The minimum founding population in dispersing organisms subject to strong Allee effects

Summary Dispersal can push population density below strong Allee thresholds ensuring the demise of small founding populations. As a result, for isolated populations of dispersing organisms, the minimum founding population size that enables establishment can be quite different from the Allee threshol...

Full description

Saved in:
Bibliographic Details
Published inMethods in ecology and evolution Vol. 7; no. 9; pp. 1100 - 1109
Main Authors Goodsman, Devin W., Lewis, Mark A., Gaggiotti, Oscar
Format Journal Article
LanguageEnglish
Published London John Wiley & Sons, Inc 01.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Dispersal can push population density below strong Allee thresholds ensuring the demise of small founding populations. As a result, for isolated populations of dispersing organisms, the minimum founding population size that enables establishment can be quite different from the Allee threshold. We derive an expression for the minimum founding population size for a general integrodifference equation model of a dispersing population with a strong Allee effect. We demonstrate the utility of the general model by using it to approximate minimum founding populations for the mountain pine beetle. The minimum founding population of the general model increases linearly with the mean squared displacement of the dispersing organism. Transient dynamics of the general model suggest that population density at the point of introduction will often decrease before increasing, even when the minimum founding population size is exceeded. Calculation of minimum founding population sizes may prove useful for predicting invasion success based on propagule size and for maximizing the success of species reintroductions when strong Allee effects exist.
AbstractList 1. Dispersal can push population density below strong Allee thresholds ensuring the demise of small founding populations. As a result, for isolated populations of dispersing organisms, the minimum founding population size that enables establishment can be quite different from the Allee threshold. 2. We derive an expression for the minimum founding population size for a general integrodifference equation model of a dispersing population with a strong Allee effect. We demonstrate the utility of the general model by using it to approximate minimum founding populations for the mountain pine beetle. 3. The minimum founding population of the general model increases linearly with the mean squared displacement of the dispersing organism. Transient dynamics of the general model suggest that population density at the point of introduction will often decrease before increasing, even when the minimum founding population size is exceeded. 4. Calculation of minimum founding population sizes may prove useful for predicting invasion success based on propagule size and for maximizing the success of species reintroductions when strong Allee effects exist.
Dispersal can push population density below strong Allee thresholds ensuring the demise of small founding populations. As a result, for isolated populations of dispersing organisms, the minimum founding population size that enables establishment can be quite different from the Allee threshold.We derive an expression for the minimum founding population size for a general integrodifference equation model of a dispersing population with a strong Allee effect. We demonstrate the utility of the general model by using it to approximate minimum founding populations for the mountain pine beetle.The minimum founding population of the general model increases linearly with the mean squared displacement of the dispersing organism. Transient dynamics of the general model suggest that population density at the point of introduction will often decrease before increasing, even when the minimum founding population size is exceeded.Calculation of minimum founding population sizes may prove useful for predicting invasion success based on propagule size and for maximizing the success of species reintroductions when strong Allee effects exist.
Dispersal can push population density below strong Allee thresholds ensuring the demise of small founding populations. As a result, for isolated populations of dispersing organisms, the minimum founding population size that enables establishment can be quite different from the Allee threshold. We derive an expression for the minimum founding population size for a general integrodifference equation model of a dispersing population with a strong Allee effect. We demonstrate the utility of the general model by using it to approximate minimum founding populations for the mountain pine beetle. The minimum founding population of the general model increases linearly with the mean squared displacement of the dispersing organism. Transient dynamics of the general model suggest that population density at the point of introduction will often decrease before increasing, even when the minimum founding population size is exceeded. Calculation of minimum founding population sizes may prove useful for predicting invasion success based on propagule size and for maximizing the success of species reintroductions when strong Allee effects exist.
Summary Dispersal can push population density below strong Allee thresholds ensuring the demise of small founding populations. As a result, for isolated populations of dispersing organisms, the minimum founding population size that enables establishment can be quite different from the Allee threshold. We derive an expression for the minimum founding population size for a general integrodifference equation model of a dispersing population with a strong Allee effect. We demonstrate the utility of the general model by using it to approximate minimum founding populations for the mountain pine beetle. The minimum founding population of the general model increases linearly with the mean squared displacement of the dispersing organism. Transient dynamics of the general model suggest that population density at the point of introduction will often decrease before increasing, even when the minimum founding population size is exceeded. Calculation of minimum founding population sizes may prove useful for predicting invasion success based on propagule size and for maximizing the success of species reintroductions when strong Allee effects exist.
Summary Dispersal can push population density below strong Allee thresholds ensuring the demise of small founding populations. As a result, for isolated populations of dispersing organisms, the minimum founding population size that enables establishment can be quite different from the Allee threshold. We derive an expression for the minimum founding population size for a general integrodifference equation model of a dispersing population with a strong Allee effect. We demonstrate the utility of the general model by using it to approximate minimum founding populations for the mountain pine beetle. The minimum founding population of the general model increases linearly with the mean squared displacement of the dispersing organism. Transient dynamics of the general model suggest that population density at the point of introduction will often decrease before increasing, even when the minimum founding population size is exceeded. Calculation of minimum founding population sizes may prove useful for predicting invasion success based on propagule size and for maximizing the success of species reintroductions when strong Allee effects exist.
Author Gaggiotti, Oscar
Lewis, Mark A.
Goodsman, Devin W.
Author_xml – sequence: 1
  givenname: Devin W.
  surname: Goodsman
  fullname: Goodsman, Devin W.
  email: goodsman@ualberta.ca
  organization: University of Alberta
– sequence: 2
  givenname: Mark A.
  surname: Lewis
  fullname: Lewis, Mark A.
  organization: University of Alberta
– sequence: 3
  givenname: Oscar
  surname: Gaggiotti
  fullname: Gaggiotti, Oscar
BookMark eNqFkT1PwzAQhi1UJErpzGqJhaWtHTuJM1ZV-ZCKWIpgs9zkUlwldrATof57nBYh1AFuufPd81qn9y7RwFgDCF1TMqUhZhHhdBJR8jalUZyyMzT86Qx-1Rdo7P2OhGAiIxEfotf1O-BaG113NS5tZwpttrixTVepVluDtcGF9g043w-s2yqjfe2x7zY7yFvcWuxbZ8NsXlUAGMoytP0VOi9V5WH8nUfo5W65XjxMVs_3j4v5apJzKtgEKJCYckIVSRSnVCVxFOcCIAkrZ2WWcBAkikGJ8BAs2xDYFELFiid8wwvORuj2-G_j7EcHvpW19jlUlTJgOy-piNKMsIT26M0JurOdM2E7GbGUM57GQvxFUUFF0vtGAhUfqdxZ7x2UMtftwbDWKV1JSmR_F9k7L3vn5eEuQTc70TVO18rt_1AkR8WnrmD_Hy6flkt2FH4B6RWeaA
CitedBy_id crossref_primary_10_1080_01584197_2017_1333392
crossref_primary_10_1111_1365_2656_12658
crossref_primary_10_1007_s00285_023_01986_6
crossref_primary_10_3934_math_20231481
crossref_primary_10_1016_j_cois_2018_01_011
crossref_primary_10_1016_j_nonrwa_2021_103336
crossref_primary_10_1111_1365_2664_14326
crossref_primary_10_1111_1365_2745_12724
crossref_primary_10_3390_insects9040131
crossref_primary_10_1139_cjfr_2018_0304
crossref_primary_10_1016_j_ecolmodel_2018_10_013
crossref_primary_10_1139_cjfr_2018_0303
Cites_doi 10.1086/598496
10.1111/j.1461-0248.2005.00787.x
10.2307/3547011
10.1016/S0025-5564(00)00005-5
10.1016/0025-5564(91)90034-G
10.1006/jtbi.2002.3084
10.1111/j.1939-7445.1989.tb00119.x
10.1093/oso/9780198548522.001.0001
10.1146/annurev.ecolsys.110308.120304
10.1007/978-1-4614-6868-4
10.1006/tpbi.1993.1007
10.2307/1942586
10.1111/j.1365-2656.2008.01417.x
10.1890/05-0427
10.2980/i1195-6860-12-3-316.1
10.1111/j.1939-7445.2008.00021.x
10.1046/j.1461-0248.2003.00405.x
10.1146/annurev-ento-011613-162051
10.1016/S0025-5564(01)00068-2
10.1016/0022-5193(70)90115-3
10.18637/jss.v040.i08
10.1890/08-1971.1
10.1007/s10144-009-0152-6
10.2307/2265698
10.1007/s10530-005-3735-y
10.1016/0022-5193(70)90116-5
10.1016/S0304-3800(01)00417-3
10.1890/02-0535
10.1016/S0304-3800(02)00357-5
10.1086/518179
10.1007/s12080-012-0167-z
10.1111/j.1365-2311.1993.tb01108.x
10.1086/285924
10.5962/bhl.title.7313
10.1007/978-1-4020-8624-3
ContentType Journal Article
Copyright 2016 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Methods in Ecology and Evolution © 2016 British Ecological Society
Copyright_xml – notice: 2016 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society.
– notice: Methods in Ecology and Evolution © 2016 British Ecological Society
DBID 24P
AAYXX
CITATION
7QG
7SN
8FD
C1K
FR3
P64
RC3
DOI 10.1111/2041-210X.12573
DatabaseName Wiley Online Library Open Access
CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Ecology Abstracts
Genetics Abstracts
CrossRef

Genetics Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 2041-210X
EndPage 1109
ExternalDocumentID 4179643121
10_1111_2041_210X_12573
MEE312573
Genre article
GrantInformation_xml – fundername: Natural Science and Engineering Research Council of Canada
  funderid: NET GP 434810‐12
– fundername: Foothills Research Institute
– fundername: Saskatchewan Ministry of Environment
– fundername: Natural Resources Canada‐Canadian Forest Service
– fundername: Alberta Agriculture and Forestry
– fundername: Northwest Territories Environment and Natural Resources
– fundername: NSERC Discovery
– fundername: Manitoba Conservation and Water Stewardship
– fundername: Weyerhaeuser
– fundername: Ontario Ministry of Natural Resources and Forestry
GroupedDBID 05W
0R~
1OC
24P
31~
33P
4.4
4P2
50Y
5DZ
702
8-1
A00
AAESR
AAFWJ
AAHBH
AAHHS
AAZKR
ABCUV
ABLJU
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACPOU
ACPRK
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
AEEZP
AENEX
AEQDE
AEUYN
AFBPY
AFKRA
AFPKN
AFRAH
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ATCPS
AVUZU
AZVAB
BBNVY
BENPR
BFHJK
BHPHI
BMXJE
BRXPI
CAG
CCPQU
COF
DCZOG
DPXWK
EBD
EBS
EDH
EJD
F1Z
G-S
GODZA
GROUPED_DOAJ
HCIFZ
HZ~
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
M7P
MY.
MY~
M~E
O9-
P2P
P2W
P4E
PATMY
PYCSY
R.K
ROL
RX1
SUPJJ
V8K
WBKPD
WOHZO
WYJ
ZZTAW
~S-
AAYXX
CITATION
PHGZM
PHGZT
7QG
7SN
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
RC3
WIN
ID FETCH-LOGICAL-c4183-e1e051401a06a411a6525c8ee60419f964e8025ea89f9839b0ebd8a5a464b4d43
IEDL.DBID 24P
ISSN 2041-210X
IngestDate Fri Jul 11 11:42:27 EDT 2025
Wed Aug 13 09:34:37 EDT 2025
Wed Aug 13 09:53:33 EDT 2025
Tue Jul 01 03:19:37 EDT 2025
Thu Apr 24 23:04:44 EDT 2025
Wed Jan 22 16:36:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Attribution-NonCommercial
http://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4183-e1e051401a06a411a6525c8ee60419f964e8025ea89f9839b0ebd8a5a464b4d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2F2041-210X.12573
PQID 1818689020
PQPubID 1016379
PageCount 10
ParticipantIDs proquest_miscellaneous_1827903614
proquest_journals_2374347588
proquest_journals_1818689020
crossref_citationtrail_10_1111_2041_210X_12573
crossref_primary_10_1111_2041_210X_12573
wiley_primary_10_1111_2041_210X_12573_MEE312573
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2016
2016-09-00
20160901
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Methods in ecology and evolution
PublicationYear 2016
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 1989; 3
1970a; 29
2004; 85
2009; 40
1993; 43
2011; 40
1983; 53
2009
1931
2006; 8
1997
2005; 86
2006
1999; 87
2009; 173
2008; 77
1993
2002; 218
1970b; 29
1996; 148
2013; 6
1996; 77
1993; 18
2009; 51
2001; 172
2007; 170
2003; 6
2005; 8
2014; 59
2002; 148
2008; 21
2000; 165
2015
2013
2009; 19
1991; 104
2005; 12
2003; 163
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
Safranyik L. (e_1_2_7_30_1) 2006
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
Shigesada N. (e_1_2_7_31_1) 1997
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
R Core Team (e_1_2_7_26_1) 2015
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 12
  start-page: 316
  year: 2005
  end-page: 329
  article-title: Lag times and exotic species: the ecology and management of biological invasions in slow‐motion
  publication-title: Ecoscience
– year: 2009
– volume: 87
  start-page: 185
  year: 1999
  end-page: 190
  article-title: What is the Allee effect?
  publication-title: Oikos
– volume: 53
  start-page: 27
  year: 1983
  end-page: 49
  article-title: The role of host plant resistance in the colonization behavior and ecology of bark beetles (Coleoptera: Scolytidae)
  publication-title: Ecological Monographs
– start-page: 303
  year: 1993
  end-page: 320
– volume: 59
  start-page: 13
  year: 2014
  end-page: 30
  article-title: Emerald ash borer invasion of North America: history, biology, ecology, impacts, and management
  publication-title: Annual Review of Entomology
– year: 1931
– volume: 8
  start-page: 1023
  year: 2006
  end-page: 1037
  article-title: Propagule pressure: a null model for biological invasions
  publication-title: Biological Invasions
– volume: 163
  start-page: 33
  year: 2003
  end-page: 44
  article-title: Qualitative theory of the spread of a new gene into a resident population
  publication-title: Ecological Modelling
– volume: 165
  start-page: 63
  year: 2000
  end-page: 78
  article-title: Effect of aggregating behavior on population recovery on a set of habitat islands
  publication-title: Mathematical Biosciences
– volume: 51
  start-page: 341
  year: 2009
  end-page: 354
  article-title: The evidence for Allee effects
  publication-title: Population Ecology
– volume: 85
  start-page: 490
  year: 2004
  end-page: 506
  article-title: Multiscale analysis of active seed dispersal contributes to resolving Reid's paradox
  publication-title: Ecology
– volume: 3
  start-page: 481
  year: 1989
  end-page: 538
  article-title: Allee effects: population growth, critical density, and the chance of extinction
  publication-title: Natural Resource Modeling
– volume: 170
  start-page: 1
  year: 2007
  end-page: 9
  article-title: Waiting for invasions: a framework for the arrival of nonindigenous species
  publication-title: The American Naturalist
– volume: 172
  start-page: 73
  year: 2001
  end-page: 94
  article-title: Some exact solutions of the generalized Fisher equation related to the problem of biological invasion
  publication-title: Mathematical Biosciences
– volume: 218
  start-page: 375
  year: 2002
  end-page: 394
  article-title: Single‐species models of the Allee effect: extinction boundaries, sex ratios and mate encounters
  publication-title: Journal of Theoretical Biology
– volume: 6
  start-page: 153
  year: 2013
  end-page: 164
  article-title: Allee effects, aggregation, and invasion success
  publication-title: Theoretical Ecology
– volume: 6
  start-page: 133
  year: 2003
  end-page: 140
  article-title: The Allee effect, stochastic dynamics and the eradication of alien species
  publication-title: Ecology Letters
– volume: 40
  start-page: 81
  year: 2009
  end-page: 102
  article-title: The role of propagule pressure in biological invasions
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– start-page: 3
  year: 2006
  end-page: 66
– volume: 148
  start-page: 153
  year: 2002
  end-page: 168
  article-title: The interaction between dispersal, the Allee effect and scramble competition affects population dynamics
  publication-title: Ecological Modelling
– volume: 104
  start-page: 135
  year: 1991
  end-page: 157
  article-title: Properties of some density‐dependent integrodifference equation population models
  publication-title: Mathematical Biosciences
– volume: 43
  start-page: 141
  year: 1993
  end-page: 158
  article-title: Allee dynamics and the spread of invading organisms
  publication-title: Theoretical Population Biology
– volume: 40
  start-page: 1
  year: 2011
  end-page: 18
  article-title: Rcpp: seamless R and C++ integration
  publication-title: Journal of Statistical Software
– volume: 18
  start-page: 321
  year: 1993
  end-page: 331
  article-title: Mate finding, dispersal, number released, and the success of biological control introductions
  publication-title: Ecological Entomology
– volume: 173
  start-page: 734
  year: 2009
  end-page: 746
  article-title: Chance establishment for sexual, semelparous species: overcoming the Allee effect
  publication-title: The American Naturalist
– year: 1997
– volume: 77
  start-page: 966
  year: 2008
  end-page: 973
  article-title: Dispersion in time and space affect mating success and Allee effects in invading gypsy moth populations
  publication-title: The Journal of Animal Ecology
– volume: 29
  start-page: 13
  year: 1970b
  end-page: 26
  article-title: Stability of steady distributions of asocial populations dispersing in one dimension
  publication-title: Journal of Theoretical Biology
– volume: 19
  start-page: 1935
  year: 2009
  end-page: 1943
  article-title: Dispersal polymorphism in an invasive forest pest affects its ability to establish
  publication-title: Ecological Applications
– volume: 29
  start-page: 27
  year: 1970a
  end-page: 33
  article-title: A note on asocial populations dispersing in 2 dimensions
  publication-title: Journal of Theoretical Biology
– volume: 8
  start-page: 895
  year: 2005
  end-page: 908
  article-title: Allee effects in biological invasions
  publication-title: Ecology Letters
– volume: 86
  start-page: 3212
  year: 2005
  end-page: 3218
  article-title: Ecological resistance to biological invasion overwhelmed by propagule pressure
  publication-title: Ecology
– year: 2015
– volume: 77
  start-page: 2027
  year: 1996
  end-page: 2042
  article-title: Dispersal data and the spread of invading organisms
  publication-title: Ecology
– volume: 148
  start-page: 255
  year: 1996
  end-page: 274
  article-title: Dispersal, population growth, and the Allee effect: dynamics of the house finch invasion of eastern North America
  publication-title: The American Naturalist
– year: 2013
– volume: 21
  start-page: 489
  year: 2008
  end-page: 524
  article-title: A novel method of fitting spatio‐temporal models to data, with applications to the dynamics of mountain pine beetles
  publication-title: Natural Resource Modeling
– ident: e_1_2_7_17_1
  doi: 10.1086/598496
– ident: e_1_2_7_34_1
– ident: e_1_2_7_37_1
  doi: 10.1111/j.1461-0248.2005.00787.x
– ident: e_1_2_7_36_1
  doi: 10.2307/3547011
– ident: e_1_2_7_23_1
  doi: 10.1016/S0025-5564(00)00005-5
– ident: e_1_2_7_3_1
  doi: 10.1016/0025-5564(91)90034-G
– ident: e_1_2_7_4_1
  doi: 10.1006/jtbi.2002.3084
– ident: e_1_2_7_9_1
  doi: 10.1111/j.1939-7445.1989.tb00119.x
– volume-title: Biological Invasions: Theory and Practice
  year: 1997
  ident: e_1_2_7_31_1
  doi: 10.1093/oso/9780198548522.001.0001
– ident: e_1_2_7_32_1
  doi: 10.1146/annurev.ecolsys.110308.120304
– ident: e_1_2_7_10_1
  doi: 10.1007/978-1-4614-6868-4
– start-page: 3
  volume-title: The Mountain Pine Beetle: A Synthesis of Its Biology, Management and Impacts in Lodgepole Pine
  year: 2006
  ident: e_1_2_7_30_1
– ident: e_1_2_7_21_1
  doi: 10.1006/tpbi.1993.1007
– ident: e_1_2_7_27_1
  doi: 10.2307/1942586
– ident: e_1_2_7_29_1
  doi: 10.1111/j.1365-2656.2008.01417.x
– ident: e_1_2_7_40_1
  doi: 10.1890/05-0427
– ident: e_1_2_7_8_1
  doi: 10.2980/i1195-6860-12-3-316.1
– ident: e_1_2_7_13_1
  doi: 10.1111/j.1939-7445.2008.00021.x
– ident: e_1_2_7_22_1
  doi: 10.1046/j.1461-0248.2003.00405.x
– ident: e_1_2_7_38_1
– ident: e_1_2_7_14_1
  doi: 10.1146/annurev-ento-011613-162051
– ident: e_1_2_7_24_1
  doi: 10.1016/S0025-5564(01)00068-2
– ident: e_1_2_7_6_1
  doi: 10.1016/0022-5193(70)90115-3
– ident: e_1_2_7_11_1
  doi: 10.18637/jss.v040.i08
– ident: e_1_2_7_28_1
  doi: 10.1890/08-1971.1
– ident: e_1_2_7_20_1
  doi: 10.1007/s10144-009-0152-6
– ident: e_1_2_7_19_1
  doi: 10.2307/2265698
– ident: e_1_2_7_7_1
  doi: 10.1007/s10530-005-3735-y
– ident: e_1_2_7_5_1
  doi: 10.1016/0022-5193(70)90116-5
– ident: e_1_2_7_12_1
  doi: 10.1016/S0304-3800(01)00417-3
– ident: e_1_2_7_25_1
  doi: 10.1890/02-0535
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2015
  ident: e_1_2_7_26_1
– ident: e_1_2_7_33_1
  doi: 10.1016/S0304-3800(02)00357-5
– ident: e_1_2_7_16_1
  doi: 10.1086/518179
– ident: e_1_2_7_18_1
  doi: 10.1007/s12080-012-0167-z
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1365-2311.1993.tb01108.x
– ident: e_1_2_7_39_1
  doi: 10.1086/285924
– ident: e_1_2_7_2_1
  doi: 10.5962/bhl.title.7313
– ident: e_1_2_7_35_1
  doi: 10.1007/978-1-4020-8624-3
SSID ssj0000389024
Score 2.1835296
Snippet Summary Dispersal can push population density below strong Allee thresholds ensuring the demise of small founding populations. As a result, for isolated...
Dispersal can push population density below strong Allee thresholds ensuring the demise of small founding populations. As a result, for isolated populations of...
Summary Dispersal can push population density below strong Allee thresholds ensuring the demise of small founding populations. As a result, for isolated...
1. Dispersal can push population density below strong Allee thresholds ensuring the demise of small founding populations. As a result, for isolated populations...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1100
SubjectTerms biological control
depensation
Dispersal
Dispersion
establishment
insect
integrodifference equation
invasion
mate finding
Mountains
Organisms
Polygamy
Population density
Population number
propagule
Title The minimum founding population in dispersing organisms subject to strong Allee effects
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F2041-210X.12573
https://www.proquest.com/docview/1818689020
https://www.proquest.com/docview/2374347588
https://www.proquest.com/docview/1827903614
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELagCInLiteKLAUZiQOXdBPHdpxjhbKqkIo4UNFbZDuTVaU2rTbNgQu_nZkkDQUtQlyiRLbzGGcy30zG3zD2XqQ-E5VKQjAiC6XyVWgkeilQaWMQMIPyFIdcftaLlfy0VqdsQloL0_NDjAE30ozue00Kbl1zpuQiknGIDst6hjY6TR6yR7TAlrL6hPwyhlmIPy7qStuO_QeCH8rn-eMcv9umX4DzHLZ2dufmKbsYACOf9zP8jD2A-jl7nHdk099fsG84z5z4QXbtjldUIwltET-MZbn4publhujAKSjA-yJOza7hTesoBMOPe95QOPyWz7dbAD4keLxkq5v868dFOBRLCL1EtQwhBqIyj2IbaSvj2GollDcAGp8xqzItwSC-AWvwAFGRi8CVxiortXSylMklm9T7Gl4xrp1yVYLDrEpkKbyprPIQld7hlUyaBmx2ElPhByZxKmixLU4eBcm1ILkWnVwD9mEccOhJNP7edXqSezFoU1PERLtH8xjd2ywShEESHR8TsHdjM6oJ_fuwNexbOoVIM7TWsQzYdTed_7qTYpnnSbd39d8jXrMnCKx0n4s2ZZPjXQtvELwc3dvu9cTt8kf-E3UO4jc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9NAEB1Bo4peqkKLmlJgkTj04uKP3fX6GFWpAiQ9NRD1Yq3X46pS4lR1cui_Z8Z2TKiKEDdb9qztmR3Pm_H6DcDnMHZJWKjIQxMmnlSu8IykLAULbQwBZlSO65CTKz2aym8zNdv6F6bhh-gKbuwZ9fuaHZwL0lteHvoy8ChjmZ1TkI6jl9BjbEMzuzf4Mb2ZdpUWppDz6-62nUTL8cNLep6M8md4-o05t5FrHXouD2C_xYxi0Bj5NbzA8g3sDmu-6cdD-EmmFkwRslgvRMFtkigcifuuM5e4K0V-x4zgXBcQTR-nalGJap1xFUaslqLiivitGMzniKJd43EE08vh9cXIa_sleE6SZ3oYILOZ-4H1tZVBYLUKlTOImp4xKRIt0RDEQWtoh4BR5mOWG6us1DKTuYzewk65LPEYhM5UVkQkZlUk89CZwiqHfu4yupKJ4z6cb9SUupZMnHtazNNNUsF6TVmvaa3XPpx1AvcNj8bfTz3d6D1tHapKA2beYzv6zx4OI0JCknIf04dP3WHyFP78YUtcrnmIME4oYAeyD19qc_7rTtLJcBjVWyf_LfERXo2uJ-N0_PXq-zvYI5ylm6Vpp7Czeljje8Iyq-xDO1l_AeTP5kE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BoiIuCCgV6QMWqQcuTv3YXa-PEU1UHo04kFJxsdbrMaqUOBFODv33nbEdN1QgxM3Wetb2jMfz7Xj8DcBpGLskLFTkoQkTTypXeEbSKgULbQwBZlSO85CXU30xk5-u1baakP-FafghuoQbe0b9vmYHX-XFjpOHvgw8WrBcDylGx9Fj6CuKTX4P-qOr2Y9Zl2hhBjm_bm7bSbQUP1zR82CW36PTPeTcBa515Jk8h2ctZBSjxsYv4BGWL2FvXNNN3-7Dd7K0YIaQxWYhCu6SRNFIrLrGXOKmFPkNE4JzWkA0bZyqRSWqTcZJGLFeiooT4j_FaD5HFG2JxyuYTcbfPlx4bbsEz0lyTA8DZDJzP7C-tjIIrFahcgZR0z0mRaIlGkI4aA3tEC7KfMxyY5WVWmYyl9EB9Mplia9B6ExlRURiVkUyD50prHLo5y6jM5k4HsBwq6bUtVzi3NJinm7XFKzXlPWa1nodwPtOYNXQaPz90OOt3tPWn6o0YOI9tqP_x-EwIiAkaeljBvCuGyZH4a8ftsTlhqcI44TidSAHcFab819Xkl6Ox1G9dfjfEm_hydfzSfrl4_TzETwllKWbwrRj6K1_bfCEkMw6e9M-q3doJOVh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+minimum+founding+population+in+dispersing+organisms+subject+to+strong+Allee+effects&rft.jtitle=Methods+in+ecology+and+evolution&rft.au=Goodsman%2C+Devin+W&rft.au=Lewis%2C+Mark+A&rft.date=2016-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2041-210X&rft.volume=7&rft.issue=9&rft.spage=1100&rft.epage=1109&rft_id=info:doi/10.1111%2F2041-210X.12573&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-210X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-210X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-210X&client=summon