The role of exerkines on brain mitochondria: a mini-review
Exercise benefits many organ systems, including having a panacea-like effect on the brain. For example, aerobic exercise improves cognition and attention and reduces the risk of brain-related diseases, such as dementia, stress, and depression. Recent advances suggest that endocrine signaling from pe...
Saved in:
Published in | Journal of applied physiology (1985) Vol. 134; no. 1; pp. 28 - 35 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.01.2023
|
Series | Physical Activity and the Brain |
Subjects | |
Online Access | Get full text |
ISSN | 8750-7587 1522-1601 1522-1601 |
DOI | 10.1152/japplphysiol.00565.2022 |
Cover
Loading…
Abstract | Exercise benefits many organ systems, including having a panacea-like effect on the brain. For example, aerobic exercise improves cognition and attention and reduces the risk of brain-related diseases, such as dementia, stress, and depression. Recent advances suggest that endocrine signaling from peripheral systems, such as skeletal muscle, mediates the effects of exercise on the brain. Consequently, it has been proposed that factors secreted by all organs in response to physical exercise should be more broadly termed the “exerkines.” Accumulating findings suggest that exerkines derived from skeletal muscle, liver, and adipose tissues directly impact brain mitochondrial function. Mitochondria play a pivotal role in regulating neuronal energy metabolism, neurotransmission, cell repair, and maintenance in the brain, and therefore exerkines may act via impacting brain mitochondria to improve brain function and disease resistance. Therefore, herein we review studies investigating the impact of muscle-, liver-, and adipose tissue-derived exerkines on brain cognitive and metabolic function via modulating mitochondrial bioenergetics, content, and dynamics under healthy and/or disease conditions. |
---|---|
AbstractList | Exercise benefits many organ systems, including having a panacea-like effect on the brain. For example, aerobic exercise improves cognition and attention and reduces the risk of brain-related diseases, such as dementia, stress, and depression. Recent advances suggest that endocrine signaling from peripheral systems, such as skeletal muscle, mediates the effects of exercise on the brain. Consequently, it has been proposed that factors secreted by all organs in response to physical exercise should be more broadly termed the “exerkines.” Accumulating findings suggest that exerkines derived from skeletal muscle, liver, and adipose tissues directly impact brain mitochondrial function. Mitochondria play a pivotal role in regulating neuronal energy metabolism, neurotransmission, cell repair, and maintenance in the brain, and therefore exerkines may act via impacting brain mitochondria to improve brain function and disease resistance. Therefore, herein we review studies investigating the impact of muscle-, liver-, and adipose tissue-derived exerkines on brain cognitive and metabolic function via modulating mitochondrial bioenergetics, content, and dynamics under healthy and/or disease conditions. Exercise benefits many organ systems, including having a panacea-like effect on the brain. For example, aerobic exercise improves cognition and attention and reduces the risk of brain-related diseases, such as dementia, stress, and depression. Recent advances suggest that endocrine signaling from peripheral systems, such as skeletal muscle, mediates the effects of exercise on the brain. Consequently, it has been proposed that factors secreted by all organs in response to physical exercise should be more broadly termed the "exerkines." Accumulating findings suggest that exerkines derived from skeletal muscle, liver, and adipose tissues directly impact brain mitochondrial function. Mitochondria play a pivotal role in regulating neuronal energy metabolism, neurotransmission, cell repair, and maintenance in the brain, and therefore exerkines may act via impacting brain mitochondria to improve brain function and disease resistance. Therefore, herein we review studies investigating the impact of muscle-, liver-, and adipose tissue-derived exerkines on brain cognitive and metabolic function via modulating mitochondrial bioenergetics, content, and dynamics under healthy and/or disease conditions.Exercise benefits many organ systems, including having a panacea-like effect on the brain. For example, aerobic exercise improves cognition and attention and reduces the risk of brain-related diseases, such as dementia, stress, and depression. Recent advances suggest that endocrine signaling from peripheral systems, such as skeletal muscle, mediates the effects of exercise on the brain. Consequently, it has been proposed that factors secreted by all organs in response to physical exercise should be more broadly termed the "exerkines." Accumulating findings suggest that exerkines derived from skeletal muscle, liver, and adipose tissues directly impact brain mitochondrial function. Mitochondria play a pivotal role in regulating neuronal energy metabolism, neurotransmission, cell repair, and maintenance in the brain, and therefore exerkines may act via impacting brain mitochondria to improve brain function and disease resistance. Therefore, herein we review studies investigating the impact of muscle-, liver-, and adipose tissue-derived exerkines on brain cognitive and metabolic function via modulating mitochondrial bioenergetics, content, and dynamics under healthy and/or disease conditions. |
Author | Noble, Emily E. Call, Jarrod A. Heo, Junwon |
Author_xml | – sequence: 1 givenname: Junwon orcidid: 0000-0002-1814-805X surname: Heo fullname: Heo, Junwon organization: Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, Regenerative Bioscience Center, University of Georgia, Athens, Georgia – sequence: 2 givenname: Emily E. surname: Noble fullname: Noble, Emily E. organization: Department of Nutritional Science, College of Family and Consumer Sciences, University of Georgia, Athens, Georgia – sequence: 3 givenname: Jarrod A. surname: Call fullname: Call, Jarrod A. organization: Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, Regenerative Bioscience Center, University of Georgia, Athens, Georgia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36417200$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtPAyEUhYmpsfXxF3SWbqYCA8OMiSbG-EpM3OiaUOZiqVMYYVr130t9pbpxRcg953w392yjgfMOEDogeEwIp0cz1XVtN32L1rdjjHnJxxRTuoFGaUpzUmIyQKNKcJwLXokh2o5xhjFhjJMtNCxKRgTFeISO76eQBd9C5k0GrxCerIOYeZdNgrIum9ve66l3TbDqOFPp72weYGnhZRdtGtVG2Pt6d9DD5cX9-XV-e3d1c352m-sE6XNjxKSqq4ZzWtcGGE0LEkZKLhrNS8EbwxuG015gSsOV5jDBFW8KXhVVoRpd7KDTz9xuMZlDo8H1QbWyC3auwpv0ysrfE2en8tEvZS3qmrAqBRx-BQT_vIDYy7mNGtpWOfCLKKkoalZQzESS7q-zfiDfB0uCk0-BDj7GAEZq26ve-hXatpJguSpIrhckPwqSq4KSX_zxfyP-c74DzBiatg |
CitedBy_id | crossref_primary_10_1007_s11357_024_01208_x crossref_primary_10_1002_brb3_70297 crossref_primary_10_2147_CIA_S482479 crossref_primary_10_1016_j_smhs_2024_02_004 crossref_primary_10_4103_1673_5374_391308 crossref_primary_10_1016_j_resp_2023_104062 crossref_primary_10_3390_nu16030410 crossref_primary_10_1016_j_arr_2024_102486 crossref_primary_10_33549_physiolres_935331 crossref_primary_10_3390_cells13231940 crossref_primary_10_1038_s41401_024_01302_y crossref_primary_10_1371_journal_pone_0318567 crossref_primary_10_3390_biom14101241 |
Cites_doi | 10.3389/fphys.2021.629914 10.1523/JNEUROSCI.1661-18.2019 10.1038/ijo.2016.230 10.1111/jnc.13868 10.1172/JCI18797 10.1016/j.bbrc.2016.04.047 10.3390/nu12082379 10.1038/ncomms2238 10.31083/j.jin2002031 10.1038/s41574-022-00641-2 10.1038/nrn.2017.156 10.1096/fj.01-0876rev 10.1038/srep08889 10.1023/A:1026070911202 10.1016/j.intimp.2018.04.020 10.1038/s41574-019-0174-x 10.1210/endrev/bnaa016 10.1093/hmg/ddv616 10.1007/s12975-019-00768-x 10.1111/j.1582-4934.2008.00596.x 10.1038/s41574-022-00724-0 10.1073/pnas.1306799110 10.1016/j.freeradbiomed.2016.11.045 10.1016/j.cmet.2013.09.008 10.1155/2021/1118981 10.1038/nrendo.2016.76 10.15252/embj.201695810 10.1073/pnas.1415219111 10.1016/j.jbc.2021.101140 10.1016/j.celrep.2017.03.043 10.3389/fnmol.2018.00086 10.1016/j.biopha.2020.110439 10.1038/s42255-021-00438-z 10.18632/aging.101970 10.1016/j.yhbeh.2016.08.006 10.3389/fphys.2021.736905 10.1016/j.cmet.2015.12.003 10.7554/eLife.15092 10.1007/s00125-009-1364-1 10.1007/s12975-013-0275-0 10.1155/2019/8908457 10.1007/s11064-019-02794-5 10.1007/s12640-019-00151-6 10.1177/0963689718779364 10.3389/fnagi.2021.755665 10.1007/s11064-018-2588-6 10.1186/2193-1801-3-2 10.1016/j.tem.2013.10.006 10.1111/j.1460-9568.2011.07965.x 10.3389/fnagi.2021.640215 10.1038/nm.3249 10.1111/j.1469-7793.2000.00237.x 10.1111/j.1460-9568.2004.03578.x |
ContentType | Journal Article |
Copyright | Copyright © 2023 the American Physiological Society. 2023 American Physiological Society |
Copyright_xml | – notice: Copyright © 2023 the American Physiological Society. 2023 American Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1152/japplphysiol.00565.2022 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | EXERKINES AND BRAIN MITOCHONDRIA |
EISSN | 1522-1601 |
EndPage | 35 |
ExternalDocumentID | PMC9799148 36417200 10_1152_japplphysiol_00565_2022 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Review |
GrantInformation_xml | – fundername: NIAMS NIH HHS grantid: R01 AR078903 – fundername: ; grantid: R01 AR078903 – fundername: ; grantid: W81WH-20-10885 |
GroupedDBID | --- -~X .55 18M 29J 2WC 4.4 53G 5VS 85S AAFWJ AAYXX ABCQX ABDNZ ABHWK ABJNI ABKWE ABOCM ACBEA ACGFO ACGFS ACIWK ACPRK ADBBV ADFNX AEILP AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD EMOBN F5P FRP GX1 H13 H~9 ITBOX KQ8 L7B OK1 P2P P6G PQQKQ RAP RHI RPL RPRKH SJN TR2 UHB UKR UPT W8F WH7 WOQ X7M XSW YBH YQT YWH ~02 CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c417t-ff7b898d55299fe42522141657dc5675df5d40451ef6f5ac5eb085d358383adc3 |
ISSN | 8750-7587 1522-1601 |
IngestDate | Thu Aug 21 18:36:48 EDT 2025 Sun Aug 24 03:54:58 EDT 2025 Thu Apr 03 07:10:51 EDT 2025 Tue Jul 01 03:17:04 EDT 2025 Thu Apr 24 22:52:24 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | exercise adipokines myokines hepatokines mitochondria |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c417t-ff7b898d55299fe42522141657dc5675df5d40451ef6f5ac5eb085d358383adc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1814-805X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9799148 |
PMID | 36417200 |
PQID | 2739432047 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9799148 proquest_miscellaneous_2739432047 pubmed_primary_36417200 crossref_citationtrail_10_1152_japplphysiol_00565_2022 crossref_primary_10_1152_japplphysiol_00565_2022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Rockville, MD |
PublicationSeriesTitle | Physical Activity and the Brain |
PublicationTitle | Journal of applied physiology (1985) |
PublicationTitleAlternate | J Appl Physiol (1985) |
PublicationYear | 2023 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B1 B2 B3 B4 B5 B6 B7 B8 B9 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 B50 B51 B52 B53 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 |
References_xml | – ident: B20 doi: 10.3389/fphys.2021.629914 – ident: B21 doi: 10.1523/JNEUROSCI.1661-18.2019 – ident: B52 doi: 10.1038/ijo.2016.230 – ident: B14 doi: 10.1111/jnc.13868 – ident: B16 doi: 10.1172/JCI18797 – ident: B27 doi: 10.1016/j.bbrc.2016.04.047 – ident: B19 doi: 10.3390/nu12082379 – ident: B11 doi: 10.1038/ncomms2238 – ident: B18 doi: 10.31083/j.jin2002031 – ident: B35 doi: 10.1038/s41574-022-00641-2 – ident: B49 doi: 10.1038/nrn.2017.156 – ident: B36 doi: 10.1096/fj.01-0876rev – ident: B41 doi: 10.1038/srep08889 – ident: B34 doi: 10.1023/A:1026070911202 – ident: B12 doi: 10.1016/j.intimp.2018.04.020 – ident: B53 doi: 10.1038/s41574-019-0174-x – ident: B7 doi: 10.1210/endrev/bnaa016 – ident: B4 doi: 10.1093/hmg/ddv616 – ident: B23 doi: 10.1007/s12975-019-00768-x – ident: B43 doi: 10.1111/j.1582-4934.2008.00596.x – ident: B42 doi: 10.1038/s41574-022-00724-0 – ident: B38 doi: 10.1073/pnas.1306799110 – ident: B2 doi: 10.1016/j.freeradbiomed.2016.11.045 – ident: B40 doi: 10.1016/j.cmet.2013.09.008 – ident: B26 doi: 10.1155/2021/1118981 – ident: B32 doi: 10.1038/nrendo.2016.76 – ident: B48 doi: 10.15252/embj.201695810 – ident: B51 doi: 10.1073/pnas.1415219111 – ident: B3 doi: 10.1016/j.jbc.2021.101140 – ident: B37 doi: 10.1016/j.celrep.2017.03.043 – ident: B17 doi: 10.3389/fnmol.2018.00086 – ident: B45 doi: 10.1016/j.biopha.2020.110439 – ident: B39 doi: 10.1038/s42255-021-00438-z – ident: B1 doi: 10.18632/aging.101970 – ident: B29 doi: 10.1016/j.yhbeh.2016.08.006 – ident: B22 doi: 10.3389/fphys.2021.736905 – ident: B46 doi: 10.1016/j.cmet.2015.12.003 – ident: B50 doi: 10.7554/eLife.15092 – ident: B8 doi: 10.1007/s00125-009-1364-1 – ident: B13 doi: 10.1007/s12975-013-0275-0 – ident: B44 doi: 10.1155/2019/8908457 – ident: B24 doi: 10.1007/s11064-019-02794-5 – ident: B31 doi: 10.1007/s12640-019-00151-6 – ident: B25 doi: 10.1177/0963689718779364 – ident: B5 doi: 10.3389/fnagi.2021.755665 – ident: B15 doi: 10.1007/s11064-018-2588-6 – ident: B30 doi: 10.1186/2193-1801-3-2 – ident: B6 doi: 10.1016/j.tem.2013.10.006 – ident: B10 doi: 10.1111/j.1460-9568.2011.07965.x – ident: B28 doi: 10.3389/fnagi.2021.640215 – ident: B47 doi: 10.1038/nm.3249 – ident: B33 doi: 10.1111/j.1469-7793.2000.00237.x – ident: B9 doi: 10.1111/j.1460-9568.2004.03578.x |
SSID | ssj0014451 |
Score | 2.4960585 |
SecondaryResourceType | review_article |
Snippet | Exercise benefits many organ systems, including having a panacea-like effect on the brain. For example, aerobic exercise improves cognition and attention and... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 28 |
SubjectTerms | Brain - metabolism Cognition - physiology Exercise - physiology Mini-Review Mitochondria Muscle, Skeletal - physiology |
Title | The role of exerkines on brain mitochondria: a mini-review |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36417200 https://www.proquest.com/docview/2739432047 https://pubmed.ncbi.nlm.nih.gov/PMC9799148 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZB6UvY2v3ke4DDcZeijNHlmynb1npCIWUPrSQNyNLFhtd7NI6jPb_2v-3O0n-SLOxrS8mxJEi3_18ui_dEfKB6SgMc5kEY2Z0wBXwQkbCBLATclB3mZAhnneen8azC36yEIvB4Gcva2lV5yN199tzJQ_hKnwHfMVTsv_B2XZS-AI-A3_hChyG6z_zuEkPxN5Jl5jDju7_HBs_HCzhbQXpVmpYijvUjIVEgusuHLCplUqvlVqPh6vPhKWcJqno-QxmzsF6sip_dFH8U-xMY0WrdZkcj7rwhk-kwXqP-mDqbiCBihuXgWpxonwfiyal8zM-Q98pwaJ7Tok22nTWLNbO5BNROxEHxlIYgMXittzCi2Awj8exn62R0d7j2Qejl7hpb-92lU82dwXBbDcCoKCn3ghLoIoRLJ31RwAvrpYWLFHMQbULw26bbJMXz-ZHGAsFO_IReczAOrEdQxZtZtEYa745t7J7OJ9WCKv49Ic17JDt5g_X9aMNo-d-7m5PGTp_Sp54vNCpg-QzMijKXbI3LWVdLW_pR9oy5HaXbM99-sYeOQTAUgQsrQxtAUurklrA0j5gD6mkPbg-Jxdfjs-PZoFv3hEoeJA6MCbJ00mqhQCFxxSwNTA2Bu1fJFoJsFK1EZpjcaPCxEZIJYoctH8dYRg_klpFL8hWWZXFK0I1j2PJEyGUYhyEiOQy1zKNVWLiuJDRkMQNyTLlK9tjg5XvmbVwBcv6ZM8s2TMk-5CE7cArV9zl70PeNzzJQBBjdE2WRbW6ycAOmPCIhTwZkpeOR-2kDXOHJFnjXvsDLPK-fqf89tUWe_dQ23_wyNdkp3tD35Ct-npVvAVFus7fWdj-AnW3y-w |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+exerkines+on+brain+mitochondria%3A+a+mini-review&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Heo%2C+Junwon&rft.au=Noble%2C+Emily+E.&rft.au=Call%2C+Jarrod+A.&rft.series=Physical+Activity+and+the+Brain&rft.date=2023-01-01&rft.pub=American+Physiological+Society&rft.issn=8750-7587&rft.eissn=1522-1601&rft.volume=134&rft.issue=1&rft.spage=28&rft.epage=35&rft_id=info:doi/10.1152%2Fjapplphysiol.00565.2022&rft_id=info%3Apmid%2F36417200&rft.externalDocID=PMC9799148 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon |