Descalarization by quenching charged hairy black hole in asymptotically AdS spacetime
A bstract In this work, we study the real-time dynamics of the charged hairy black hole with the time-dependent source of scalar field in asymptotically anti-de Sitter (AdS) spacetime. The numerical results reveal a novel descalarization mechanism. In order to obtain the hairy black hole as the init...
Saved in:
Published in | The journal of high energy physics Vol. 2023; no. 1; pp. 62 - 25 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
13.01.2023
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 1029-8479 1029-8479 |
DOI | 10.1007/JHEP01(2023)062 |
Cover
Loading…
Abstract | A
bstract
In this work, we study the real-time dynamics of the charged hairy black hole with the time-dependent source of scalar field in asymptotically anti-de Sitter (AdS) spacetime. The numerical results reveal a novel descalarization mechanism. In order to obtain the hairy black hole as the initial data for the quench process, we first analyze the quasi-normal modes of the massive complex scalar field on the Reissner-Nordström anti-de Sitter (RN-AdS) black hole background. We find the dominant unstable modes for large and small RN-AdS black holes come from the zero-damped modes and AdS modes, respectively. Then, the unstable RN-AdS black holes are perturbed to trigger the transition to hairy black holes. With the hairy black hole in hand, we specify a time dependent scalar source for the system. As the source is turned on, the electric charge, energy and scalar condensation of the system start to oscillate with the entropy increasing monotonically. Finally, with the decay of the scalar source, the system gradually settles down to a new state. Interestingly, the final state of the evolution could be a hairy black hole with less scalar condensation, a RN-AdS black hole or a Schwarzschild-AdS black hole, which depends on the quench strength. However, as long as the quench strength is large enough, the system always loses all the electric charge and converges to the Schwarzschild-AdS black hole. |
---|---|
AbstractList | In this work, we study the real-time dynamics of the charged hairy black hole with the time-dependent source of scalar field in asymptotically anti-de Sitter (AdS) spacetime. The numerical results reveal a novel descalarization mechanism. In order to obtain the hairy black hole as the initial data for the quench process, we first analyze the quasi-normal modes of the massive complex scalar field on the Reissner-Nordström anti-de Sitter (RN-AdS) black hole background. We find the dominant unstable modes for large and small RN-AdS black holes come from the zero-damped modes and AdS modes, respectively. Then, the unstable RN-AdS black holes are perturbed to trigger the transition to hairy black holes. With the hairy black hole in hand, we specify a time dependent scalar source for the system. As the source is turned on, the electric charge, energy and scalar condensation of the system start to oscillate with the entropy increasing monotonically. Finally, with the decay of the scalar source, the system gradually settles down to a new state. Interestingly, the final state of the evolution could be a hairy black hole with less scalar condensation, a RN-AdS black hole or a Schwarzschild-AdS black hole, which depends on the quench strength. However, as long as the quench strength is large enough, the system always loses all the electric charge and converges to the Schwarzschild-AdS black hole. Abstract In this work, we study the real-time dynamics of the charged hairy black hole with the time-dependent source of scalar field in asymptotically anti-de Sitter (AdS) spacetime. The numerical results reveal a novel descalarization mechanism. In order to obtain the hairy black hole as the initial data for the quench process, we first analyze the quasi-normal modes of the massive complex scalar field on the Reissner-Nordström anti-de Sitter (RN-AdS) black hole background. We find the dominant unstable modes for large and small RN-AdS black holes come from the zero-damped modes and AdS modes, respectively. Then, the unstable RN-AdS black holes are perturbed to trigger the transition to hairy black holes. With the hairy black hole in hand, we specify a time dependent scalar source for the system. As the source is turned on, the electric charge, energy and scalar condensation of the system start to oscillate with the entropy increasing monotonically. Finally, with the decay of the scalar source, the system gradually settles down to a new state. Interestingly, the final state of the evolution could be a hairy black hole with less scalar condensation, a RN-AdS black hole or a Schwarzschild-AdS black hole, which depends on the quench strength. However, as long as the quench strength is large enough, the system always loses all the electric charge and converges to the Schwarzschild-AdS black hole. A bstract In this work, we study the real-time dynamics of the charged hairy black hole with the time-dependent source of scalar field in asymptotically anti-de Sitter (AdS) spacetime. The numerical results reveal a novel descalarization mechanism. In order to obtain the hairy black hole as the initial data for the quench process, we first analyze the quasi-normal modes of the massive complex scalar field on the Reissner-Nordström anti-de Sitter (RN-AdS) black hole background. We find the dominant unstable modes for large and small RN-AdS black holes come from the zero-damped modes and AdS modes, respectively. Then, the unstable RN-AdS black holes are perturbed to trigger the transition to hairy black holes. With the hairy black hole in hand, we specify a time dependent scalar source for the system. As the source is turned on, the electric charge, energy and scalar condensation of the system start to oscillate with the entropy increasing monotonically. Finally, with the decay of the scalar source, the system gradually settles down to a new state. Interestingly, the final state of the evolution could be a hairy black hole with less scalar condensation, a RN-AdS black hole or a Schwarzschild-AdS black hole, which depends on the quench strength. However, as long as the quench strength is large enough, the system always loses all the electric charge and converges to the Schwarzschild-AdS black hole. |
ArticleNumber | 62 |
Author | Zhang, Cheng-Yong Tian, Yu Ning, Zhuan Chen, Qian Wang, Bin |
Author_xml | – sequence: 1 givenname: Qian surname: Chen fullname: Chen, Qian organization: School of Physics, University of Chinese Academy of Sciences – sequence: 2 givenname: Zhuan surname: Ning fullname: Ning, Zhuan organization: School of Physics, University of Chinese Academy of Sciences – sequence: 3 givenname: Yu surname: Tian fullname: Tian, Yu email: ytian@ucas.ac.cn organization: School of Physics, University of Chinese Academy of Sciences, Institute of Theoretical Physics, Chinese Academy of Sciences – sequence: 4 givenname: Bin surname: Wang fullname: Wang, Bin organization: Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou University, Shanghai Frontier Science Center for Gravitational Wave Physics, Shanghai Jiao Tong University – sequence: 5 givenname: Cheng-Yong surname: Zhang fullname: Zhang, Cheng-Yong organization: Department of Physics and Siyuan Laboratory, Jinan University |
BookMark | eNp9kc1P3DAQxa0KpPJ17tVSL-1hy9jxV46IQqFCKhJwtiaOs-slGy92OIS_HkOqFlWip_FY83vzNG-f7Axx8IR8YvCNAejjnxdn18C-cODVV1D8A9ljwOuFEbreefP-SPZzXgMwyWrYI3fffXbYYwpPOIY40GaiD49-cKswLKlbYVr6lq4wpIk2Pbp7uoq9p2GgmKfNdoxjKHg_0ZP2huYtOj-GjT8kux322R_9rgfk7vzs9vRicfXrx-XpydXCCabHRdeYrnOGc9OiMMorUEy2LaAQTjS64l5IZ2qUClptnDdcu05zJUUtG1O76oBczrptxLXdprDBNNmIwb5-xLS0mIrD3lvFOg-gsEXoBFaiqblrdOm09JUXvGh9nrW2KZYL5NGu42Main3LtZLFZG1MmTqep1yKOSff_dnKwL7kYOcc7EsOtuRQCPkP4cL4eusxYej_w8HM5bJhWPr01897yDM_HZ0G |
CitedBy_id | crossref_primary_10_1103_PhysRevD_110_104075 crossref_primary_10_1007_JHEP07_2024_043 crossref_primary_10_1007_JHEP07_2024_274 crossref_primary_10_1007_JHEP10_2023_176 crossref_primary_10_1007_s11433_023_2231_5 crossref_primary_10_1103_PhysRevD_108_084016 crossref_primary_10_1103_PhysRevD_108_106017 crossref_primary_10_1002_asna_20240145 crossref_primary_10_1103_PhysRevD_109_124038 |
Cites_doi | 10.1007/JHEP07(2010)050 10.1103/PhysRevLett.127.031101 10.1103/PhysRevD.106.044018 10.1103/PhysRevD.78.065034 10.1103/PhysRevD.66.084007 10.1103/PhysRevD.87.041502 10.1016/S0550-3213(02)00179-7 10.1007/JHEP04(2015)066 10.1103/PhysRevLett.129.121104 10.1103/PhysRevLett.126.011104 10.1007/JHEP06(2014)019 10.1103/PhysRevLett.120.131103 10.1103/PhysRevD.106.L061501 10.12942/lrr-2012-7 10.1103/PhysRevD.15.2752 10.1103/PhysRevLett.121.101102 10.1103/PhysRevD.102.084029 10.1088/1361-6382/ab9bbb 10.1007/JHEP08(2012)117 10.1007/JHEP07(2014)096 10.1103/RevModPhys.83.793 10.1088/1751-8113/42/34/343001 10.1103/PhysRevLett.112.221101 10.1140/epjc/s10052-021-09630-7 10.1016/S0370-1573(99)00010-1 10.1007/JHEP07(2014)086 10.1103/PhysRevLett.120.131102 10.1103/PhysRevD.104.064017 10.1103/PhysRevD.106.064036 10.1103/PhysRevD.67.064020 10.1088/0264-9381/32/14/144001 10.1007/JHEP02(2017)128 10.1103/PhysRevD.95.124032 10.1103/PhysRevD.83.064020 10.1103/PhysRevLett.127.101102 10.1103/PhysRevLett.116.141101 10.1103/PhysRevLett.110.015301 10.1103/PhysRevD.93.044033 10.1007/JHEP10(2010)045 10.1103/PhysRevD.98.104056 10.1007/978-3-319-19000-6_1 10.1016/j.nuclphysb.2015.07.030 10.1103/PhysRevD.81.124020 10.1103/PhysRevLett.120.131104 10.1103/PhysRevLett.123.011101 10.1142/S0218271815420146 10.1103/PhysRevLett.126.011103 10.1103/PhysRevLett.125.231101 10.1103/PhysRevLett.116.141102 10.1103/PhysRevD.104.084069 10.1103/PhysRevD.102.044014 10.1103/PhysRevD.7.949 10.1103/PhysRevLett.128.161105 10.1103/PhysRevD.106.L061502 10.1103/PhysRevLett.127.161103 10.1007/JHEP06(2016)046 10.1088/1674-1137/ac70ad 10.1103/PhysRevD.104.084089 10.1103/PhysRevD.103.064024 10.1103/PhysRevLett.101.031601 10.1016/0003-4916(82)90116-6 10.1103/PhysRevD.94.044061 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/JHEP01(2023)062 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 25 |
ExternalDocumentID | oai_doaj_org_article_61fe006ada0f4a34b92cb7da075e3e42 10_1007_JHEP01_2023_062 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX AMVHM CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c417t-fb8ffc8228da486e60615dd0a44c4b732e45c89a560d78ce827cf7265495b89c3 |
IEDL.DBID | C24 |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:22:11 EDT 2025 Sun Jul 13 04:08:48 EDT 2025 Thu Apr 24 22:58:45 EDT 2025 Tue Jul 01 01:00:41 EDT 2025 Fri Feb 21 02:43:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Holography and Condensed Matter Physics (AdS/CMT) Black Holes Models of Quantum Gravity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-fb8ffc8228da486e60615dd0a44c4b732e45c89a560d78ce827cf7265495b89c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/10.1007/JHEP01(2023)062 |
PQID | 2765228988 |
PQPubID | 2034718 |
PageCount | 25 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_61fe006ada0f4a34b92cb7da075e3e42 proquest_journals_2765228988 crossref_primary_10_1007_JHEP01_2023_062 crossref_citationtrail_10_1007_JHEP01_2023_062 springer_journals_10_1007_JHEP01_2023_062 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-13 |
PublicationDateYYYYMMDD | 2023-01-13 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | GaoXGarcia-GarciaAMZengHBZhangH-QNormal modes and time evolution of a holographic superconductor after a quantum quenchJHEP2014060192014JHEP...06..019G10.1007/JHEP06(2014)019[arXiv:1212.1049] [INSPIRE] N. Sanchis-Gual, J.C. Degollado, P.J. Montero, J.A. Font and C. Herdeiro, Explosion and final state of an unstable Reissner-Nordström black hole, Phys. Rev. Lett.116 (2016) 141101 [arXiv:1512.05358] [INSPIRE]. CheslerPMYaffeLGNumerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimesJHEP2014070862014JHEP...07..086C10.1007/JHEP07(2014)0861421.81111[arXiv:1309.1439] [INSPIRE] R.A. Konoplya, Decay of charged scalar field around a black hole: quasinormal modes of R-N, R-N-AdS black hole, Phys. Rev. D66 (2002) 084007 [gr-qc/0207028] [INSPIRE]. Y. Liu, C.-Y. Zhang, W.-L. Qian, K. Lin and B. Wang, Dynamic generation or removal of a scalar hair, arXiv:2206.05012 [INSPIRE]. C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A42 (2009) 343001 [arXiv:0904.1975] [INSPIRE]. C.A.R. Herdeiro, E. Radu, N. Sanchis-Gual and J.A. Font, Spontaneous scalarization of charged black holes, Phys. Rev. Lett.121 (2018) 101102 [arXiv:1806.05190] [INSPIRE]. A. Zimmerman and Z. Mark, Damped and zero-damped quasinormal modes of charged, nearly extremal black holes, Phys. Rev. D93 (2016) 044033 [arXiv:1512.02247] [INSPIRE]. H.-J. Kuan, A.G. Suvorov, D.D. Doneva and S.S. Yazadjiev, Gravitational waves from accretion-induced descalarization in massive scalar-tensor theory, Phys. Rev. Lett.129 (2022) 121104 [arXiv:2203.03672] [INSPIRE]. P.T. Chrusciel, J. Lopes Costa and M. Heusler, Stationary black holes: uniqueness and beyond, Living Rev. Rel.15 (2012) 7 [arXiv:1205.6112] [INSPIRE]. H. Yang, F. Zhang, A. Zimmerman, D.A. Nichols, E. Berti and Y. Chen, Branching of quasinormal modes for nearly extremal Kerr black holes, Phys. Rev. D87 (2013) 041502 [arXiv:1212.3271] [INSPIRE]. C.A.R. Herdeiro, E. Radu, H.O. Silva, T.P. Sotiriou and N. Yunes, Spin-induced scalarized black holes, Phys. Rev. Lett.126 (2021) 011103 [arXiv:2009.03904] [INSPIRE]. H.O. Silva, J. Sakstein, L. Gualtieri, T.P. Sotiriou and E. Berti, Spontaneous scalarization of black holes and compact stars from a Gauss-Bonnet coupling, Phys. Rev. Lett.120 (2018) 131104 [arXiv:1711.02080] [INSPIRE]. VolkovMSGal’tsovDVGravitating non-Abelian solitons and black holes with Yang-Mills fieldsPhys. Rept.199931911999PhR...319....1V172051910.1016/S0370-1573(99)00010-1[hep-th/9810070] [INSPIRE] R. Brito, V. Cardoso and P. Pani, Superradiance: new frontiers in black hole physics, Lect. Notes Phys.906 (2015) pp.1 [arXiv:1501.06570] [INSPIRE]. BreitenlohnerPFreedmanDZStability in gauged extended supergravityAnnals Phys.19821442491982AnPhy.144..249B68422310.1016/0003-4916(82)90116-60606.53044[INSPIRE] C.-Y. Zhang, Q. Chen, Y. Liu, W.-K. Luo, Y. Tian and B. Wang, Critical phenomena in dynamical scalarization of charged black holes, Phys. Rev. Lett.128 (2022) 161105 [arXiv:2112.07455] [INSPIRE]. N. Uchikata and S. Yoshida, Quasinormal modes of a massless charged scalar field on a small Reissner-Nordström-anti-de Sitter black hole, Phys. Rev. D83 (2011) 064020 [arXiv:1109.6737] [INSPIRE]. M.J. Bhaseen, J.P. Gauntlett, B.D. Simons, J. Sonner and T. Wiseman, Holographic superfluids and the dynamics of symmetry breaking, Phys. Rev. Lett.110 (2013) 015301 [arXiv:1207.4194] [INSPIRE]. W.E. East and J.L. Ripley, Dynamics of spontaneous black hole scalarization and mergers in Einstein-scalar-Gauss-Bonnet gravity, Phys. Rev. Lett.127 (2021) 101102 [arXiv:2105.08571] [INSPIRE]. H. Guo, S. Kiorpelidi, X.-M. Kuang, E. Papantonopoulos, B. Wang and J.-P. Wu, Spontaneous holographic scalarization of black holes in Einstein-scalar-Gauss-Bonnet theories, Phys. Rev. D102 (2020) 084029 [arXiv:2006.10659] [INSPIRE]. C. Herdeiro and E. Radu, Construction and physical properties of Kerr black holes with scalar hair, Class. Quant. Grav.32 (2015) 144001 [arXiv:1501.04319] [INSPIRE]. E. Berti, L.G. Collodel, B. Kleihaus and J. Kunz, Spin-induced black-hole scalarization in Einstein-scalar-Gauss-Bonnet theory, Phys. Rev. Lett.126 (2021) 011104 [arXiv:2009.03905] [INSPIRE]. ElvangHHadjiantonisMA practical approach to the Hamilton-Jacobi formulation of holographic renormalizationJHEP2016060462016JHEP...06..046E353820710.1007/JHEP06(2016)0461388.83229[arXiv:1603.04485] [INSPIRE] C. Niu, W. Xiong, P. Liu, C.-Y. Zhang and B. Wang, Dynamical descalarization in Einstein-Maxwell-scalar theory, arXiv:2209.12117 [INSPIRE]. BianchiMFreedmanDZSkenderisKHolographic renormalizationNucl. Phys. B20026311592002NuPhB.631..159B190806810.1016/S0550-3213(02)00179-70995.81075[hep-th/0112119] [INSPIRE] N. Sanchis-Gual, J.C. Degollado, C. Herdeiro, J.A. Font and P.J. Montero, Dynamical formation of a Reissner-Nordström black hole with scalar hair in a cavity, Phys. Rev. D94 (2016) 044061 [arXiv:1607.06304] [INSPIRE]. Y. Liu, C.-Y. Zhang, Q. Chen, Z. Cao, Y. Tian and B. Wang, The critical scalarization and descalarization of black holes in a generalized scalar-tensor theory, arXiv:2208.07548 [INSPIRE]. HerdeiroCARRaduEAsymptotically flat black holes with scalar hair: a reviewInt. J. Mod. Phys. D20152415420142015IJMPD..2442014H337570710.1142/S02182718154201461339.83008[arXiv:1504.08209] [INSPIRE] P.V.P. Cunha, C.A.R. Herdeiro and E. Radu, Spontaneously scalarized Kerr black holes in extended scalar-tensor-Gauss-Bonnet gravity, Phys. Rev. Lett.123 (2019) 011101 [arXiv:1904.09997] [INSPIRE]. H.-J. Kuan, D.D. Doneva and S.S. Yazadjiev, Dynamical formation of scalarized black holes and neutron stars through stellar core collapse, Phys. Rev. Lett.127 (2021) 161103 [arXiv:2103.11999] [INSPIRE]. J.L. Ripley and F. Pretorius, Dynamics of a Z2symmetric EdGB gravity in spherical symmetry, Class. Quant. Grav.37 (2020) 155003 [arXiv:2005.05417] [INSPIRE]. BasuPBhattacharyaJBhattacharyyaSLoganayagamRMinwallaSUmeshVSmall hairy black holes in global AdS spacetimeJHEP2010100452010JHEP...10..045B278053110.1007/JHEP10(2010)0451291.83127[arXiv:1003.3232] [INSPIRE] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett.101 (2008) 031601 [arXiv:0803.3295] [INSPIRE]. J.D. Bekenstein, Extraction of energy and charge from a black hole, Phys. Rev. D7 (1973) 949 [INSPIRE]. C.A.R. Herdeiro and E. Radu, Kerr black holes with scalar hair, Phys. Rev. Lett.112 (2014) 221101 [arXiv:1403.2757] [INSPIRE]. P. Bosch, S.R. Green and L. Lehner, Nonlinear evolution and final fate of charged anti-de Sitter black hole superradiant instability, Phys. Rev. Lett.116 (2016) 141102 [arXiv:1601.01384] [INSPIRE]. GibbonsGWHawkingSWAction integrals and partition functions in quantum gravityPhys. Rev. D19771527521977PhRvD..15.2752G10.1103/PhysRevD.15.2752[INSPIRE] García-GarcíaAMZengHBZhangHQA thermal quench induces spatial inhomogeneities in a holographic superconductorJHEP2014070962014JHEP...07..096G10.1007/JHEP07(2014)096[arXiv:1308.5398] [INSPIRE] E. Berti and K.D. Kokkotas, Quasinormal modes of Reissner-Nordström-anti-de Sitter black holes: scalar, electromagnetic and gravitational perturbations, Phys. Rev. D67 (2003) 064020 [gr-qc/0301052] [INSPIRE]. BaiXLeeB-HLiLSunJ-RZhangH-QTime evolution of entanglement entropy in quenched holographic superconductorsJHEP2015040662015JHEP...04..066B335130310.1007/JHEP04(2015)0661388.81705[arXiv:1412.5500] [INSPIRE] D.D. Doneva, A. Vañó Viñuales and S.S. Yazadjiev, Dynamical descalarization with a jump during a black hole merger, Phys. Rev. D106 (2022) L061502 [arXiv:2204.05333] [INSPIRE]. W.-K. Luo, C.-Y. Zhang, P. Liu, C. Niu and B. Wang, Dynamical spontaneous scalarization in Einstein-Maxwell-scalar models in anti-de Sitter spacetime, Phys. Rev. D106 (2022) 064036 [arXiv:2206.05690] [INSPIRE]. F. Corelli, T. Ikeda and P. Pani, Challenging cosmic censorship in Einstein-Maxwell-scalar theory with numerically simulated gedanken experiments, Phys. Rev. D104 (2021) 084069 [arXiv:2108.08328] [INSPIRE]. DiasOJCMasachsRHairy black holes and the endpoint of AdS4charged superradianceJHEP2017021282017JHEP...02..128D10.1007/JHEP02(2017)1281377.83040[arXiv:1610.03496] [INSPIRE] DiasOJCFiguerasPMinwallaSMitraPMonteiroRSantosJEHairy black holes and solitons in global AdS5JHEP2012081172012JHEP...08..117D10.1007/JHEP08(2012)1171397.83063[arXiv:1112.4447] [INSPIRE] ZhangC-YZhangS-JWangBCharged scalar perturbations around Garfinkle-Horowitz-Strominger black holesNucl. Phys. B2015899372015NuPhB.899...37Z339890510.1016/j.nuclphysb.2015.07.0301331.83055[arXiv:1501.03260] [INSPIRE] M. Elley, H.O. Silva, H. Witek and N. Yunes, Spin-induced dynamical scalarization, descalarization, and stealthness in scalar-Gauss-Bonnet gravity during a black hole coalescence, Phys. Rev. D106 (2022) 044018 [arXiv:2205.06240] [INSPIRE]. G. Antoniou, A. Bakopoulos and P. Kanti, Evasion of no-hair theorems and novel black-hole solutions in Gauss-Bonnet theories, Phys. Rev. Lett.120 (2018) 131102 [arXiv:1711.03390] [INSPIRE]. GuoHKuangX-MPapantonopoulosEWangBHorizon curvature and spacetime structure influences on black hole scalarizationEur. Phys. J. C2021818422021EPJC...81..842G10.1140/epjc/s10052-021-09630-7[arXiv:2012.11844] [INSPIRE] D.D. Doneva and S.S. Yazadjiev, Dynamics of the nonrotating and rotating black hole scalarization, Phys. Rev. D103 (2021) 064024 [arXiv:2101.03514] [INSPIRE]. H.O. Silva, H. Witek, M. Elley and N. Yunes, Dynamical descalarization in binary black hole mergers, Phys. Rev. Lett.127 (2021) 031101 [arXiv:2012.10436] [INSPIRE]. A. Dima, E. Barausse, N. Franchini and T.P. Sotiriou, Spin-induced black hole spontaneous scalarization, Phys. Rev. Lett.125 (2020) 231101 [arXiv:2006.03095] [INSPIRE]. Z.-Y. Tang, B. Wang, T. Karakasis and E. Papantonopoulos, Curvature scalarization of black holes in f(R) gravity, Phys. Rev. D104 (2021) 064017 [arXiv:2008.13318] [INSPIRE]. D.D. Doneva and S.S. Yazadjiev, New Gauss-Bonnet black holes with curvature-induced scalarization in extended scalar-tensor theories, Phys. Rev. Lett.120 (2018) 1 19964_CR22 X Bai (19964_CR65) 2015; 04 K Murata (19964_CR15) 2010; 07 H Elvang (19964_CR62) 2016; 06 19964_CR17 19964_CR16 PM Chesler (19964_CR66) 2014; 07 19964_CR13 19964_CR57 19964_CR12 19964_CR56 19964_CR14 C-Y Zhang (19964_CR50) 2022; 106 OJC Dias (19964_CR20) 2012; 08 RA Konoplya (19964_CR58) 2011; 83 H Guo (19964_CR6) 2021; 81 P Basu (19964_CR19) 2010; 10 19964_CR31 19964_CR30 19964_CR33 19964_CR32 19964_CR28 19964_CR27 19964_CR29 19964_CR24 19964_CR23 MS Volkov (19964_CR3) 1999; 319 19964_CR26 19964_CR25 P Breitenlohner (19964_CR21) 1982; 144 AM García-García (19964_CR64) 2014; 07 C-Y Zhang (19964_CR59) 2015; 899 19964_CR42 19964_CR41 19964_CR44 19964_CR43 19964_CR40 19964_CR39 X Gao (19964_CR63) 2014; 06 19964_CR38 CAR Herdeiro (19964_CR4) 2015; 24 19964_CR9 19964_CR35 19964_CR34 19964_CR7 19964_CR37 19964_CR8 19964_CR36 19964_CR5 19964_CR1 19964_CR2 19964_CR53 19964_CR52 19964_CR11 19964_CR55 19964_CR10 19964_CR54 19964_CR51 GW Gibbons (19964_CR60) 1977; 15 19964_CR49 M Bianchi (19964_CR61) 2002; 631 19964_CR46 19964_CR45 19964_CR48 OJC Dias (19964_CR18) 2017; 02 19964_CR47 |
References_xml | – reference: W.E. East and J.L. Ripley, Dynamics of spontaneous black hole scalarization and mergers in Einstein-scalar-Gauss-Bonnet gravity, Phys. Rev. Lett.127 (2021) 101102 [arXiv:2105.08571] [INSPIRE]. – reference: H. Yang, F. Zhang, A. Zimmerman, D.A. Nichols, E. Berti and Y. Chen, Branching of quasinormal modes for nearly extremal Kerr black holes, Phys. Rev. D87 (2013) 041502 [arXiv:1212.3271] [INSPIRE]. – reference: E. Berti, L.G. Collodel, B. Kleihaus and J. Kunz, Spin-induced black-hole scalarization in Einstein-scalar-Gauss-Bonnet theory, Phys. Rev. Lett.126 (2021) 011104 [arXiv:2009.03905] [INSPIRE]. – reference: W.-K. Luo, C.-Y. Zhang, P. Liu, C. Niu and B. Wang, Dynamical spontaneous scalarization in Einstein-Maxwell-scalar models in anti-de Sitter spacetime, Phys. Rev. D106 (2022) 064036 [arXiv:2206.05690] [INSPIRE]. – reference: P. Bosch, S.R. Green and L. Lehner, Nonlinear evolution and final fate of charged anti-de Sitter black hole superradiant instability, Phys. Rev. Lett.116 (2016) 141102 [arXiv:1601.01384] [INSPIRE]. – reference: ElvangHHadjiantonisMA practical approach to the Hamilton-Jacobi formulation of holographic renormalizationJHEP2016060462016JHEP...06..046E353820710.1007/JHEP06(2016)0461388.83229[arXiv:1603.04485] [INSPIRE] – reference: CheslerPMYaffeLGNumerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimesJHEP2014070862014JHEP...07..086C10.1007/JHEP07(2014)0861421.81111[arXiv:1309.1439] [INSPIRE] – reference: HerdeiroCARRaduEAsymptotically flat black holes with scalar hair: a reviewInt. J. Mod. Phys. D20152415420142015IJMPD..2442014H337570710.1142/S02182718154201461339.83008[arXiv:1504.08209] [INSPIRE] – reference: P.V.P. Cunha, C.A.R. Herdeiro and E. Radu, Spontaneously scalarized Kerr black holes in extended scalar-tensor-Gauss-Bonnet gravity, Phys. Rev. Lett.123 (2019) 011101 [arXiv:1904.09997] [INSPIRE]. – reference: A. Dima, E. Barausse, N. Franchini and T.P. Sotiriou, Spin-induced black hole spontaneous scalarization, Phys. Rev. Lett.125 (2020) 231101 [arXiv:2006.03095] [INSPIRE]. – reference: N. Sanchis-Gual, J.C. Degollado, C. Herdeiro, J.A. Font and P.J. Montero, Dynamical formation of a Reissner-Nordström black hole with scalar hair in a cavity, Phys. Rev. D94 (2016) 044061 [arXiv:1607.06304] [INSPIRE]. – reference: R.A. Konoplya, Decay of charged scalar field around a black hole: quasinormal modes of R-N, R-N-AdS black hole, Phys. Rev. D66 (2002) 084007 [gr-qc/0207028] [INSPIRE]. – reference: J.D. Bekenstein, Extraction of energy and charge from a black hole, Phys. Rev. D7 (1973) 949 [INSPIRE]. – reference: D.D. Doneva, S. Kiorpelidi, P.G. Nedkova, E. Papantonopoulos and S.S. Yazadjiev, Charged Gauss-Bonnet black holes with curvature induced scalarization in the extended scalar-tensor theories, Phys. Rev. D98 (2018) 104056 [arXiv:1809.00844] [INSPIRE]. – reference: GuoHKuangX-MPapantonopoulosEWangBHorizon curvature and spacetime structure influences on black hole scalarizationEur. Phys. J. C2021818422021EPJC...81..842G10.1140/epjc/s10052-021-09630-7[arXiv:2012.11844] [INSPIRE] – reference: MurataKKinoshitaSTanahashiNNon-equilibrium condensation process in a holographic superconductorJHEP2010070502010JHEP...07..050M10.1007/JHEP07(2010)0501290.83044[arXiv:1005.0633] [INSPIRE] – reference: H.O. Silva, J. Sakstein, L. Gualtieri, T.P. Sotiriou and E. Berti, Spontaneous scalarization of black holes and compact stars from a Gauss-Bonnet coupling, Phys. Rev. Lett.120 (2018) 131104 [arXiv:1711.02080] [INSPIRE]. – reference: N. Uchikata and S. Yoshida, Quasinormal modes of a massless charged scalar field on a small Reissner-Nordström-anti-de Sitter black hole, Phys. Rev. D83 (2011) 064020 [arXiv:1109.6737] [INSPIRE]. – reference: ZhangC-YZhangS-JWangBCharged scalar perturbations around Garfinkle-Horowitz-Strominger black holesNucl. Phys. B2015899372015NuPhB.899...37Z339890510.1016/j.nuclphysb.2015.07.0301331.83055[arXiv:1501.03260] [INSPIRE] – reference: C. Herdeiro and E. Radu, Construction and physical properties of Kerr black holes with scalar hair, Class. Quant. Grav.32 (2015) 144001 [arXiv:1501.04319] [INSPIRE]. – reference: C.-Y. Zhang, Q. Chen, Y. Liu, W.-K. Luo, Y. Tian and B. Wang, Critical phenomena in dynamical scalarization of charged black holes, Phys. Rev. Lett.128 (2022) 161105 [arXiv:2112.07455] [INSPIRE]. – reference: ZhangC-YChenQLiuYLuoW-KTianYWangBDynamical transitions in scalarization and descalarization through black hole accretionPhys. Rev. D2022106L0615012022PhRvD.106f1501Z450535310.1103/PhysRevD.106.L061501[arXiv:2204.09260] [INSPIRE] – reference: BasuPBhattacharyaJBhattacharyyaSLoganayagamRMinwallaSUmeshVSmall hairy black holes in global AdS spacetimeJHEP2010100452010JHEP...10..045B278053110.1007/JHEP10(2010)0451291.83127[arXiv:1003.3232] [INSPIRE] – reference: P. Bosch, S.R. Green, L. Lehner and H. Roussille, Excited hairy black holes: dynamical construction and level transitions, Phys. Rev. D102 (2020) 044014 [arXiv:1912.05598] [INSPIRE]. – reference: P. Bizon, Gravitating solitons and hairy black holes, Acta Phys. Polon. B25 (1994) 877 [gr-qc/9402016] [INSPIRE]. – reference: D.D. Doneva and S.S. Yazadjiev, Dynamics of the nonrotating and rotating black hole scalarization, Phys. Rev. D103 (2021) 064024 [arXiv:2101.03514] [INSPIRE]. – reference: A. Zimmerman and Z. Mark, Damped and zero-damped quasinormal modes of charged, nearly extremal black holes, Phys. Rev. D93 (2016) 044033 [arXiv:1512.02247] [INSPIRE]. – reference: H.O. Silva, H. Witek, M. Elley and N. Yunes, Dynamical descalarization in binary black hole mergers, Phys. Rev. Lett.127 (2021) 031101 [arXiv:2012.10436] [INSPIRE]. – reference: C.-Y. Zhang, P. Liu, Y. Liu, C. Niu and B. Wang, Dynamical charged black hole spontaneous scalarization in anti-de Sitter spacetimes, Phys. Rev. D104 (2021) 084089 [arXiv:2103.13599] [INSPIRE]. – reference: DiasOJCMasachsRHairy black holes and the endpoint of AdS4charged superradianceJHEP2017021282017JHEP...02..128D10.1007/JHEP02(2017)1281377.83040[arXiv:1610.03496] [INSPIRE] – reference: C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A42 (2009) 343001 [arXiv:0904.1975] [INSPIRE]. – reference: Z.-Y. Tang, B. Wang, T. Karakasis and E. Papantonopoulos, Curvature scalarization of black holes in f(R) gravity, Phys. Rev. D104 (2021) 064017 [arXiv:2008.13318] [INSPIRE]. – reference: P.T. Chrusciel, J. Lopes Costa and M. Heusler, Stationary black holes: uniqueness and beyond, Living Rev. Rel.15 (2012) 7 [arXiv:1205.6112] [INSPIRE]. – reference: W. Xiong, P. Liu, C. Niu, C.-Y. Zhang and B. Wang, Dynamical spontaneous scalarization in Einstein-Maxwell-scalar theory, Chin. Phys. C46 (2022) 095103 [arXiv:2205.07538] [INSPIRE]. – reference: DiasOJCFiguerasPMinwallaSMitraPMonteiroRSantosJEHairy black holes and solitons in global AdS5JHEP2012081172012JHEP...08..117D10.1007/JHEP08(2012)1171397.83063[arXiv:1112.4447] [INSPIRE] – reference: H. Guo, S. Kiorpelidi, X.-M. Kuang, E. Papantonopoulos, B. Wang and J.-P. Wu, Spontaneous holographic scalarization of black holes in Einstein-scalar-Gauss-Bonnet theories, Phys. Rev. D102 (2020) 084029 [arXiv:2006.10659] [INSPIRE]. – reference: G. Antoniou, A. Bakopoulos and P. Kanti, Evasion of no-hair theorems and novel black-hole solutions in Gauss-Bonnet theories, Phys. Rev. Lett.120 (2018) 131102 [arXiv:1711.03390] [INSPIRE]. – reference: GaoXGarcia-GarciaAMZengHBZhangH-QNormal modes and time evolution of a holographic superconductor after a quantum quenchJHEP2014060192014JHEP...06..019G10.1007/JHEP06(2014)019[arXiv:1212.1049] [INSPIRE] – reference: C.A.R. Herdeiro and E. Radu, Kerr black holes with scalar hair, Phys. Rev. Lett.112 (2014) 221101 [arXiv:1403.2757] [INSPIRE]. – reference: M.J. Bhaseen, J.P. Gauntlett, B.D. Simons, J. Sonner and T. Wiseman, Holographic superfluids and the dynamics of symmetry breaking, Phys. Rev. Lett.110 (2013) 015301 [arXiv:1207.4194] [INSPIRE]. – reference: M. Elley, H.O. Silva, H. Witek and N. Yunes, Spin-induced dynamical scalarization, descalarization, and stealthness in scalar-Gauss-Bonnet gravity during a black hole coalescence, Phys. Rev. D106 (2022) 044018 [arXiv:2205.06240] [INSPIRE]. – reference: KonoplyaRAZhidenkoAQuasinormal modes of black holes: from astrophysics to string theoryRev. Mod. Phys.2011837932011RvMP...83..793K10.1103/RevModPhys.83.793[arXiv:1102.4014] [INSPIRE] – reference: K. Maeda, S. Fujii and J.-I. Koga, The final fate of instability of Reissner-Nordström-anti-de Sitter black holes by charged complex scalar fields, Phys. Rev. D81 (2010) 124020 [arXiv:1003.2689] [INSPIRE]. – reference: Y. Liu, C.-Y. Zhang, W.-L. Qian, K. Lin and B. Wang, Dynamic generation or removal of a scalar hair, arXiv:2206.05012 [INSPIRE]. – reference: R. Brito, V. Cardoso and P. Pani, Superradiance: new frontiers in black hole physics, Lect. Notes Phys.906 (2015) pp.1 [arXiv:1501.06570] [INSPIRE]. – reference: BreitenlohnerPFreedmanDZStability in gauged extended supergravityAnnals Phys.19821442491982AnPhy.144..249B68422310.1016/0003-4916(82)90116-60606.53044[INSPIRE] – reference: BianchiMFreedmanDZSkenderisKHolographic renormalizationNucl. Phys. B20026311592002NuPhB.631..159B190806810.1016/S0550-3213(02)00179-70995.81075[hep-th/0112119] [INSPIRE] – reference: H.-J. Kuan, A.G. Suvorov, D.D. Doneva and S.S. Yazadjiev, Gravitational waves from accretion-induced descalarization in massive scalar-tensor theory, Phys. Rev. Lett.129 (2022) 121104 [arXiv:2203.03672] [INSPIRE]. – reference: E. Berti and K.D. Kokkotas, Quasinormal modes of Reissner-Nordström-anti-de Sitter black holes: scalar, electromagnetic and gravitational perturbations, Phys. Rev. D67 (2003) 064020 [gr-qc/0301052] [INSPIRE]. – reference: S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett.101 (2008) 031601 [arXiv:0803.3295] [INSPIRE]. – reference: GibbonsGWHawkingSWAction integrals and partition functions in quantum gravityPhys. Rev. D19771527521977PhRvD..15.2752G10.1103/PhysRevD.15.2752[INSPIRE] – reference: D.D. Doneva and S.S. Yazadjiev, New Gauss-Bonnet black holes with curvature-induced scalarization in extended scalar-tensor theories, Phys. Rev. Lett.120 (2018) 131103 [arXiv:1711.01187] [INSPIRE]. – reference: J.L. Ripley and F. Pretorius, Dynamics of a Z2symmetric EdGB gravity in spherical symmetry, Class. Quant. Grav.37 (2020) 155003 [arXiv:2005.05417] [INSPIRE]. – reference: S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D78 (2008) 065034 [arXiv:0801.2977] [INSPIRE]. – reference: N. Sanchis-Gual, J.C. Degollado, P.J. Montero, J.A. Font and C. Herdeiro, Explosion and final state of an unstable Reissner-Nordström black hole, Phys. Rev. Lett.116 (2016) 141101 [arXiv:1512.05358] [INSPIRE]. – reference: P. Zimmerman, Horizon instability of extremal Reissner-Nordström black holes to charged perturbations, Phys. Rev. D95 (2017) 124032 [arXiv:1612.03172] [INSPIRE]. – reference: C.A.R. Herdeiro, E. Radu, H.O. Silva, T.P. Sotiriou and N. Yunes, Spin-induced scalarized black holes, Phys. Rev. Lett.126 (2021) 011103 [arXiv:2009.03904] [INSPIRE]. – reference: D.D. Doneva, A. Vañó Viñuales and S.S. Yazadjiev, Dynamical descalarization with a jump during a black hole merger, Phys. Rev. D106 (2022) L061502 [arXiv:2204.05333] [INSPIRE]. – reference: Y. Liu, C.-Y. Zhang, Q. Chen, Z. Cao, Y. Tian and B. Wang, The critical scalarization and descalarization of black holes in a generalized scalar-tensor theory, arXiv:2208.07548 [INSPIRE]. – reference: F. Corelli, T. Ikeda and P. Pani, Challenging cosmic censorship in Einstein-Maxwell-scalar theory with numerically simulated gedanken experiments, Phys. Rev. D104 (2021) 084069 [arXiv:2108.08328] [INSPIRE]. – reference: C. Niu, W. Xiong, P. Liu, C.-Y. Zhang and B. Wang, Dynamical descalarization in Einstein-Maxwell-scalar theory, arXiv:2209.12117 [INSPIRE]. – reference: C.A.R. Herdeiro, E. Radu, N. Sanchis-Gual and J.A. Font, Spontaneous scalarization of charged black holes, Phys. Rev. Lett.121 (2018) 101102 [arXiv:1806.05190] [INSPIRE]. – reference: VolkovMSGal’tsovDVGravitating non-Abelian solitons and black holes with Yang-Mills fieldsPhys. Rept.199931911999PhR...319....1V172051910.1016/S0370-1573(99)00010-1[hep-th/9810070] [INSPIRE] – reference: García-GarcíaAMZengHBZhangHQA thermal quench induces spatial inhomogeneities in a holographic superconductorJHEP2014070962014JHEP...07..096G10.1007/JHEP07(2014)096[arXiv:1308.5398] [INSPIRE] – reference: H.-J. Kuan, D.D. Doneva and S.S. Yazadjiev, Dynamical formation of scalarized black holes and neutron stars through stellar core collapse, Phys. Rev. Lett.127 (2021) 161103 [arXiv:2103.11999] [INSPIRE]. – reference: BaiXLeeB-HLiLSunJ-RZhangH-QTime evolution of entanglement entropy in quenched holographic superconductorsJHEP2015040662015JHEP...04..066B335130310.1007/JHEP04(2015)0661388.81705[arXiv:1412.5500] [INSPIRE] – ident: 19964_CR51 – volume: 07 start-page: 050 year: 2010 ident: 19964_CR15 publication-title: JHEP doi: 10.1007/JHEP07(2010)050 – ident: 19964_CR45 doi: 10.1103/PhysRevLett.127.031101 – ident: 19964_CR47 doi: 10.1103/PhysRevD.106.044018 – ident: 19964_CR22 doi: 10.1103/PhysRevD.78.065034 – ident: 19964_CR55 doi: 10.1103/PhysRevD.66.084007 – ident: 19964_CR25 doi: 10.1103/PhysRevD.87.041502 – volume: 631 start-page: 159 year: 2002 ident: 19964_CR61 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(02)00179-7 – volume: 04 start-page: 066 year: 2015 ident: 19964_CR65 publication-title: JHEP doi: 10.1007/JHEP04(2015)066 – ident: 19964_CR49 doi: 10.1103/PhysRevLett.129.121104 – ident: 19964_CR35 doi: 10.1103/PhysRevLett.126.011104 – volume: 06 start-page: 019 year: 2014 ident: 19964_CR63 publication-title: JHEP doi: 10.1007/JHEP06(2014)019 – ident: 19964_CR29 doi: 10.1103/PhysRevLett.120.131103 – volume: 106 start-page: L061501 year: 2022 ident: 19964_CR50 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.106.L061501 – ident: 19964_CR1 doi: 10.12942/lrr-2012-7 – volume: 15 start-page: 2752 year: 1977 ident: 19964_CR60 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.15.2752 – ident: 19964_CR36 doi: 10.1103/PhysRevLett.121.101102 – ident: 19964_CR7 doi: 10.1103/PhysRevD.102.084029 – ident: 19964_CR38 doi: 10.1088/1361-6382/ab9bbb – volume: 08 start-page: 117 year: 2012 ident: 19964_CR20 publication-title: JHEP doi: 10.1007/JHEP08(2012)117 – volume: 07 start-page: 096 year: 2014 ident: 19964_CR64 publication-title: JHEP doi: 10.1007/JHEP07(2014)096 – volume: 83 start-page: 793 year: 2011 ident: 19964_CR58 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.83.793 – ident: 19964_CR24 doi: 10.1088/1751-8113/42/34/343001 – ident: 19964_CR9 doi: 10.1103/PhysRevLett.112.221101 – volume: 81 start-page: 842 year: 2021 ident: 19964_CR6 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-021-09630-7 – volume: 319 start-page: 1 year: 1999 ident: 19964_CR3 publication-title: Phys. Rept. doi: 10.1016/S0370-1573(99)00010-1 – volume: 07 start-page: 086 year: 2014 ident: 19964_CR66 publication-title: JHEP doi: 10.1007/JHEP07(2014)086 – ident: 19964_CR31 doi: 10.1103/PhysRevLett.120.131102 – ident: 19964_CR8 doi: 10.1103/PhysRevD.104.064017 – ident: 19964_CR44 doi: 10.1103/PhysRevD.106.064036 – ident: 19964_CR56 doi: 10.1103/PhysRevD.67.064020 – ident: 19964_CR10 doi: 10.1088/0264-9381/32/14/144001 – volume: 02 start-page: 128 year: 2017 ident: 19964_CR18 publication-title: JHEP doi: 10.1007/JHEP02(2017)128 – ident: 19964_CR53 – ident: 19964_CR27 doi: 10.1103/PhysRevD.95.124032 – ident: 19964_CR54 doi: 10.1103/PhysRevD.83.064020 – ident: 19964_CR40 doi: 10.1103/PhysRevLett.127.101102 – ident: 19964_CR13 doi: 10.1103/PhysRevLett.116.141101 – ident: 19964_CR16 doi: 10.1103/PhysRevLett.110.015301 – ident: 19964_CR26 doi: 10.1103/PhysRevD.93.044033 – volume: 10 start-page: 045 year: 2010 ident: 19964_CR19 publication-title: JHEP doi: 10.1007/JHEP10(2010)045 – ident: 19964_CR5 doi: 10.1103/PhysRevD.98.104056 – ident: 19964_CR11 doi: 10.1007/978-3-319-19000-6_1 – volume: 899 start-page: 37 year: 2015 ident: 19964_CR59 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2015.07.030 – ident: 19964_CR57 doi: 10.1103/PhysRevD.81.124020 – ident: 19964_CR30 doi: 10.1103/PhysRevLett.120.131104 – ident: 19964_CR32 doi: 10.1103/PhysRevLett.123.011101 – volume: 24 start-page: 1542014 year: 2015 ident: 19964_CR4 publication-title: Int. J. Mod. Phys. D doi: 10.1142/S0218271815420146 – ident: 19964_CR34 doi: 10.1103/PhysRevLett.126.011103 – ident: 19964_CR33 doi: 10.1103/PhysRevLett.125.231101 – ident: 19964_CR52 – ident: 19964_CR17 doi: 10.1103/PhysRevLett.116.141102 – ident: 19964_CR48 doi: 10.1103/PhysRevD.104.084069 – ident: 19964_CR28 doi: 10.1103/PhysRevD.102.044014 – ident: 19964_CR12 doi: 10.1103/PhysRevD.7.949 – ident: 19964_CR37 doi: 10.1103/PhysRevLett.128.161105 – ident: 19964_CR46 doi: 10.1103/PhysRevD.106.L061502 – ident: 19964_CR42 doi: 10.1103/PhysRevLett.127.161103 – volume: 06 start-page: 046 year: 2016 ident: 19964_CR62 publication-title: JHEP doi: 10.1007/JHEP06(2016)046 – ident: 19964_CR43 doi: 10.1088/1674-1137/ac70ad – ident: 19964_CR41 doi: 10.1103/PhysRevD.104.084089 – ident: 19964_CR2 – ident: 19964_CR39 doi: 10.1103/PhysRevD.103.064024 – ident: 19964_CR23 doi: 10.1103/PhysRevLett.101.031601 – volume: 144 start-page: 249 year: 1982 ident: 19964_CR21 publication-title: Annals Phys. doi: 10.1016/0003-4916(82)90116-6 – ident: 19964_CR14 doi: 10.1103/PhysRevD.94.044061 |
SSID | ssj0015190 |
Score | 2.468965 |
Snippet | A
bstract
In this work, we study the real-time dynamics of the charged hairy black hole with the time-dependent source of scalar field in asymptotically... In this work, we study the real-time dynamics of the charged hairy black hole with the time-dependent source of scalar field in asymptotically anti-de Sitter... Abstract In this work, we study the real-time dynamics of the charged hairy black hole with the time-dependent source of scalar field in asymptotically anti-de... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 62 |
SubjectTerms | Asymptotic properties Black Holes Classical and Quantum Gravitation Descaling Electric charge Elementary Particles High energy physics Holography and Condensed Matter Physics (AdS/CMT) Models of Quantum Gravity Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory Scalars Spacetime String Theory Time dependence |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64vcvCwe6jbR5qkx1VclgVF0IW9lTwmKOi6uOuh_95J2qoriBePbdMSvkxmvkzSbwg5Zw5dHhgXcQCIGFcsUpqpKFZG5DoWwhb-5-SbWz6asPE0n34r9eXPhNXywDVwfZ44QMtQVsWOqYzpIjVa4JXIIQMWvC_GvHYx1ewfIC-JWyGfWPTHo-u7OOn6UuG9mKcrMShI9a_wyx9boiHSDLfJVkMR6aDu2g5Zg9ku2QhHNc1ij0xwqYjA4hq3_oOS6oqG49A-l0SD8hFY-qie3iqqfXqO-hK49GlG1aJ6mS9fQ_b6uaIDe0_Rnxjw9eX3yWR4_XA1ipriCJFhiVhGTkvnDIZ3aRWTHLjnJtbGijHDtMhSYLmRhUJGY4U0IFMvQJRyXA_mWhYmOyDrs9cZHBJqMgWFUhxRdcierHQK3U4COFkZyy3vkIsWrtI0yuG-gMVz2Woe1_iWHt8S8e2Q7ucL81o04_emlx7_z2Ze7TrcQBsoGxso_7KBDjlpR69spuCiTAVHbikLKTuk147o1-Nf-nP0H_05Jpv-ez5Tk2QnZH359g6nyF2W-iyY6QcRd-tC priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxELVaUKVeqrYUkZZWPvQAh4X98NreUwVVUIRUhAqRuK3G9hiQaJIm6SH_vjMbbxCV6HXXtqyxPX4ztt8T4quK5PLQx0wjYqY0qAycgiwHb2qXGxMafpz840KPxur8pr5JCbdFulbZ-8TOUYep5xz5cWk0QQXbWPtt9jtj1Sg-XU0SGi_FNrlgS8HX9unw4vLn5hyB8EneE_rk5vh8NLzMiwOWDD_MdflkL-oo-5_gzH-ORrsd5-yteJOgojxZj-078QIn78Wr7sqmX-yIMYWMZGCKddcvKaVbye5aNOeUZMeAhEHewf18JR2n6SRL4cr7iYTF6tdsOe2y2A8reRKuJPkVj6wz_0GMz4bX30dZEknIvCrMMovOxuhpm7cBlNWoGaOEkINSXjlTlahqbxsgZBOM9WhLJiIqNcWFtbONr3bF1mQ6wT0hfQXYAGgTIBKKCjYCuZ8CadEqVQc9EEe9uVqfGMRZyOKh7bmP1_Zt2b4t2XcgDjYVZmvyjOeLnrL9N8WY9br7MJ3ftmkRtbqISF4CAuRRQaVcU3pHvSXYgxUqamS_H702LcVF-zhxBuKwH9HH38_05-P_m_okXnNJzsUU1b7YWs7_4GdCJ0v3JU3Bv-Fy45c priority: 102 providerName: ProQuest |
Title | Descalarization by quenching charged hairy black hole in asymptotically AdS spacetime |
URI | https://link.springer.com/article/10.1007/JHEP01(2023)062 https://www.proquest.com/docview/2765228988 https://doaj.org/article/61fe006ada0f4a34b92cb7da075e3e42 |
Volume | 2023 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB7xUCUuVaGtSEsjHzjAYat9eL3eY4gSIiQQgkbithq_ChJNUJIe8u874-xS0YoDl5W1a6-ssT3-Zuz5BuBYBlJ53oZEee8TqVAmaCQmKdqqNGlVuZqDky-v1GQqL-7Kuy3IuliYeNu9O5KMmroLdruYjK7T7ITTfZ-mrHV3SyrzpB5ygEN7cECAJO0YfP5v9GLziRz9L4DlP2ehcYsZf4D3LTYUg81g7sOWnx3Au3hH0y4_wpRsRJIoGbeb0Elh1iLeg2YnkoiUR96Je3xYrIVhv5zg3LfiYSZwuf71tJpHt_XjWgzcrSBFYj0nlv8E0_Hox3CStFkREiuzapUEo0OwtK9rh1IrrxiUOJeilFaaqsi9LK2ukaCMq7T1OmfmoVyRIVgaXdviM-zM5jN_CMIW6GtEVTkMBJucDkj6JvO0SqUsnerB905cjW0pwzlzxWPTkR1v5NuwfBuSbw9Onhs8bdgyXq96xvJ_rsY01_HFfPGzaVdNo7LgSS2gwzRILKSpc2uot4RzfOEl_eSoG72mXXvLJq8UgUpda92D025E_35-pT9f3lD3K-xxkT0xWXEEO6vFb_-NsMnK9GFbj8_7sHs2urq-6ce5yU817Edrn57TfPAH-hzirQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4ikWCvgAUnsIzcOxnQNCBbpsn0KiK_UW_BhDpbK77C5C-VP8RmacZKsilVuviW1ZM-OZz2N7PsZeiYAuD1xIJAAkQhqRGCtMkhqnSpsq5St6nHx0LEdjsX9anq6xP_1bGLpW2fvE6Kj91FGOfDtXEqGCrrR-N_uZEGsUna72FBqtWRxA8xu3bIu3ex9Rv6_zfLh78mGUdKwCiROZWibB6hAcxkXtjdASJAV171MjhBNWFTmI0unKIBTwSjvQOVXuySVupEqrK1fguDfYTVEUFa0oPfy0OrVANJT25YNStb0_2v2cZptEUL6VyvxS5IsEAZdQ7T8HsTG-De-xux0w5TutJd1nazB5wG7FC6Ju8ZCNcYOK6sSddftuk9uGx0vYlMHisd4SeP7dnM0bbikpyIl4l59NuFk0P2bLacyZnzd8x3_h6MUcEKv9Iza-FuE9ZuuT6QSeMO4KA5UxUnkTELN5HQw6uwzQRQhRejlgb3px1a6rV060Ged1X2m5lW9N8q1RvgO2ueowa0t1XN30Pcl_1YxqbMcP0_m3uluytcwCoE8y3qRBmELYKncWZ4sgCwoQOMhGr726W_iL-sJMB2yr1-jF7yvm8_T_Q71kt0cnR4f14d7xwTN2h3pRFigrNtj6cv4LniMuWtoX0Rg5-3rd1v8XJgIezg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVCAuiKdIW8AHkNrDUu-u1949VKilidIWogiI1JvrJ1RqkzQJqvav8esY7yNVkcqt113bsmbG3zw8ngF4zzxCnjM-4s65iHHFIqWZiqgyItNUCFuEx8lfh3wwZsen2eka_GnfwoS0yhYTK6C2UxNi5LuJ4Ggq5AU6bL5Jixgd9j_NrqLQQSrctLbtNGoROXHlNbpvi72jQ-T1hyTp9358HkRNh4HIsFgsI69z7w3qyNwqlnPHg4K3lirGDNMiTRzLTF4oNAusyI3Lk1DFJ-HoVGU6L0yK6z6AdYFeEe3A-kFvOPq2usNA24i2xYSo2D0e9EY03g7tyncoT27pwapdwC0b959r2Urb9Z_Ck8ZMJfu1XD2DNTd5Dg-rdFGzeAFjdFeRuehn1684iS5JlZId4lmkqr7kLPmlzucl0SFESEIbXnI-IWpRXs6W0yqCflGSffudIKYZF3rcv4TxvZDvFXQm04l7DcSkyhVKcWGVRwvO5l4h9MUOAYOxzPIufGzJJU1TvTw00biQbd3lmr4y0FcifbuwvZowqwt33D30INB_NSxU3K4-TOc_ZXOAJY-9Q4RSVlHPVMp0kRiNu0WTy6WO4SJbLfdkAwMLeSO0XdhpOXrz-479bPx_qXfwCCVffjkanmzC4zAphITidAs6y_lv9waNpKV-20gjgbP7PgB_AUnLJGA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Descalarization+by+quenching+charged+hairy+black+hole+in+asymptotically+AdS+spacetime&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Chen%2C+Qian&rft.au=Ning%2C+Zhuan&rft.au=Tian%2C+Yu&rft.au=Wang%2C+Bin&rft.date=2023-01-13&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2023&rft.issue=1&rft_id=info:doi/10.1007%2FJHEP01%282023%29062&rft.externalDocID=10_1007_JHEP01_2023_062 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |