Face Recognition Using Dense SIFT Feature Alignment

This paper addresses face recognition problem in a more challenging scenario where the training and test samples are both subject to the visual variations of poses, expressions and misalignments. We employ dense Scale-invariant feature transform(SIFT) feature matching as a generic transformation to...

Full description

Saved in:
Bibliographic Details
Published inChinese Journal of Electronics Vol. 25; no. 6; pp. 1034 - 1039
Main Authors Zhou, Quan, Shafiq, ur Rehman, Zhou, Yu, Wei, Xin, Wang, Lei, Zheng, Baoyu
Format Journal Article
LanguageEnglish
Published Published by the IET on behalf of the CIE 01.11.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper addresses face recognition problem in a more challenging scenario where the training and test samples are both subject to the visual variations of poses, expressions and misalignments. We employ dense Scale-invariant feature transform(SIFT) feature matching as a generic transformation to roughly align training samples; and then identify input facial images via an improved sparse representation model based on the aligned training samples. Compared with previous methods, the extensive experimental results demonstrate the effectiveness of our method for the task of face recognition on three benchmark datasets.
AbstractList This paper addresses face recognition problem in a more challenging scenario where the training and test samples are both subject to the visual variations of poses, expressions and misalignments. We employ dense Scale-invariant feature transform(SIFT) feature matching as a generic transformation to roughly align training samples; and then identify input facial images via an improved sparse representation model based on the aligned training samples. Compared with previous methods, the extensive experimental results demonstrate the effectiveness of our method for the task of face recognition on three benchmark datasets.
This paper addresses face recognition problem in a more challenging scenario where the training and test samples are both subject to the visual variations of poses, expressions and misalignments. We employ dense Scale-invariant feature transform (SIFT) feature matching as a generic transformation to roughly align training samples; and then identify input facial images via an improved sparse representation model based on the aligned training samples. Compared with previous methods, the extensive experimental results demonstrate the effectiveness of our method for the task of face recognition on three benchmark datasets.
Author Zhou, Quan
Wang, Lei
Wei, Xin
Zheng, Baoyu
Zhou, Yu
Shafiq, ur Rehman
AuthorAffiliation Key Lab of Ministry of Education for Broad Band Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China Department of Applied Physics and Electronics, Umea University, Umea, Sweden School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Author_xml – sequence: 1
  givenname: Quan
  surname: Zhou
  fullname: Zhou, Quan
  email: quan.zhou@njupt.edu.cn
  organization: Key Lab of Ministry of Education for Broad Band Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
– sequence: 2
  givenname: ur Rehman
  surname: Shafiq
  fullname: Shafiq, ur Rehman
  organization: Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden
– sequence: 3
  givenname: Yu
  surname: Zhou
  fullname: Zhou, Yu
  organization: School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
– sequence: 4
  givenname: Xin
  surname: Wei
  fullname: Wei, Xin
  organization: Key Lab of Ministry of Education for Broad Band Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
– sequence: 5
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  organization: Key Lab of Ministry of Education for Broad Band Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
– sequence: 6
  givenname: Baoyu
  surname: Zheng
  fullname: Zheng, Baoyu
  organization: Key Lab of Ministry of Education for Broad Band Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-129909$$DView record from Swedish Publication Index
BookMark eNqFkUlLBDEQhYMoOC5nr41X6bGy9XIcx2kXBMHtGtLpShuZSY-9IP57M4wLiMupSPG-epVXO2TTNx4JOaAwpiDyY_OEYwY0Ca8xAN0gIwapjKXM000yosBYLBLJt8l-17kSIElBUspGhBfaYHSDpqm9613jo_vO-To6Rd9hdHtR3EUF6n5oMZrMXe0X6Ps9smX1vMP997pL7ovZ3fQ8vro-u5hOrmIjaBYMU8uFQGqFrkyJ1OhEasbLCkvDrRVAhagYp5XOKkiAizTTFRoJxlayNJbvkng9t3vB5VCqZesWun1VjXbq1D1MVNPWalgMirI8hzzo5Vpv2qbrWrTKuF6vPtW32s0VBbUKS4Ww1CqsVSOEFbjjb9yH0-9EtiZe3Bxf_5Or6eWMnRQAnLOAHq1Rh716aobWhwj_MDr8QR3mKSpBZKCWlf0SmcfG18_hfJ8bhTsnaZILzt8AixijRg
CitedBy_id crossref_primary_10_1007_s00500_019_03870_2
crossref_primary_10_1108_SR_06_2017_0115
crossref_primary_10_1049_iet_bmt_2017_0160
crossref_primary_10_1049_iet_cps_2018_5045
crossref_primary_10_1109_ACCESS_2020_2964298
ContentType Journal Article
Copyright Chinese Institute of Electronics
2016 Chinese Institute of Electronics
Copyright_xml – notice: Chinese Institute of Electronics
– notice: 2016 Chinese Institute of Electronics
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
ADTPV
AOWAS
D93
DOI 10.1049/cje.2016.10.001
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
SwePub
SwePub Articles
SWEPUB Umeå universitet
DatabaseTitle CrossRef
DatabaseTitleList



DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Face Recognition Using Dense SIFT Feature Alignment
EISSN 2075-5597
EndPage 1039
ExternalDocumentID oai_DiVA_org_umu_129909
10_1049_cje_2016_10_001
CJE2BF00332
670676943
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61201164; 61201165; 61201326; 61271240; 61401228; 61571240; 61501253
– fundername: State Key Development Program of Basic Research of China
  grantid: 2013CB329005
– fundername: University Natural Science Research Project of Jiangsu Province
  grantid: 11KJB510016
– fundername: Jiangsu Postdoctoral Program
  grantid: 1201014C; 1501019A
– fundername: Specialized Research Fund for the Doctoral Program of Higher Education
  grantid: 20113223120002
– fundername: China Postdoctoral Science Foundation
  grantid: 2013M531392; 2015M581841
– fundername: National Natural Science Foundation of China
  funderid: 61201164; 61201165; 61201326; 61271240; 61401228; 61571240; 61501253
– fundername: Jiangsu Postdoctoral Program
  funderid: 1201014C; 1501019A
– fundername: University Natural Science Research Project of Jiangsu Province
  funderid: 11KJB510016
– fundername: China Postdoctoral Science Foundation
  funderid: 2013M531392; 2015M581841
– fundername: State Key Development Program of Basic Research of China
  funderid: 2013CB329005
– fundername: Specialized Research Fund for the Doctoral Program of Higher Education
  funderid: 20113223120002
GroupedDBID 2RA
92L
ALMA_UNASSIGNED_HOLDINGS
CDYEO
CQIGP
W92
~WA
0R
O9-
1OC
24P
33P
ACCZN
AJAOE
DCZOG
IAO
ITC
SUPJJ
AAYXX
CITATION
ADTPV
AOWAS
D93
ID FETCH-LOGICAL-c4182-47f344e1f4adcbe1ca65a23bdebc3ff40144d231da8d0603478adec50cfd5bcf3
IEDL.DBID IDLOA
ISSN 1022-4653
2075-5597
IngestDate Thu Aug 21 06:44:49 EDT 2025
Thu Apr 24 23:05:54 EDT 2025
Tue Jul 01 03:19:53 EDT 2025
Wed Jan 22 16:30:21 EST 2025
Tue Jan 05 21:44:30 EST 2021
Thu May 09 18:24:34 EDT 2019
Wed Feb 14 10:08:24 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Face recognition
Sparse representation
Dense SIFT feature alignment
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4182-47f344e1f4adcbe1ca65a23bdebc3ff40144d231da8d0603478adec50cfd5bcf3
Notes This paper addresses face recognition problem in a more challenging scenario where the training and test samples are both subject to the visual variations of poses, expressions and misalignments. We employ dense Scale-invariant feature transform(SIFT) feature matching as a generic transformation to roughly align training samples; and then identify input facial images via an improved sparse representation model based on the aligned training samples. Compared with previous methods, the extensive experimental results demonstrate the effectiveness of our method for the task of face recognition on three benchmark datasets.
Face recognition Dense SIFT feature alignment Sparse representation
10-1284/TN
PageCount 6
ParticipantIDs wiley_primary_10_1049_cje_2016_10_001_CJE2BF00332
iet_journals_10_1049_cje_2016_10_001
crossref_primary_10_1049_cje_2016_10_001
crossref_citationtrail_10_1049_cje_2016_10_001
swepub_primary_oai_DiVA_org_umu_129909
chongqing_primary_670676943
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2016
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: November 2016
PublicationDecade 2010
PublicationTitle Chinese Journal of Electronics
PublicationTitleAlternate Chinese of Journal Electronics
PublicationYear 2016
Publisher Published by the IET on behalf of the CIE
Publisher_xml – name: Published by the IET on behalf of the CIE
SSID ssib006705112
ssib002062277
ssib051367563
ssib028779094
ssj0002952017
ssib058688246
Score 2.1109073
Snippet This paper addresses face recognition problem in a more challenging scenario where the training and test samples are both subject to the visual variations of...
SourceID swepub
crossref
wiley
iet
chongqing
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1034
SubjectTerms dense scale‐invariant feature transform feature matching
Dense SIFT feature alignment
dense SIFT feature matching
Face recognition
generic transformation
image matching
image representation
learning (artificial intelligence)
Sparse representation
test samples
training samples
transforms
Title Face Recognition Using Dense SIFT Feature Alignment
URI http://lib.cqvip.com/qk/86774X/201606/670676943.html
http://digital-library.theiet.org/content/journals/10.1049/cje.2016.10.001
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcje.2016.10.001
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-129909
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT-MwELWgXPaCQIDIFlAOCHEJJI7tJMdCiQABB77EzXL80S2CFBD9_8w4SaFCaDk6cmxrPPK8l4zfELLLdOoSrpKIOlpEjOI5yBWPFFAgw2xuKp_tfnklTu_Y-QN_-Mx_MuMR1sqIui9u-LXcNjcPMHUbzuHD1sZNQRLAt4f6EeUuE3Hgs7SACS3RLEt4jyydDS9aguWDUSwo_XLrUmQxoo2uDdQhK2JfORFZUITCY50W0PdZUIrh36QevUKAmQtpi7DemezoPOL1IatcIcst1gwHjXOskgVbr5G0VNqG113e0KQOfdZAOAQ-a8Obs_I2RFg4fbPh4Gk88skC6-SuPLk9Po3aygmRZkAYIpa5lDGbOKaMrmyileCKppWxFeyNY0ijDCA7o3ITizhlWa6M1TzWzvBKu3SD9OpJbTdJCJjIWaCBueIVc1zlQmQut3HmqsKJggakPzOEfGkUMiSYFlNnWRqQg840Urei41j74kn6n9-skGBXiXbFB2DXgOzPXuhG-7HrLthadv7wc7f-XLfj8xMJKJjlsXwxLiB7zVbNZkO97eH4fiDB6eT0GbW2IWIXAUn8Vv5vVTg-PSqxRh79-7sV9skfbDU3HLdI7_1tarcB6rxXO60PfwCOgPAD
linkProvider Institution of Engineering and Technology
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKe4BLBSoVYaHNoUJcUhLHdpLj0jbaPg90t6q4WI4fy6KSbZfd_8-M86CLVCH1mGhsR-PHfOPMfEPIAdOpS7hKIupoETGK5yBXPFLgAhlmc1P5aPfLKzGasLNbfvsoF6bhh-gv3HBn-PMaNzheSDcOJ0OSTP0TaS4Tceijs8AD2kJsAyt7a3gz-T75a4RiQemjbEuRxYgyumeOpGW8JaHC85sWHLr1VVkw1B0JyDpOIFZ8-WdUpGT4Ma-nD2Bo1kzbi5ld9vSj68jXm67yNdluMWc4bBbJG7Jh6x2Slkrb8FsXPzSvQx89EB6DX2vD69NyHCI8XC1sOLybTX3QwFsyKU_GR6OoraAQaQaOQ8QylzJmE8eU0ZVNtBJc0bQytoI5cgzdKQMIz6jcxCJOWZYrYzWPtTO80i7dJZv1vLbvSAjYyFlwB3PFK-a4yoXIXG7jzFWFEwUNyKBXhLxvmDIkqBpDaFkakMNONVK35ONYA-NO-p_grJCgV4l6xReg14B87ht0vT0pegC6lu3e-_202GBN7OjsRAIaZnks740LyKdmqvrRkHf7eHYzlPPFVK5-Iec2WO4iIImfyv99FfZPv5ZYK4--f0abffJyNL68kBenV-cD8gqlmhTID2RzuVjZj4CFltVeu9j_AGl-9og
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbaRap6qahK1bCF5oCqXkITx3aS48ISAW0RallU9WI5fiyLaJYuu_-fGecBWwlV6jHR2InGj_km-fwNIXtMpy7hKomoo0XEKO6DXPFIQQpkmM1N5dnu387E8YSd_uQdmxDPwjT6EP0HN1wZfr_GBX5rXJNvMtTI1NeocpmIfU_OggRog0NsigdkY3Q5-TV5iEGxoPTRYUuRxQgyumuOmmW81aDC7ZsWHLr1RVmQ6Y76Y50kECs-__VUVGS4mtfTPxBn1iLb85ld9uqj68DXR65yk7xqIWc4aubIa_LM1m9IWiptw-8dfWheh548EI4hrbXhj5PyIkR0uFrYcHQzm3rOwBaZlEcXh8dRW0Ah0gzyhohlLmXMJo4poyubaCW4omllbAVD5BhmUwYAnlG5iUWcsixXxmoea2d4pV36lgzqeW3fkRCgkbOQDeaKV8xxlQuRudzGmasKJwoakGHvCHnbCGVIcDUyaFkakP3ONVK32uNYAuNG-n_grJDgV4l-xRvg14B86ht0vT1puge-lu3Su3vabLhmdnh6JAEMszyWMK8C8rEZqv5pKLs9nl2O5HwxlavfKLkNgbsISOKH8l9vhf3TgxJL5dHt_2jzgbw4H5fy68nZlyF5iUbNAcj3ZLBcrOwOIKFltdvO9Xu7Y_Wo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Face+Recognition+Using+Dense+SIFT+Feature+Alignment&rft.jtitle=Chinese+Journal+of+Electronics&rft.au=Quan%2C+Zhou&rft.au=Rehman%2C+Shafiq+Ur&rft.au=Yu%2C+Zhou&rft.au=Xin%2C+Wei&rft.date=2016-11-01&rft.issn=1022-4653&rft.eissn=2075-5597&rft.volume=25&rft.issue=6&rft.spage=1034&rft_id=info:doi/10.1049%2Fcje.2016.10.001&rft.externalDocID=oai_DiVA_org_umu_129909
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86774X%2F86774X.jpg