Descalarization by quenching charged hairy black hole in asymptotically AdS spacetime

A bstract In this work, we study the real-time dynamics of the charged hairy black hole with the time-dependent source of scalar field in asymptotically anti-de Sitter (AdS) spacetime. The numerical results reveal a novel descalarization mechanism. In order to obtain the hairy black hole as the init...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2023; no. 1; pp. 62 - 25
Main Authors Chen, Qian, Ning, Zhuan, Tian, Yu, Wang, Bin, Zhang, Cheng-Yong
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 13.01.2023
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1029-8479
1029-8479
DOI10.1007/JHEP01(2023)062

Cover

Loading…
Abstract A bstract In this work, we study the real-time dynamics of the charged hairy black hole with the time-dependent source of scalar field in asymptotically anti-de Sitter (AdS) spacetime. The numerical results reveal a novel descalarization mechanism. In order to obtain the hairy black hole as the initial data for the quench process, we first analyze the quasi-normal modes of the massive complex scalar field on the Reissner-Nordström anti-de Sitter (RN-AdS) black hole background. We find the dominant unstable modes for large and small RN-AdS black holes come from the zero-damped modes and AdS modes, respectively. Then, the unstable RN-AdS black holes are perturbed to trigger the transition to hairy black holes. With the hairy black hole in hand, we specify a time dependent scalar source for the system. As the source is turned on, the electric charge, energy and scalar condensation of the system start to oscillate with the entropy increasing monotonically. Finally, with the decay of the scalar source, the system gradually settles down to a new state. Interestingly, the final state of the evolution could be a hairy black hole with less scalar condensation, a RN-AdS black hole or a Schwarzschild-AdS black hole, which depends on the quench strength. However, as long as the quench strength is large enough, the system always loses all the electric charge and converges to the Schwarzschild-AdS black hole.
AbstractList In this work, we study the real-time dynamics of the charged hairy black hole with the time-dependent source of scalar field in asymptotically anti-de Sitter (AdS) spacetime. The numerical results reveal a novel descalarization mechanism. In order to obtain the hairy black hole as the initial data for the quench process, we first analyze the quasi-normal modes of the massive complex scalar field on the Reissner-Nordström anti-de Sitter (RN-AdS) black hole background. We find the dominant unstable modes for large and small RN-AdS black holes come from the zero-damped modes and AdS modes, respectively. Then, the unstable RN-AdS black holes are perturbed to trigger the transition to hairy black holes. With the hairy black hole in hand, we specify a time dependent scalar source for the system. As the source is turned on, the electric charge, energy and scalar condensation of the system start to oscillate with the entropy increasing monotonically. Finally, with the decay of the scalar source, the system gradually settles down to a new state. Interestingly, the final state of the evolution could be a hairy black hole with less scalar condensation, a RN-AdS black hole or a Schwarzschild-AdS black hole, which depends on the quench strength. However, as long as the quench strength is large enough, the system always loses all the electric charge and converges to the Schwarzschild-AdS black hole.
Abstract In this work, we study the real-time dynamics of the charged hairy black hole with the time-dependent source of scalar field in asymptotically anti-de Sitter (AdS) spacetime. The numerical results reveal a novel descalarization mechanism. In order to obtain the hairy black hole as the initial data for the quench process, we first analyze the quasi-normal modes of the massive complex scalar field on the Reissner-Nordström anti-de Sitter (RN-AdS) black hole background. We find the dominant unstable modes for large and small RN-AdS black holes come from the zero-damped modes and AdS modes, respectively. Then, the unstable RN-AdS black holes are perturbed to trigger the transition to hairy black holes. With the hairy black hole in hand, we specify a time dependent scalar source for the system. As the source is turned on, the electric charge, energy and scalar condensation of the system start to oscillate with the entropy increasing monotonically. Finally, with the decay of the scalar source, the system gradually settles down to a new state. Interestingly, the final state of the evolution could be a hairy black hole with less scalar condensation, a RN-AdS black hole or a Schwarzschild-AdS black hole, which depends on the quench strength. However, as long as the quench strength is large enough, the system always loses all the electric charge and converges to the Schwarzschild-AdS black hole.
A bstract In this work, we study the real-time dynamics of the charged hairy black hole with the time-dependent source of scalar field in asymptotically anti-de Sitter (AdS) spacetime. The numerical results reveal a novel descalarization mechanism. In order to obtain the hairy black hole as the initial data for the quench process, we first analyze the quasi-normal modes of the massive complex scalar field on the Reissner-Nordström anti-de Sitter (RN-AdS) black hole background. We find the dominant unstable modes for large and small RN-AdS black holes come from the zero-damped modes and AdS modes, respectively. Then, the unstable RN-AdS black holes are perturbed to trigger the transition to hairy black holes. With the hairy black hole in hand, we specify a time dependent scalar source for the system. As the source is turned on, the electric charge, energy and scalar condensation of the system start to oscillate with the entropy increasing monotonically. Finally, with the decay of the scalar source, the system gradually settles down to a new state. Interestingly, the final state of the evolution could be a hairy black hole with less scalar condensation, a RN-AdS black hole or a Schwarzschild-AdS black hole, which depends on the quench strength. However, as long as the quench strength is large enough, the system always loses all the electric charge and converges to the Schwarzschild-AdS black hole.
ArticleNumber 62
Author Zhang, Cheng-Yong
Tian, Yu
Ning, Zhuan
Chen, Qian
Wang, Bin
Author_xml – sequence: 1
  givenname: Qian
  surname: Chen
  fullname: Chen, Qian
  organization: School of Physics, University of Chinese Academy of Sciences
– sequence: 2
  givenname: Zhuan
  surname: Ning
  fullname: Ning, Zhuan
  organization: School of Physics, University of Chinese Academy of Sciences
– sequence: 3
  givenname: Yu
  surname: Tian
  fullname: Tian, Yu
  email: ytian@ucas.ac.cn
  organization: School of Physics, University of Chinese Academy of Sciences, Institute of Theoretical Physics, Chinese Academy of Sciences
– sequence: 4
  givenname: Bin
  surname: Wang
  fullname: Wang, Bin
  organization: Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou University, Shanghai Frontier Science Center for Gravitational Wave Physics, Shanghai Jiao Tong University
– sequence: 5
  givenname: Cheng-Yong
  surname: Zhang
  fullname: Zhang, Cheng-Yong
  organization: Department of Physics and Siyuan Laboratory, Jinan University
BookMark eNp9kc1P3DAQxa0KpPJ17tVSL-1hy9jxV46IQqFCKhJwtiaOs-slGy92OIS_HkOqFlWip_FY83vzNG-f7Axx8IR8YvCNAejjnxdn18C-cODVV1D8A9ljwOuFEbreefP-SPZzXgMwyWrYI3fffXbYYwpPOIY40GaiD49-cKswLKlbYVr6lq4wpIk2Pbp7uoq9p2GgmKfNdoxjKHg_0ZP2huYtOj-GjT8kux322R_9rgfk7vzs9vRicfXrx-XpydXCCabHRdeYrnOGc9OiMMorUEy2LaAQTjS64l5IZ2qUClptnDdcu05zJUUtG1O76oBczrptxLXdprDBNNmIwb5-xLS0mIrD3lvFOg-gsEXoBFaiqblrdOm09JUXvGh9nrW2KZYL5NGu42Main3LtZLFZG1MmTqep1yKOSff_dnKwL7kYOcc7EsOtuRQCPkP4cL4eusxYej_w8HM5bJhWPr01897yDM_HZ0G
CitedBy_id crossref_primary_10_1103_PhysRevD_110_104075
crossref_primary_10_1007_JHEP07_2024_043
crossref_primary_10_1007_JHEP07_2024_274
crossref_primary_10_1007_JHEP10_2023_176
crossref_primary_10_1007_s11433_023_2231_5
crossref_primary_10_1103_PhysRevD_108_084016
crossref_primary_10_1103_PhysRevD_108_106017
crossref_primary_10_1002_asna_20240145
crossref_primary_10_1103_PhysRevD_109_124038
Cites_doi 10.1007/JHEP07(2010)050
10.1103/PhysRevLett.127.031101
10.1103/PhysRevD.106.044018
10.1103/PhysRevD.78.065034
10.1103/PhysRevD.66.084007
10.1103/PhysRevD.87.041502
10.1016/S0550-3213(02)00179-7
10.1007/JHEP04(2015)066
10.1103/PhysRevLett.129.121104
10.1103/PhysRevLett.126.011104
10.1007/JHEP06(2014)019
10.1103/PhysRevLett.120.131103
10.1103/PhysRevD.106.L061501
10.12942/lrr-2012-7
10.1103/PhysRevD.15.2752
10.1103/PhysRevLett.121.101102
10.1103/PhysRevD.102.084029
10.1088/1361-6382/ab9bbb
10.1007/JHEP08(2012)117
10.1007/JHEP07(2014)096
10.1103/RevModPhys.83.793
10.1088/1751-8113/42/34/343001
10.1103/PhysRevLett.112.221101
10.1140/epjc/s10052-021-09630-7
10.1016/S0370-1573(99)00010-1
10.1007/JHEP07(2014)086
10.1103/PhysRevLett.120.131102
10.1103/PhysRevD.104.064017
10.1103/PhysRevD.106.064036
10.1103/PhysRevD.67.064020
10.1088/0264-9381/32/14/144001
10.1007/JHEP02(2017)128
10.1103/PhysRevD.95.124032
10.1103/PhysRevD.83.064020
10.1103/PhysRevLett.127.101102
10.1103/PhysRevLett.116.141101
10.1103/PhysRevLett.110.015301
10.1103/PhysRevD.93.044033
10.1007/JHEP10(2010)045
10.1103/PhysRevD.98.104056
10.1007/978-3-319-19000-6_1
10.1016/j.nuclphysb.2015.07.030
10.1103/PhysRevD.81.124020
10.1103/PhysRevLett.120.131104
10.1103/PhysRevLett.123.011101
10.1142/S0218271815420146
10.1103/PhysRevLett.126.011103
10.1103/PhysRevLett.125.231101
10.1103/PhysRevLett.116.141102
10.1103/PhysRevD.104.084069
10.1103/PhysRevD.102.044014
10.1103/PhysRevD.7.949
10.1103/PhysRevLett.128.161105
10.1103/PhysRevD.106.L061502
10.1103/PhysRevLett.127.161103
10.1007/JHEP06(2016)046
10.1088/1674-1137/ac70ad
10.1103/PhysRevD.104.084089
10.1103/PhysRevD.103.064024
10.1103/PhysRevLett.101.031601
10.1016/0003-4916(82)90116-6
10.1103/PhysRevD.94.044061
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP01(2023)062
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 25
ExternalDocumentID oai_doaj_org_article_61fe006ada0f4a34b92cb7da075e3e42
10_1007_JHEP01_2023_062
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AMVHM
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c417t-fb8ffc8228da486e60615dd0a44c4b732e45c89a560d78ce827cf7265495b89c3
IEDL.DBID C24
ISSN 1029-8479
IngestDate Wed Aug 27 01:22:11 EDT 2025
Sun Jul 13 04:08:48 EDT 2025
Thu Apr 24 22:58:45 EDT 2025
Tue Jul 01 01:00:41 EDT 2025
Fri Feb 21 02:43:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Holography and Condensed Matter Physics (AdS/CMT)
Black Holes
Models of Quantum Gravity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-fb8ffc8228da486e60615dd0a44c4b732e45c89a560d78ce827cf7265495b89c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/JHEP01(2023)062
PQID 2765228988
PQPubID 2034718
PageCount 25
ParticipantIDs doaj_primary_oai_doaj_org_article_61fe006ada0f4a34b92cb7da075e3e42
proquest_journals_2765228988
crossref_primary_10_1007_JHEP01_2023_062
crossref_citationtrail_10_1007_JHEP01_2023_062
springer_journals_10_1007_JHEP01_2023_062
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-13
PublicationDateYYYYMMDD 2023-01-13
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-13
  day: 13
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References GaoXGarcia-GarciaAMZengHBZhangH-QNormal modes and time evolution of a holographic superconductor after a quantum quenchJHEP2014060192014JHEP...06..019G10.1007/JHEP06(2014)019[arXiv:1212.1049] [INSPIRE]
N. Sanchis-Gual, J.C. Degollado, P.J. Montero, J.A. Font and C. Herdeiro, Explosion and final state of an unstable Reissner-Nordström black hole, Phys. Rev. Lett.116 (2016) 141101 [arXiv:1512.05358] [INSPIRE].
CheslerPMYaffeLGNumerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimesJHEP2014070862014JHEP...07..086C10.1007/JHEP07(2014)0861421.81111[arXiv:1309.1439] [INSPIRE]
R.A. Konoplya, Decay of charged scalar field around a black hole: quasinormal modes of R-N, R-N-AdS black hole, Phys. Rev. D66 (2002) 084007 [gr-qc/0207028] [INSPIRE].
Y. Liu, C.-Y. Zhang, W.-L. Qian, K. Lin and B. Wang, Dynamic generation or removal of a scalar hair, arXiv:2206.05012 [INSPIRE].
C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].
C.A.R. Herdeiro, E. Radu, N. Sanchis-Gual and J.A. Font, Spontaneous scalarization of charged black holes, Phys. Rev. Lett.121 (2018) 101102 [arXiv:1806.05190] [INSPIRE].
A. Zimmerman and Z. Mark, Damped and zero-damped quasinormal modes of charged, nearly extremal black holes, Phys. Rev. D93 (2016) 044033 [arXiv:1512.02247] [INSPIRE].
H.-J. Kuan, A.G. Suvorov, D.D. Doneva and S.S. Yazadjiev, Gravitational waves from accretion-induced descalarization in massive scalar-tensor theory, Phys. Rev. Lett.129 (2022) 121104 [arXiv:2203.03672] [INSPIRE].
P.T. Chrusciel, J. Lopes Costa and M. Heusler, Stationary black holes: uniqueness and beyond, Living Rev. Rel.15 (2012) 7 [arXiv:1205.6112] [INSPIRE].
H. Yang, F. Zhang, A. Zimmerman, D.A. Nichols, E. Berti and Y. Chen, Branching of quasinormal modes for nearly extremal Kerr black holes, Phys. Rev. D87 (2013) 041502 [arXiv:1212.3271] [INSPIRE].
C.A.R. Herdeiro, E. Radu, H.O. Silva, T.P. Sotiriou and N. Yunes, Spin-induced scalarized black holes, Phys. Rev. Lett.126 (2021) 011103 [arXiv:2009.03904] [INSPIRE].
