The minimum founding population in dispersing organisms subject to strong Allee effects
Summary Dispersal can push population density below strong Allee thresholds ensuring the demise of small founding populations. As a result, for isolated populations of dispersing organisms, the minimum founding population size that enables establishment can be quite different from the Allee threshol...
Saved in:
Published in | Methods in ecology and evolution Vol. 7; no. 9; pp. 1100 - 1109 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
John Wiley & Sons, Inc
01.09.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Dispersal can push population density below strong Allee thresholds ensuring the demise of small founding populations. As a result, for isolated populations of dispersing organisms, the minimum founding population size that enables establishment can be quite different from the Allee threshold.
We derive an expression for the minimum founding population size for a general integrodifference equation model of a dispersing population with a strong Allee effect. We demonstrate the utility of the general model by using it to approximate minimum founding populations for the mountain pine beetle.
The minimum founding population of the general model increases linearly with the mean squared displacement of the dispersing organism. Transient dynamics of the general model suggest that population density at the point of introduction will often decrease before increasing, even when the minimum founding population size is exceeded.
Calculation of minimum founding population sizes may prove useful for predicting invasion success based on propagule size and for maximizing the success of species reintroductions when strong Allee effects exist. |
---|---|
AbstractList | 1. Dispersal can push population density below strong Allee thresholds ensuring the demise of small founding populations. As a result, for isolated populations of dispersing organisms, the minimum founding population size that enables establishment can be quite different from the Allee threshold. 2. We derive an expression for the minimum founding population size for a general integrodifference equation model of a dispersing population with a strong Allee effect. We demonstrate the utility of the general model by using it to approximate minimum founding populations for the mountain pine beetle. 3. The minimum founding population of the general model increases linearly with the mean squared displacement of the dispersing organism. Transient dynamics of the general model suggest that population density at the point of introduction will often decrease before increasing, even when the minimum founding population size is exceeded. 4. Calculation of minimum founding population sizes may prove useful for predicting invasion success based on propagule size and for maximizing the success of species reintroductions when strong Allee effects exist. Dispersal can push population density below strong Allee thresholds ensuring the demise of small founding populations. As a result, for isolated populations of dispersing organisms, the minimum founding population size that enables establishment can be quite different from the Allee threshold.We derive an expression for the minimum founding population size for a general integrodifference equation model of a dispersing population with a strong Allee effect. We demonstrate the utility of the general model by using it to approximate minimum founding populations for the mountain pine beetle.The minimum founding population of the general model increases linearly with the mean squared displacement of the dispersing organism. Transient dynamics of the general model suggest that population density at the point of introduction will often decrease before increasing, even when the minimum founding population size is exceeded.Calculation of minimum founding population sizes may prove useful for predicting invasion success based on propagule size and for maximizing the success of species reintroductions when strong Allee effects exist. Dispersal can push population density below strong Allee thresholds ensuring the demise of small founding populations. As a result, for isolated populations of dispersing organisms, the minimum founding population size that enables establishment can be quite different from the Allee threshold. We derive an expression for the minimum founding population size for a general integrodifference equation model of a dispersing population with a strong Allee effect. We demonstrate the utility of the general model by using it to approximate minimum founding populations for the mountain pine beetle. The minimum founding population of the general model increases linearly with the mean squared displacement of the dispersing organism. Transient dynamics of the general model suggest that population density at the point of introduction will often decrease before increasing, even when the minimum founding population size is exceeded. Calculation of minimum founding population sizes may prove useful for predicting invasion success based on propagule size and for maximizing the success of species reintroductions when strong Allee effects exist. Summary Dispersal can push population density below strong Allee thresholds ensuring the demise of small founding populations. As a result, for isolated populations of dispersing organisms, the minimum founding population size that enables establishment can be quite different from the Allee threshold. We derive an expression for the minimum founding population size for a general integrodifference equation model of a dispersing population with a strong Allee effect. We demonstrate the utility of the general model by using it to approximate minimum founding populations for the mountain pine beetle. The minimum founding population of the general model increases linearly with the mean squared displacement of the dispersing organism. Transient dynamics of the general model suggest that population density at the point of introduction will often decrease before increasing, even when the minimum founding population size is exceeded. Calculation of minimum founding population sizes may prove useful for predicting invasion success based on propagule size and for maximizing the success of species reintroductions when strong Allee effects exist. Summary Dispersal can push population density below strong Allee thresholds ensuring the demise of small founding populations. As a result, for isolated populations of dispersing organisms, the minimum founding population size that enables establishment can be quite different from the Allee threshold. We derive an expression for the minimum founding population size for a general integrodifference equation model of a dispersing population with a strong Allee effect. We demonstrate the utility of the general model by using it to approximate minimum founding populations for the mountain pine beetle. The minimum founding population of the general model increases linearly with the mean squared displacement of the dispersing organism. Transient dynamics of the general model suggest that population density at the point of introduction will often decrease before increasing, even when the minimum founding population size is exceeded. Calculation of minimum founding population sizes may prove useful for predicting invasion success based on propagule size and for maximizing the success of species reintroductions when strong Allee effects exist. |
Author | Gaggiotti, Oscar Lewis, Mark A. Goodsman, Devin W. |
Author_xml | – sequence: 1 givenname: Devin W. surname: Goodsman fullname: Goodsman, Devin W. email: goodsman@ualberta.ca organization: University of Alberta – sequence: 2 givenname: Mark A. surname: Lewis fullname: Lewis, Mark A. organization: University of Alberta – sequence: 3 givenname: Oscar surname: Gaggiotti fullname: Gaggiotti, Oscar |
BookMark | eNqFkT1PwzAQhi1UJErpzGqJhaWtHTuJM1ZV-ZCKWIpgs9zkUlwldrATof57nBYh1AFuufPd81qn9y7RwFgDCF1TMqUhZhHhdBJR8jalUZyyMzT86Qx-1Rdo7P2OhGAiIxEfotf1O-BaG113NS5tZwpttrixTVepVluDtcGF9g043w-s2yqjfe2x7zY7yFvcWuxbZ8NsXlUAGMoytP0VOi9V5WH8nUfo5W65XjxMVs_3j4v5apJzKtgEKJCYckIVSRSnVCVxFOcCIAkrZ2WWcBAkikGJ8BAs2xDYFELFiid8wwvORuj2-G_j7EcHvpW19jlUlTJgOy-piNKMsIT26M0JurOdM2E7GbGUM57GQvxFUUFF0vtGAhUfqdxZ7x2UMtftwbDWKV1JSmR_F9k7L3vn5eEuQTc70TVO18rt_1AkR8WnrmD_Hy6flkt2FH4B6RWeaA |
CitedBy_id | crossref_primary_10_1080_01584197_2017_1333392 crossref_primary_10_1111_1365_2656_12658 crossref_primary_10_1007_s00285_023_01986_6 crossref_primary_10_3934_math_20231481 crossref_primary_10_1016_j_cois_2018_01_011 crossref_primary_10_1016_j_nonrwa_2021_103336 crossref_primary_10_1111_1365_2664_14326 crossref_primary_10_1111_1365_2745_12724 crossref_primary_10_3390_insects9040131 crossref_primary_10_1139_cjfr_2018_0304 crossref_primary_10_1016_j_ecolmodel_2018_10_013 crossref_primary_10_1139_cjfr_2018_0303 |
Cites_doi | 10.1086/598496 10.1111/j.1461-0248.2005.00787.x 10.2307/3547011 10.1016/S0025-5564(00)00005-5 10.1016/0025-5564(91)90034-G 10.1006/jtbi.2002.3084 10.1111/j.1939-7445.1989.tb00119.x 10.1093/oso/9780198548522.001.0001 10.1146/annurev.ecolsys.110308.120304 10.1007/978-1-4614-6868-4 10.1006/tpbi.1993.1007 10.2307/1942586 10.1111/j.1365-2656.2008.01417.x 10.1890/05-0427 10.2980/i1195-6860-12-3-316.1 10.1111/j.1939-7445.2008.00021.x 10.1046/j.1461-0248.2003.00405.x 10.1146/annurev-ento-011613-162051 10.1016/S0025-5564(01)00068-2 10.1016/0022-5193(70)90115-3 10.18637/jss.v040.i08 10.1890/08-1971.1 10.1007/s10144-009-0152-6 10.2307/2265698 10.1007/s10530-005-3735-y 10.1016/0022-5193(70)90116-5 10.1016/S0304-3800(01)00417-3 10.1890/02-0535 10.1016/S0304-3800(02)00357-5 10.1086/518179 10.1007/s12080-012-0167-z 10.1111/j.1365-2311.1993.tb01108.x 10.1086/285924 10.5962/bhl.title.7313 10.1007/978-1-4020-8624-3 |
ContentType | Journal Article |
Copyright | 2016 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society. Methods in Ecology and Evolution © 2016 British Ecological Society |
Copyright_xml | – notice: 2016 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society. – notice: Methods in Ecology and Evolution © 2016 British Ecological Society |
DBID | 24P AAYXX CITATION 7QG 7SN 8FD C1K FR3 P64 RC3 |
DOI | 10.1111/2041-210X.12573 |
DatabaseName | Wiley Online Library Open Access CrossRef Animal Behavior Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts |
DatabaseTitle | CrossRef Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Ecology Abstracts Genetics Abstracts CrossRef Genetics Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
EISSN | 2041-210X |
EndPage | 1109 |
ExternalDocumentID | 4179643121 10_1111_2041_210X_12573 MEE312573 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science and Engineering Research Council of Canada funderid: NET GP 434810‐12 – fundername: Foothills Research Institute – fundername: Saskatchewan Ministry of Environment – fundername: Natural Resources Canada‐Canadian Forest Service – fundername: Alberta Agriculture and Forestry – fundername: Northwest Territories Environment and Natural Resources – fundername: NSERC Discovery – fundername: Manitoba Conservation and Water Stewardship – fundername: Weyerhaeuser – fundername: Ontario Ministry of Natural Resources and Forestry |
GroupedDBID | 05W 0R~ 1OC 24P 31~ 33P 4.4 4P2 50Y 5DZ 702 8-1 A00 AAESR AAFWJ AAHBH AAHHS AAZKR ABCUV ABLJU ACCFJ ACCMX ACCZN ACGFO ACGFS ACPOU ACPRK ACXQS ADBBV ADKYN ADXAS ADZMN AEEZP AENEX AEQDE AEUYN AFBPY AFKRA AFPKN AFRAH AIAGR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ATCPS AVUZU AZVAB BBNVY BENPR BFHJK BHPHI BMXJE BRXPI CAG CCPQU COF DCZOG DPXWK EBD EBS EDH EJD F1Z G-S GODZA GROUPED_DOAJ HCIFZ HZ~ LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES M7P MY. MY~ M~E O9- P2P P2W P4E PATMY PYCSY R.K ROL RX1 SUPJJ V8K WBKPD WOHZO WYJ ZZTAW ~S- AAYXX CITATION PHGZM PHGZT 7QG 7SN 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 RC3 WIN |
ID | FETCH-LOGICAL-c4183-e1e051401a06a411a6525c8ee60419f964e8025ea89f9839b0ebd8a5a464b4d43 |
IEDL.DBID | 24P |
ISSN | 2041-210X |
IngestDate | Fri Jul 11 11:42:27 EDT 2025 Wed Aug 13 09:34:37 EDT 2025 Wed Aug 13 09:53:33 EDT 2025 Tue Jul 01 03:19:37 EDT 2025 Thu Apr 24 23:04:44 EDT 2025 Wed Jan 22 16:36:15 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Attribution-NonCommercial http://creativecommons.org/licenses/by-nc/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4183-e1e051401a06a411a6525c8ee60419f964e8025ea89f9839b0ebd8a5a464b4d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F2041-210X.12573 |
PQID | 1818689020 |
PQPubID | 1016379 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1827903614 proquest_journals_2374347588 proquest_journals_1818689020 crossref_citationtrail_10_1111_2041_210X_12573 crossref_primary_10_1111_2041_210X_12573 wiley_primary_10_1111_2041_210X_12573_MEE312573 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2016 2016-09-00 20160901 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: September 2016 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Methods in ecology and evolution |
PublicationYear | 2016 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 1989; 3 1970a; 29 2004; 85 2009; 40 1993; 43 2011; 40 1983; 53 2009 1931 2006; 8 1997 2005; 86 2006 1999; 87 2009; 173 2008; 77 1993 2002; 218 1970b; 29 1996; 148 2013; 6 1996; 77 1993; 18 2009; 51 2001; 172 2007; 170 2003; 6 2005; 8 2014; 59 2002; 148 2008; 21 2000; 165 2015 2013 2009; 19 1991; 104 2005; 12 2003; 163 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 Safranyik L. (e_1_2_7_30_1) 2006 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 Shigesada N. (e_1_2_7_31_1) 1997 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 R Core Team (e_1_2_7_26_1) 2015 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 12 start-page: 316 year: 2005 end-page: 329 article-title: Lag times and exotic species: the ecology and management of biological invasions in slow‐motion publication-title: Ecoscience – year: 2009 – volume: 87 start-page: 185 year: 1999 end-page: 190 article-title: What is the Allee effect? publication-title: Oikos – volume: 53 start-page: 27 year: 1983 end-page: 49 article-title: The role of host plant resistance in the colonization behavior and ecology of bark beetles (Coleoptera: Scolytidae) publication-title: Ecological Monographs – start-page: 303 year: 1993 end-page: 320 – volume: 59 start-page: 13 year: 2014 end-page: 30 article-title: Emerald ash borer invasion of North America: history, biology, ecology, impacts, and management publication-title: Annual Review of Entomology – year: 1931 – volume: 8 start-page: 1023 year: 2006 end-page: 1037 article-title: Propagule pressure: a null model for biological invasions publication-title: Biological Invasions – volume: 163 start-page: 33 year: 2003 end-page: 44 article-title: Qualitative theory of the spread of a new gene into a resident population publication-title: Ecological Modelling – volume: 165 start-page: 63 year: 2000 end-page: 78 article-title: Effect of aggregating behavior on population recovery on a set of habitat islands publication-title: Mathematical Biosciences – volume: 51 start-page: 341 year: 2009 end-page: 354 article-title: The evidence for Allee effects publication-title: Population Ecology – volume: 85 start-page: 490 year: 2004 end-page: 506 article-title: Multiscale analysis of active seed dispersal contributes to resolving Reid's paradox publication-title: Ecology – volume: 3 start-page: 481 year: 1989 end-page: 538 article-title: Allee effects: population growth, critical density, and the chance of extinction publication-title: Natural Resource Modeling – volume: 170 start-page: 1 year: 2007 end-page: 9 article-title: Waiting for invasions: a framework for the arrival of nonindigenous species publication-title: The American Naturalist – volume: 172 start-page: 73 year: 2001 end-page: 94 article-title: Some exact solutions of the generalized Fisher equation related to the problem of biological invasion publication-title: Mathematical Biosciences – volume: 218 start-page: 375 year: 2002 end-page: 394 article-title: Single‐species models of the Allee effect: extinction boundaries, sex ratios and mate encounters publication-title: Journal of Theoretical Biology – volume: 6 start-page: 153 year: 2013 end-page: 164 article-title: Allee effects, aggregation, and invasion success publication-title: Theoretical Ecology – volume: 6 start-page: 133 year: 2003 end-page: 140 article-title: The Allee effect, stochastic dynamics and the eradication of alien species publication-title: Ecology Letters – volume: 40 start-page: 81 year: 2009 end-page: 102 article-title: The role of propagule pressure in biological invasions publication-title: Annual Review of Ecology, Evolution, and Systematics – start-page: 3 year: 2006 end-page: 66 – volume: 148 start-page: 153 year: 2002 end-page: 168 article-title: The interaction between dispersal, the Allee effect and scramble competition affects population dynamics publication-title: Ecological Modelling – volume: 104 start-page: 135 year: 1991 end-page: 157 article-title: Properties of some density‐dependent integrodifference equation population models publication-title: Mathematical Biosciences – volume: 43 start-page: 141 year: 1993 end-page: 158 article-title: Allee dynamics and the spread of invading organisms publication-title: Theoretical Population Biology – volume: 40 start-page: 1 year: 2011 end-page: 18 article-title: Rcpp: seamless R and C++ integration publication-title: Journal of Statistical Software – volume: 18 start-page: 321 year: 1993 end-page: 331 article-title: Mate finding, dispersal, number released, and the success of biological control introductions publication-title: Ecological Entomology – volume: 173 start-page: 734 year: 2009 end-page: 746 article-title: Chance establishment for sexual, semelparous species: overcoming the Allee effect publication-title: The American Naturalist – year: 1997 – volume: 77 start-page: 966 year: 2008 end-page: 973 article-title: Dispersion in time and space affect mating success and Allee effects in invading gypsy moth populations publication-title: The Journal of Animal Ecology – volume: 29 start-page: 13 year: 1970b end-page: 26 article-title: Stability of steady distributions of asocial populations dispersing in one dimension publication-title: Journal of Theoretical Biology – volume: 19 start-page: 1935 year: 2009 end-page: 1943 article-title: Dispersal polymorphism in an invasive forest pest affects its ability to establish publication-title: Ecological Applications – volume: 29 start-page: 27 year: 1970a end-page: 33 article-title: A note on asocial populations dispersing in 2 dimensions publication-title: Journal of Theoretical Biology – volume: 8 start-page: 895 year: 2005 end-page: 908 article-title: Allee effects in biological invasions publication-title: Ecology Letters – volume: 86 start-page: 3212 year: 2005 end-page: 3218 article-title: Ecological resistance to biological invasion overwhelmed by propagule pressure publication-title: Ecology – year: 2015 – volume: 77 start-page: 2027 year: 1996 end-page: 2042 article-title: Dispersal data and the spread of invading organisms publication-title: Ecology – volume: 148 start-page: 255 year: 1996 end-page: 274 article-title: Dispersal, population growth, and the Allee effect: dynamics of the house finch invasion of eastern North America publication-title: The American Naturalist – year: 2013 – volume: 21 start-page: 489 year: 2008 end-page: 524 article-title: A novel method of fitting spatio‐temporal models to data, with applications to the dynamics of mountain pine beetles publication-title: Natural Resource Modeling – ident: e_1_2_7_17_1 doi: 10.1086/598496 – ident: e_1_2_7_34_1 – ident: e_1_2_7_37_1 doi: 10.1111/j.1461-0248.2005.00787.x – ident: e_1_2_7_36_1 doi: 10.2307/3547011 – ident: e_1_2_7_23_1 doi: 10.1016/S0025-5564(00)00005-5 – ident: e_1_2_7_3_1 doi: 10.1016/0025-5564(91)90034-G – ident: e_1_2_7_4_1 doi: 10.1006/jtbi.2002.3084 – ident: e_1_2_7_9_1 doi: 10.1111/j.1939-7445.1989.tb00119.x – volume-title: Biological Invasions: Theory and Practice year: 1997 ident: e_1_2_7_31_1 doi: 10.1093/oso/9780198548522.001.0001 – ident: e_1_2_7_32_1 doi: 10.1146/annurev.ecolsys.110308.120304 – ident: e_1_2_7_10_1 doi: 10.1007/978-1-4614-6868-4 – start-page: 3 volume-title: The Mountain Pine Beetle: A Synthesis of Its Biology, Management and Impacts in Lodgepole Pine year: 2006 ident: e_1_2_7_30_1 – ident: e_1_2_7_21_1 doi: 10.1006/tpbi.1993.1007 – ident: e_1_2_7_27_1 doi: 10.2307/1942586 – ident: e_1_2_7_29_1 doi: 10.1111/j.1365-2656.2008.01417.x – ident: e_1_2_7_40_1 doi: 10.1890/05-0427 – ident: e_1_2_7_8_1 doi: 10.2980/i1195-6860-12-3-316.1 – ident: e_1_2_7_13_1 doi: 10.1111/j.1939-7445.2008.00021.x – ident: e_1_2_7_22_1 doi: 10.1046/j.1461-0248.2003.00405.x – ident: e_1_2_7_38_1 – ident: e_1_2_7_14_1 doi: 10.1146/annurev-ento-011613-162051 – ident: e_1_2_7_24_1 doi: 10.1016/S0025-5564(01)00068-2 – ident: e_1_2_7_6_1 doi: 10.1016/0022-5193(70)90115-3 – ident: e_1_2_7_11_1 doi: 10.18637/jss.v040.i08 – ident: e_1_2_7_28_1 doi: 10.1890/08-1971.1 – ident: e_1_2_7_20_1 doi: 10.1007/s10144-009-0152-6 – ident: e_1_2_7_19_1 doi: 10.2307/2265698 – ident: e_1_2_7_7_1 doi: 10.1007/s10530-005-3735-y – ident: e_1_2_7_5_1 doi: 10.1016/0022-5193(70)90116-5 – ident: e_1_2_7_12_1 doi: 10.1016/S0304-3800(01)00417-3 – ident: e_1_2_7_25_1 doi: 10.1890/02-0535 – volume-title: R: A Language and Environment for Statistical Computing year: 2015 ident: e_1_2_7_26_1 – ident: e_1_2_7_33_1 doi: 10.1016/S0304-3800(02)00357-5 – ident: e_1_2_7_16_1 doi: 10.1086/518179 – ident: e_1_2_7_18_1 doi: 10.1007/s12080-012-0167-z – ident: e_1_2_7_15_1 doi: 10.1111/j.1365-2311.1993.tb01108.x – ident: e_1_2_7_39_1 doi: 10.1086/285924 – ident: e_1_2_7_2_1 doi: 10.5962/bhl.title.7313 – ident: e_1_2_7_35_1 doi: 10.1007/978-1-4020-8624-3 |
SSID | ssj0000389024 |
Score | 2.1835296 |
Snippet | Summary
Dispersal can push population density below strong Allee thresholds ensuring the demise of small founding populations. As a result, for isolated... Dispersal can push population density below strong Allee thresholds ensuring the demise of small founding populations. As a result, for isolated populations of... Summary Dispersal can push population density below strong Allee thresholds ensuring the demise of small founding populations. As a result, for isolated... 1. Dispersal can push population density below strong Allee thresholds ensuring the demise of small founding populations. As a result, for isolated populations... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1100 |
SubjectTerms | biological control depensation Dispersal Dispersion establishment insect integrodifference equation invasion mate finding Mountains Organisms Polygamy Population density Population number propagule |
Title | The minimum founding population in dispersing organisms subject to strong Allee effects |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F2041-210X.12573 https://www.proquest.com/docview/1818689020 https://www.proquest.com/docview/2374347588 https://www.proquest.com/docview/1827903614 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELagCInLiteKLAUZiQOXdBPHdpxjhbKqkIo4UNFbZDuTVaU2rTbNgQu_nZkkDQUtQlyiRLbzGGcy30zG3zD2XqQ-E5VKQjAiC6XyVWgkeilQaWMQMIPyFIdcftaLlfy0VqdsQloL0_NDjAE30ozue00Kbl1zpuQiknGIDst6hjY6TR6yR7TAlrL6hPwyhlmIPy7qStuO_QeCH8rn-eMcv9umX4DzHLZ2dufmKbsYACOf9zP8jD2A-jl7nHdk099fsG84z5z4QXbtjldUIwltET-MZbn4publhujAKSjA-yJOza7hTesoBMOPe95QOPyWz7dbAD4keLxkq5v868dFOBRLCL1EtQwhBqIyj2IbaSvj2GollDcAGp8xqzItwSC-AWvwAFGRi8CVxiortXSylMklm9T7Gl4xrp1yVYLDrEpkKbyprPIQld7hlUyaBmx2ElPhByZxKmixLU4eBcm1ILkWnVwD9mEccOhJNP7edXqSezFoU1PERLtH8xjd2ywShEESHR8TsHdjM6oJ_fuwNexbOoVIM7TWsQzYdTed_7qTYpnnSbd39d8jXrMnCKx0n4s2ZZPjXQtvELwc3dvu9cTt8kf-E3UO4jc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9NAEB1Bo4peqkKLmlJgkTj04uKP3fX6GFWpAiQ9NRD1Yq3X46pS4lR1cui_Z8Z2TKiKEDdb9qztmR3Pm_H6DcDnMHZJWKjIQxMmnlSu8IykLAULbQwBZlSO65CTKz2aym8zNdv6F6bhh-gKbuwZ9fuaHZwL0lteHvoy8ChjmZ1TkI6jl9BjbEMzuzf4Mb2ZdpUWppDz6-62nUTL8cNLep6M8md4-o05t5FrHXouD2C_xYxi0Bj5NbzA8g3sDmu-6cdD-EmmFkwRslgvRMFtkigcifuuM5e4K0V-x4zgXBcQTR-nalGJap1xFUaslqLiivitGMzniKJd43EE08vh9cXIa_sleE6SZ3oYILOZ-4H1tZVBYLUKlTOImp4xKRIt0RDEQWtoh4BR5mOWG6us1DKTuYzewk65LPEYhM5UVkQkZlUk89CZwiqHfu4yupKJ4z6cb9SUupZMnHtazNNNUsF6TVmvaa3XPpx1AvcNj8bfTz3d6D1tHapKA2beYzv6zx4OI0JCknIf04dP3WHyFP78YUtcrnmIME4oYAeyD19qc_7rTtLJcBjVWyf_LfERXo2uJ-N0_PXq-zvYI5ylm6Vpp7Czeljje8Iyq-xDO1l_AeTP5kE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BoiIuCCgV6QMWqQcuTv3YXa-PEU1UHo04kFJxsdbrMaqUOBFODv33nbEdN1QgxM3Wetb2jMfz7Xj8DcBpGLskLFTkoQkTTypXeEbSKgULbQwBZlSO85CXU30xk5-u1baakP-FafghuoQbe0b9vmYHX-XFjpOHvgw8WrBcDylGx9Fj6CuKTX4P-qOr2Y9Zl2hhBjm_bm7bSbQUP1zR82CW36PTPeTcBa515Jk8h2ctZBSjxsYv4BGWL2FvXNNN3-7Dd7K0YIaQxWYhCu6SRNFIrLrGXOKmFPkNE4JzWkA0bZyqRSWqTcZJGLFeiooT4j_FaD5HFG2JxyuYTcbfPlx4bbsEz0lyTA8DZDJzP7C-tjIIrFahcgZR0z0mRaIlGkI4aA3tEC7KfMxyY5WVWmYyl9EB9Mplia9B6ExlRURiVkUyD50prHLo5y6jM5k4HsBwq6bUtVzi3NJinm7XFKzXlPWa1nodwPtOYNXQaPz90OOt3tPWn6o0YOI9tqP_x-EwIiAkaeljBvCuGyZH4a8ftsTlhqcI44TidSAHcFab819Xkl6Ox1G9dfjfEm_hydfzSfrl4_TzETwllKWbwrRj6K1_bfCEkMw6e9M-q3doJOVh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+minimum+founding+population+in+dispersing+organisms+subject+to+strong+Allee+effects&rft.jtitle=Methods+in+ecology+and+evolution&rft.au=Goodsman%2C+Devin+W&rft.au=Lewis%2C+Mark+A&rft.date=2016-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2041-210X&rft.volume=7&rft.issue=9&rft.spage=1100&rft.epage=1109&rft_id=info:doi/10.1111%2F2041-210X.12573&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-210X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-210X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-210X&client=summon |