Performance Simulation of Finite-Source Cognitive Radio Networks with Servers Subjects to Breakdowns and Repairs

The present paper deals with the performance evaluation of a cognitive radio network with the help of a queueing model. The queueing system contains two interconnected, not independent sub-systems. The first part is for the requests of the Primary Units (PU). The number of sources is finite, and eac...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical sciences (New York, N.Y.) Vol. 237; no. 5; pp. 702 - 711
Main Authors Nemouchi, H., Sztrik, J.
Format Journal Article
LanguageEnglish
Published New York Springer US 04.03.2019
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The present paper deals with the performance evaluation of a cognitive radio network with the help of a queueing model. The queueing system contains two interconnected, not independent sub-systems. The first part is for the requests of the Primary Units (PU). The number of sources is finite, and each source generates high priority requests after a exponentially distributed time. The requests are sent to a single server unit or Primary Channel Service (PCS) with a preemptive priority queue. The service times are assumed to be exponentially distributed. The second sub-system is for the requests of the Secondary Units (SU), which is finite sources system too; the inter-request times and service times of the single server unit or Secondary system Channel Service (SCS) are assumed to be exponentially distributed, respectively. A generated high priority packet goes to the primary service unit. If the unit is idle, the service of the packet begins immediately. If the server is busy with a high priority request, the packet joins the preemptive priority queue. When the unit is engaged with a request from SUs, the service is interrupted and the interrupted low priority task is sent back to the SCS. Depending on the state of the secondary channel, the interrupted job is directed to either the server or the orbit. In case the requests from SUs find the SCS idle, the service starts, and if the SCS is busy, the packet looks for the PCS. In the case of an idle PCS, the service of the low-priority packet begins at the high-priority channel (PCS). If the PCS is busy, the packet goes to the orbit. From the orbit it retries to be served after an exponentially distributed time. The novelty of our investigation is that each server is subject to random breakdowns, in which case the interrupted request is sent to the queue or orbit, respectively. The operating and repair times of the servers are assumed to be generally distributed. Finally, all the random times included in the model construction are assumed to be independent of each other. The main aim of the paper is to analyze the effect of the nonreliability of the servers on the mean and variance of the response time for the SUs by using simulation.
AbstractList The present paper deals with the performance evaluation of a cognitive radio network with the help of a queueing model. The queueing system contains two interconnected, not independent sub-systems. The first part is for the requests of the Primary Units (PU). The number of sources is finite, and each source generates high priority requests after a exponentially distributed time. The requests are sent to a single server unit or Primary Channel Service (PCS) with a preemptive priority queue. The service times are assumed to be exponentially distributed. The second sub-system is for the requests of the Secondary Units (SU), which is finite sources system too; the inter-request times and service times of the single server unit or Secondary system Channel Service (SCS) are assumed to be exponentially distributed, respectively. A generated high priority packet goes to the primary service unit. If the unit is idle, the service of the packet begins immediately. If the server is busy with a high priority request, the packet joins the preemptive priority queue. When the unit is engaged with a request from SUs, the service is interrupted and the interrupted low priority task is sent back to the SCS. Depending on the state of the secondary channel, the interrupted job is directed to either the server or the orbit. In case the requests from SUs find the SCS idle, the service starts, and if the SCS is busy, the packet looks for the PCS. In the case of an idle PCS, the service of the low-priority packet begins at the high-priority channel (PCS). If the PCS is busy, the packet goes to the orbit. From the orbit it retries to be served after an exponentially distributed time.
The present paper deals with the performance evaluation of a cognitive radio network with the help of a queueing model. The queueing system contains two interconnected, not independent sub-systems. The first part is for the requests of the Primary Units (PU). The number of sources is finite, and each source generates high priority requests after a exponentially distributed time. The requests are sent to a single server unit or Primary Channel Service (PCS) with a preemptive priority queue. The service times are assumed to be exponentially distributed. The second sub-system is for the requests of the Secondary Units (SU), which is finite sources system too; the inter-request times and service times of the single server unit or Secondary system Channel Service (SCS) are assumed to be exponentially distributed, respectively. A generated high priority packet goes to the primary service unit. If the unit is idle, the service of the packet begins immediately. If the server is busy with a high priority request, the packet joins the preemptive priority queue. When the unit is engaged with a request from SUs, the service is interrupted and the interrupted low priority task is sent back to the SCS. Depending on the state of the secondary channel, the interrupted job is directed to either the server or the orbit. In case the requests from SUs find the SCS idle, the service starts, and if the SCS is busy, the packet looks for the PCS. In the case of an idle PCS, the service of the low-priority packet begins at the high-priority channel (PCS). If the PCS is busy, the packet goes to the orbit. From the orbit it retries to be served after an exponentially distributed time. The novelty of our investigation is that each server is subject to random breakdowns, in which case the interrupted request is sent to the queue or orbit, respectively. The operating and repair times of the servers are assumed to be generally distributed. Finally, all the random times included in the model construction are assumed to be independent of each other. The main aim of the paper is to analyze the effect of the nonreliability of the servers on the mean and variance of the response time for the SUs by using simulation.
The present paper deals with the performance evaluation of a cognitive radio network with the help of a queueing model. The queueing system contains two interconnected, not independent sub-systems. The first part is for the requests of the Primary Units (PU). The number of sources is finite, and each source generates high priority requests after a exponentially distributed time. The requests are sent to a single server unit or Primary Channel Service (PCS) with a preemptive priority queue. The service times are assumed to be exponentially distributed. The second sub-system is for the requests of the Secondary Units (SU), which is finite sources system too; the inter-request times and service times of the single server unit or Secondary system Channel Service (SCS) are assumed to be exponentially distributed, respectively. A generated high priority packet goes to the primary service unit. If the unit is idle, the service of the packet begins immediately. If the server is busy with a high priority request, the packet joins the preemptive priority queue. When the unit is engaged with a request from SUs, the service is interrupted and the interrupted low priority task is sent back to the SCS. Depending on the state of the secondary channel, the interrupted job is directed to either the server or the orbit. In case the requests from SUs find the SCS idle, the service starts, and if the SCS is busy, the packet looks for the PCS. In the case of an idle PCS, the service of the low-priority packet begins at the high-priority channel (PCS). If the PCS is busy, the packet goes to the orbit. From the orbit it retries to be served after an exponentially distributed time.The novelty of our investigation is that each server is subject to random breakdowns, in which case the interrupted request is sent to the queue or orbit, respectively. The operating and repair times of the servers are assumed to be generally distributed. Finally, all the random times included in the model construction are assumed to be independent of each other.The main aim of the paper is to analyze the effect of the nonreliability of the servers on the mean and variance of the response time for the SUs by using simulation.
Audience Academic
Author Nemouchi, H.
Sztrik, J.
Author_xml – sequence: 1
  givenname: H.
  surname: Nemouchi
  fullname: Nemouchi, H.
  email: nemouchih@gmail.com
  organization: Faculty of Informatics, University of Debrecen
– sequence: 2
  givenname: J.
  surname: Sztrik
  fullname: Sztrik, J.
  organization: Faculty of Informatics, University of Debrecen
BookMark eNp9kktv3CAQgK0qkZpH_0BPSD31QAr4gX1MV00aKUqqdXJGGA8uGxu2gLPdf1-arRRttYo48Po-RszMaXZknYUs-0jJBSWEfwmUNGWNCW0wKWhT4e277ISWPMc1b8qjtCac4TznxfvsNIQVSVJV5yfZ-gd47fwkrQLUmmkeZTTOIqfRlbEmAm7d7NPdwg1pa54BLWVvHLqDuHH-KaCNiT9RC_4ZfEDt3K1AxYCiQ189yKfebWxA0vZoCWtpfDjPjrUcA3z4N59lj1ffHhbf8e399c3i8hargvItZkD6ritJx1mhuex6UjJgNS9J08gCaqUYyKpTutIsh6pmDQOQyVBdwzXl-Vn2affu2rtfM4QoVukjNoUUjNYpWTSv8ldqkCMIY7WLXqrJBCUuy6auGCVFmSh8gBrAgpdjKoQ26XiPvzjAp9HDZNRB4fOekJgIv-Mg5xDETbvcZ-sdq7wLwYMWysSXoqUgZhSUiL8tIXYtIVJLiJeWENuksv_UtTeT9Nu3pXwnhQTbAfxrIt-w_gBO5stj
CitedBy_id crossref_primary_10_14260_jemds_2018_747
crossref_primary_10_1002_dac_70006
Cites_doi 10.1201/9781420064216
10.14232/actacyb.22.3.2016.5
10.1007/978-3-319-51917-3_7
10.1007/978-3-642-22583-3
10.1214/aos/1176350057
10.1007/978-3-319-01718-1
10.1007/978-3-642-18709-4
10.1109/MSP.2008.929286
10.1007/978-3-319-04645-7
10.1109/JSAC.2011.110408
10.1007/s10958-006-0014-0
10.1007/978-1-4757-3552-9
10.1017/CBO9781139226424
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
COPYRIGHT 2019 Springer
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: COPYRIGHT 2019 Springer
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
ISR
DOI 10.1007/s10958-019-04196-y
DatabaseName CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList





DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-8795
EndPage 711
ExternalDocumentID A598621045
10_1007_s10958_019_04196_y
GroupedDBID -52
-5D
-5G
-BR
-EM
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
29L
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BAPOH
BDATZ
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~A9
~EX
-Y2
1SB
2.D
2P1
2VQ
5QI
642
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
AMVHM
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
KOW
N2Q
NDZJH
O9-
OVD
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCLPG
T16
TEORI
ZWQNP
AEIIB
ABRTQ
ID FETCH-LOGICAL-c417y-2e0dbb50b724f7abd052e2875099a4e8cc2ea6bcf6f23e68292eeabb5cb97f173
IEDL.DBID U2A
ISSN 1072-3374
IngestDate Fri Jul 25 11:07:46 EDT 2025
Tue Jun 17 21:50:20 EDT 2025
Thu Jun 12 23:06:47 EDT 2025
Tue Jun 10 20:39:27 EDT 2025
Fri Jun 27 05:13:37 EDT 2025
Tue Jul 01 01:42:14 EDT 2025
Thu Apr 24 22:59:37 EDT 2025
Fri Feb 21 02:34:06 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417y-2e0dbb50b724f7abd052e2875099a4e8cc2ea6bcf6f23e68292eeabb5cb97f173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://hdl.handle.net/2437/264301
PQID 2189581363
PQPubID 2043545
PageCount 10
ParticipantIDs proquest_journals_2189581363
gale_infotracmisc_A598621045
gale_infotracgeneralonefile_A598621045
gale_infotracacademiconefile_A598621045
gale_incontextgauss_ISR_A598621045
crossref_citationtrail_10_1007_s10958_019_04196_y
crossref_primary_10_1007_s10958_019_04196_y
springer_journals_10_1007_s10958_019_04196_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190304
PublicationDateYYYYMMDD 2019-03-04
PublicationDate_xml – month: 03
  year: 2019
  text: 20190304
  day: 04
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of mathematical sciences (New York, N.Y.)
PublicationTitleAbbrev J Math Sci
PublicationYear 2019
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References CR4
Xiao, Hu (CR6) 2008
Gunther (CR17) 2011
Kuki, Berczes, Almasi, Sztrik (CR8) 2006; 132
CR5
Law, Kelton (CR12) 1991
White, Schmidt, Bennett (CR13) 1975
Harchol-Balter (CR18) 2013
Gunawardena, Zhuang (CR2) 2014
Devroye, Vu, Tarock (CR3) 2008; 25
Carlstein, Goldsman (CR14) 1986; 14
Moeller (CR16) 2004
CR11
Sztrik, Bérczes, Nemouchi, Melikov (CR10) 2016; 678
Sztrik, Bérczes, Almási, Kuki, Wang (CR9) 2016; 22
Benedetto, Cattoni, Fiorina, Bader, Nardis (CR7) 2015
Wong, Foch, Adachi (CR1) 2011; 29
Fishman (CR15) 2001
Y Xiao (4196_CR6) 2008
AJ White (4196_CR13) 1975
MGD Benedetto (4196_CR7) 2015
S Gunawardena (4196_CR2) 2014
J Sztrik (4196_CR10) 2016; 678
A Kuki (4196_CR8) 2006; 132
4196_CR5
M Harchol-Balter (4196_CR18) 2013
EW Wong (4196_CR1) 2011; 29
4196_CR4
4196_CR11
PF Moeller (4196_CR16) 2004
AM Law (4196_CR12) 1991
J Sztrik (4196_CR9) 2016; 22
E Carlstein (4196_CR14) 1986; 14
NJ Gunther (4196_CR17) 2011
N Devroye (4196_CR3) 2008; 25
GS Fishman (4196_CR15) 2001
References_xml – year: 2008
  ident: CR6
  doi: 10.1201/9781420064216
– volume: 22
  start-page: 617
  issue: 3
  year: 2016
  end-page: 631
  ident: CR9
  article-title: Performance modeling of finite-source cognitive radio networks
  publication-title: Acta Cybern.
  doi: 10.14232/actacyb.22.3.2016.5
– year: 1991
  ident: CR12
– year: 1975
  ident: CR13
– volume: 678
  start-page: 64
  year: 2016
  end-page: 73
  ident: CR10
  article-title: Performance modeling of finite-source cognitive radio networks using simulation
  publication-title: Com. Comput. Inform. Sci.
  doi: 10.1007/978-3-319-51917-3_7
– year: 2011
  ident: CR17
  doi: 10.1007/978-3-642-22583-3
– ident: CR4
– volume: 14
  start-page: 1171
  year: 1986
  end-page: 1179
  ident: CR14
  article-title: The use of subseries values for estimating the variance of a general statistic from a stationary sequence
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176350057
– ident: CR11
– year: 2015
  ident: CR7
  doi: 10.1007/978-3-319-01718-1
– ident: CR5
– year: 2004
  ident: CR16
  doi: 10.1007/978-3-642-18709-4
– volume: 25
  start-page: 12
  year: 2008
  end-page: 23
  ident: CR3
  article-title: Congnitive radio networks
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2008.929286
– year: 2014
  ident: CR2
  doi: 10.1007/978-3-319-04645-7
– volume: 29
  start-page: 757
  year: 2011
  end-page: 769
  ident: CR1
  article-title: Analysis of cognitive radio spectrum decision for cognitive radio networks
  publication-title: IEEE J. Select. Areas Commun.
  doi: 10.1109/JSAC.2011.110408
– volume: 132
  start-page: 677
  year: 2006
  end-page: 685
  ident: CR8
  article-title: Heterogeneous finite-source retrial queues with server subject to breakdowns and repairs
  publication-title: J. Math. Sci.
  doi: 10.1007/s10958-006-0014-0
– year: 2001
  ident: CR15
  doi: 10.1007/978-1-4757-3552-9
– year: 2013
  ident: CR18
– volume: 14
  start-page: 1171
  year: 1986
  ident: 4196_CR14
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176350057
– volume-title: Mathematical and Computational Modeling and Simulation: Fundamentals and Case Studies
  year: 2004
  ident: 4196_CR16
  doi: 10.1007/978-3-642-18709-4
– ident: 4196_CR4
– volume-title: Modeling and Analysis of Voice and Data in Cognitive Radio Networks
  year: 2014
  ident: 4196_CR2
  doi: 10.1007/978-3-319-04645-7
– volume-title: Cognitive Radio and Networking for Heterogeneous Wireless Networks
  year: 2015
  ident: 4196_CR7
  doi: 10.1007/978-3-319-01718-1
– volume: 29
  start-page: 757
  year: 2011
  ident: 4196_CR1
  publication-title: IEEE J. Select. Areas Commun.
  doi: 10.1109/JSAC.2011.110408
– ident: 4196_CR5
– volume-title: Cognitive Radio Networks
  year: 2008
  ident: 4196_CR6
  doi: 10.1201/9781420064216
– volume-title: Performance Modeling and Design of Computer Systems: Queueing Theory in Action
  year: 2013
  ident: 4196_CR18
  doi: 10.1017/CBO9781139226424
– volume-title: Analyzing Computer System Performance
  year: 2011
  ident: 4196_CR17
  doi: 10.1007/978-3-642-22583-3
– volume: 25
  start-page: 12
  year: 2008
  ident: 4196_CR3
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2008.929286
– ident: 4196_CR11
– volume: 22
  start-page: 617
  issue: 3
  year: 2016
  ident: 4196_CR9
  publication-title: Acta Cybern.
  doi: 10.14232/actacyb.22.3.2016.5
– volume: 132
  start-page: 677
  year: 2006
  ident: 4196_CR8
  publication-title: J. Math. Sci.
  doi: 10.1007/s10958-006-0014-0
– volume-title: Analysis of Queueing Systems
  year: 1975
  ident: 4196_CR13
– volume-title: Simulation Modeling and Analysis
  year: 1991
  ident: 4196_CR12
– volume-title: Discrete-Event Simulation: Modeling, Programming, and Analysis
  year: 2001
  ident: 4196_CR15
  doi: 10.1007/978-1-4757-3552-9
– volume: 678
  start-page: 64
  year: 2016
  ident: 4196_CR10
  publication-title: Com. Comput. Inform. Sci.
  doi: 10.1007/978-3-319-51917-3_7
SSID ssj0007683
Score 2.1684813
Snippet The present paper deals with the performance evaluation of a cognitive radio network with the help of a queueing model. The queueing system contains two...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 702
SubjectTerms Analysis
Breakdown
Breakdowns
Cognitive radio
Computer simulation
Maintenance
Mathematics
Mathematics and Statistics
Performance evaluation
Preempting
Queues
Queuing theory
Response time
Servers
Servers (Computers)
Title Performance Simulation of Finite-Source Cognitive Radio Networks with Servers Subjects to Breakdowns and Repairs
URI https://link.springer.com/article/10.1007/s10958-019-04196-y
https://www.proquest.com/docview/2189581363
Volume 237
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5Be4EDKi-xbakshOAAlhLn4eS4W7oUUCvUZaVysmzHqVbQpCLbw_57ZhJntykFiVMOnjxnPPlm_M0Y4HUsnBMuM1wmDgMUmTlusjDlGEuEMhSpzQ0VOJ-cpsfz-PN5cu6Lwpqe7d4vSbae-kaxW54Q8YqS-Wg3fHUfthOM3YnINRfjtf9FAN3R6qXgUSRjXypz9zUGv6PbTvmP1dH2pzPdgUceLbJxp97HcM9VT-DhybrVavMUrr5uqP9strj023GxumTTBQFKPmvz8-ywJwqxM10sanbaEcAbRqlYRj4DkSBDR0KZmYYtazZBQPmjoPQz01XBEKvT4s8zmE-Pvh0ec7-NArdxKFdcuKAwJgmMFHEptSmCRDgMlBAq5Dp2mbXC6dTYMi1F5NJM5Kg_jWdYk8sylNFz2Krqyr0ApgsMXuNcBxjXoofVWWkTHVkZ5hqRXqBHEPZfU1nfY5y2uvipNt2RSQMKNaBaDajVCN6tz7nqOmz8U_oVKUlR64qKuDEX-rpp1KfZmRpTq3mMYONkBG-9UFnj7a32pQb4EtTtaiD5ZiB50fX6vktwfyCIk9AOh3ujUd4JNArREz59GKXRCN73hrQZ_vtL7v6f-B48EK1JR2jV-7C1_HXtXiJUWpoD2B5PPkymdPz4_cvRQTtTfgMphw2D
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOUAPiKe6UMBCCA5gKXEeTo5LxWoL3RXqdqXeLNtxqhU0qcj2sP-emcTZJVCQOGec14zH34xnPgO8iYVzwmWGy8RhgCIzx00WphxjiVCGIrW5oQbn2TydLuPP58m5bwpr-mr3fkuy9dS_NLvlCRVeUTIf7YZvbsMdBAMZ2fJSjLf-FwF0V1YvBY8iGftWmZvvMViOfnfKf-yOtovO5AHc92iRjTv1PoRbrnoE-7Mt1WrzGK6-7kr_2WJ16Y_jYnXJJisClHzR5ufZUV8oxE51sarZvCsAbxilYhn5DESCDB0JZWYatq7ZRwSU3wpKPzNdFQyxOm3-PIHl5NPZ0ZT7YxS4jUO54cIFhTFJYKSIS6lNESTCYaCEUCHXscusFU6nxpZpKSKXZiJH_WkcYU0uy1BGT2Gvqit3AEwXGLzGuQ4wrkUPq7PSJjqyMsw1Ir1AjyDs_6aynmOcjrr4rnbsyKQBhRpQrQbUZgTvt2OuOoaNf0q_JiUpoq6oqDbmQl83jTpenKoxUc1jBBsnI3jnhcoaH2-1bzXAjyC2q4Hk24HkRcf1fZPg4UAQJ6EdXu6NRnkn0ChET_j2YZRGI_jQG9Lu8t8_8tn_ib-Cu9Oz2Yk6OZ5_eQ73RGveEVr4Ieytf1y7Fwib1uZlO0t-AiRkDXA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkRAcEE-xpYCFEBzAauI4cXJcCqsW6KrqslJvlu041QqarMj2sP-emTx2GyhInDN5ecbjb8YznwFeS-G98KnlKvYYoKjUc5uGCcdYIlShSFxmqcH5eJoczuXns_jsShd_U-3eb0m2PQ3E0lSu9pd5sX-l8S2LqQiLEvtoQ3x9E25J6gZGi56L8cYXI5huS-yV4FGkZNc2c_0zBkvT7w76j53SZgGa3Id7HXJk41bVD-CGLx_C3eMN7Wr9CJYn2zYANltcdEdzsapgkwWBSz5rcvXsoC8aYqcmX1Rs2haD14zSsoz8B6JChk6FsjQ1W1XsA4LL7zmlopkpc4a4nTaCHsN88unbwSHvjlTgToZqzYUPcmvjwCohC2VsHsTCY9CEsCEz0qfOCW8S64qkEJFPUpGhLg3e4WymilBFT2CnrEr_FJjJcbxlZgKMcdHbmrRwsYmcCjODqC8wIwj70dSu4xunYy9-6C1TMmlAowZ0owG9HsG7zT3Llm3jn9KvSEmaaCxKqpM5N5d1rY9mp3pMtPMYzcp4BG87oaLC1zvTtR3gTxDz1UDyzUDyvOX9vk5wbyCIE9INL_dGozuHUGtEUvj1YZREI3jfG9L28t9_cvf_xF_C7ZOPE_31aPrlGdwRjXVHaOB7sLP6eemfI4Ja2RfNJPkFSe8Row
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PERFORMANCE+SIMULATION+OF+FINITE-SOURCE+COGNITIVE+RADIO+NETWORKS+WITH+SERVERS+SUBJECTS+TO+BREAKDOWNS+AND+REPAIRS&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Nemouchi%2C+H&rft.au=Sztrik%2C+J&rft.date=2019-03-04&rft.pub=Springer&rft.issn=1072-3374&rft.volume=237&rft.issue=5&rft.spage=702&rft_id=info:doi/10.1007%2Fs10958-019-04196-y&rft.externalDocID=A598621045
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon