: Primary afferent NMDA receptors increase dorsal horn excitation and mediate opiate tolerance in neonatal rats
  publication-title: J Neurosci
– volume: 81
  start-page: 913
  year: 2014
  end-page: 929
  article-title: Structured connectivity in cerebellar inhibitory networks
  publication-title: Neuron
– volume: 11
  start-page: 744
  year: 2008
  end-page: 745
  article-title: Spike timing‐dependent long‐term depression requires presynaptic NMDA receptors
  publication-title: Nat Neurosci
– volume: 9
  start-page: 1742
  year: 2019
  article-title: Molecular layer interneurons shape the spike activity of cerebellar Purkinje cells
  publication-title: Sci Rep
– volume: 525
  start-page: 41
  year: 2000
  end-page: 51
  article-title: Target‐specific expression of pre‐ and postsynaptic mechanisms
  publication-title: J Physiol
– volume: 28
  start-page: 2199
  year: 2008
  end-page: 2211
  article-title: Synapse‐specific expression of functional presynaptic NMDA receptors in rat somatosensory cortex
  publication-title: J Neurosci
– volume: 511
  start-page: 348
  year: 2014b
  end-page: 352
  article-title: Engineering a memory with LTD and LTP
  publication-title: Nature
– volume: 116
  start-page: 13602
  year: 2019
  end-page: 13610
  article-title: Circuit‐specific control of the medial entorhinal inputs to the dentate gyrus by atypical presynaptic NMDARs activated by astrocytes
  publication-title: Proc Natl Acad Sci U S A
– volume: 32
  start-page: 281
  year: 2011
  end-page: 289
  article-title: Lead exposure during synaptogenesis alters NMDA receptor targeting via NMDA receptor inhibition
  publication-title: Neurotoxicology
– volume: 5
  start-page: 135
  year: 2004
  end-page: 145
  article-title: Presynaptic ionotropic receptors and control of transmitter release
  publication-title: Nat Rev Neurosci
– volume: 106
  start-page: 14126
  year: 2009
  end-page: 14131
  article-title: Presynaptic NR2A‐containing NMDA receptors implement a high‐pass filter synaptic plasticity rule
  publication-title: Proc Natl Acad Sci U S A
– volume: 9
  start-page: 372
  year: 2006
  end-page: 380
  article-title: Visual stimuli‐induced LTD of GABAergic synapses mediated by presynaptic NMDA receptors
  publication-title: Nat Neurosci
– volume: 35
  start-page: 12303
  year: 2015
  end-page: 12308
  article-title: Non‐ionotropic NMDA receptor signaling drives activity‐induced dendritic spine shrinkage
  publication-title: J Neurosci
– volume: 7
  start-page: 1
  year: 2015
  article-title: Properties and molecular identity of NMDA receptors at synaptic and non‐synaptic inputs in cerebellar molecular layer interneurons
  publication-title: Front Synaptic Neurosci
– volume: 25
  start-page: 1847
  year: 2005
  end-page: 1855
  article-title: Activity‐dependent synaptic plasticity in the central nucleus of the amygdala
  publication-title: J Neurosci
– volume: 477
  start-page: 171
  year: 2011
  end-page: 178
  article-title: Neocortical excitation/inhibition balance in information processing and social dysfunction
  publication-title: Nature
– volume: 31
  start-page: 16550
  year: 2011
  end-page: 16555
  article-title: NMDA receptor agonists fail to alter release from cerebellar basket cells
  publication-title: J Neurosci
– volume: 29
  start-page: 3266
  year: 2019
  end-page: 3281
  article-title: Adenosine receptor‐mediated developmental loss of spike timing‐dependent depression in the hippocampus
  publication-title: Cereb Cortex
– volume: 33
  start-page: 123
  year: 2002
  end-page: 130
  article-title: Involvement of presynaptic N‐methyl‐D‐aspartate receptors in cerebellar long‐term depression
  publication-title: Neuron
– volume: 357
  start-page: 70
  year: 1992
  end-page: 74
  article-title: Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs
  publication-title: Nature
– volume: 19
  start-page: 1218
  year: 2016
  end-page: 1224
  article-title: Postsynaptic, not presynaptic NMDA receptors are required for spike‐timing‐dependent LTD induction
  publication-title: Nat Neurosci
– volume: 37
  start-page: 850
  year: 2013
  end-page: 859
  article-title: GABA , NMDA and mGlu2 receptors tonically regulate inhibition and excitation in the thalamic reticular nucleus
  publication-title: Eur J Neurosci
– volume: 24
  start-page: 6920
  year: 2004
  end-page: 6927
  article-title: Glutamate released from glial cells synchronizes neuronal activity in the hippocampus
  publication-title: J Neurosci
– volume: 97
  start-page: 1244
  year: 2018
  end-page: 1252.e5
  article-title: Activity‐dependent downscaling of subthreshold synaptic inputs during slow‐wave‐sleep‐like activity in vivo
  publication-title: Neuron
– year: 2020
  article-title: Dissociation of functional and structural plasticity of dendritic spines during NMDAR and mGluR‐dependent long‐term synaptic depression in wild‐type and fragile X model mice
  publication-title: Mol Psychiatry
– volume: 88
  start-page: 769
  year: 2008
  end-page: 840
  article-title: Dendritic excitability and synaptic plasticity
  publication-title: Physiol Rev
– volume: 292
  start-page: 20644
  year: 2017
  end-page: 20654
  article-title: Presynaptic mGluR5 receptor controls glutamatergic input through protein kinase C‐NMDA receptors in paclitaxel‐induced neuropathic pain
  publication-title: J Biol Chem
– volume: 16
  start-page: 312
  year: 2006
  end-page: 322
  article-title: Novel presynaptic mechanisms for coincidence detection in synaptic plasticity
  publication-title: Curr Opin Neurobiol
– volume: 7
  start-page: 452
  year: 2003
  end-page: 456
  article-title: Advances in pain therapeutics
  publication-title: Curr Opin Chem Biol
– volume: 1
  year: 2011
  article-title: Rare mutations in N‐methyl‐D‐aspartate glutamate receptors in autism spectrum disorders and schizophrenia
  publication-title: Transl Psychiatry
– volume: 72
  start-page: 231
  year: 2011
  end-page: 243
  article-title: How inhibition shapes cortical activity
  publication-title: Neuron
– volume: 263
  start-page: 868
  year: 1992
  end-page: 875
  article-title: Developmental change of the inhibition by lead of NMDA‐activated currents in cultured hippocampal neurons
  publication-title: J Pharmacol Exp Ther
– volume: 369
  start-page: 744
  year: 1994
  end-page: 747
  article-title: Glutamate‐mediated astrocyte‐neuron signalling
  publication-title: Nature
– volume: 37
  start-page: 10800
  year: 2017
  end-page: 10807
  article-title: Unconventional NMDA receptor signaling
  publication-title: J Neurosci
– volume: 56
  start-page: 1694
  year: 2019
  end-page: 1706
  article-title: NMDA receptors containing GluN2B/2C/2D subunits mediate an increase in glutamate release at hippocampal CA3‐CA1 synapses
  publication-title: Mol Neurobiol
– volume: 268
  start-page: 2836
  year: 1993
  end-page: 2843
  article-title: Molecular characterization of the family of the N‐methyl‐D‐aspartate receptor subunits
  publication-title: J Biol Chem
– volume: 97
  start-page: 11593
  year: 2000
  end-page: 11597
  article-title: Presynaptic N‐methyl‐D‐aspartate receptors at the parallel fiber‐Purkinje cell synapse
  publication-title: Proc Natl Acad Sci U S A
– volume: 35
  start-page: 127
  year: 2015
  end-page: 135
  article-title: Synapse‐type‐specific plasticity in local circuits
  publication-title: Curr Opin Neurobiol
– volume: 423
  start-page: 330
  year: 2000
  end-page: 347
  article-title: Presynaptic NMDA receptor subunit immunoreactivity in GABAergic terminals in rat brain
  publication-title: J Comp Neurol
– volume: 96
  start-page: 839
  year: 2017
  end-page: 855.e5
  article-title: Differential regulation of evoked and spontaneous release by presynaptic NMDA receptors
  publication-title: Neuron
– volume: 12
  start-page: 305
  year: 2002
  end-page: 314
  article-title: Spike timing, calcium signals and synaptic plasticity
  publication-title: Curr Opin Neurobiol
– volume: 67
  start-page: 208
  year: 2010
  end-page: 216
  article-title: Deficits in syntaxin 1 phosphorylation in schizophrenia prefrontal cortex
  publication-title: Biol Psychiatry
– volume: 8
  year: 2013
  article-title: Metabolic turnover of synaptic proteins: kinetics, interdependencies and implications for synaptic maintenance
  publication-title: PLoS One
– volume: 11
  start-page: 645
  year: 2016
  end-page: 656
  article-title: CXCR4 and NMDA receptors are functionally coupled in rat hippocampal noradrenergic and glutamatergic nerve endings
  publication-title: J Neuroimmune Pharmacol
– volume: 37
  start-page: 4751
  year: 2017
  end-page: 4765
  article-title: Movement rate is encoded and influenced by widespread, coherent activity of cerebellar molecular layer interneurons
  publication-title: J Neurosci
– volume: 24
  start-page: 1248
  year: 2019
  end-page: 1257
  article-title: Excitation‐inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders
  publication-title: Mol Psychiatry
– volume: 2
  start-page: ENEURO.0046
  year: 2015
  end-page: 14.2015
  article-title: Presynaptic NR2A‐containing NMDARs are required for LTD between the amygdala and the perirhinal cortex: a potential mechanism for the emotional modulation of memory?
  publication-title: eNeuro
– volume: 347
  start-page: 150
  year: 1994
  end-page: 160
  article-title: Differential expression of five N‐methyl‐D‐aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats
  publication-title: J Comp Neurol
– volume: 556
  start-page: 515
  year: 2018
  end-page: 519
  article-title: Mechanism of NMDA receptor channel block by MK‐801 and memantine
  publication-title: Nature
– volume: 587
  start-page: 5301
  year: 2009
  end-page: 5302
  article-title: A piece of the neocortical puzzle: the pyramid‐Martinotti cell reciprocating principle
  publication-title: J Physiol
– volume: 415
  start-page: 793
  year: 2002
  end-page: 798
  article-title: Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits
  publication-title: Nature
– volume: 256
  start-page: 1217
  year: 1992
  end-page: 1221
  article-title: Heteromeric NMDA receptors: molecular and functional distinction of subtypes
  publication-title: Science
– volume: 26
  start-page: 11001
  year: 2006
  end-page: 11013
  article-title: Spine Ca signaling in spike‐timing‐dependent plasticity
  publication-title: J Neurosci
– volume: 95
  start-page: 852
  year: 2017
  end-page: 868.e858
  article-title: RNA docking and local translation regulate site‐specific axon remodeling in vivo
  publication-title: Neuron
– volume: 112
  start-page: 14705
  year: 2015
  end-page: 14710
  article-title: Agonist binding to the NMDA receptor drives movement of its cytoplasmic domain without ion flow
  publication-title: Proc Natl Acad Sci U S A
– volume: 7
  year: 2012
  article-title: Current and calcium responses to local activation of axonal NMDA receptors in developing cerebellar molecular layer interneurons
  publication-title: PLoS One
– volume: 81
  start-page: 366
  year: 2014
  end-page: 378
  article-title: Structural insights into competitive antagonism in NMDA receptors
  publication-title: Neuron
– volume: 275
  start-page: 213
  year: 1997
  end-page: 215
  article-title: Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs
  publication-title: Science
– volume: 307
  start-page: 460
  year: 1984
  end-page: 462
  article-title: L‐glutamate has higher affinity than other amino acids for [ H]‐D‐AP5 binding sites in rat brain membranes
  publication-title: Nature
– volume: 91
  start-page: 8383
  year: 1994
  end-page: 8387
  article-title: Evidence for presynaptic N‐methyl‐D‐aspartate autoreceptors in the spinal cord dorsal horn
  publication-title: Proc Natl Acad Sci U S A
– volume: 62
  start-page: 405
  year: 2010
  end-page: 496
  article-title: Glutamate receptor ion channels: structure, regulation, and function
  publication-title: Pharmacol Rev
– volume: 16
  start-page: 3549
  year: 1996
  end-page: 3558
  article-title: Multiple structural elements determine subunit specificity of Mg block in NMDA receptor channels
  publication-title: J Neurosci
– year: 2020
  article-title: Architecture and function of NMDA receptors: an evolutionary perspective
  publication-title: J Physiol
– volume: 75
  start-page: 451
  year: 2012
  end-page: 466
  article-title: Target‐specific expression of presynaptic NMDA receptors in neocortical microcircuits
  publication-title: Neuron
– volume: 110
  start-page: 4027
  year: 2013
  end-page: 4032
  article-title: Metabotropic NMDA receptor function is required for NMDA receptor‐dependent long‐term depression
  publication-title: Proc Natl Acad Sci U S A
– volume: 14
  start-page: 383
  year: 2013
  end-page: 400
  article-title: NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease
  publication-title: Nat Rev Neurosci
– volume: 369
  year: 2014a
  article-title: GluA1 trafficking and metabotropic NMDA: addressing results from other laboratories inconsistent with ours
  publication-title: Philos Trans R Soc Lond B Biol Sci
– volume: 261
  start-page: 124
  year: 1990
  end-page: 130
  article-title: Selective blockade of NMDA‐activated channel currents may be implicated in learning deficits caused by lead
  publication-title: FEBS Lett
– volume: 28
  start-page: 10151
  year: 2008
  end-page: 10166
  article-title: Spontaneous and evoked glutamate release activates two populations of NMDA receptors with limited overlap
  publication-title: J Neurosci
– volume: 5
  start-page: 11
  year: 2013
  article-title: Target‐cell‐specific short‐term plasticity in local circuits
  publication-title: Front Synaptic Neurosci
– volume: 22
  start-page: 241
  year: 2012
  end-page: 254
  article-title: NMDA receptor hypofunction in the dentate gyrus and impaired context discrimination in adult knockout mice
  publication-title: Hippocampus
– volume: 31
  start-page: 537
  year: 2001
  end-page: 543
  article-title: Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study
  publication-title: J Autism Dev Disord
– volume: 7
  year: 2018
  article-title: Local and global influences on protein turnover in neurons and glia
  publication-title: Elife
– volume: 7
  start-page: 525
  year: 2004
  end-page: 533
  article-title: Retrograde activation of presynaptic NMDA receptors enhances GABA release at cerebellar interneuron‐Purkinje cell synapses
  publication-title: Nat Neurosci
– volume: 32
  start-page: 13860
  year: 2012
  end-page: 13872
  article-title: Brain activity mapping in mutant mice reveals functional deficits in forebrain circuits, including key nodes in the default mode network, that are reversed with ketamine treatment
  publication-title: J Neurosci
– start-page: 465
  year: 2016
  end-page: 498
– volume: 23
  start-page: 171
  year: 1999
  end-page: 180
  article-title: Identification and mechanism of action of two histidine residues underlying high‐affinity Zn inhibition of the NMDA receptor
  publication-title: Neuron
– volume: 29
  start-page: 11441
  year: 2009
  end-page: 11450
  article-title: Selective expression of ligand‐gated ion channels in L5 pyramidal cell axons
  publication-title: J Neurosci
– volume: 46
  start-page: 2699
  year: 2018
  article-title: UniProt: the universal protein knowledgebase
  publication-title: Nucleic Acids Res
– volume: 42
  start-page: 1021
  year: 2010
  end-page: 1026
  article-title: Mutations in and encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes
  publication-title: Nat Genet
– volume: 15
  start-page: 746
  year: 2012
  end-page: 753
  article-title: Astrocyte signaling controls spike timing‐dependent depression at neocortical synapses
  publication-title: Nat Neurosci
– volume: 77
  start-page: 35
  year: 2013
  end-page: 42
  article-title: Presynaptic self‐depression at developing neocortical synapses
  publication-title: Neuron
– volume: 507
  start-page: 237
  year: 1998
  end-page: 247
  article-title: Long‐term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures
  publication-title: J Physiol
– volume: 13
  start-page: 197
  year: 2010
  end-page: 204
  article-title: Synaptic activation of kainate receptors gates presynaptic CB signaling at GABAergic synapses
  publication-title: Nat Neurosci
– volume: 18
  start-page: 10464
  year: 1998
  end-page: 10472
  article-title: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type
  publication-title: J Neurosci
– volume: 84
  start-page: 460
  year: 2018
  end-page: 470
  article-title: Presynaptic effects of N‐methyl‐D‐aspartate receptors enhance parvalbumin cell‐mediated inhibition of pyramidal cells in mouse prefrontal cortex
  publication-title: Biol Psychiatry
– volume: 31
  start-page: 8564
  year: 2011
  end-page: 8569
  article-title: Presynaptic induction and expression of timing‐dependent long‐term depression demonstrated by compartment‐specific photorelease of a use‐dependent NMDA receptor antagonist
  publication-title: J Neurosci
– volume: 368
  start-page: 144
  year: 1994
  end-page: 147
  article-title: Changing subunit composition of heteromeric NMDA receptors during development of rat cortex
  publication-title: Nature
– volume: 5
  start-page: 9035
  year: 2015
  article-title: Presynaptic c‐Jun N‐terminal Kinase 2 regulates NMDA receptor‐dependent glutamate release
  publication-title: Sci Rep
– volume: 26
  start-page: 3637
  year: 2016
  end-page: 3654
  article-title: Presynaptic spike timing‐dependent long‐term depression in the mouse hippocampus
  publication-title: Cereb Cortex
– volume: 83
  start-page: 879
  year: 2014
  end-page: 893
  article-title: Synapse‐specific control of experience‐dependent plasticity by presynaptic NMDA receptors
  publication-title: Neuron
– volume: 250
  start-page: 271
  year: 1992
  end-page: 277
  article-title: Single‐channel conductances of NMDA receptors expressed from cloned cDNAs: comparison with native receptors
  publication-title: Proc Biol Sci
– volume: 26
  start-page: 4166
  year: 2006
  end-page: 4177
  article-title: Two coincidence detectors for spike timing‐dependent plasticity in somatosensory cortex
  publication-title: J Neurosci
– volume: 3
  start-page: 1178
  year: 2000
  end-page: 1183
  article-title: Synaptic plasticity: taming the beast
  publication-title: Nat Neurosci
– volume: 18
  start-page: 306
  year: 1995
  end-page: 313
  article-title: Alternatively spliced isoforms of the NMDARI receptor subunit
  publication-title: Trends Neurosci
– volume: 12
  start-page: 529
  year: 1994
  end-page: 540
  article-title: Developmental and regional expression in the rat brain and functional properties of four NMDA receptors
  publication-title: Neuron
– volume: 39
  start-page: 641
  year: 2003
  end-page: 654
  article-title: Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors
  publication-title: Neuron
– ident: e_1_2_2_121_1
  doi: 10.1093/cercor/bhy194
– ident: e_1_2_2_59_1
  doi: 10.1038/nrn1297
– ident: e_1_2_2_5_1
  doi: 10.1016/0014-5793(90)80652-Y
– ident: e_1_2_2_142_1
  doi: 10.1016/S0896-6273(03)00476-8
– ident: e_1_2_2_94_1
  doi: 10.1126/science.279.5355.1368
– ident: e_1_2_2_53_1
  doi: 10.7554/eLife.34202
– ident: e_1_2_2_4_1
  doi: 10.1002/cne.903470112
– ident: e_1_2_2_47_1
  doi: 10.1111/j.1469-7793.1998.237bu.x
– volume-title: The Organization of Behavior: A Neuropsychological Theory
  year: 1949
  ident: e_1_2_2_69_1
  contributor:
    fullname: Hebb DO
– ident: e_1_2_2_84_1
  doi: 10.1038/nn.2750
– ident: e_1_2_2_135_1
  doi: 10.1523/JNEUROSCI.3713-04.2005
– ident: e_1_2_2_159_1
  doi: 10.1113/jphysiol.2007.149203
– ident: e_1_2_2_109_1
  doi: 10.1038/srep09035
– ident: e_1_2_2_70_1
  doi: 10.1038/nature02194
– ident: e_1_2_2_107_1
  doi: 10.1016/j.neuro.2010.12.013
– ident: e_1_2_2_20_1
  doi: 10.3389/fnsyn.2015.00001
– ident: e_1_2_2_110_1
  doi: 10.1016/j.neuint.2019.03.003
– ident: e_1_2_2_2_1
  doi: 10.1038/81453
– ident: e_1_2_2_34_1
  doi: 10.1016/j.conb.2018.03.005
– ident: e_1_2_2_9_1
  doi: 10.1523/JNEUROSCI.14-09-05202.1994
– ident: e_1_2_2_164_1
  doi: 10.1038/nature10360
– ident: e_1_2_2_39_1
  doi: 10.1016/j.cell.2020.05.052
– ident: e_1_2_2_101_1
  doi: 10.1038/emboj.2011.203
– ident: e_1_2_2_87_1
  doi: 10.1007/s00424-010-0809-1
– ident: e_1_2_2_35_1
  doi: 10.1038/nature715
– ident: e_1_2_2_157_1
  doi: 10.1016/j.neuron.2017.07.016
– ident: e_1_2_2_168_1
  doi: 10.1016/0166-2236(95)93920-S
– ident: e_1_2_2_152_1
  doi: 10.1093/nar/gky092
– ident: e_1_2_2_113_1
  doi: 10.1016/j.tins.2011.11.010
– ident: e_1_2_2_141_1
  doi: 10.1152/physrev.00016.2007
– ident: e_1_2_2_146_1
  doi: 10.1523/JNEUROSCI.4289-14.2015
– ident: e_1_2_2_62_1
  doi: 10.1523/JNEUROSCI.0534-17.2017
– ident: e_1_2_2_145_1
  doi: 10.1038/s41586-018-0039-9
– ident: e_1_2_2_38_1
  doi: 10.1016/S0896-6273(00)80763-1
– ident: e_1_2_2_24_1
  doi: 10.1016/j.conb.2017.12.020
– ident: e_1_2_2_116_1
  doi: 10.1038/nrn3504
– ident: e_1_2_2_96_1
  doi: 10.1038/s41598-019-43709-2
– ident: e_1_2_2_104_1
  doi: 10.1098/rstb.2013.0145
– ident: e_1_2_2_12_1
  doi: 10.1523/JNEUROSCI.2432-08.2008
– ident: e_1_2_2_147_1
  doi: 10.1523/JNEUROSCI.0046-20.2020
– ident: e_1_2_2_36_1
  doi: 10.1111/jnc.14627
– ident: e_1_2_2_48_1
  doi: 10.1097/00001756-199611040-00073
– ident: e_1_2_2_63_1
  doi: 10.1523/JNEUROSCI.19-02-00511.1999
– ident: e_1_2_2_98_1
  doi: 10.1038/4548
– ident: e_1_2_2_33_1
  doi: 10.1016/j.biopsych.2009.07.029
– ident: e_1_2_2_120_1
  doi: 10.1016/j.neuron.2014.03.030
– ident: e_1_2_2_155_1
  doi: 10.1124/pr.109.002451
– ident: e_1_2_2_22_1
  doi: 10.1023/A:1013238809666
– ident: e_1_2_2_43_1
  doi: 10.1177/1073858408322675
– ident: e_1_2_2_82_1
  doi: 10.1523/JNEUROSCI.2354-08.2009
– ident: e_1_2_2_105_1
  doi: 10.1038/nature13294
– volume: 263
  start-page: 868
  year: 1992
  ident: e_1_2_2_156_1
  article-title: Developmental change of the inhibition by lead of NMDA‐activated currents in cultured hippocampal neurons
  publication-title: J Pharmacol Exp Ther
  contributor:
    fullname: Ujihara H
– ident: e_1_2_2_165_1
  doi: 10.1523/JNEUROSCI.2530-06.2006
– ident: e_1_2_2_68_1
  doi: 10.1016/S0896-6273(00)80379-7
– ident: e_1_2_2_89_1
  doi: 10.1038/386721a0
– ident: e_1_2_2_137_1
  doi: 10.1093/cercor/bhv002
– ident: e_1_2_2_3_1
  doi: 10.1016/j.neuron.2017.09.030
– ident: e_1_2_2_32_1
  doi: 10.1016/S0896-6273(01)00568-2
– ident: e_1_2_2_50_1
  doi: 10.1007/s11481-016-9677-6
– ident: e_1_2_2_71_1
  doi: 10.1016/S1474-4422(02)00164-3
– ident: e_1_2_2_91_1
  doi: 10.1523/JNEUROSCI.2929-06.2006
– ident: e_1_2_2_95_1
  doi: 10.1093/acprof:oso/9780198745273.003.0018
– ident: e_1_2_2_31_1
  doi: 10.1073/pnas.200354297
– ident: e_1_2_2_58_1
  doi: 10.1038/ng.677
– ident: e_1_2_2_61_1
  doi: 10.1523/JNEUROSCI.4980-04.2005
– ident: e_1_2_2_106_1
  doi: 10.1073/pnas.1219454110
– ident: e_1_2_2_14_1
  doi: 10.1016/j.tins.2015.11.001
– ident: e_1_2_2_149_1
  doi: 10.1016/j.cophys.2017.12.004
– ident: e_1_2_2_139_1
  doi: 10.1152/jn.00661.2005
– ident: e_1_2_2_144_1
  doi: 10.1038/s41380-019-0426-0
– ident: e_1_2_2_67_1
  doi: 10.1016/j.ajhg.2011.02.001
– ident: e_1_2_2_148_1
  doi: 10.1098/rspb.1992.0159
– ident: e_1_2_2_29_1
  doi: 10.1113/jphysiol.2009.182980
– ident: e_1_2_2_122_1
  doi: 10.1113/JP279645
– ident: e_1_2_2_78_1
  doi: 10.1016/j.celrep.2020.107955
– ident: e_1_2_2_7_1
  doi: 10.1093/cercor/bhw172
– ident: e_1_2_2_8_1
  doi: 10.1523/JNEUROSCI.0473-04.2004
– ident: e_1_2_2_40_1
  doi: 10.1016/j.neuron.2008.08.028
– ident: e_1_2_2_129_1
  doi: 10.1016/j.neuron.2012.10.035
– ident: e_1_2_2_80_1
  doi: 10.1523/JNEUROSCI.2159-12.2012
– ident: e_1_2_2_112_1
  doi: 10.1126/science.1227764
– ident: e_1_2_2_111_1
  doi: 10.1038/307460a0
– ident: e_1_2_2_30_1
  doi: 10.1038/nn.4343
– ident: e_1_2_2_128_1
  doi: 10.1016/S0896-6273(00)80970-8
– ident: e_1_2_2_115_1
  doi: 10.1016/j.biopsych.2018.01.018
– ident: e_1_2_2_76_1
  doi: 10.1038/nature10180
– ident: e_1_2_2_73_1
  doi: 10.1016/S0021-9258(18)53849-7
– ident: e_1_2_2_79_1
  doi: 10.1073/pnas.1219605110
– ident: e_1_2_2_93_1
  doi: 10.1038/nn.2481
– ident: e_1_2_2_75_1
  doi: 10.1126/science.1251915
– ident: e_1_2_2_119_1
  doi: 10.1038/369744a0
– ident: e_1_2_2_37_1
  doi: 10.1177/0883073807302611
– ident: e_1_2_2_153_1
  doi: 10.1038/s41380-020-0821-6
– ident: e_1_2_2_138_1
  doi: 10.1038/368144a0
– ident: e_1_2_2_19_1
  doi: 10.1073/pnas.0904284106
– ident: e_1_2_2_97_1
  doi: 10.1126/science.275.5297.213
– ident: e_1_2_2_118_1
  doi: 10.1016/j.neuron.2014.10.045
– ident: e_1_2_2_162_1
  doi: 10.1016/0304-3959(92)90198-K
– ident: e_1_2_2_143_1
  doi: 10.1016/j.neuropharm.2006.07.021
– ident: e_1_2_2_74_1
  doi: 10.1016/j.neuron.2013.11.033
– ident: e_1_2_2_65_1
  doi: 10.1016/j.neuron.2018.01.047
– ident: e_1_2_2_167_1
  doi: 10.1016/j.neuropharm.2020.108117
– ident: e_1_2_2_127_1
  doi: 10.1016/j.neuron.2013.12.029
– ident: e_1_2_2_133_1
  doi: 10.1111/j.1460-9568.2010.07312.x
– ident: e_1_2_2_161_1
  doi: 10.1074/jbc.M117.818476
– ident: e_1_2_2_90_1
  doi: 10.1073/pnas.91.18.8383
– ident: e_1_2_2_114_1
  doi: 10.7554/eLife.29688
– ident: e_1_2_2_54_1
  doi: 10.1152/jn.00687.2015
– ident: e_1_2_2_117_1
  doi: 10.1002/1096-9861(20000724)423:2<330::AID-CNE10>3.0.CO;2-9
– ident: e_1_2_2_136_1
  doi: 10.1073/pnas.1816013116
– ident: e_1_2_2_25_1
  doi: 10.1523/JNEUROSCI.3915-07.2008
– ident: e_1_2_2_88_1
  doi: 10.1038/nn1649
– ident: e_1_2_2_45_1
  doi: 10.1098/rstb.2016.0153
– ident: e_1_2_2_64_1
  doi: 10.1016/j.neuroscience.2007.10.024
– ident: e_1_2_2_28_1
  doi: 10.1016/j.neuron.2012.06.017
– ident: e_1_2_2_57_1
  doi: 10.1002/hipo.20890
– ident: e_1_2_2_42_1
  doi: 10.1371/journal.pone.0063191
– ident: e_1_2_2_125_1
  doi: 10.1212/WNL.57.9.1618
– ident: e_1_2_2_6_1
– ident: e_1_2_2_123_1
  doi: 10.1007/s12035-018-1187-5
– ident: e_1_2_2_150_1
  doi: 10.1113/JP279028
– ident: e_1_2_2_92_1
  doi: 10.1016/S1367-5931(03)00078-4
– ident: e_1_2_2_77_1
  doi: 10.1073/pnas.85.17.6547
– ident: e_1_2_2_10_1
  doi: 10.1073/pnas.1520029112
– ident: e_1_2_2_86_1
  doi: 10.1016/j.neuron.2014.07.039
– ident: e_1_2_2_130_1
  doi: 10.1523/JNEUROSCI.0274-11.2011
– ident: e_1_2_2_44_1
  doi: 10.1523/JNEUROSCI.5494-06.2007
– ident: e_1_2_2_13_1
  doi: 10.1002/phy2.271
– ident: e_1_2_2_18_1
  doi: 10.1523/JNEUROSCI.18-24-10464.1998
– ident: e_1_2_2_23_1
  doi: 10.1016/j.celrep.2016.03.004
– ident: e_1_2_2_72_1
  doi: 10.1016/j.neuron.2011.09.027
– ident: e_1_2_2_26_1
  doi: 10.3389/fnsyn.2020.00011
– ident: e_1_2_2_11_1
  doi: 10.1523/JNEUROSCI.1091-17.2017
– ident: e_1_2_2_46_1
  doi: 10.1111/ejn.12098
– ident: e_1_2_2_100_1
  doi: 10.1038/nn.3075
– ident: e_1_2_2_126_1
  doi: 10.1523/JNEUROSCI.3967-04.2005
– ident: e_1_2_2_51_1
  doi: 10.1073/pnas.1520023112
– ident: e_1_2_2_66_1
  doi: 10.1126/science.aau3644
– ident: e_1_2_2_108_1
  doi: 10.1523/JNEUROSCI.1749-06.2006
– ident: e_1_2_2_49_1
  doi: 10.1007/s00018-019-03047-y
– ident: e_1_2_2_85_1
  doi: 10.1016/j.conb.2015.08.001
– ident: e_1_2_2_151_1
  doi: 10.1038/tp.2011.52
– ident: e_1_2_2_103_1
  doi: 10.1126/science.256.5060.1217
– ident: e_1_2_2_27_1
  doi: 10.1038/s41598-018-38264-1
– ident: e_1_2_2_134_1
  doi: 10.1371/journal.pone.0039983
– ident: e_1_2_2_55_1
  doi: 10.1016/j.conb.2006.05.008
– ident: e_1_2_2_131_1
  doi: 10.1073/pnas.97.3.1293
– ident: e_1_2_2_140_1
  doi: 10.1016/S0959-4388(02)00325-2
– ident: e_1_2_2_52_1
  doi: 10.1523/JNEUROSCI.1825-17.2017
– ident: e_1_2_2_158_1
  doi: 10.1002/cne.10314
– ident: e_1_2_2_15_1
  doi: 10.1093/cercor/bhp067
– ident: e_1_2_2_99_1
  doi: 10.1038/357070a0
– ident: e_1_2_2_16_1
  doi: 10.1523/JNEUROSCI.0176-06.2006
– ident: e_1_2_2_60_1
  doi: 10.1073/pnas.1111093108
– ident: e_1_2_2_83_1
  doi: 10.1523/ENEURO.0046-14.2015
– ident: e_1_2_2_56_1
  doi: 10.1038/nn1227
– ident: e_1_2_2_124_1
  doi: 10.1523/JNEUROSCI.3910-11.2011
– ident: e_1_2_2_17_1
  doi: 10.1016/0306-4522(96)00301-6
– ident: e_1_2_2_166_1
  doi: 10.1074/jbc.RA118.003977
– ident: e_1_2_2_21_1
  doi: 10.3389/fnsyn.2013.00011
– ident: e_1_2_2_41_1
  doi: 10.1523/JNEUROSCI.2387-09.2009
– ident: e_1_2_2_102_1
  doi: 10.1016/0896-6273(94)90210-0
– ident: e_1_2_2_132_1
  doi: 10.1038/nn.2125
– ident: e_1_2_2_154_1
  doi: 10.1111/j.1469-7793.2000.00041.x
– ident: e_1_2_2_81_1
  doi: 10.1523/JNEUROSCI.16-11-03549.1996
– ident: e_1_2_2_163_1
  doi: 10.1113/jphysiol.2012.250522
– ident: e_1_2_2_160_1
  doi: 10.1098/rspb.1996.0159
SSID ssj0013099
Score 2.5012257
Snippet In the textbook view, N‐methyl‐d‐aspartate (NMDA) receptors are postsynaptically located detectors of coincident activity in Hebbian learning. However,...
In the textbook view, N-methyl-d-aspartate (NMDA) receptors are postsynaptically located detectors of coincident activity in Hebbian learning. However,...
In the textbook view, N ‐methyl‐ d ‐aspartate (NMDA) receptors are postsynaptically located detectors of coincident activity in Hebbian learning. However,...
SourceID hal
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 367
SubjectTerms axon
Axons
Calcium
Glutamic acid receptors (ionotropic)
Life Sciences
long‐term plasticity
Magnesium
Metabotropic receptors
metabotropic signalling
N-Methyl-D-aspartic acid receptors
Neuralgia
Neurons and Cognition
neuropathic pain
neurotransmitter release
NMDA receptor
presynaptic terminal
Receptors, N-Methyl-D-Aspartate
short‐term plasticity
Subunit structure
Synapses
Therapeutic targets
Title NMDA receptors in axons: there's no coincidence
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP280059
https://www.ncbi.nlm.nih.gov/pubmed/33141440
https://www.proquest.com/docview/2477814687
https://search.proquest.com/docview/2457283412
https://hal.science/hal-03777468
Volume 599
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEC4ST7kYHzEZ3UhHJJ5GZ7rn1d6WqCxLlCWsIHgYunt6UMTZxd0V9ddb1fMQI0LIbZh-P6qruqr6K4BdpQUyYav8xMrIj2ypfI23Dl9yw8tQBZl1quzTs2RwHg0v4ovGq5LewtT4EJ3CjSjDnddE4Eo3UUhCAhsYjnhGTyfx-A1FSt58R3_4iwEhkLIDCk_jsMGdxaIHbcFXnOjjFflBvhUyX8usjumcfIbLtru1r8nN_mKu983TX0iO_zeeFVhuZFHWrzfPKnyw1Rqs9yu8h98-sp_MeYc6tfs6HJydHvUZHo92SvF52HXF1APu2ENGEqTdm7FqwsyENPcuSukXOD85Hv8a-E2wBd8Qfo0vdWGMwFqQgkVJqO9KG5WkOhIBfiKj0zyRGbJUAjVLeVZmcRlGZAVVurSB2IClalLZb8BsUaDQFWIpWUTSYBWl5AU32pZCiTj14Ec78fm0xtTI67uIyNtZ8GAHV6RLJhDsQf93Tv8CkaLMmmT3oQe9dsHyhvRmOY9SgvFKMmqnS0aiIUuIquxkQXliHAEycO7B13qhu6aECCOyeHuw55br3S7m4-EIM8bx5j_n3IJPnHxinAqnB0vzu4X9jkLNXG-77bvttE3PbTLtsQ
link.rule.ids 230,314,780,784,885,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ8APugLIiguH1qMkaeF3Xa_Ck8XkRzH3YWYI-HBZNN2u5EY9wjcGeCvZ6b7QdCYGN822-9OpzOdmf4K8FFpgULYKj-xMvIjWypf46nDl9zwMlRBZp0pezRO-ufR4CK-WIDD9i5MjQ_RGdyIM9x-TQxOBumGywltYHDGM7o7uQjPkNtDiuc6-sofXQiBlB1UeBqHDfIslt1vSz6RRYvfKRLyTzXzqdbqxM7xS_jWdriONvmxN5_pPXP_G5bjf45oBZYbdZT16vXzChZstQprvQqP4j_v2CfmAkSd5X0N9sejox7DHdJe0RM97LJi6hYX7QEjJdLu3rBqysyUjPfuodLXcH78ZfK57zfvLfiGIGx8qQtjBNaCTCxKAn5X2qgk1ZEI8BNlneaJzFCqEq5ZyrMyi8swIkeo0qUNxBtYqqaVfQvMFgXqXSGWkkUkDVZRSl5wo20plIhTD3bamc-valiNvD6OiLydBQ8-IEm6ZMLB7veGOf0LRIpqa5L9Cj3YaimWN9x3k_MoJSSvJKN2umTkG3KGqMpO55QnxhGgDOcerNeU7poSIozI6e3BrqPXX7uYTwZnmDGON_4553t43p-MhvnwZHy6CS84hcg4i84WLM2u53YbdZyZfufW8gPKZPDC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9sBfGlflTb1apRxD5tu5tkP-Lb4XmcZ3sc0kLBhyXJJiji3mHvRP3rncl-SBVBfFs235lMZjIz-QXguTYChbDTce6UjKXzOjZ46ogVt9ynOildMGWfzvPpuZxdZBddVCXdhWnxIQaDG3FG2K-JwVe175icwAZmC17S1cktuC5zrgg3f_yO__IgJEoNSOFFlnbAs1j2uC95RRRtfaBAyD-1zKtKa5A6k1vwvu9vG2zy6WizNkf2x29Qjv83oNuw0ymjbNSunjtwzTV3YXfU4EH883f2goXw0GB334Xj-el4xHB_dCt6oId9bJj-hkv2JSMV0h1esmbJ7JJM9-GZ0ntwPnl99moad68txJYAbGJlamsF1oIsLDzBvmtjdV4YKRL8RElneK5KlKmEalbw0peZTyW5QbXxLhH3YbtZNm4fmKtr1LpSLKVqqSxW4RWvuTXOCy2yIoKn_cRXqxZUo2oPI6LqZyGCZ0iRIZlQsKejk4r-JaJApTUvv6YRHPQEqzreu6y4LAjHKy-pnSEZuYZcIbpxyw3lyXAEKMF5BHstoYemhEglubwjOAzk-msXq7PZAjNm2YN_zvkEbizGk-rkzfztQ7jJKT4mmHMOYHv9ZeMeoYKzNo_DSv4J--_vcQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NMDA+receptors+in+axons%3A+there%27s+no+coincidence&rft.jtitle=The+Journal+of+physiology&rft.au=Hovy+Ho%E2%80%90Wai+Wong&rft.au=Rannio%2C+Sabine&rft.au=Jones%2C+Victoria&rft.au=Thomazeau%2C+Aurore&rft.date=2021-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=599&rft.issue=2&rft.spage=367&rft.epage=387&rft_id=info:doi/10.1113%2FJP280059&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon