A Multistage Game in Smart Grid Security: A Reinforcement Learning Solution

Existing smart grid security research investigates different attack techniques and cascading failures from the attackers' viewpoints, while the defenders' or the operators' protection strategies are somehow neglected. Game theoretic methods are applied for the attacker-defender games...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 30; no. 9; pp. 2684 - 2695
Main Authors Ni, Zhen, Paul, Shuva
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Existing smart grid security research investigates different attack techniques and cascading failures from the attackers' viewpoints, while the defenders' or the operators' protection strategies are somehow neglected. Game theoretic methods are applied for the attacker-defender games in the smart grid security area. Yet, most of the existing works only use the one-shot game and do not consider the dynamic process of the electric power grid. In this paper, we propose a new solution for a multistage game (also called a dynamic game) between the attacker and the defender based on reinforcement learning to identify the optimal attack sequences given certain objectives (e.g., transmission line outages or generation loss). Different from a one-shot game, the attacker here learns a sequence of attack actions applying for the transmission lines and the defender protects a set of selected lines. After each time step, the cascading failure will be measured, and the line outage (and/or generation loss) will be used as the feedback for the attacker to generate the next action. The performance is evaluated on W&W 6-bus and IEEE 39-bus systems. A comparison between a multistage attack and a one-shot attack is conducted to show the significance of the multistage attack. Furthermore, different protection strategies are evaluated in simulation, which shows that the proposed reinforcement learning solution can identify optimal attack sequences under several attack objectives. It also indicates that attacker's learned information helps the defender to enhance the security of the system.
AbstractList Existing smart grid security research investigates different attack techniques and cascading failures from the attackers’ viewpoints, while the defenders’ or the operators’ protection strategies are somehow neglected. Game theoretic methods are applied for the attacker–defender games in the smart grid security area. Yet, most of the existing works only use the one-shot game and do not consider the dynamic process of the electric power grid. In this paper, we propose a new solution for a multistage game (also called a dynamic game) between the attacker and the defender based on reinforcement learning to identify the optimal attack sequences given certain objectives (e.g., transmission line outages or generation loss). Different from a one-shot game, the attacker here learns a sequence of attack actions applying for the transmission lines and the defender protects a set of selected lines. After each time step, the cascading failure will be measured, and the line outage (and/or generation loss) will be used as the feedback for the attacker to generate the next action. The performance is evaluated on W&W 6-bus and IEEE 39-bus systems. A comparison between a multistage attack and a one-shot attack is conducted to show the significance of the multistage attack. Furthermore, different protection strategies are evaluated in simulation, which shows that the proposed reinforcement learning solution can identify optimal attack sequences under several attack objectives. It also indicates that attacker’s learned information helps the defender to enhance the security of the system.
Existing smart grid security research investigates different attack techniques and cascading failures from the attackers' viewpoints, while the defenders' or the operators' protection strategies are somehow neglected. Game theoretic methods are applied for the attacker-defender games in the smart grid security area. Yet, most of the existing works only use the one-shot game and do not consider the dynamic process of the electric power grid. In this paper, we propose a new solution for a multistage game (also called a dynamic game) between the attacker and the defender based on reinforcement learning to identify the optimal attack sequences given certain objectives (e.g., transmission line outages or generation loss). Different from a one-shot game, the attacker here learns a sequence of attack actions applying for the transmission lines and the defender protects a set of selected lines. After each time step, the cascading failure will be measured, and the line outage (and/or generation loss) will be used as the feedback for the attacker to generate the next action. The performance is evaluated on W&W 6-bus and IEEE 39-bus systems. A comparison between a multistage attack and a one-shot attack is conducted to show the significance of the multistage attack. Furthermore, different protection strategies are evaluated in simulation, which shows that the proposed reinforcement learning solution can identify optimal attack sequences under several attack objectives. It also indicates that attacker's learned information helps the defender to enhance the security of the system.Existing smart grid security research investigates different attack techniques and cascading failures from the attackers' viewpoints, while the defenders' or the operators' protection strategies are somehow neglected. Game theoretic methods are applied for the attacker-defender games in the smart grid security area. Yet, most of the existing works only use the one-shot game and do not consider the dynamic process of the electric power grid. In this paper, we propose a new solution for a multistage game (also called a dynamic game) between the attacker and the defender based on reinforcement learning to identify the optimal attack sequences given certain objectives (e.g., transmission line outages or generation loss). Different from a one-shot game, the attacker here learns a sequence of attack actions applying for the transmission lines and the defender protects a set of selected lines. After each time step, the cascading failure will be measured, and the line outage (and/or generation loss) will be used as the feedback for the attacker to generate the next action. The performance is evaluated on W&W 6-bus and IEEE 39-bus systems. A comparison between a multistage attack and a one-shot attack is conducted to show the significance of the multistage attack. Furthermore, different protection strategies are evaluated in simulation, which shows that the proposed reinforcement learning solution can identify optimal attack sequences under several attack objectives. It also indicates that attacker's learned information helps the defender to enhance the security of the system.
Author Ni, Zhen
Paul, Shuva
Author_xml – sequence: 1
  givenname: Zhen
  orcidid: 0000-0003-3166-4726
  surname: Ni
  fullname: Ni, Zhen
  email: zhen.ni@sdstate.edu
  organization: Electrical Engineering and Computer Science Department, South Dakota State University, Brookings, SD, USA
– sequence: 2
  givenname: Shuva
  orcidid: 0000-0002-4219-4152
  surname: Paul
  fullname: Paul, Shuva
  email: shuva.paul@sdstate.edu
  organization: Electrical Engineering and Computer Science Department, South Dakota State University, Brookings, SD, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30624227$$D View this record in MEDLINE/PubMed
BookMark eNp9kT1PwzAQhi0E4vsPgIQssbC0-CNxHLYKQUEUkChIbJadXJBR4oDtDPx7XFo6MHCLb3je89377qFN1ztA6IiSMaWkPH9-eJjNx4xQOWZS5jknG2iXUcFGjEu5ue6L1x10GMI7SSVILrJyG-1wIljGWLGL7ib4fmijDVG_AZ7qDrB1eN5pH_HU2xrPoRq8jV8XeIKfwLqm9xV04CKegfbOujc879sh2t4doK1GtwEOV-8-erm-er68Gc0ep7eXk9moymgRR02phTEk10QUApjRkK6oOKOkLgxJazeZoE0GtDTG8CqXBoqcM8IZ1EUNhu-js-XcD99_DhCi6myooG21g34IKo3IRV7SUib09A_63g_epe1UOl9mhBJeJupkRQ2mg1p9eJsM-FK_NiWALYHK9yF4aNYIJWoRh_qJQy3iUKs4kkj-EVU26oVR0Wvb_i89XkotAKz_koJwSQv-Dcu0lYQ
CODEN ITNNAL
CitedBy_id crossref_primary_10_3390_en16041608
crossref_primary_10_1109_COMST_2021_3073036
crossref_primary_10_1109_TPWRS_2021_3091616
crossref_primary_10_1080_23335777_2019_1624620
crossref_primary_10_1016_j_ijepes_2022_108798
crossref_primary_10_1109_JIOT_2022_3194694
crossref_primary_10_1016_j_arcontrol_2022_01_001
crossref_primary_10_1109_ACCESS_2021_3084217
crossref_primary_10_1109_TII_2019_2955966
crossref_primary_10_1016_j_arcontrol_2020_03_001
crossref_primary_10_1109_JIOT_2024_3476458
crossref_primary_10_1109_JSYST_2021_3123904
crossref_primary_10_1109_TNSE_2020_2965999
crossref_primary_10_1007_s11071_023_08419_5
crossref_primary_10_3390_en17112790
crossref_primary_10_1016_j_egyr_2024_06_068
crossref_primary_10_1016_j_ijepes_2022_108601
crossref_primary_10_3390_act11040099
crossref_primary_10_1109_TCE_2023_3279138
crossref_primary_10_7717_peerj_cs_643
crossref_primary_10_1109_ACCESS_2023_3312376
crossref_primary_10_1146_annurev_environ_020220_061831
crossref_primary_10_1109_TCSI_2022_3221274
crossref_primary_10_1016_j_dcan_2022_05_005
crossref_primary_10_3389_fenrg_2023_1141374
crossref_primary_10_1109_TNNLS_2021_3107375
crossref_primary_10_16984_saufenbilder_955914
crossref_primary_10_1145_3596222
crossref_primary_10_1016_j_engappai_2025_110091
crossref_primary_10_1109_ACCESS_2024_3462170
crossref_primary_10_1515_ijeeps_2023_0015
crossref_primary_10_1109_TEMPR_2023_3298794
crossref_primary_10_1142_S0217984924501483
crossref_primary_10_2139_ssrn_4141002
crossref_primary_10_1109_ACCESS_2020_3028740
crossref_primary_10_1177_15501477211059934
crossref_primary_10_1109_TIE_2022_3176301
crossref_primary_10_1109_TNNLS_2019_2955857
crossref_primary_10_1109_ACCESS_2019_2962134
crossref_primary_10_1016_j_jksuci_2023_01_018
crossref_primary_10_1109_ACCESS_2021_3052884
crossref_primary_10_1016_j_esr_2024_101299
crossref_primary_10_1109_ACCESS_2020_3035152
crossref_primary_10_1109_ACCESS_2022_3140595
crossref_primary_10_1109_TII_2024_3379645
crossref_primary_10_1016_j_measen_2024_101077
crossref_primary_10_1109_TNNLS_2019_2927227
crossref_primary_10_1109_TNNLS_2020_3006080
crossref_primary_10_1109_TETCI_2023_3299294
crossref_primary_10_1109_TSG_2024_3358838
crossref_primary_10_1103_PRXEnergy_1_033005
crossref_primary_10_32604_cmc_2022_019562
crossref_primary_10_1109_ACCESS_2023_3239834
crossref_primary_10_3390_pr10071351
crossref_primary_10_1016_j_ijepes_2023_109210
crossref_primary_10_1109_JIOT_2024_3396641
crossref_primary_10_1016_j_hcc_2023_100167
crossref_primary_10_1016_j_neucom_2019_09_088
crossref_primary_10_1109_TCDS_2023_3323572
crossref_primary_10_1109_TNNLS_2020_2985588
crossref_primary_10_1109_TNNLS_2021_3088907
crossref_primary_10_1109_OAJPE_2024_3489477
crossref_primary_10_1007_s11042_021_10554_3
crossref_primary_10_1109_ACCESS_2024_3441931
crossref_primary_10_1007_s44199_025_00109_y
crossref_primary_10_1007_s44163_025_00239_3
crossref_primary_10_1109_ACCESS_2019_2920317
crossref_primary_10_1016_j_ijepes_2021_107021
crossref_primary_10_3390_math10193450
crossref_primary_10_1109_TNNLS_2021_3060187
crossref_primary_10_3390_smartcities4020029
crossref_primary_10_1109_ACCESS_2020_3029171
crossref_primary_10_1016_j_apenergy_2020_116069
crossref_primary_10_1109_TSG_2022_3199187
crossref_primary_10_1016_j_seta_2021_101284
crossref_primary_10_1109_TIFS_2023_3268532
crossref_primary_10_1109_JIOT_2020_3040957
crossref_primary_10_1109_TPWRD_2021_3061358
crossref_primary_10_1109_TNNLS_2019_2955165
crossref_primary_10_1080_15325008_2023_2268073
crossref_primary_10_3389_fenrg_2024_1443677
crossref_primary_10_1109_TSG_2023_3343100
crossref_primary_10_1109_TII_2023_3246529
crossref_primary_10_1109_TNNLS_2021_3121870
crossref_primary_10_1007_s11277_023_10664_1
crossref_primary_10_3390_jsan10030043
crossref_primary_10_3390_electronics8090991
crossref_primary_10_1016_j_neucom_2021_01_070
crossref_primary_10_1007_s40815_020_01035_0
crossref_primary_10_1016_j_energy_2020_118870
crossref_primary_10_1049_gtd2_12443
crossref_primary_10_1109_TPWRS_2021_3060009
crossref_primary_10_1587_nolta_12_738
crossref_primary_10_3390_jsan10030053
crossref_primary_10_1016_j_rineng_2024_103884
crossref_primary_10_1016_j_compeleceng_2024_109405
crossref_primary_10_1063_5_0235716
crossref_primary_10_1109_ACCESS_2019_2961517
crossref_primary_10_1109_TNNLS_2021_3105668
crossref_primary_10_3390_s23167216
Cites_doi 10.1109/TSMCB.2012.2203336
10.1109/ICCW.2017.7962716
10.1007/978-1-4612-4002-0
10.1109/TSG.2016.2631622
10.1109/ISGT.2017.8086078
10.1162/089976699300016070
10.1109/TPWRS.2016.2618365
10.1109/MSP.2012.2186410
10.1109/TPWRS.2012.2183624
10.1109/TSG.2016.2561266
10.1002/rnc.1760
10.1109/TSG.2012.2224391
10.1109/MCOM.2012.6257523
10.1109/TNNLS.2017.2773458
10.1109/TPWRS.2016.2577633
10.1162/neco.1994.6.6.1185
10.1016/j.jare.2013.12.005
10.1016/j.ijepes.2017.01.016
10.1109/TPWRS.2016.2518660
10.1109/TNNLS.2014.2350835
10.1109/TIFS.2014.2363786
10.1109/TSG.2018.2790704
10.1007/BF00992698
10.1109/TPWRS.2012.2226480
10.1109/MIS.2011.26
10.1109/SSCI.2017.8285291
10.1109/TNN.2008.2000204
10.1038/nature08932
10.1016/j.ijepes.2016.02.045
10.1109/RWEEK.2017.8088670
10.1109/TPWRS.2014.2312424
10.1145/318789.318894
10.1109/TIFS.2014.2299404
10.1038/srep44499
10.1016/j.epsr.2017.05.020
10.1109/TNNLS.2016.2609500
10.1109/TSG.2015.2440095
10.1109/TNNLS.2016.2638863
10.1109/TPDS.2013.2295814
10.1109/HICSS.2010.35
10.1109/JPROC.2011.2165269
10.1109/IJCNN.2010.5596754
10.1016/j.automatica.2010.10.033
10.1109/TNNLS.2016.2582849
10.1109/TWC.2017.2720658
10.1109/TNNLS.2015.2496299
10.1109/TIFS.2016.2607701
10.1109/TNNLS.2016.2561300
10.1109/IJCNN.2018.8489202
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2018.2885530
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 2695
ExternalDocumentID 30624227
10_1109_TNNLS_2018_2885530
8603817
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: OIA-1833005
  funderid: 10.13039/100000001
– fundername: South Dakota Board of Regents
  grantid: FY2018
  funderid: 10.13039/100008629
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c417t-f9a6bb05a0676e2bae201c3210d7b0216f461f4e19bbb3c58be7532032ed7deb3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 08:46:51 EDT 2025
Mon Jun 30 03:14:18 EDT 2025
Wed Feb 19 02:36:31 EST 2025
Thu Apr 24 22:54:56 EDT 2025
Tue Jul 01 00:27:29 EDT 2025
Wed Aug 27 02:41:42 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-f9a6bb05a0676e2bae201c3210d7b0216f461f4e19bbb3c58be7532032ed7deb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3166-4726
0000-0002-4219-4152
PMID 30624227
PQID 2278401039
PQPubID 85436
PageCount 12
ParticipantIDs proquest_miscellaneous_2165659198
ieee_primary_8603817
crossref_citationtrail_10_1109_TNNLS_2018_2885530
crossref_primary_10_1109_TNNLS_2018_2885530
proquest_journals_2278401039
pubmed_primary_30624227
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References osborne (ref28) 1994
ref57
ba?ar (ref40) 2008
ref13
ref12
neyman (ref56) 1999
ref15
ref58
ref14
ref52
ref55
ref11
ref54
ref10
ref16
ref19
ref18
watkins (ref46) 1992
ref51
ref50
chatterjee (ref49) 2004
alpaydin (ref47) 2012
ref48
ref42
ref41
ref44
ref43
(ref17) 2013
ref8
ref7
ref9
ref4
ref3
ref6
ref5
overbye (ref53) 2012
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref38
hu (ref45) 1998
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref29
ba?ar (ref39) 1998
References_xml – ident: ref27
  doi: 10.1109/TSMCB.2012.2203336
– year: 2013
  ident: ref17
  publication-title: Arkansas Man Charged in Connection With Power Grid Sabotage
– ident: ref16
  doi: 10.1109/ICCW.2017.7962716
– ident: ref48
  doi: 10.1007/978-1-4612-4002-0
– ident: ref11
  doi: 10.1109/TSG.2016.2631622
– ident: ref18
  doi: 10.1109/ISGT.2017.8086078
– ident: ref57
  doi: 10.1162/089976699300016070
– ident: ref8
  doi: 10.1109/TPWRS.2016.2618365
– start-page: 242
  year: 1998
  ident: ref45
  article-title: Multiagent reinforcement learning: Theoretical framework and an algorithm
  publication-title: Proc 15th Int Conf Mach Learn (ICML)
– ident: ref29
  doi: 10.1109/MSP.2012.2186410
– ident: ref52
  doi: 10.1109/TPWRS.2012.2183624
– ident: ref36
  doi: 10.1109/TSG.2016.2561266
– ident: ref43
  doi: 10.1002/rnc.1760
– ident: ref34
  doi: 10.1109/TSG.2012.2224391
– ident: ref33
  doi: 10.1109/MCOM.2012.6257523
– ident: ref26
  doi: 10.1109/TNNLS.2017.2773458
– ident: ref9
  doi: 10.1109/TPWRS.2016.2577633
– year: 2008
  ident: ref40
  publication-title: $ \cal H _ \infty $ Optimal Control and Related Minimax Design Problems
– year: 1994
  ident: ref28
  publication-title: A Course in Game Theory
– ident: ref55
  doi: 10.1162/neco.1994.6.6.1185
– ident: ref54
  doi: 10.1016/j.jare.2013.12.005
– ident: ref4
  doi: 10.1016/j.ijepes.2017.01.016
– ident: ref2
  doi: 10.1109/TPWRS.2016.2518660
– ident: ref24
  doi: 10.1109/TNNLS.2014.2350835
– year: 1998
  ident: ref39
  publication-title: Dynamic Noncooperative Game Theory
– ident: ref12
  doi: 10.1109/TIFS.2014.2363786
– ident: ref37
  doi: 10.1109/TSG.2018.2790704
– year: 1992
  ident: ref46
  article-title: Q-Learning
  publication-title: Machine Learning
  doi: 10.1007/BF00992698
– ident: ref50
  doi: 10.1109/TPWRS.2012.2226480
– ident: ref5
  doi: 10.1109/MIS.2011.26
– year: 2012
  ident: ref53
  publication-title: Power System Analysis and Design
– ident: ref19
  doi: 10.1109/SSCI.2017.8285291
– ident: ref41
  doi: 10.1109/TNN.2008.2000204
– year: 1999
  ident: ref56
  publication-title: Stochastic Games and Applications
– year: 2012
  ident: ref47
  publication-title: Introduction to Machine Learning
– ident: ref3
  doi: 10.1038/nature08932
– ident: ref30
  doi: 10.1016/j.ijepes.2016.02.045
– ident: ref14
  doi: 10.1109/RWEEK.2017.8088670
– ident: ref7
  doi: 10.1109/TPWRS.2014.2312424
– ident: ref58
  doi: 10.1145/318789.318894
– ident: ref13
  doi: 10.1109/TIFS.2014.2299404
– ident: ref1
  doi: 10.1038/srep44499
– ident: ref31
  doi: 10.1016/j.epsr.2017.05.020
– ident: ref23
  doi: 10.1109/TNNLS.2016.2609500
– ident: ref32
  doi: 10.1109/TSG.2015.2440095
– year: 2004
  ident: ref49
  publication-title: Computer Science Logic
– ident: ref22
  doi: 10.1109/TNNLS.2016.2638863
– ident: ref10
  doi: 10.1109/TPDS.2013.2295814
– ident: ref51
  doi: 10.1109/HICSS.2010.35
– ident: ref6
  doi: 10.1109/JPROC.2011.2165269
– ident: ref42
  doi: 10.1109/IJCNN.2010.5596754
– ident: ref44
  doi: 10.1016/j.automatica.2010.10.033
– ident: ref21
  doi: 10.1109/TNNLS.2016.2582849
– ident: ref15
  doi: 10.1109/TWC.2017.2720658
– ident: ref25
  doi: 10.1109/TNNLS.2015.2496299
– ident: ref38
  doi: 10.1109/TIFS.2016.2607701
– ident: ref20
  doi: 10.1109/TNNLS.2016.2561300
– ident: ref35
  doi: 10.1109/IJCNN.2018.8489202
SSID ssj0000605649
Score 2.6126728
Snippet Existing smart grid security research investigates different attack techniques and cascading failures from the attackers' viewpoints, while the defenders' or...
Existing smart grid security research investigates different attack techniques and cascading failures from the attackers’ viewpoints, while the defenders’ or...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2684
SubjectTerms Electric power
Electric power grids
Electricity distribution
Game theory
Games
Learning
Machine learning
Markov decision process and vulnerability analysis
Multistage
multistage game
Power system dynamics
Power transmission lines
Reinforcement
Reinforcement learning
Security
Smart grid
smart grid security
Smart grids
Transmission lines
Title A Multistage Game in Smart Grid Security: A Reinforcement Learning Solution
URI https://ieeexplore.ieee.org/document/8603817
https://www.ncbi.nlm.nih.gov/pubmed/30624227
https://www.proquest.com/docview/2278401039
https://www.proquest.com/docview/2165659198
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BB8SlFOgjLVSu1BvNkmQdx-a2QgXUlj2wIO0t8mOCUCGL6O6lv75jx4kqRKveIsVJnJmx5vN4Zj6AT9KrVeUqFVrQBiUXmGpreUqexUjnFAr0cciLqTi_5l_n5XwNPg-1MIgYks9w5C_DWb5b2JUPlR1JERrKrcM6bdy6Wq0hnpIRLhcB7Ra5KNJiXM37GplMHV1Np99nPpFLjgopPVXOFmwSWiYH5flk_nBJgWPl73AzuJ3TbbjoJ9xlm_wYrZZmZH896eX4v3_0El5E_MkmncHswBq2u7DdczuwuNT34NuEhdpcAo83yM70PbLbls3uydLY2eOtY7NIfHfMJuwSQ_9VG0KNLLZsvWF9yO0VXJ9-uTo5TyPxQmp5Xi3TRmlhTFZqcmUCC6ORJGd9tY-rDIEC0XCRNxxzZYwZ21IarDzBxLhAVznanr-GjXbR4ltgldYcjbTjxlnuSmuqQmeFFbxBJbSxCeS97Gsbu5J7coy7OuxOMlUH1dVedXVUXQKHwzMPXU-Of47e83IfRkaRJ7Dfq7iOy_Zn7euCuWe-UAl8HG7TgvOnKLrFxYrG-H5FJZm3TOBNZxrDu3uLevf8N9_DFs0spqjtw8bycYUHhGmW5kMw5t-Nt-74
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4xkBgvg8HYwhgz0t62lCR1HHtv1TQo0PZhLVLfIv-4ILSRImhf9tdjO06E0DbtLVKcxLk76z6f7-4D-MSdWkUqYiaZ3aCkDGOpNY2tZ1HcGIEMXRxyPGHDK3oxz-dr8KWrhUFEn3yGPXfpz_LNQq9cqOyEM99Q7gVsWL-fp021VhdRSSwyZx7vZinL4qxfzNsqmUSczCaT0dSlcvFexrkjy9mCTYuXrYtyjDJPnJJnWfk74PSO53Qbxu2Um3yTn73VUvX072fdHP_3n3bgVUCgZNCYzGtYw3oXtlt2BxIW-x5cDoivzrXw8RrJmbxFclOT6a21NXJ2f2PINFDffSUD8gN9B1btg40kNG29Jm3Q7Q1cnX6ffRvGgXoh1jQtlnElJFMqyaV1ZgwzJdFKTrt6H1MoCwtYRVlaUUyFUqqvc66wcBQT_QxNYewGfR_W60WN74AUUlJUXPcro6nJtSoymWSa0QoFk0pHkLayL3XoS-7oMX6Vfn-SiNKrrnSqK4PqIvjcPXPXdOX45-g9J_duZBB5BIetisuwcB9KVxlMHfeFiOC4u22XnDtHkTUuVnaM61iUWwPnEbxtTKN7d2tRB3_-5kd4OZyNR-XofHL5HrbsLEPC2iGsL-9X-MEinKU68ob9CCyP8kE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multistage+Game+in+Smart+Grid+Security%3A+A+Reinforcement+Learning+Solution&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Ni%2C+Zhen&rft.au=Paul%2C+Shuva&rft.date=2019-09-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=30&rft.issue=9&rft.spage=2684&rft.epage=2695&rft_id=info:doi/10.1109%2FTNNLS.2018.2885530&rft_id=info%3Apmid%2F30624227&rft.externalDocID=8603817
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon