Net changes of soil C stocks in two grassland soils 26 months after simulated pasture renovation including biochar addition

The use of deep‐rooting pasture species as a management practice can increase the allocation of plant carbon (C) below ground and enhance C storage. A 2‐year lysimeter trial was set up to compare changes in C stocks of soils under either deep‐ or shallow‐rooting pastures and investigate whether bioc...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology. Bioenergy Vol. 8; no. 3; pp. 600 - 615
Main Authors Calvelo Pereira, Roberto, Hedley, Mike, Camps Arbestain, Marta, Wisnubroto, Erwin, Green, Steve, Saggar, Surinder, Kusumo, Bambang H., Mahmud, Ainul F.
Format Journal Article
LanguageEnglish
Published Oxford John Wiley & Sons, Inc 01.05.2016
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The use of deep‐rooting pasture species as a management practice can increase the allocation of plant carbon (C) below ground and enhance C storage. A 2‐year lysimeter trial was set up to compare changes in C stocks of soils under either deep‐ or shallow‐rooting pastures and investigate whether biochar addition below the top 10 cm could promote root growth at depth. For this i) soil ploughing at cultivation was simulated in a silt loam soil and in a sandy soil by inverting the 0 to 10 and 10‐ to 20‐cm‐depth soil layers, and a distinctive biochar (selected for each soil to overcome soil‐specific plant growth limitations) was mixed at 10 Mg ha−1 in the buried layer, where appropriate and ii) three pasture types with contrasting root systems were grown. In the silt loam, soil inversion resulted in a general loss of C (2.0–8.1 Mg ha−1), particularly in the buried horizon, under shallow‐rooting pastures only. The addition of a C‐rich biochar (equivalent to 7.6 Mg C ha−1) to this soil resulted in a net C gain (21–40% over the non‐biochar treatment, P < 0.10) in the buried layer under all pastures; this overcame the loss of C in this horizon under shallow‐rooting pastures. In the sandy soil, all pastures were able to maintain soil C stocks at 10–20 cm depth over time, with minor gains of C (1.6–5.1 Mg ha−1) for the profile. In this soil, the exposure of a skeletal‐ and nutrient‐depleted soil layer at the surface may have fostered root growth at depth. The addition of a nutrient‐rich biochar (equivalent to 3.6 Mg C ha−1) to this soil had no apparent effect on C stocks. More research is needed to understand the mechanisms through which soil C stocks at depth are preserved.
AbstractList The use of deep-rooting pasture species as a management practice can increase the allocation of plant carbon (C) below ground and enhance C storage. A 2-year lysimeter trial was set up to compare changes in C stocks of soils under either deep- or shallow-rooting pastures and investigate whether biochar addition below the top 10 cm could promote root growth at depth. For this i) soil ploughing at cultivation was simulated in a silt loam soil and in a sandy soil by inverting the 0 to 10 and 10- to 20-cm-depth soil layers, and a distinctive biochar (selected for each soil to overcome soil-specific plant growth limitations) was mixed at 10 Mg ha−1 in the buried layer, where appropriate and ii) three pasture types with contrasting root systems were grown. In the silt loam, soil inversion resulted in a general loss of C (2.0–8.1 Mg ha−1), particularly in the buried horizon, under shallow-rooting pastures only. The addition of a C-rich biochar (equivalent to 7.6 Mg C ha−1) to this soil resulted in a net C gain (21–40% over the non-biochar treatment, P < 0.10) in the buried layer under all pastures; this overcame the loss of C in this horizon under shallow-rooting pastures. In the sandy soil, all pastures were able to maintain soil C stocks at 10–20 cm depth over time, with minor gains of C (1.6–5.1 Mg ha−1) for the profile. In this soil, the exposure of a skeletal- and nutrient-depleted soil layer at the surface may have fostered root growth at depth. The addition of a nutrient-rich biochar (equivalent to 3.6 Mg C ha−1) to this soil had no apparent effect on C stocks. More research is needed to understand the mechanisms through which soil C stocks at depth are preserved.
The use of deep‐rooting pasture species as a management practice can increase the allocation of plant carbon (C) below ground and enhance C storage. A 2‐year lysimeter trial was set up to compare changes in C stocks of soils under either deep‐ or shallow‐rooting pastures and investigate whether biochar addition below the top 10 cm could promote root growth at depth. For this i) soil ploughing at cultivation was simulated in a silt loam soil and in a sandy soil by inverting the 0 to 10 and 10‐ to 20‐cm‐depth soil layers, and a distinctive biochar (selected for each soil to overcome soil‐specific plant growth limitations) was mixed at 10 Mg ha −1 in the buried layer, where appropriate and ii) three pasture types with contrasting root systems were grown. In the silt loam, soil inversion resulted in a general loss of C (2.0–8.1 Mg ha −1 ), particularly in the buried horizon, under shallow‐rooting pastures only. The addition of a C‐rich biochar (equivalent to 7.6 Mg C ha −1 ) to this soil resulted in a net C gain (21–40% over the non‐biochar treatment, P  <   0.10) in the buried layer under all pastures; this overcame the loss of C in this horizon under shallow‐rooting pastures. In the sandy soil, all pastures were able to maintain soil C stocks at 10–20 cm depth over time, with minor gains of C (1.6–5.1 Mg ha −1 ) for the profile. In this soil, the exposure of a skeletal‐ and nutrient‐depleted soil layer at the surface may have fostered root growth at depth. The addition of a nutrient‐rich biochar (equivalent to 3.6 Mg C ha −1 ) to this soil had no apparent effect on C stocks. More research is needed to understand the mechanisms through which soil C stocks at depth are preserved.
Abstract The use of deep‐rooting pasture species as a management practice can increase the allocation of plant carbon (C) below ground and enhance C storage. A 2‐year lysimeter trial was set up to compare changes in C stocks of soils under either deep‐ or shallow‐rooting pastures and investigate whether biochar addition below the top 10 cm could promote root growth at depth. For this i) soil ploughing at cultivation was simulated in a silt loam soil and in a sandy soil by inverting the 0 to 10 and 10‐ to 20‐cm‐depth soil layers, and a distinctive biochar (selected for each soil to overcome soil‐specific plant growth limitations) was mixed at 10 Mg ha−1 in the buried layer, where appropriate and ii) three pasture types with contrasting root systems were grown. In the silt loam, soil inversion resulted in a general loss of C (2.0–8.1 Mg ha−1), particularly in the buried horizon, under shallow‐rooting pastures only. The addition of a C‐rich biochar (equivalent to 7.6 Mg C ha−1) to this soil resulted in a net C gain (21–40% over the non‐biochar treatment, P < 0.10) in the buried layer under all pastures; this overcame the loss of C in this horizon under shallow‐rooting pastures. In the sandy soil, all pastures were able to maintain soil C stocks at 10–20 cm depth over time, with minor gains of C (1.6–5.1 Mg ha−1) for the profile. In this soil, the exposure of a skeletal‐ and nutrient‐depleted soil layer at the surface may have fostered root growth at depth. The addition of a nutrient‐rich biochar (equivalent to 3.6 Mg C ha−1) to this soil had no apparent effect on C stocks. More research is needed to understand the mechanisms through which soil C stocks at depth are preserved.
The use of deep‐rooting pasture species as a management practice can increase the allocation of plant carbon (C) below ground and enhance C storage. A 2‐year lysimeter trial was set up to compare changes in C stocks of soils under either deep‐ or shallow‐rooting pastures and investigate whether biochar addition below the top 10 cm could promote root growth at depth. For this i) soil ploughing at cultivation was simulated in a silt loam soil and in a sandy soil by inverting the 0 to 10 and 10‐ to 20‐cm‐depth soil layers, and a distinctive biochar (selected for each soil to overcome soil‐specific plant growth limitations) was mixed at 10 Mg ha−1 in the buried layer, where appropriate and ii) three pasture types with contrasting root systems were grown. In the silt loam, soil inversion resulted in a general loss of C (2.0–8.1 Mg ha−1), particularly in the buried horizon, under shallow‐rooting pastures only. The addition of a C‐rich biochar (equivalent to 7.6 Mg C ha−1) to this soil resulted in a net C gain (21–40% over the non‐biochar treatment, P < 0.10) in the buried layer under all pastures; this overcame the loss of C in this horizon under shallow‐rooting pastures. In the sandy soil, all pastures were able to maintain soil C stocks at 10–20 cm depth over time, with minor gains of C (1.6–5.1 Mg ha−1) for the profile. In this soil, the exposure of a skeletal‐ and nutrient‐depleted soil layer at the surface may have fostered root growth at depth. The addition of a nutrient‐rich biochar (equivalent to 3.6 Mg C ha−1) to this soil had no apparent effect on C stocks. More research is needed to understand the mechanisms through which soil C stocks at depth are preserved.
The use of deep-rooting pasture species as a management practice can increase the allocation of plant carbon (C) below ground and enhance C storage. A 2-year lysimeter trial was set up to compare changes in C stocks of soils under either deep- or shallow-rooting pastures and investigate whether biochar addition below the top 10 cm could promote root growth at depth. For this i) soil ploughing at cultivation was simulated in a silt loam soil and in a sandy soil by inverting the 0 to 10 and 10- to 20-cm-depth soil layers, and a distinctive biochar (selected for each soil to overcome soil-specific plant growth limitations) was mixed at 10 Mg ha super(-1) in the buried layer, where appropriate and ii) three pasture types with contrasting root systems were grown. In the silt loam, soil inversion resulted in a general loss of C (2.0-8.1 Mg ha super(-1)), particularly in the buried horizon, under shallow-rooting pastures only. The addition of a C-rich biochar (equivalent to 7.6 Mg C ha super(-1)) to this soil resulted in a net C gain (21-40% over the non-biochar treatment, P < 0.10) in the buried layer under all pastures; this overcame the loss of C in this horizon under shallow-rooting pastures. In the sandy soil, all pastures were able to maintain soil C stocks at 10-20 cm depth over time, with minor gains of C (1.6-5.1 Mg ha super(-1)) for the profile. In this soil, the exposure of a skeletal- and nutrient-depleted soil layer at the surface may have fostered root growth at depth. The addition of a nutrient-rich biochar (equivalent to 3.6 Mg C ha super(-1)) to this soil had no apparent effect on C stocks. More research is needed to understand the mechanisms through which soil C stocks at depth are preserved.
Author Green, Steve
Camps Arbestain, Marta
Hedley, Mike
Calvelo Pereira, Roberto
Wisnubroto, Erwin
Saggar, Surinder
Mahmud, Ainul F.
Kusumo, Bambang H.
Author_xml – sequence: 1
  givenname: Roberto
  surname: Calvelo Pereira
  fullname: Calvelo Pereira, Roberto
  organization: Massey University
– sequence: 2
  givenname: Mike
  surname: Hedley
  fullname: Hedley, Mike
  organization: Massey University
– sequence: 3
  givenname: Marta
  surname: Camps Arbestain
  fullname: Camps Arbestain, Marta
  organization: Massey University
– sequence: 4
  givenname: Erwin
  surname: Wisnubroto
  fullname: Wisnubroto, Erwin
  organization: Massey University
– sequence: 5
  givenname: Steve
  surname: Green
  fullname: Green, Steve
  organization: Plant and Food Research
– sequence: 6
  givenname: Surinder
  surname: Saggar
  fullname: Saggar, Surinder
  organization: Manawatu Mail Centre
– sequence: 7
  givenname: Bambang H.
  surname: Kusumo
  fullname: Kusumo, Bambang H.
  organization: The University of Mataram
– sequence: 8
  givenname: Ainul F.
  surname: Mahmud
  fullname: Mahmud, Ainul F.
  organization: Massey University
BookMark eNp9kcFu1DAQhiNUJNrChSewxAUhbfE4iZ0c6QpKpQoucLbG9njrJRsvtkNViYfhWXgysht6qRC-2PJ8_z-a-c-qkzGOVFUvgV_AfN5urDEXIISCJ9UpqFatQHF18vCWff2sOst5y7lsJfSn1c9PVJi9xXFDmUXPcgwDW7Ncov2WWRhZuYtskzDnAUd3LGcm5O9fuziW28zQF0osh900YCHH9pjLlIglGuMPLCGOs4kdJhfGDTMhzq0SQ-fCofS8eupxyPTi731eff3w_sv64-rm89X1-t3NyjbQwUrWXILE3vDamKZFz4k3ynetRe8kgSIjPBplagAlGm-U6w1A02Ndk3JYn1fXi6-LuNX7FHaY7nXEoI8fMW00phLsQJqjkx76mvOemq43XetRAO_6noRqOjF7vV689il-nygXvQvZ0jCvh-KUNaiuFU2rZDOjrx6h2zilcZ5UCzE7gmhkN1N8oWyKOSfy2oZy3FxJGAYNXB-i1Ydo9THaWfLmkeRhpn_CsMB3YaD7_5D6an15uWj-ACRatx8
CitedBy_id crossref_primary_10_1088_1742_6596_1402_5_055082
crossref_primary_10_1071_SR17039
crossref_primary_10_1088_1757_899X_1098_5_052010
crossref_primary_10_1088_1742_6596_1402_2_022097
crossref_primary_10_1088_1757_899X_830_3_032079
crossref_primary_10_1016_j_agee_2018_06_022
crossref_primary_10_1016_j_apsoil_2017_09_007
crossref_primary_10_1088_1742_6596_1402_2_022096
crossref_primary_10_1088_1757_899X_1098_5_052009
Cites_doi 10.1080/00288233.1997.9513265
10.1111/j.1365-2389.2008.01093.x
10.33584/jnzg.2013.75.2902
10.1071/SR9790443
10.1016/j.agee.2013.11.005
10.1016/j.agee.2009.12.005
10.1016/j.agee.2013.11.012
10.1016/j.soilbio.2012.09.019
10.1016/j.agee.2011.09.003
10.1071/SR10058
10.1071/SR05084
10.1080/00288230909510526
10.1111/j.1365-2486.2009.02044.x
10.1016/j.still.2006.12.006
10.1080/00288233.1977.10427344
10.1016/j.soilbio.2011.04.022
10.1111/gcbb.12132
10.1007/s11104-012-1131-9
10.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-R
10.1023/A:1016125726789
10.1111/ejss.12079
10.1007/BF00010717
10.1590/S1516-35982010001300019
10.1111/gcbb.12183
10.1016/j.geoderma.2012.07.018
10.1007/s10533-014-9982-1
10.2136/sssaj2005.0383
10.1016/j.orggeochem.2011.09.002
10.1016/j.orggeochem.2014.05.001
10.4141/S04-082
10.33584/jnzg.2011.73.2853
10.1007/s10533-007-9140-0
10.1007/s11104-010-0391-5
10.2489/jswc.66.4.276
10.2136/sssaj2001.653834x
10.1023/B:FRES.0000045981.56547.db
10.1016/j.orggeochem.2011.08.008
10.4324/9780203762264
10.1071/SR07204
ContentType Journal Article
Copyright 2015 John Wiley & Sons Ltd
2016. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2015 John Wiley & Sons Ltd
– notice: 2016. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SN
7ST
7U6
7XB
8FE
8FG
8FH
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
GNUQQ
GUQSH
HCIFZ
KB.
LK8
M2O
M7P
MBDVC
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
SOI
DOA
DOI 10.1111/gcbb.12271
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Environment Abstracts
Sustainability Science Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
ProQuest SciTech Premium Collection
Materials Science Database
Biological Sciences
ProQuest Research Library
Biological Science Database
Research Library (Corporate)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Sustainability Science Abstracts
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Research Library
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef


Ecology Abstracts
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1757-1707
EndPage 615
ExternalDocumentID oai_doaj_org_article_0ad6f193009e489b85fa210899e27482
10_1111_gcbb_12271
GCBB12271
Genre article
GeographicLocations New Zealand
GeographicLocations_xml – name: New Zealand
GrantInformation_xml – fundername: New Zealand Agricultural Greenhouse Gas Research Centre
– fundername: Ministry of Primary Industries of New Zealand
  funderid: CONT‐21681‐SLMACC‐MAU
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
31~
33P
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8FH
8G5
8UM
930
A03
AAEVG
AAHBH
AAHHS
AANHP
AAONW
AAZKR
ABCQN
ABDBF
ABEML
ABJCF
ABPVW
ABUWG
ACBWZ
ACCFJ
ACCMX
ACIWK
ACPRK
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADIZJ
ADKYN
ADNMO
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFKRA
AFRAH
AFZJQ
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AVUZU
AVWKF
AZBYB
AZFZN
AZQEC
BAFTC
BBNVY
BCNDV
BDRZF
BENPR
BFHJK
BGLVJ
BHPHI
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CAG
CCPQU
COF
D-E
D-F
D1I
DPXWK
DR2
DU5
DWQXO
EBD
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
H.T
H.X
HCIFZ
HF~
HOLLA
HVGLF
HZ~
IAO
IGS
IHR
ITC
J0M
KB.
KQ8
L8X
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M2O
M7P
MK4
M~E
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2X
P4D
PDBOC
PIMPY
PQQKQ
PROAC
Q.N
Q11
QB0
R.K
ROL
RWI
RX1
SUPJJ
TEORI
TUS
UB1
W8V
W99
WIH
WIN
WNSPC
WQJ
WRC
XG1
XV2
~IA
~WT
AAYXX
AGQPQ
CITATION
PHGZM
PHGZT
3V.
7SN
7ST
7U6
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
SOI
PUEGO
ID FETCH-LOGICAL-c4181-630616a9b03bb45af0e047f85cafd6e17eb2fab7b311724fb7d9b1149a33e7da3
IEDL.DBID DOA
ISSN 1757-1693
IngestDate Wed Aug 27 00:43:21 EDT 2025
Thu Jul 10 18:38:38 EDT 2025
Wed Aug 13 09:28:11 EDT 2025
Tue Jul 01 02:14:44 EDT 2025
Thu Apr 24 23:11:51 EDT 2025
Wed Jan 22 17:02:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4181-630616a9b03bb45af0e047f85cafd6e17eb2fab7b311724fb7d9b1149a33e7da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/0ad6f193009e489b85fa210899e27482
PQID 2289912468
PQPubID 866396
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_0ad6f193009e489b85fa210899e27482
proquest_miscellaneous_1785245764
proquest_journals_2289912468
crossref_citationtrail_10_1111_gcbb_12271
crossref_primary_10_1111_gcbb_12271
wiley_primary_10_1111_gcbb_12271_GCBB12271
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2016
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: May 2016
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Global change biology. Bioenergy
PublicationYear 2016
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2006; 70
1979; 17
1997; 40
2010; 16
1991; 134
2011; 338
2011
2010
2010; 39
2009; 60
2005; 85
1977; 20
2005
2007; 95
2015; 7
2014; 65
1977
2001; 65
2009; 52
2010; 48
2004; 70
2001
2002; 241
2013; 57
2006; 44
2010; 136
1987
2011; 42
2013; 199
2011; 66
2000; 163
2011; 43
2008; 46
2015
2014; 184
1982
2013
2007; 86
2014; 73
2012; 357
2014; 120
2011; 144
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_49_1
Neall VE (e_1_2_7_34_1) 1977
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
Calvelo Pereira R (e_1_2_7_5_1) 2015
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
Whitman T (e_1_2_7_50_1) 2015
e_1_2_7_39_1
Ellert B (e_1_2_7_14_1) 2001
Steele KW (e_1_2_7_44_1) 1982
Camps Arbestain M (e_1_2_7_7_1) 2015
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
Li G (e_1_2_7_28_1) 2005
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Lehmann J (e_1_2_7_26_1) 2015
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – year: 2011
– volume: 43
  start-page: 1812
  year: 2011
  end-page: 1836
  article-title: Biochar effects on soil biota – A review
  publication-title: Soil Biology and Biochemistry
– volume: 338
  start-page: 143
  year: 2011
  end-page: 158
  article-title: Deep soil organic matter‐a key but poorly understood component of terrestrial C cycle
  publication-title: Plant and Soil
– volume: 66
  start-page: 276
  year: 2011
  end-page: 285
  article-title: Management to mitigate and adapt to climate change
  publication-title: Journal of Soil and Water Conservation
– start-page: 235
  year: 2015
  end-page: 282
– volume: 95
  start-page: 1
  year: 2007
  end-page: 10
  article-title: Impacts of periodic tillage on soil C stocks: a synthesis
  publication-title: Soil and Tillage Research
– volume: 52
  start-page: 443
  year: 2009
  end-page: 453
  article-title: Soil C and N sequestration and fertility development under land recently converted from plantation forest to pastoral farming
  publication-title: New Zealand Journal of Agricultural Research
– volume: 73
  start-page: 35
  year: 2014
  end-page: 46
  article-title: Fate of biochar in chemically‐ and physically‐defined soil organic carbon pools
  publication-title: Organic Geochemistry
– volume: 7
  start-page: 1
  year: 2015
  end-page: 13
  article-title: The way forward in biochar research: targeting trade‐offs between the potential wins
  publication-title: GCB Bioenergy
– volume: 184
  start-page: 21
  year: 2014
  end-page: 33
  article-title: CO emissions following cultivation of a temperate permanent pasture
  publication-title: Agriculture, Ecosystems and Environment
– year: 1987
– volume: 65
  start-page: 834
  year: 2001
  end-page: 841
  article-title: Bermudagrass Management in the Southern Piedmont USA
  publication-title: Soil Science Society of America Journal
– volume: 357
  start-page: 173
  year: 2012
  end-page: 187
  article-title: Predicting phosphorus bioavailability from high‐ash biochars
  publication-title: Plant and Soil
– start-page: 187
  year: 2005
  end-page: 222
– volume: 144
  start-page: 271
  year: 2011
  end-page: 280
  article-title: Carbon balance of an intensively grazed temperate pasture in two climatically contrasting years
  publication-title: Agriculture, Ecosystems and Environment
– start-page: 131
  year: 2001
  end-page: 146
– volume: 7
  start-page: 512
  year: 2015
  end-page: 526
  article-title: Experimental evidence for sequestering C with biochar by avoidance of CO emissions from original feedstock and protection of native soil organic matter
  publication-title: GCB Bioenergy
– volume: 40
  start-page: 429
  year: 1997
  end-page: 435
  article-title: A study of the effects of soil bulk density on root and shoot growth of different ryegrass lines
  publication-title: New Zealand Journal of Agricultural Research
– volume: 60
  start-page: 22
  year: 2009
  end-page: 32
  article-title: The use of Vis‐NIR spectral reflectance for determining root density: evaluation of ryegrass roots in a glasshouse trial
  publication-title: European Journal of Soil Science
– volume: 163
  start-page: 421
  year: 2000
  end-page: 431
  article-title: Carbon input by plants into the soil. Review
  publication-title: Journal of Plant Nutrition and Soil Science
– volume: 85
  start-page: 481
  year: 2005
  end-page: 489
  article-title: Soil organic carbon stocks and flows in New Zealand: system development, measurement and modelling
  publication-title: Canadian Journal of Soil Science
– volume: 65
  start-page: 173
  year: 2014
  end-page: 185
  article-title: Biochar–root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability
  publication-title: European Journal of Soil Science
– volume: 134
  start-page: 53
  year: 1991
  end-page: 63
  article-title: Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures
  publication-title: Plant and Soil
– year: 1977
– volume: 46
  start-page: 517
  year: 2008
  end-page: 525
  article-title: Decomposition of dicyandiamide (DCD) in three contrasting soils and its effect on nitrous oxide emission, soil respiratory activity, and microbial biomass—an incubation study
  publication-title: Soil Research
– year: 2010
– volume: 16
  start-page: 1366
  year: 2010
  end-page: 1379
  article-title: Fate of soil‐applied black carbon: downward migration, leaching and soil respiration
  publication-title: Global Change Biology
– volume: 44
  start-page: 107
  year: 2006
  end-page: 116
  article-title: Nutrient leaching and changes in soil characteristics of four contrasting soils irrigated with secondary‐treated municipal wastewater for four years
  publication-title: Soil Research
– volume: 120
  start-page: 71
  year: 2014
  end-page: 87
  article-title: Estimating the organic carbon stabilization capacity and saturation deficit of soils: a New Zealand case study
  publication-title: Biogeochemistry
– start-page: 455
  year: 2015
  end-page: 488
– volume: 86
  start-page: 19
  year: 2007
  end-page: 31
  article-title: Soil carbon saturation: concept, evidence and evaluation
  publication-title: Biogeochemistry
– volume: 70
  start-page: 33
  year: 2004
  end-page: 45
  article-title: The impact of grassland ploughing on CO and N O emissions in the Netherlands
  publication-title: Nutrient Cycling in Agroecosystems
– volume: 57
  start-page: 542
  year: 2013
  end-page: 548
  article-title: Differences in soil carbon sequestration and soil nitrogen among forages used by the dairy industry
  publication-title: Soil Biology and Biochemistry
– volume: 48
  start-page: 516
  year: 2010
  end-page: 525
  article-title: Characterisation and evaluation of biochars for their application as a soil amendment
  publication-title: Soil Research
– volume: 42
  start-page: 1194
  year: 2011
  end-page: 1202
  article-title: Determination of the aromaticity and the degree of aromatic condensation of a thermosequence of wood charcoal using NMR
  publication-title: Organic Geochemistry
– volume: 199
  start-page: 22
  year: 2013
  end-page: 29
  article-title: Soil water status and water table depth modelling using electromagnetic surveys for precision irrigation scheduling
  publication-title: Geoderma
– volume: 17
  start-page: 443
  year: 1979
  end-page: 453
  article-title: Soil water in a fragiaqualf
  publication-title: Soil Research
– volume: 136
  start-page: 125
  year: 2010
  end-page: 132
  article-title: Carbon and nitrogen storage by deep‐rooted tall fescue ( ) in the surface and subsurface soil of a fine sandy loam in eastern Canada
  publication-title: Agriculture, Ecosystems and Environment
– year: 2015
  article-title: Assessment of the surface chemistry of wood‐derived biochars using wet chemistry, FTIR, and X‐ray photoelectron spectroscopy
  publication-title: Soil Research
– volume: 70
  start-page: 1719
  year: 2006
  end-page: 1730
  article-title: Black carbon increases cation exchange capacity in soils
  publication-title: Soil Science Society of America Journal
– start-page: 165
  year: 2015
  end-page: 194
– volume: 241
  start-page: 155
  year: 2002
  end-page: 176
  article-title: Stabilization mechanisms of soil organic matter: implications for C‐saturation of soils
  publication-title: Plant and Soil
– volume: 42
  start-page: 1331
  year: 2011
  end-page: 1342
  article-title: Contribution to characterisation of biochar to estimate the labile fraction of carbon
  publication-title: Organic Geochemistry
– volume: 20
  start-page: 337
  year: 1977
  end-page: 342
  article-title: Seasonal root formation of white clover, ryegrass, and cocksfoot in New Zealand
  publication-title: New Zealand Journal of Agricultural Research
– volume: 39
  start-page: 169
  year: 2010
  end-page: 174
  article-title: The use of legume and herb forage species to create high performance pastures for sheep and cattle grazing systems
  publication-title: Revista Brasileira de Zootecnia
– volume: 184
  start-page: 67
  year: 2014
  end-page: 75
  article-title: Soil order and grazing management effects on changes in soil C and N in New Zealand pastures
  publication-title: Agriculture, Ecosystems and Environment
– start-page: 29
  year: 1982
  end-page: 44
– year: 2013
– ident: e_1_2_7_20_1
  doi: 10.1080/00288233.1997.9513265
– start-page: 29
  volume-title: Nitrogen Fertilisers in New Zealand Agriculture
  year: 1982
  ident: e_1_2_7_44_1
– ident: e_1_2_7_23_1
  doi: 10.1111/j.1365-2389.2008.01093.x
– ident: e_1_2_7_47_1
  doi: 10.33584/jnzg.2013.75.2902
– ident: e_1_2_7_39_1
  doi: 10.1071/SR9790443
– start-page: 165
  volume-title: Biochar for Environmental Management ‐ Science, Technology and Implementation
  year: 2015
  ident: e_1_2_7_7_1
– ident: e_1_2_7_37_1
  doi: 10.1016/j.agee.2013.11.005
– ident: e_1_2_7_3_1
– ident: e_1_2_7_9_1
  doi: 10.1016/j.agee.2009.12.005
– ident: e_1_2_7_11_1
– ident: e_1_2_7_38_1
  doi: 10.1016/j.agee.2013.11.012
– ident: e_1_2_7_33_1
  doi: 10.1016/j.soilbio.2012.09.019
– ident: e_1_2_7_32_1
  doi: 10.1016/j.agee.2011.09.003
– ident: e_1_2_7_40_1
  doi: 10.1071/SR10058
– volume-title: Soil Groups of New Zealand. Part 2. Yellow‐Brown Sands
  year: 1977
  ident: e_1_2_7_34_1
– ident: e_1_2_7_43_1
  doi: 10.1071/SR05084
– ident: e_1_2_7_16_1
  doi: 10.1080/00288230909510526
– start-page: 187
  volume-title: Advances in Agronomy
  year: 2005
  ident: e_1_2_7_28_1
– ident: e_1_2_7_30_1
  doi: 10.1111/j.1365-2486.2009.02044.x
– ident: e_1_2_7_10_1
  doi: 10.1016/j.still.2006.12.006
– ident: e_1_2_7_8_1
  doi: 10.1080/00288233.1977.10427344
– ident: e_1_2_7_27_1
  doi: 10.1016/j.soilbio.2011.04.022
– ident: e_1_2_7_21_1
  doi: 10.1111/gcbb.12132
– ident: e_1_2_7_49_1
  doi: 10.1007/s11104-012-1131-9
– ident: e_1_2_7_24_1
  doi: 10.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-R
– ident: e_1_2_7_42_1
  doi: 10.1023/A:1016125726789
– ident: e_1_2_7_35_1
  doi: 10.1111/ejss.12079
– ident: e_1_2_7_4_1
  doi: 10.1007/BF00010717
– ident: e_1_2_7_22_1
  doi: 10.1590/S1516-35982010001300019
– year: 2015
  ident: e_1_2_7_5_1
  article-title: Assessment of the surface chemistry of wood‐derived biochars using wet chemistry, FTIR, and X‐ray photoelectron spectroscopy
  publication-title: Soil Research
– ident: e_1_2_7_19_1
  doi: 10.1111/gcbb.12183
– start-page: 131
  volume-title: Assessment Methods for Soil Carbon
  year: 2001
  ident: e_1_2_7_14_1
– ident: e_1_2_7_17_1
  doi: 10.1016/j.geoderma.2012.07.018
– ident: e_1_2_7_2_1
  doi: 10.1007/s10533-014-9982-1
– ident: e_1_2_7_29_1
  doi: 10.2136/sssaj2005.0383
– start-page: 455
  volume-title: Biochar for Environmental Management ‐ Science and Technology
  year: 2015
  ident: e_1_2_7_50_1
– ident: e_1_2_7_6_1
  doi: 10.1016/j.orggeochem.2011.09.002
– ident: e_1_2_7_18_1
  doi: 10.1016/j.orggeochem.2014.05.001
– ident: e_1_2_7_46_1
  doi: 10.4141/S04-082
– ident: e_1_2_7_13_1
  doi: 10.33584/jnzg.2011.73.2853
– ident: e_1_2_7_45_1
  doi: 10.1007/s10533-007-9140-0
– ident: e_1_2_7_36_1
  doi: 10.1007/s11104-010-0391-5
– ident: e_1_2_7_25_1
  doi: 10.2489/jswc.66.4.276
– ident: e_1_2_7_15_1
  doi: 10.2136/sssaj2001.653834x
– ident: e_1_2_7_48_1
  doi: 10.1023/B:FRES.0000045981.56547.db
– ident: e_1_2_7_31_1
  doi: 10.1016/j.orggeochem.2011.08.008
– ident: e_1_2_7_12_1
– start-page: 235
  volume-title: Biochar for Environmental Management ‐ Science, Technology and Implementation
  year: 2015
  ident: e_1_2_7_26_1
  doi: 10.4324/9780203762264
– ident: e_1_2_7_41_1
  doi: 10.1071/SR07204
SSID ssj0065619
ssib009979516
ssib036249247
Score 2.1001751
Snippet The use of deep‐rooting pasture species as a management practice can increase the allocation of plant carbon (C) below ground and enhance C storage. A 2‐year...
The use of deep-rooting pasture species as a management practice can increase the allocation of plant carbon (C) below ground and enhance C storage. A 2-year...
Abstract The use of deep‐rooting pasture species as a management practice can increase the allocation of plant carbon (C) below ground and enhance C storage. A...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 600
SubjectTerms biochar management
carbon stocks
Charcoal
Cultivation
Equivalence
Grasslands
Horizon
Loam
Loam soils
Nutrients
Pasture
pasture renovation
Pastures
Physical properties
Plant growth
Rooting
Sand & gravel
sandy soil
Sandy soils
Silt loam
silt loam soil
Soil erosion
Soil fertility
Soil investigations
Soil layers
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcChKi-xtCAjuIAUyMN2nFPFrloqDiuEqNRbZDv2smJJtuuseuDPM-N10lZCvUWxlYdnPPN99niGkPe5c4UxxgJN5XnC8tQmUmiRcGW1kwXjxoVsn3NxfsG-XfLLuODmY1jlYBODoW46g2vkn3NkBuCMhDxZXyVYNQp3V2MJjYdkH0ywBPK1Pz2df_8xalRVlRW_AUBgrRkQjpGSAZgJpT_Ah5YJpiWJCUwx1mdhtP6U5XmZ3XFZIbP_HTh6G9QGr3R2SA4inKRfdvJ_Qh7Y9il5fCvJ4DPyd257ujvf62nnqO-WKzqjAPrMb0-XLe2vO7rYAIjGIMfQ7GkuKPxw_8vTUESc-uUfrPNlG7pWHjcd6MYO5VThGWa1RR9I9bLDY1wUo5Sw6Tm5ODv9OTtPYsmFxDDw9YkABpEJVcFQac24cqlNWekkN8o1wmYlEHGndKmLDJAPc7psKg2UqlJFYctGFS_IXtu19iWhUjWFsdCzkZLlSqjUOMV5k6VFgadZJ-TDMKq1ifnIsSzGqh54CUqgDhKYkHdj3_UuC8d_e01ROGMPzJwdbnSbRR0nYp2qRjhAraAblslKS-4U0F5QLgsEXcJnHQ-ireN09vWN8k3I27EZJiLurqjWdltfZ6XkOQP6xibkY1CJez61_jqbTsPVq_vfd0QeAUQTuxDLY7LXb7b2NcCgXr-Juv4PRfQDcA
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqnsoBKA-x0CIjuICUVR6240hcuitKxaEHRKVeUGQ79rLqNqnWWSEhfgy_hV_GjPPYLUJIcItiK0riGc_3JTPfEPIqdS4zxligqTyNWBrbSAotIq6sdjJj3Lig9nkuzi7Yh0t-uUfeDrUwnT7E-MENPSPs1-jgSvsdJ18YradJmoYCckzWQkT0cRuriyIv-Bb7wEbNgGuMbAxwTOj6AeEzj1CRpNcuxTSf7aVvRasg6n8Lie7i2RCQTu-Rz8OjdHkoV9NNq6fm228qj__7rPfJ3R6p0pPOtA7Jnq0fkDs7-oUPyfdz29KudNjTxlHfLFd0TgFPmitPlzVtvzZ0sQZ8jvmTYdjTVPz8AbbffvE0NCinfnmNPcRsRW-Uxx8adG2HVq1wEbPaYHyletlgiRjFDCgcekQuTt99mp9FfTuHyDDAEZEAdpIIVcBaaM24crGNWe4kN8pVwiY5kHyndK6zBFAVczqvCg10rVBZZvNKZY_Jft3U9gmhUlWZsTCzkpKlSqjYOMV5lcRZhpWyE_J6WLbS9Frn2HJjVQ6cB99oGd7ohLwc5950Ch9_nDXD1R9noCp3ONGsF2Xv5GWsKuEAEYPxWSYLLblTQKmB0log_xJu62iwnbLfKnyZIuUFlCXkhLwYh8HJ8c-Nqm2z8WWSS54yoIZsQt4EQ_nLrZbv57NZOHr6L5OfkQMAg6JL5jwi--16Y48BcLX6eXCsX4btJFs
  priority: 102
  providerName: Wiley-Blackwell
Title Net changes of soil C stocks in two grassland soils 26 months after simulated pasture renovation including biochar addition
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcbb.12271
https://www.proquest.com/docview/2289912468
https://www.proquest.com/docview/1785245764
https://doaj.org/article/0ad6f193009e489b85fa210899e27482
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgXOCA-BShZeUKLiAFEsd2nCO76rYCaVUqKvUW2Y7drliSapNVL_wYfgu_jBknu91KqFx6saJ4FFn2OPOePH5DyDvmfWatdUBTBYs5S1yspJGx0M54lXFhfVD7nMmjU_7lTJxtlfrCnLBeHrifuE-JrqQHlAFYwHFVGCW8BpoCNMEBoVLh7wsxb4tMoScVRV6Ia-ADf2kORGNDxQDEhJIfEDvzGOVIBuFSzPE5t8Z8TBnL0xuhKij634Ch22A2RKPpE_J4gJH0cz_8p-Seq5-RR1vigs_Jr5nraH-vt6WNp20zX9AJBbBnf7R0XtPuqqHnSwDPmNwYulvK5J_f4JjdRUtD9XDazn9igS9X0Uvd4mkDXbp1HVX4iF2sMPhRM2_w_hbF9CTsekFOpwffJ0fxUGshthyCfCyBOqRSFzBXxnChfeISnnslrPaVdGkODNxrk5ssBcjDvcmrwgCXKnSWubzS2UuyUze1e0Wo0lVmHVhWSnGmpU6s10JUaZJleI01Iu_X01raQYgc62EsyjUhwSUowxJE5O3G9rKX3_in1RhXZ2OBktnhBThSOThS-T9Hisjeem3LYR-3JUM-ChBIqojsb7phB-Kxiq5ds2rLNFeCceBtPCIfgk_cMtTycDIeh6fXdzHoXfIQEJzsMzD3yE63XLk3gJI6MyL3GT-GVk0PR-TB-GB2fDIKmwTbEwbt12_qL26wD6U
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKOQAHxKdYKGAEHEAKJP6Kc0CIXdhuadlTK_WW2o69rFiSZZNVhfhP_EbGTrJtJdRbb1FsJZFn7HkvHs9D6BVxjhpjLNBUTiJGYhtJoUXEldVOUsaNC9U-p2JyxL4e8-Mt9Lc_C-PTKvs1MSzURWX8P_L3xDMDCEZCflz-irxqlN9d7SU0WrfYt79PgbLVH_Y-g31fEzL-cjiaRJ2qQGQYhLNIAEhOhMp0TLVmXLnYxix1khvlCmGTFLimUzrVNIHgzpxOi0wDa8gUpTYtFIXnXkPXGaWZn1FyvLvx3yxLM34GtyA2MKA3GwII0CkIjUDETiNfBKUrl-ozi2ZG63cJIWlyIUAGHYEL4Pc8hA4xcHwH3e7AK_7UettdtGXLe-jWuZKG99GfqW1we5q4xpXDdTVf4BEGiGl-1Hhe4ua0wrMVQHafUhmaa0wEhuFtvtc4SJbjev7Tq4rZAi9V7bc48Mr24q3wDLNY-4iL9bzyh8awz4nyTQ_Q0ZWY4iHaLqvSPkJYqoIaCz0LKRlRQsXGKc6LJKbUn50doDf9qOamq37uRTgWec-CvAXyYIEBernpu2xrfvy319AbZ9PD1-kON6rVLO-mfR6rQjjAyOAblslMS-4UkGxwZUtSJuGzdnrT5t3iUednrj5ALzbNMO39Xo4qbbWu8ySVnDAgi2yA3gaXuORT893RcBiuHl_-vufoxuTw20F-sDfdf4JuAjgUbXLnDtpuVmv7FABYo58Fr8fo5Kqn2T91Bz8m
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyF4QFxFxwAj4AGksMTxLQ8I0W5lY6iaEJP2FmzHLhVdU5pWE-Kf8es4di7bJLS3vUWxlUQ5J-d8X3x8PoReEedSY4wFmspIRElsI8k1j5iy2smUMuNCt88x3z-mn0_YyQb62-6F8WWVbUwMgboojf9HvkM8M4BkxOWOa8oijnZHHxa_Iq8g5VdaWzmN2kUO7e8zoG_V-4NdsPVrQkZ734b7UaMwEBkKqS3iAJgTrjIdp1pTplxsYyqcZEa5gttEAO90SgudJpDoqdOiyDQwiEylqRWFSuG6N9CmAFYU99DmYG989LXz5iwTGTsHX5ApKJCdjg4CkAqyI5C_ReRbojTNU32d0cRo_S4hRCSX0mVQFbgEhS8C6pARR3fRnQbK4o-1791DG3Z-H92-0ODwAfoztitc7y2ucOlwVU5neIgBcJqfFZ7O8eqsxJMlAHhfYBmGK0w4hhe8-lHhIGCOq-mp1xizBV6oyi944KVtpVzhGma29vkX62npt5BhXyHlhx6i42sxxiPUm5dz-xhhqYrUWJhZSEmJ4io2TjFWJHGa-p20ffSmfau5aXqhe0mOWd5yIm-BPFigj152cxd1B5D_zhp443QzfNfucKJcTvImCOSxKrgDxAy-YanMtGROAeUGx7ZEUAmPtd2aNm9CSZWfO34fveiGIQj4lR01t-W6yhMhGaFAHWkfvQ0uccWj5p-Gg0E42rr6fs_RTfjE8i8H48Mn6BYgRV5Xem6j3mq5tk8Bja30s8btMfp-3V_aP9hIRLg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Net+changes+of+soil+C+stocks+in+two+grassland+soils+26%C2%A0months+after+simulated+pasture+renovation+including+biochar+addition&rft.jtitle=Global+change+biology.+Bioenergy&rft.au=Calvelo+Pereira%2C+Roberto&rft.au=Hedley%2C+Mike&rft.au=Camps+Arbestain%2C+Marta&rft.au=Wisnubroto%2C+Erwin&rft.date=2016-05-01&rft.issn=1757-1693&rft.eissn=1757-1707&rft.volume=8&rft.issue=3&rft.spage=600&rft.epage=615&rft_id=info:doi/10.1111%2Fgcbb.12271&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_gcbb_12271
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-1693&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-1693&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-1693&client=summon