H.O. Silva, J. Sakstein, L. Gualtieri, T.P. Sotiriou and E. Berti, Spontaneous scalarization of black holes and compact stars from a Gauss-Bonnet coupling, Phys. Rev. Lett.120 (2018) 131104 [arXiv:1711.02080] [INSPIRE].
VolkovMSGal’tsovDVGravitating non-Abelian solitons and black holes with Yang-Mills fieldsPhys. Rept.199931911999PhR...319....1V172051910.1016/S0370-1573(99)00010-1[hep-th/9810070] [INSPIRE]
R. Brito, V. Cardoso and P. Pani, Superradiance: new frontiers in black hole physics, Lect. Notes Phys.906 (2015) pp.1 [arXiv:1501.06570] [INSPIRE].
BreitenlohnerPFreedmanDZStability in gauged extended supergravityAnnals Phys.19821442491982AnPhy.144..249B68422310.1016/0003-4916(82)90116-60606.53044[INSPIRE]
C.-Y. Zhang, Q. Chen, Y. Liu, W.-K. Luo, Y. Tian and B. Wang, Critical phenomena in dynamical scalarization of charged black holes, Phys. Rev. Lett.128 (2022) 161105 [arXiv:2112.07455] [INSPIRE].
N. Uchikata and S. Yoshida, Quasinormal modes of a massless charged scalar field on a small Reissner-Nordström-anti-de Sitter black hole, Phys. Rev. D83 (2011) 064020 [arXiv:1109.6737] [INSPIRE].
M.J. Bhaseen, J.P. Gauntlett, B.D. Simons, J. Sonner and T. Wiseman, Holographic superfluids and the dynamics of symmetry breaking, Phys. Rev. Lett.110 (2013) 015301 [arXiv:1207.4194] [INSPIRE].
W.E. East and J.L. Ripley, Dynamics of spontaneous black hole scalarization and mergers in Einstein-scalar-Gauss-Bonnet gravity, Phys. Rev. Lett.127 (2021) 101102 [arXiv:2105.08571] [INSPIRE].
H. Guo, S. Kiorpelidi, X.-M. Kuang, E. Papantonopoulos, B. Wang and J.-P. Wu, Spontaneous holographic scalarization of black holes in Einstein-scalar-Gauss-Bonnet theories, Phys. Rev. D102 (2020) 084029 [arXiv:2006.10659] [INSPIRE].
C. Herdeiro and E. Radu, Construction and physical properties of Kerr black holes with scalar hair, Class. Quant. Grav.32 (2015) 144001 [arXiv:1501.04319] [INSPIRE].
E. Berti, L.G. Collodel, B. Kleihaus and J. Kunz, Spin-induced black-hole scalarization in Einstein-scalar-Gauss-Bonnet theory, Phys. Rev. Lett.126 (2021) 011104 [arXiv:2009.03905] [INSPIRE].
ElvangHHadjiantonisMA practical approach to the Hamilton-Jacobi formulation of holographic renormalizationJHEP2016060462016JHEP...06..046E353820710.1007/JHEP06(2016)0461388.83229[arXiv:1603.04485] [INSPIRE]
C. Niu, W. Xiong, P. Liu, C.-Y. Zhang and B. Wang, Dynamical descalarization in Einstein-Maxwell-scalar theory, arXiv:2209.12117 [INSPIRE].
BianchiMFreedmanDZSkenderisKHolographic renormalizationNucl. Phys. B20026311592002NuPhB.631..159B190806810.1016/S0550-3213(02)00179-70995.81075[hep-th/0112119] [INSPIRE]
N. Sanchis-Gual, J.C. Degollado, C. Herdeiro, J.A. Font and P.J. Montero, Dynamical formation of a Reissner-Nordström black hole with scalar hair in a cavity, Phys. Rev. D94 (2016) 044061 [arXiv:1607.06304] [INSPIRE].
Y. Liu, C.-Y. Zhang, Q. Chen, Z. Cao, Y. Tian and B. Wang, The critical scalarization and descalarization of black holes in a generalized scalar-tensor theory, arXiv:2208.07548 [INSPIRE].
HerdeiroCARRaduEAsymptotically flat black holes with scalar hair: a reviewInt. J. Mod. Phys. D20152415420142015IJMPD..2442014H337570710.1142/S02182718154201461339.83008[arXiv:1504.08209] [INSPIRE]
P.V.P. Cunha, C.A.R. Herdeiro and E. Radu, Spontaneously scalarized Kerr black holes in extended scalar-tensor-Gauss-Bonnet gravity, Phys. Rev. Lett.123 (2019) 011101 [arXiv:1904.09997] [INSPIRE].
H.-J. Kuan, D.D. Doneva and S.S. Yazadjiev, Dynamical formation of scalarized black holes and neutron stars through stellar core collapse, Phys. Rev. Lett.127 (2021) 161103 [arXiv:2103.11999] [INSPIRE].
J.L. Ripley and F. Pretorius, Dynamics of a Z2symmetric EdGB gravity in spherical symmetry, Class. Quant. Grav.37 (2020) 155003 [arXiv:2005.05417] [INSPIRE].
BasuPBhattacharyaJBhattacharyyaSLoganayagamRMinwallaSUmeshVSmall hairy black holes in global AdS spacetimeJHEP2010100452010JHEP...10..045B278053110.1007/JHEP10(2010)0451291.83127[arXiv:1003.3232] [INSPIRE]
S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett.101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].
J.D. Bekenstein, Extraction of energy and charge from a black hole, Phys. Rev. D7 (1973) 949 [INSPIRE].
C.A.R. Herdeiro and E. Radu, Kerr black holes with scalar hair, Phys. Rev. Lett.112 (2014) 221101 [arXiv:1403.2757] [INSPIRE].
P. Bosch, S.R. Green and L. Lehner, Nonlinear evolution and final fate of charged anti-de Sitter black hole superradiant instability, Phys. Rev. Lett.116 (2016) 141102 [arXiv:1601.01384] [INSPIRE].
GibbonsGWHawkingSWAction integrals and partition functions in quantum gravityPhys. Rev. D19771527521977PhRvD..15.2752G10.1103/PhysRevD.15.2752[INSPIRE]
García-GarcíaAMZengHBZhangHQA thermal quench induces spatial inhomogeneities in a holographic superconductorJHEP2014070962014JHEP...07..096G10.1007/JHEP07(2014)096[arXiv:1308.5398] [INSPIRE]
E. Berti and K.D. Kokkotas, Quasinormal modes of Reissner-Nordström-anti-de Sitter black holes: scalar, electromagnetic and gravitational perturbations, Phys. Rev. D67 (2003) 064020 [gr-qc/0301052] [INSPIRE].
BaiXLeeB-HLiLSunJ-RZhangH-QTime evolution of entanglement entropy in quenched holographic superconductorsJHEP2015040662015JHEP...04..066B335130310.1007/JHEP04(2015)0661388.81705[arXiv:1412.5500] [INSPIRE]
D.D. Doneva, A. Vañó Viñuales and S.S. Yazadjiev, Dynamical descalarization with a jump during a black hole merger, Phys. Rev. D106 (2022) L061502 [arXiv:2204.05333] [INSPIRE].
W.-K. Luo, C.-Y. Zhang, P. Liu, C. Niu and B. Wang, Dynamical spontaneous scalarization in Einstein-Maxwell-scalar models in anti-de Sitter spacetime, Phys. Rev. D106 (2022) 064036 [arXiv:2206.05690] [INSPIRE].
F. Corelli, T. Ikeda and P. Pani, Challenging cosmic censorship in Einstein-Maxwell-scalar theory with numerically simulated gedanken experiments, Phys. Rev. D104 (2021) 084069 [arXiv:2108.08328] [INSPIRE].
DiasOJCMasachsRHairy black holes and the endpoint of AdS4charged superradianceJHEP2017021282017JHEP...02..128D10.1007/JHEP02(2017)1281377.83040[arXiv:1610.03496] [INSPIRE]
DiasOJCFiguerasPMinwallaSMitraPMonteiroRSantosJEHairy black holes and solitons in global AdS5JHEP2012081172012JHEP...08..117D10.1007/JHEP08(2012)1171397.83063[arXiv:1112.4447] [INSPIRE]
ZhangC-YZhangS-JWangBCharged scalar perturbations around Garfinkle-Horowitz-Strominger black holesNucl. Phys. B2015899372015NuPhB.899...37Z339890510.1016/j.nuclphysb.2015.07.0301331.83055[arXiv:1501.03260] [INSPIRE]
M. Elley, H.O. Silva, H. Witek and N. Yunes, Spin-induced dynamical scalarization, descalarization, and stealthness in scalar-Gauss-Bonnet gravity during a black hole coalescence, Phys. Rev. D106 (2022) 044018 [arXiv:2205.06240] [INSPIRE].
G. Antoniou, A. Bakopoulos and P. Kanti, Evasion of no-hair theorems and novel black-hole solutions in Gauss-Bonnet theories, Phys. Rev. Lett.120 (2018) 131102 [arXiv:1711.03390] [INSPIRE].
GuoHKuangX-MPapantonopoulosEWangBHorizon curvature and spacetime structure influences on black hole scalarizationEur. Phys. J. C2021818422021EPJC...81..842G10.1140/epjc/s10052-021-09630-7[arXiv:2012.11844] [INSPIRE]
D.D. Doneva and S.S. Yazadjiev, Dynamics of the nonrotating and rotating black hole scalarization, Phys. Rev. D103 (2021) 064024 [arXiv:2101.03514] [INSPIRE].
H.O. Silva, H. Witek, M. Elley and N. Yunes, Dynamical descalarization in binary black hole mergers, Phys. Rev. Lett.127 (2021) 031101 [arXiv:2012.10436] [INSPIRE].
A. Dima, E. Barausse, N. Franchini and T.P. Sotiriou, Spin-induced black hole spontaneous scalarization, Phys. Rev. Lett.125 (2020) 231101 [arXiv:2006.03095] [INSPIRE].
Z.-Y. Tang, B. Wang, T. Karakasis and E. Papantonopoulos, Curvature scalarization of black holes in f(R) gravity, Phys. Rev. D104 (2021) 064017 [arXiv:2008.13318] [INSPIRE].
D.D. Doneva and S.S. Yazadjiev, New Gauss-Bonnet black holes with curvature-induced scalarization in extended scalar-tensor theories, Phys. Rev. Lett.120 (2018) 1
19964_CR22
X Bai (19964_CR65) 2015; 04
K Murata (19964_CR15) 2010; 07
H Elvang (19964_CR62) 2016; 06
19964_CR17
19964_CR16
PM Chesler (19964_CR66) 2014; 07
19964_CR13
19964_CR57
19964_CR12
19964_CR56
19964_CR14
C-Y Zhang (19964_CR50) 2022; 106
OJC Dias (19964_CR20) 2012; 08
RA Konoplya (19964_CR58) 2011; 83
H Guo (19964_CR6) 2021; 81
P Basu (19964_CR19) 2010; 10
19964_CR31
19964_CR30
19964_CR33
19964_CR32
19964_CR28
19964_CR27
19964_CR29
19964_CR24
19964_CR23
MS Volkov (19964_CR3) 1999; 319
19964_CR26
19964_CR25
P Breitenlohner (19964_CR21) 1982; 144
AM García-García (19964_CR64) 2014; 07
C-Y Zhang (19964_CR59) 2015; 899
19964_CR42
19964_CR41
19964_CR44
19964_CR43
19964_CR40
19964_CR39
X Gao (19964_CR63) 2014; 06
19964_CR38
CAR Herdeiro (19964_CR4) 2015; 24
19964_CR9
19964_CR35
19964_CR34
19964_CR7
19964_CR37
19964_CR8
19964_CR36
19964_CR5
19964_CR1
19964_CR2
19964_CR53
19964_CR52
19964_CR11
19964_CR55
19964_CR10
19964_CR54
19964_CR51
GW Gibbons (19964_CR60) 1977; 15
19964_CR49
M Bianchi (19964_CR61) 2002; 631
19964_CR46
19964_CR45
19964_CR48
OJC Dias (19964_CR18) 2017; 02
19964_CR47
References_xml – reference: W.E. East and J.L. Ripley, Dynamics of spontaneous black hole scalarization and mergers in Einstein-scalar-Gauss-Bonnet gravity, Phys. Rev. Lett.127 (2021) 101102 [arXiv:2105.08571] [INSPIRE].
– reference: H. Yang, F. Zhang, A. Zimmerman, D.A. Nichols, E. Berti and Y. Chen, Branching of quasinormal modes for nearly extremal Kerr black holes, Phys. Rev. D87 (2013) 041502 [arXiv:1212.3271] [INSPIRE].
– reference: E. Berti, L.G. Collodel, B. Kleihaus and J. Kunz, Spin-induced black-hole scalarization in Einstein-scalar-Gauss-Bonnet theory, Phys. Rev. Lett.126 (2021) 011104 [arXiv:2009.03905] [INSPIRE].
– reference: W.-K. Luo, C.-Y. Zhang, P. Liu, C. Niu and B. Wang, Dynamical spontaneous scalarization in Einstein-Maxwell-scalar models in anti-de Sitter spacetime, Phys. Rev. D106 (2022) 064036 [arXiv:2206.05690] [INSPIRE].
– reference: P. Bosch, S.R. Green and L. Lehner, Nonlinear evolution and final fate of charged anti-de Sitter black hole superradiant instability, Phys. Rev. Lett.116 (2016) 141102 [arXiv:1601.01384] [INSPIRE].
– reference: ElvangHHadjiantonisMA practical approach to the Hamilton-Jacobi formulation of holographic renormalizationJHEP2016060462016JHEP...06..046E353820710.1007/JHEP06(2016)0461388.83229[arXiv:1603.04485] [INSPIRE]
– reference: CheslerPMYaffeLGNumerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimesJHEP2014070862014JHEP...07..086C10.1007/JHEP07(2014)0861421.81111[arXiv:1309.1439] [INSPIRE]
– reference: HerdeiroCARRaduEAsymptotically flat black holes with scalar hair: a reviewInt. J. Mod. Phys. D20152415420142015IJMPD..2442014H337570710.1142/S02182718154201461339.83008[arXiv:1504.08209] [INSPIRE]
– reference: P.V.P. Cunha, C.A.R. Herdeiro and E. Radu, Spontaneously scalarized Kerr black holes in extended scalar-tensor-Gauss-Bonnet gravity, Phys. Rev. Lett.123 (2019) 011101 [arXiv:1904.09997] [INSPIRE].
– reference: A. Dima, E. Barausse, N. Franchini and T.P. Sotiriou, Spin-induced black hole spontaneous scalarization, Phys. Rev. Lett.125 (2020) 231101 [arXiv:2006.03095] [INSPIRE].
– reference: N. Sanchis-Gual, J.C. Degollado, C. Herdeiro, J.A. Font and P.J. Montero, Dynamical formation of a Reissner-Nordström black hole with scalar hair in a cavity, Phys. Rev. D94 (2016) 044061 [arXiv:1607.06304] [INSPIRE].
– reference: R.A. Konoplya, Decay of charged scalar field around a black hole: quasinormal modes of R-N, R-N-AdS black hole, Phys. Rev. D66 (2002) 084007 [gr-qc/0207028] [INSPIRE].
– reference: J.D. Bekenstein, Extraction of energy and charge from a black hole, Phys. Rev. D7 (1973) 949 [INSPIRE].
– reference: D.D. Doneva, S. Kiorpelidi, P.G. Nedkova, E. Papantonopoulos and S.S. Yazadjiev, Charged Gauss-Bonnet black holes with curvature induced scalarization in the extended scalar-tensor theories, Phys. Rev. D98 (2018) 104056 [arXiv:1809.00844] [INSPIRE].
– reference: GuoHKuangX-MPapantonopoulosEWangBHorizon curvature and spacetime structure influences on black hole scalarizationEur. Phys. J. C2021818422021EPJC...81..842G10.1140/epjc/s10052-021-09630-7[arXiv:2012.11844] [INSPIRE]
– reference: MurataKKinoshitaSTanahashiNNon-equilibrium condensation process in a holographic superconductorJHEP2010070502010JHEP...07..050M10.1007/JHEP07(2010)0501290.83044[arXiv:1005.0633] [INSPIRE]
– reference: H.O. Silva, J. Sakstein, L. Gualtieri, T.P. Sotiriou and E. Berti, Spontaneous scalarization of black holes and compact stars from a Gauss-Bonnet coupling, Phys. Rev. Lett.120 (2018) 131104 [arXiv:1711.02080] [INSPIRE].
– reference: N. Uchikata and S. Yoshida, Quasinormal modes of a massless charged scalar field on a small Reissner-Nordström-anti-de Sitter black hole, Phys. Rev. D83 (2011) 064020 [arXiv:1109.6737] [INSPIRE].
– reference: ZhangC-YZhangS-JWangBCharged scalar perturbations around Garfinkle-Horowitz-Strominger black holesNucl. Phys. B2015899372015NuPhB.899...37Z339890510.1016/j.nuclphysb.2015.07.0301331.83055[arXiv:1501.03260] [INSPIRE]
– reference: C. Herdeiro and E. Radu, Construction and physical properties of Kerr black holes with scalar hair, Class. Quant. Grav.32 (2015) 144001 [arXiv:1501.04319] [INSPIRE].
– reference: C.-Y. Zhang, Q. Chen, Y. Liu, W.-K. Luo, Y. Tian and B. Wang, Critical phenomena in dynamical scalarization of charged black holes, Phys. Rev. Lett.128 (2022) 161105 [arXiv:2112.07455] [INSPIRE].
– reference: ZhangC-YChenQLiuYLuoW-KTianYWangBDynamical transitions in scalarization and descalarization through black hole accretionPhys. Rev. D2022106L0615012022PhRvD.106f1501Z450535310.1103/PhysRevD.106.L061501[arXiv:2204.09260] [INSPIRE]
– reference: BasuPBhattacharyaJBhattacharyyaSLoganayagamRMinwallaSUmeshVSmall hairy black holes in global AdS spacetimeJHEP2010100452010JHEP...10..045B278053110.1007/JHEP10(2010)0451291.83127[arXiv:1003.3232] [INSPIRE]
– reference: P. Bosch, S.R. Green, L. Lehner and H. Roussille, Excited hairy black holes: dynamical construction and level transitions, Phys. Rev. D102 (2020) 044014 [arXiv:1912.05598] [INSPIRE].
– reference: P. Bizon, Gravitating solitons and hairy black holes, Acta Phys. Polon. B25 (1994) 877 [gr-qc/9402016] [INSPIRE].
– reference: D.D. Doneva and S.S. Yazadjiev, Dynamics of the nonrotating and rotating black hole scalarization, Phys. Rev. D103 (2021) 064024 [arXiv:2101.03514] [INSPIRE].
– reference: A. Zimmerman and Z. Mark, Damped and zero-damped quasinormal modes of charged, nearly extremal black holes, Phys. Rev. D93 (2016) 044033 [arXiv:1512.02247] [INSPIRE].
– reference: H.O. Silva, H. Witek, M. Elley and N. Yunes, Dynamical descalarization in binary black hole mergers, Phys. Rev. Lett.127 (2021) 031101 [arXiv:2012.10436] [INSPIRE].
– reference: C.-Y. Zhang, P. Liu, Y. Liu, C. Niu and B. Wang, Dynamical charged black hole spontaneous scalarization in anti-de Sitter spacetimes, Phys. Rev. D104 (2021) 084089 [arXiv:2103.13599] [INSPIRE].
– reference: DiasOJCMasachsRHairy black holes and the endpoint of AdS4charged superradianceJHEP2017021282017JHEP...02..128D10.1007/JHEP02(2017)1281377.83040[arXiv:1610.03496] [INSPIRE]
– reference: C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].
– reference: Z.-Y. Tang, B. Wang, T. Karakasis and E. Papantonopoulos, Curvature scalarization of black holes in f(R) gravity, Phys. Rev. D104 (2021) 064017 [arXiv:2008.13318] [INSPIRE].
– reference: P.T. Chrusciel, J. Lopes Costa and M. Heusler, Stationary black holes: uniqueness and beyond, Living Rev. Rel.15 (2012) 7 [arXiv:1205.6112] [INSPIRE].
– reference: W. Xiong, P. Liu, C. Niu, C.-Y. Zhang and B. Wang, Dynamical spontaneous scalarization in Einstein-Maxwell-scalar theory, Chin. Phys. C46 (2022) 095103 [arXiv:2205.07538] [INSPIRE].
– reference: DiasOJCFiguerasPMinwallaSMitraPMonteiroRSantosJEHairy black holes and solitons in global AdS5JHEP2012081172012JHEP...08..117D10.1007/JHEP08(2012)1171397.83063[arXiv:1112.4447] [INSPIRE]
– reference: H. Guo, S. Kiorpelidi, X.-M. Kuang, E. Papantonopoulos, B. Wang and J.-P. Wu, Spontaneous holographic scalarization of black holes in Einstein-scalar-Gauss-Bonnet theories, Phys. Rev. D102 (2020) 084029 [arXiv:2006.10659] [INSPIRE].
– reference: G. Antoniou, A. Bakopoulos and P. Kanti, Evasion of no-hair theorems and novel black-hole solutions in Gauss-Bonnet theories, Phys. Rev. Lett.120 (2018) 131102 [arXiv:1711.03390] [INSPIRE].
– reference: GaoXGarcia-GarciaAMZengHBZhangH-QNormal modes and time evolution of a holographic superconductor after a quantum quenchJHEP2014060192014JHEP...06..019G10.1007/JHEP06(2014)019[arXiv:1212.1049] [INSPIRE]
– reference: C.A.R. Herdeiro and E. Radu, Kerr black holes with scalar hair, Phys. Rev. Lett.112 (2014) 221101 [arXiv:1403.2757] [INSPIRE].
– reference: M.J. Bhaseen, J.P. Gauntlett, B.D. Simons, J. Sonner and T. Wiseman, Holographic superfluids and the dynamics of symmetry breaking, Phys. Rev. Lett.110 (2013) 015301 [arXiv:1207.4194] [INSPIRE].
– reference: M. Elley, H.O. Silva, H. Witek and N. Yunes, Spin-induced dynamical scalarization, descalarization, and stealthness in scalar-Gauss-Bonnet gravity during a black hole coalescence, Phys. Rev. D106 (2022) 044018 [arXiv:2205.06240] [INSPIRE].
– reference: KonoplyaRAZhidenkoAQuasinormal modes of black holes: from astrophysics to string theoryRev. Mod. Phys.2011837932011RvMP...83..793K10.1103/RevModPhys.83.793[arXiv:1102.4014] [INSPIRE]
– reference: K. Maeda, S. Fujii and J.-I. Koga, The final fate of instability of Reissner-Nordström-anti-de Sitter black holes by charged complex scalar fields, Phys. Rev. D81 (2010) 124020 [arXiv:1003.2689] [INSPIRE].
– reference: Y. Liu, C.-Y. Zhang, W.-L. Qian, K. Lin and B. Wang, Dynamic generation or removal of a scalar hair, arXiv:2206.05012 [INSPIRE].
– reference: R. Brito, V. Cardoso and P. Pani, Superradiance: new frontiers in black hole physics, Lect. Notes Phys.906 (2015) pp.1 [arXiv:1501.06570] [INSPIRE].
– reference: BreitenlohnerPFreedmanDZStability in gauged extended supergravityAnnals Phys.19821442491982AnPhy.144..249B68422310.1016/0003-4916(82)90116-60606.53044[INSPIRE]
– reference: BianchiMFreedmanDZSkenderisKHolographic renormalizationNucl. Phys. B20026311592002NuPhB.631..159B190806810.1016/S0550-3213(02)00179-70995.81075[hep-th/0112119] [INSPIRE]
– reference: H.-J. Kuan, A.G. Suvorov, D.D. Doneva and S.S. Yazadjiev, Gravitational waves from accretion-induced descalarization in massive scalar-tensor theory, Phys. Rev. Lett.129 (2022) 121104 [arXiv:2203.03672] [INSPIRE].
– reference: E. Berti and K.D. Kokkotas, Quasinormal modes of Reissner-Nordström-anti-de Sitter black holes: scalar, electromagnetic and gravitational perturbations, Phys. Rev. D67 (2003) 064020 [gr-qc/0301052] [INSPIRE].
– reference: S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett.101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].
– reference: GibbonsGWHawkingSWAction integrals and partition functions in quantum gravityPhys. Rev. D19771527521977PhRvD..15.2752G10.1103/PhysRevD.15.2752[INSPIRE]
– reference: D.D. Doneva and S.S. Yazadjiev, New Gauss-Bonnet black holes with curvature-induced scalarization in extended scalar-tensor theories, Phys. Rev. Lett.120 (2018) 131103 [arXiv:1711.01187] [INSPIRE].
– reference: J.L. Ripley and F. Pretorius, Dynamics of a Z2symmetric EdGB gravity in spherical symmetry, Class. Quant. Grav.37 (2020) 155003 [arXiv:2005.05417] [INSPIRE].
– reference: S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].
– reference: N. Sanchis-Gual, J.C. Degollado, P.J. Montero, J.A. Font and C. Herdeiro, Explosion and final state of an unstable Reissner-Nordström black hole, Phys. Rev. Lett.116 (2016) 141101 [arXiv:1512.05358] [INSPIRE].
– reference: P. Zimmerman, Horizon instability of extremal Reissner-Nordström black holes to charged perturbations, Phys. Rev. D95 (2017) 124032 [arXiv:1612.03172] [INSPIRE].
– reference: C.A.R. Herdeiro, E. Radu, H.O. Silva, T.P. Sotiriou and N. Yunes, Spin-induced scalarized black holes, Phys. Rev. Lett.126 (2021) 011103 [arXiv:2009.03904] [INSPIRE].
– reference: D.D. Doneva, A. Vañó Viñuales and S.S. Yazadjiev, Dynamical descalarization with a jump during a black hole merger, Phys. Rev. D106 (2022) L061502 [arXiv:2204.05333] [INSPIRE].
– reference: Y. Liu, C.-Y. Zhang, Q. Chen, Z. Cao, Y. Tian and B. Wang, The critical scalarization and descalarization of black holes in a generalized scalar-tensor theory, arXiv:2208.07548 [INSPIRE].
– reference: F. Corelli, T. Ikeda and P. Pani, Challenging cosmic censorship in Einstein-Maxwell-scalar theory with numerically simulated gedanken experiments, Phys. Rev. D104 (2021) 084069 [arXiv:2108.08328] [INSPIRE].
– reference: C. Niu, W. Xiong, P. Liu, C.-Y. Zhang and B. Wang, Dynamical descalarization in Einstein-Maxwell-scalar theory, arXiv:2209.12117 [INSPIRE].
– reference: C.A.R. Herdeiro, E. Radu, N. Sanchis-Gual and J.A. Font, Spontaneous scalarization of charged black holes, Phys. Rev. Lett.121 (2018) 101102 [arXiv:1806.05190] [INSPIRE].
– reference: VolkovMSGal’tsovDVGravitating non-Abelian solitons and black holes with Yang-Mills fieldsPhys. Rept.199931911999PhR...319....1V172051910.1016/S0370-1573(99)00010-1[hep-th/9810070] [INSPIRE]
– reference: García-GarcíaAMZengHBZhangHQA thermal quench induces spatial inhomogeneities in a holographic superconductorJHEP2014070962014JHEP...07..096G10.1007/JHEP07(2014)096[arXiv:1308.5398] [INSPIRE]
– reference: H.-J. Kuan, D.D. Doneva and S.S. Yazadjiev, Dynamical formation of scalarized black holes and neutron stars through stellar core collapse, Phys. Rev. Lett.127 (2021) 161103 [arXiv:2103.11999] [INSPIRE].
– reference: BaiXLeeB-HLiLSunJ-RZhangH-QTime evolution of entanglement entropy in quenched holographic superconductorsJHEP2015040662015JHEP...04..066B335130310.1007/JHEP04(2015)0661388.81705[arXiv:1412.5500] [INSPIRE]
– ident: 19964_CR51
– volume: 07
  start-page: 050
  year: 2010
  ident: 19964_CR15
  publication-title: JHEP
  doi: 10.1007/JHEP07(2010)050
– ident: 19964_CR45
  doi: 10.1103/PhysRevLett.127.031101
– ident: 19964_CR47
  doi: 10.1103/PhysRevD.106.044018
– ident: 19964_CR22
  doi: 10.1103/PhysRevD.78.065034
– ident: 19964_CR55
  doi: 10.1103/PhysRevD.66.084007
– ident: 19964_CR25
  doi: 10.1103/PhysRevD.87.041502
– volume: 631
  start-page: 159
  year: 2002
  ident: 19964_CR61
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(02)00179-7
– volume: 04
  start-page: 066
  year: 2015
  ident: 19964_CR65
  publication-title: JHEP
  doi: 10.1007/JHEP04(2015)066
– ident: 19964_CR49
  doi: 10.1103/PhysRevLett.129.121104
– ident: 19964_CR35
  doi: 10.1103/PhysRevLett.126.011104
– volume: 06
  start-page: 019
  year: 2014
  ident: 19964_CR63
  publication-title: JHEP
  doi: 10.1007/JHEP06(2014)019
– ident: 19964_CR29
  doi: 10.1103/PhysRevLett.120.131103
– volume: 106
  start-page: L061501
  year: 2022
  ident: 19964_CR50
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.106.L061501
– ident: 19964_CR1
  doi: 10.12942/lrr-2012-7
– volume: 15
  start-page: 2752
  year: 1977
  ident: 19964_CR60
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.15.2752
– ident: 19964_CR36
  doi: 10.1103/PhysRevLett.121.101102
– ident: 19964_CR7
  doi: 10.1103/PhysRevD.102.084029
– ident: 19964_CR38
  doi: 10.1088/1361-6382/ab9bbb
– volume: 08
  start-page: 117
  year: 2012
  ident: 19964_CR20
  publication-title: JHEP
  doi: 10.1007/JHEP08(2012)117
– volume: 07
  start-page: 096
  year: 2014
  ident: 19964_CR64
  publication-title: JHEP
  doi: 10.1007/JHEP07(2014)096
– volume: 83
  start-page: 793
  year: 2011
  ident: 19964_CR58
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.83.793
– ident: 19964_CR24
  doi: 10.1088/1751-8113/42/34/343001
– ident: 19964_CR9
  doi: 10.1103/PhysRevLett.112.221101
– volume: 81
  start-page: 842
  year: 2021
  ident: 19964_CR6
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-021-09630-7
– volume: 319
  start-page: 1
  year: 1999
  ident: 19964_CR3
  publication-title: Phys. Rept.
  doi: 10.1016/S0370-1573(99)00010-1
– volume: 07
  start-page: 086
  year: 2014
  ident: 19964_CR66
  publication-title: JHEP
  doi: 10.1007/JHEP07(2014)086
– ident: 19964_CR31
  doi: 10.1103/PhysRevLett.120.131102
– ident: 19964_CR8
  doi: 10.1103/PhysRevD.104.064017
– ident: 19964_CR44
  doi: 10.1103/PhysRevD.106.064036
– ident: 19964_CR56
  doi: 10.1103/PhysRevD.67.064020
– ident: 19964_CR10
  doi: 10.1088/0264-9381/32/14/144001
– volume: 02
  start-page: 128
  year: 2017
  ident: 19964_CR18
  publication-title: JHEP
  doi: 10.1007/JHEP02(2017)128
– ident: 19964_CR53
– ident: 19964_CR27
  doi: 10.1103/PhysRevD.95.124032
– ident: 19964_CR54
  doi: 10.1103/PhysRevD.83.064020
– ident: 19964_CR40
  doi: 10.1103/PhysRevLett.127.101102
– ident: 19964_CR13
  doi: 10.1103/PhysRevLett.116.141101
– ident: 19964_CR16
  doi: 10.1103/PhysRevLett.110.015301
– ident: 19964_CR26
  doi: 10.1103/PhysRevD.93.044033
– volume: 10
  start-page: 045
  year: 2010
  ident: 19964_CR19
  publication-title: JHEP
  doi: 10.1007/JHEP10(2010)045
– ident: 19964_CR5
  doi: 10.1103/PhysRevD.98.104056
– ident: 19964_CR11
  doi: 10.1007/978-3-319-19000-6_1
– volume: 899
  start-page: 37
  year: 2015
  ident: 19964_CR59
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2015.07.030
– ident: 19964_CR57
  doi: 10.1103/PhysRevD.81.124020
– ident: 19964_CR30
  doi: 10.1103/PhysRevLett.120.131104
– ident: 19964_CR32
  doi: 10.1103/PhysRevLett.123.011101
– volume: 24
  start-page: 1542014
  year: 2015
  ident: 19964_CR4
  publication-title: Int. J. Mod. Phys. D
  doi: 10.1142/S0218271815420146
– ident: 19964_CR34
  doi: 10.1103/PhysRevLett.126.011103
– ident: 19964_CR33
  doi: 10.1103/PhysRevLett.125.231101
– ident: 19964_CR52
– ident: 19964_CR17
  doi: 10.1103/PhysRevLett.116.141102
– ident: 19964_CR48
  doi: 10.1103/PhysRevD.104.084069
– ident: 19964_CR28
  doi: 10.1103/PhysRevD.102.044014
– ident: 19964_CR12
  doi: 10.1103/PhysRevD.7.949
– ident: 19964_CR37
  doi: 10.1103/PhysRevLett.128.161105
– ident: 19964_CR46
  doi: 10.1103/PhysRevD.106.L061502
– ident: 19964_CR42
  doi: 10.1103/PhysRevLett.127.161103
– volume: 06
  start-page: 046
  year: 2016
  ident: 19964_CR62
  publication-title: JHEP
  doi: 10.1007/JHEP06(2016)046
– ident: 19964_CR43
  doi: 10.1088/1674-1137/ac70ad
– ident: 19964_CR41
  doi: 10.1103/PhysRevD.104.084089
– ident: 19964_CR2
– ident: 19964_CR39
  doi: 10.1103/PhysRevD.103.064024
– ident: 19964_CR23
  doi: 10.1103/PhysRevLett.101.031601
– volume: 144
  start-page: 249
  year: 1982
  ident: 19964_CR21
  publication-title: Annals Phys.
  doi: 10.1016/0003-4916(82)90116-6
– ident: 19964_CR14
  doi: 10.1103/PhysRevD.94.044061
SSID ssj0015190
Score 2.468965
Snippet A bstract In this work, we study the real-time dynamics of the charged hairy black hole with the time-dependent source of scalar field in asymptotically...
In this work, we study the real-time dynamics of the charged hairy black hole with the time-dependent source of scalar field in asymptotically anti-de Sitter...
Abstract In this work, we study the real-time dynamics of the charged hairy black hole with the time-dependent source of scalar field in asymptotically anti-de...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 62
SubjectTerms Asymptotic properties
Black Holes
Classical and Quantum Gravitation
Descaling
Electric charge
Elementary Particles
High energy physics
Holography and Condensed Matter Physics (AdS/CMT)
Models of Quantum Gravity
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Scalars
Spacetime
String Theory
Time dependence
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64vcvCwe6jbR5qkx1VclgVF0IW9lTwmKOi6uOuh_95J2qoriBePbdMSvkxmvkzSbwg5Zw5dHhgXcQCIGFcsUpqpKFZG5DoWwhb-5-SbWz6asPE0n34r9eXPhNXywDVwfZ44QMtQVsWOqYzpIjVa4JXIIQMWvC_GvHYx1ewfIC-JWyGfWPTHo-u7OOn6UuG9mKcrMShI9a_wyx9boiHSDLfJVkMR6aDu2g5Zg9ku2QhHNc1ij0xwqYjA4hq3_oOS6oqG49A-l0SD8hFY-qie3iqqfXqO-hK49GlG1aJ6mS9fQ_b6uaIDe0_Rnxjw9eX3yWR4_XA1ipriCJFhiVhGTkvnDIZ3aRWTHLjnJtbGijHDtMhSYLmRhUJGY4U0IFMvQJRyXA_mWhYmOyDrs9cZHBJqMgWFUhxRdcierHQK3U4COFkZyy3vkIsWrtI0yuG-gMVz2Woe1_iWHt8S8e2Q7ucL81o04_emlx7_z2Ze7TrcQBsoGxso_7KBDjlpR69spuCiTAVHbikLKTuk147o1-Nf-nP0H_05Jpv-ez5Tk2QnZH359g6nyF2W-iyY6QcRd-tC
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxELVaUKVeqrYUkZZWPvQAh4X98NreUwVVUIRUhAqRuK3G9hiQaJIm6SH_vjMbbxCV6HXXtqyxPX4ztt8T4quK5PLQx0wjYqY0qAycgiwHb2qXGxMafpz840KPxur8pr5JCbdFulbZ-8TOUYep5xz5cWk0QQXbWPtt9jtj1Sg-XU0SGi_FNrlgS8HX9unw4vLn5hyB8EneE_rk5vh8NLzMiwOWDD_MdflkL-oo-5_gzH-ORrsd5-yteJOgojxZj-078QIn78Wr7sqmX-yIMYWMZGCKddcvKaVbye5aNOeUZMeAhEHewf18JR2n6SRL4cr7iYTF6tdsOe2y2A8reRKuJPkVj6wz_0GMz4bX30dZEknIvCrMMovOxuhpm7cBlNWoGaOEkINSXjlTlahqbxsgZBOM9WhLJiIqNcWFtbONr3bF1mQ6wT0hfQXYAGgTIBKKCjYCuZ8CadEqVQc9EEe9uVqfGMRZyOKh7bmP1_Zt2b4t2XcgDjYVZmvyjOeLnrL9N8WY9br7MJ3ftmkRtbqISF4CAuRRQaVcU3pHvSXYgxUqamS_H702LcVF-zhxBuKwH9HH38_05-P_m_okXnNJzsUU1b7YWs7_4GdCJ0v3JU3Bv-Fy45c
  priority: 102
  providerName: ProQuest
Title Descalarization by quenching charged hairy black hole in asymptotically AdS spacetime
URI https://link.springer.com/article/10.1007/JHEP01(2023)062
https://www.proquest.com/docview/2765228988
https://doaj.org/article/61fe006ada0f4a34b92cb7da075e3e42
Volume 2023
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB7xUCUuVaGtSEsjHzjAYat9eL3eY4gSIiQQgkbithq_ChJNUJIe8u874-xS0YoDl5W1a6-ssT3-Zuz5BuBYBlJ53oZEee8TqVAmaCQmKdqqNGlVuZqDky-v1GQqL-7Kuy3IuliYeNu9O5KMmroLdruYjK7T7ITTfZ-mrHV3SyrzpB5ygEN7cECAJO0YfP5v9GLziRz9L4DlP2ehcYsZf4D3LTYUg81g7sOWnx3Au3hH0y4_wpRsRJIoGbeb0Elh1iLeg2YnkoiUR96Je3xYrIVhv5zg3LfiYSZwuf71tJpHt_XjWgzcrSBFYj0nlv8E0_Hox3CStFkREiuzapUEo0OwtK9rh1IrrxiUOJeilFaaqsi9LK2ukaCMq7T1OmfmoVyRIVgaXdviM-zM5jN_CMIW6GtEVTkMBJucDkj6JvO0SqUsnerB905cjW0pwzlzxWPTkR1v5NuwfBuSbw9Onhs8bdgyXq96xvJ_rsY01_HFfPGzaVdNo7LgSS2gwzRILKSpc2uot4RzfOEl_eSoG72mXXvLJq8UgUpda92D025E_35-pT9f3lD3K-xxkT0xWXEEO6vFb_-NsMnK9GFbj8_7sHs2urq-6ce5yU817Edrn57TfPAH-hzirQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4ikWCvgAUnsIzcOxnQNCBbpsn0KiK_UW_BhDpbK77C5C-VP8RmacZKsilVuviW1ZM-OZz2N7PsZeiYAuD1xIJAAkQhqRGCtMkhqnSpsq5St6nHx0LEdjsX9anq6xP_1bGLpW2fvE6Kj91FGOfDtXEqGCrrR-N_uZEGsUna72FBqtWRxA8xu3bIu3ex9Rv6_zfLh78mGUdKwCiROZWibB6hAcxkXtjdASJAV171MjhBNWFTmI0unKIBTwSjvQOVXuySVupEqrK1fguDfYTVEUFa0oPfy0OrVANJT25YNStb0_2v2cZptEUL6VyvxS5IsEAZdQ7T8HsTG-De-xux0w5TutJd1nazB5wG7FC6Ju8ZCNcYOK6sSddftuk9uGx0vYlMHisd4SeP7dnM0bbikpyIl4l59NuFk0P2bLacyZnzd8x3_h6MUcEKv9Iza-FuE9ZuuT6QSeMO4KA5UxUnkTELN5HQw6uwzQRQhRejlgb3px1a6rV060Ged1X2m5lW9N8q1RvgO2ueowa0t1XN30Pcl_1YxqbMcP0_m3uluytcwCoE8y3qRBmELYKncWZ4sgCwoQOMhGr726W_iL-sJMB2yr1-jF7yvm8_T_Q71kt0cnR4f14d7xwTN2h3pRFigrNtj6cv4LniMuWtoX0Rg5-3rd1v8XJgIezg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVCAuiKdIW8AHkNrDUu-u1949VKilidIWogiI1JvrJ1RqkzQJqvav8esY7yNVkcqt113bsmbG3zw8ngF4zzxCnjM-4s65iHHFIqWZiqgyItNUCFuEx8lfh3wwZsen2eka_GnfwoS0yhYTK6C2UxNi5LuJ4Ggq5AU6bL5Jixgd9j_NrqLQQSrctLbtNGoROXHlNbpvi72jQ-T1hyTp9358HkRNh4HIsFgsI69z7w3qyNwqlnPHg4K3lirGDNMiTRzLTF4oNAusyI3Lk1DFJ-HoVGU6L0yK6z6AdYFeEe3A-kFvOPq2usNA24i2xYSo2D0e9EY03g7tyncoT27pwapdwC0b959r2Urb9Z_Ck8ZMJfu1XD2DNTd5Dg-rdFGzeAFjdFeRuehn1684iS5JlZId4lmkqr7kLPmlzucl0SFESEIbXnI-IWpRXs6W0yqCflGSffudIKYZF3rcv4TxvZDvFXQm04l7DcSkyhVKcWGVRwvO5l4h9MUOAYOxzPIufGzJJU1TvTw00biQbd3lmr4y0FcifbuwvZowqwt33D30INB_NSxU3K4-TOc_ZXOAJY-9Q4RSVlHPVMp0kRiNu0WTy6WO4SJbLfdkAwMLeSO0XdhpOXrz-479bPx_qXfwCCVffjkanmzC4zAphITidAs6y_lv9waNpKV-20gjgbP7PgB_AUnLJGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Descalarization+by+quenching+charged+hairy+black+hole+in+asymptotically+AdS+spacetime&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Chen%2C+Qian&rft.au=Ning%2C+Zhuan&rft.au=Tian%2C+Yu&rft.au=Wang%2C+Bin&rft.date=2023-01-13&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2023&rft.issue=1&rft_id=info:doi/10.1007%2FJHEP01%282023%29062&rft.externalDocID=10_1007_JHEP01_2023_062
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon