The role of exerkines on brain mitochondria: a mini-review

Exercise benefits many organ systems, including having a panacea-like effect on the brain. For example, aerobic exercise improves cognition and attention and reduces the risk of brain-related diseases, such as dementia, stress, and depression. Recent advances suggest that endocrine signaling from pe...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physiology (1985) Vol. 134; no. 1; pp. 28 - 35
Main Authors Heo, Junwon, Noble, Emily E., Call, Jarrod A.
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.01.2023
SeriesPhysical Activity and the Brain
Subjects
Online AccessGet full text
ISSN8750-7587
1522-1601
1522-1601
DOI10.1152/japplphysiol.00565.2022

Cover

Loading…
Abstract Exercise benefits many organ systems, including having a panacea-like effect on the brain. For example, aerobic exercise improves cognition and attention and reduces the risk of brain-related diseases, such as dementia, stress, and depression. Recent advances suggest that endocrine signaling from peripheral systems, such as skeletal muscle, mediates the effects of exercise on the brain. Consequently, it has been proposed that factors secreted by all organs in response to physical exercise should be more broadly termed the “exerkines.” Accumulating findings suggest that exerkines derived from skeletal muscle, liver, and adipose tissues directly impact brain mitochondrial function. Mitochondria play a pivotal role in regulating neuronal energy metabolism, neurotransmission, cell repair, and maintenance in the brain, and therefore exerkines may act via impacting brain mitochondria to improve brain function and disease resistance. Therefore, herein we review studies investigating the impact of muscle-, liver-, and adipose tissue-derived exerkines on brain cognitive and metabolic function via modulating mitochondrial bioenergetics, content, and dynamics under healthy and/or disease conditions.
AbstractList Exercise benefits many organ systems, including having a panacea-like effect on the brain. For example, aerobic exercise improves cognition and attention and reduces the risk of brain-related diseases, such as dementia, stress, and depression. Recent advances suggest that endocrine signaling from peripheral systems, such as skeletal muscle, mediates the effects of exercise on the brain. Consequently, it has been proposed that factors secreted by all organs in response to physical exercise should be more broadly termed the “exerkines.” Accumulating findings suggest that exerkines derived from skeletal muscle, liver, and adipose tissues directly impact brain mitochondrial function. Mitochondria play a pivotal role in regulating neuronal energy metabolism, neurotransmission, cell repair, and maintenance in the brain, and therefore exerkines may act via impacting brain mitochondria to improve brain function and disease resistance. Therefore, herein we review studies investigating the impact of muscle-, liver-, and adipose tissue-derived exerkines on brain cognitive and metabolic function via modulating mitochondrial bioenergetics, content, and dynamics under healthy and/or disease conditions.
Exercise benefits many organ systems, including having a panacea-like effect on the brain. For example, aerobic exercise improves cognition and attention and reduces the risk of brain-related diseases, such as dementia, stress, and depression. Recent advances suggest that endocrine signaling from peripheral systems, such as skeletal muscle, mediates the effects of exercise on the brain. Consequently, it has been proposed that factors secreted by all organs in response to physical exercise should be more broadly termed the "exerkines." Accumulating findings suggest that exerkines derived from skeletal muscle, liver, and adipose tissues directly impact brain mitochondrial function. Mitochondria play a pivotal role in regulating neuronal energy metabolism, neurotransmission, cell repair, and maintenance in the brain, and therefore exerkines may act via impacting brain mitochondria to improve brain function and disease resistance. Therefore, herein we review studies investigating the impact of muscle-, liver-, and adipose tissue-derived exerkines on brain cognitive and metabolic function via modulating mitochondrial bioenergetics, content, and dynamics under healthy and/or disease conditions.Exercise benefits many organ systems, including having a panacea-like effect on the brain. For example, aerobic exercise improves cognition and attention and reduces the risk of brain-related diseases, such as dementia, stress, and depression. Recent advances suggest that endocrine signaling from peripheral systems, such as skeletal muscle, mediates the effects of exercise on the brain. Consequently, it has been proposed that factors secreted by all organs in response to physical exercise should be more broadly termed the "exerkines." Accumulating findings suggest that exerkines derived from skeletal muscle, liver, and adipose tissues directly impact brain mitochondrial function. Mitochondria play a pivotal role in regulating neuronal energy metabolism, neurotransmission, cell repair, and maintenance in the brain, and therefore exerkines may act via impacting brain mitochondria to improve brain function and disease resistance. Therefore, herein we review studies investigating the impact of muscle-, liver-, and adipose tissue-derived exerkines on brain cognitive and metabolic function via modulating mitochondrial bioenergetics, content, and dynamics under healthy and/or disease conditions.
Author Noble, Emily E.
Call, Jarrod A.
Heo, Junwon
Author_xml – sequence: 1
  givenname: Junwon
  orcidid: 0000-0002-1814-805X
  surname: Heo
  fullname: Heo, Junwon
  organization: Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, Regenerative Bioscience Center, University of Georgia, Athens, Georgia
– sequence: 2
  givenname: Emily E.
  surname: Noble
  fullname: Noble, Emily E.
  organization: Department of Nutritional Science, College of Family and Consumer Sciences, University of Georgia, Athens, Georgia
– sequence: 3
  givenname: Jarrod A.
  surname: Call
  fullname: Call, Jarrod A.
  organization: Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, Regenerative Bioscience Center, University of Georgia, Athens, Georgia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36417200$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtPAyEUhYmpsfXxF3SWbqYCA8OMiSbG-EpM3OiaUOZiqVMYYVr130t9pbpxRcg953w392yjgfMOEDogeEwIp0cz1XVtN32L1rdjjHnJxxRTuoFGaUpzUmIyQKNKcJwLXokh2o5xhjFhjJMtNCxKRgTFeISO76eQBd9C5k0GrxCerIOYeZdNgrIum9ve66l3TbDqOFPp72weYGnhZRdtGtVG2Pt6d9DD5cX9-XV-e3d1c352m-sE6XNjxKSqq4ZzWtcGGE0LEkZKLhrNS8EbwxuG015gSsOV5jDBFW8KXhVVoRpd7KDTz9xuMZlDo8H1QbWyC3auwpv0ysrfE2en8tEvZS3qmrAqBRx-BQT_vIDYy7mNGtpWOfCLKKkoalZQzESS7q-zfiDfB0uCk0-BDj7GAEZq26ve-hXatpJguSpIrhckPwqSq4KSX_zxfyP-c74DzBiatg
CitedBy_id crossref_primary_10_1007_s11357_024_01208_x
crossref_primary_10_1002_brb3_70297
crossref_primary_10_2147_CIA_S482479
crossref_primary_10_1016_j_smhs_2024_02_004
crossref_primary_10_4103_1673_5374_391308
crossref_primary_10_1016_j_resp_2023_104062
crossref_primary_10_3390_nu16030410
crossref_primary_10_1016_j_arr_2024_102486
crossref_primary_10_33549_physiolres_935331
crossref_primary_10_3390_cells13231940
crossref_primary_10_1038_s41401_024_01302_y
crossref_primary_10_1371_journal_pone_0318567
crossref_primary_10_3390_biom14101241
Cites_doi 10.3389/fphys.2021.629914
10.1523/JNEUROSCI.1661-18.2019
10.1038/ijo.2016.230
10.1111/jnc.13868
10.1172/JCI18797
10.1016/j.bbrc.2016.04.047
10.3390/nu12082379
10.1038/ncomms2238
10.31083/j.jin2002031
10.1038/s41574-022-00641-2
10.1038/nrn.2017.156
10.1096/fj.01-0876rev
10.1038/srep08889
10.1023/A:1026070911202
10.1016/j.intimp.2018.04.020
10.1038/s41574-019-0174-x
10.1210/endrev/bnaa016
10.1093/hmg/ddv616
10.1007/s12975-019-00768-x
10.1111/j.1582-4934.2008.00596.x
10.1038/s41574-022-00724-0
10.1073/pnas.1306799110
10.1016/j.freeradbiomed.2016.11.045
10.1016/j.cmet.2013.09.008
10.1155/2021/1118981
10.1038/nrendo.2016.76
10.15252/embj.201695810
10.1073/pnas.1415219111
10.1016/j.jbc.2021.101140
10.1016/j.celrep.2017.03.043
10.3389/fnmol.2018.00086
10.1016/j.biopha.2020.110439
10.1038/s42255-021-00438-z
10.18632/aging.101970
10.1016/j.yhbeh.2016.08.006
10.3389/fphys.2021.736905
10.1016/j.cmet.2015.12.003
10.7554/eLife.15092
10.1007/s00125-009-1364-1
10.1007/s12975-013-0275-0
10.1155/2019/8908457
10.1007/s11064-019-02794-5
10.1007/s12640-019-00151-6
10.1177/0963689718779364
10.3389/fnagi.2021.755665
10.1007/s11064-018-2588-6
10.1186/2193-1801-3-2
10.1016/j.tem.2013.10.006
10.1111/j.1460-9568.2011.07965.x
10.3389/fnagi.2021.640215
10.1038/nm.3249
10.1111/j.1469-7793.2000.00237.x
10.1111/j.1460-9568.2004.03578.x
ContentType Journal Article
Copyright Copyright © 2023 the American Physiological Society. 2023 American Physiological Society
Copyright_xml – notice: Copyright © 2023 the American Physiological Society. 2023 American Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1152/japplphysiol.00565.2022
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate EXERKINES AND BRAIN MITOCHONDRIA
EISSN 1522-1601
EndPage 35
ExternalDocumentID PMC9799148
36417200
10_1152_japplphysiol_00565_2022
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Review
GrantInformation_xml – fundername: NIAMS NIH HHS
  grantid: R01 AR078903
– fundername: ;
  grantid: R01 AR078903
– fundername: ;
  grantid: W81WH-20-10885
GroupedDBID ---
-~X
.55
18M
29J
2WC
4.4
53G
5VS
85S
AAFWJ
AAYXX
ABCQX
ABDNZ
ABHWK
ABJNI
ABKWE
ABOCM
ACBEA
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
ADFNX
AEILP
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
FRP
GX1
H13
H~9
ITBOX
KQ8
L7B
OK1
P2P
P6G
PQQKQ
RAP
RHI
RPL
RPRKH
SJN
TR2
UHB
UKR
UPT
W8F
WH7
WOQ
X7M
XSW
YBH
YQT
YWH
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c417t-ff7b898d55299fe42522141657dc5675df5d40451ef6f5ac5eb085d358383adc3
ISSN 8750-7587
1522-1601
IngestDate Thu Aug 21 18:36:48 EDT 2025
Sun Aug 24 03:54:58 EDT 2025
Thu Apr 03 07:10:51 EDT 2025
Tue Jul 01 03:17:04 EDT 2025
Thu Apr 24 22:52:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords exercise
adipokines
myokines
hepatokines
mitochondria
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c417t-ff7b898d55299fe42522141657dc5675df5d40451ef6f5ac5eb085d358383adc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1814-805X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9799148
PMID 36417200
PQID 2739432047
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9799148
proquest_miscellaneous_2739432047
pubmed_primary_36417200
crossref_citationtrail_10_1152_japplphysiol_00565_2022
crossref_primary_10_1152_japplphysiol_00565_2022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Rockville, MD
PublicationSeriesTitle Physical Activity and the Brain
PublicationTitle Journal of applied physiology (1985)
PublicationTitleAlternate J Appl Physiol (1985)
PublicationYear 2023
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31
B32
B33
B34
B35
B36
B37
B38
B39
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
B41
B42
B43
B44
B45
B46
B47
B48
B49
B50
B51
B52
B53
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
References_xml – ident: B20
  doi: 10.3389/fphys.2021.629914
– ident: B21
  doi: 10.1523/JNEUROSCI.1661-18.2019
– ident: B52
  doi: 10.1038/ijo.2016.230
– ident: B14
  doi: 10.1111/jnc.13868
– ident: B16
  doi: 10.1172/JCI18797
– ident: B27
  doi: 10.1016/j.bbrc.2016.04.047
– ident: B19
  doi: 10.3390/nu12082379
– ident: B11
  doi: 10.1038/ncomms2238
– ident: B18
  doi: 10.31083/j.jin2002031
– ident: B35
  doi: 10.1038/s41574-022-00641-2
– ident: B49
  doi: 10.1038/nrn.2017.156
– ident: B36
  doi: 10.1096/fj.01-0876rev
– ident: B41
  doi: 10.1038/srep08889
– ident: B34
  doi: 10.1023/A:1026070911202
– ident: B12
  doi: 10.1016/j.intimp.2018.04.020
– ident: B53
  doi: 10.1038/s41574-019-0174-x
– ident: B7
  doi: 10.1210/endrev/bnaa016
– ident: B4
  doi: 10.1093/hmg/ddv616
– ident: B23
  doi: 10.1007/s12975-019-00768-x
– ident: B43
  doi: 10.1111/j.1582-4934.2008.00596.x
– ident: B42
  doi: 10.1038/s41574-022-00724-0
– ident: B38
  doi: 10.1073/pnas.1306799110
– ident: B2
  doi: 10.1016/j.freeradbiomed.2016.11.045
– ident: B40
  doi: 10.1016/j.cmet.2013.09.008
– ident: B26
  doi: 10.1155/2021/1118981
– ident: B32
  doi: 10.1038/nrendo.2016.76
– ident: B48
  doi: 10.15252/embj.201695810
– ident: B51
  doi: 10.1073/pnas.1415219111
– ident: B3
  doi: 10.1016/j.jbc.2021.101140
– ident: B37
  doi: 10.1016/j.celrep.2017.03.043
– ident: B17
  doi: 10.3389/fnmol.2018.00086
– ident: B45
  doi: 10.1016/j.biopha.2020.110439
– ident: B39
  doi: 10.1038/s42255-021-00438-z
– ident: B1
  doi: 10.18632/aging.101970
– ident: B29
  doi: 10.1016/j.yhbeh.2016.08.006
– ident: B22
  doi: 10.3389/fphys.2021.736905
– ident: B46
  doi: 10.1016/j.cmet.2015.12.003
– ident: B50
  doi: 10.7554/eLife.15092
– ident: B8
  doi: 10.1007/s00125-009-1364-1
– ident: B13
  doi: 10.1007/s12975-013-0275-0
– ident: B44
  doi: 10.1155/2019/8908457
– ident: B24
  doi: 10.1007/s11064-019-02794-5
– ident: B31
  doi: 10.1007/s12640-019-00151-6
– ident: B25
  doi: 10.1177/0963689718779364
– ident: B5
  doi: 10.3389/fnagi.2021.755665
– ident: B15
  doi: 10.1007/s11064-018-2588-6
– ident: B30
  doi: 10.1186/2193-1801-3-2
– ident: B6
  doi: 10.1016/j.tem.2013.10.006
– ident: B10
  doi: 10.1111/j.1460-9568.2011.07965.x
– ident: B28
  doi: 10.3389/fnagi.2021.640215
– ident: B47
  doi: 10.1038/nm.3249
– ident: B33
  doi: 10.1111/j.1469-7793.2000.00237.x
– ident: B9
  doi: 10.1111/j.1460-9568.2004.03578.x
SSID ssj0014451
Score 2.4960585
SecondaryResourceType review_article
Snippet Exercise benefits many organ systems, including having a panacea-like effect on the brain. For example, aerobic exercise improves cognition and attention and...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 28
SubjectTerms Brain - metabolism
Cognition - physiology
Exercise - physiology
Mini-Review
Mitochondria
Muscle, Skeletal - physiology
Title The role of exerkines on brain mitochondria: a mini-review
URI https://www.ncbi.nlm.nih.gov/pubmed/36417200
https://www.proquest.com/docview/2739432047
https://pubmed.ncbi.nlm.nih.gov/PMC9799148
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZB6UvY2v3ke4DDcZeijNHlmynb1npCIWUPrSQNyNLFhtd7NI6jPb_2v-3O0n-SLOxrS8mxJEi3_18ui_dEfKB6SgMc5kEY2Z0wBXwQkbCBLATclB3mZAhnneen8azC36yEIvB4Gcva2lV5yN199tzJQ_hKnwHfMVTsv_B2XZS-AI-A3_hChyG6z_zuEkPxN5Jl5jDju7_HBs_HCzhbQXpVmpYijvUjIVEgusuHLCplUqvlVqPh6vPhKWcJqno-QxmzsF6sip_dFH8U-xMY0WrdZkcj7rwhk-kwXqP-mDqbiCBihuXgWpxonwfiyal8zM-Q98pwaJ7Tok22nTWLNbO5BNROxEHxlIYgMXittzCi2Awj8exn62R0d7j2Qejl7hpb-92lU82dwXBbDcCoKCn3ghLoIoRLJ31RwAvrpYWLFHMQbULw26bbJMXz-ZHGAsFO_IReczAOrEdQxZtZtEYa745t7J7OJ9WCKv49Ic17JDt5g_X9aMNo-d-7m5PGTp_Sp54vNCpg-QzMijKXbI3LWVdLW_pR9oy5HaXbM99-sYeOQTAUgQsrQxtAUurklrA0j5gD6mkPbg-Jxdfjs-PZoFv3hEoeJA6MCbJ00mqhQCFxxSwNTA2Bu1fJFoJsFK1EZpjcaPCxEZIJYoctH8dYRg_klpFL8hWWZXFK0I1j2PJEyGUYhyEiOQy1zKNVWLiuJDRkMQNyTLlK9tjg5XvmbVwBcv6ZM8s2TMk-5CE7cArV9zl70PeNzzJQBBjdE2WRbW6ycAOmPCIhTwZkpeOR-2kDXOHJFnjXvsDLPK-fqf89tUWe_dQ23_wyNdkp3tD35Ct-npVvAVFus7fWdj-AnW3y-w
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+exerkines+on+brain+mitochondria%3A+a+mini-review&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Heo%2C+Junwon&rft.au=Noble%2C+Emily+E.&rft.au=Call%2C+Jarrod+A.&rft.series=Physical+Activity+and+the+Brain&rft.date=2023-01-01&rft.pub=American+Physiological+Society&rft.issn=8750-7587&rft.eissn=1522-1601&rft.volume=134&rft.issue=1&rft.spage=28&rft.epage=35&rft_id=info:doi/10.1152%2Fjapplphysiol.00565.2022&rft_id=info%3Apmid%2F36417200&rft.externalDocID=PMC9799148
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon