A Multistage Game in Smart Grid Security: A Reinforcement Learning Solution
Existing smart grid security research investigates different attack techniques and cascading failures from the attackers' viewpoints, while the defenders' or the operators' protection strategies are somehow neglected. Game theoretic methods are applied for the attacker-defender games...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 30; no. 9; pp. 2684 - 2695 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Existing smart grid security research investigates different attack techniques and cascading failures from the attackers' viewpoints, while the defenders' or the operators' protection strategies are somehow neglected. Game theoretic methods are applied for the attacker-defender games in the smart grid security area. Yet, most of the existing works only use the one-shot game and do not consider the dynamic process of the electric power grid. In this paper, we propose a new solution for a multistage game (also called a dynamic game) between the attacker and the defender based on reinforcement learning to identify the optimal attack sequences given certain objectives (e.g., transmission line outages or generation loss). Different from a one-shot game, the attacker here learns a sequence of attack actions applying for the transmission lines and the defender protects a set of selected lines. After each time step, the cascading failure will be measured, and the line outage (and/or generation loss) will be used as the feedback for the attacker to generate the next action. The performance is evaluated on W&W 6-bus and IEEE 39-bus systems. A comparison between a multistage attack and a one-shot attack is conducted to show the significance of the multistage attack. Furthermore, different protection strategies are evaluated in simulation, which shows that the proposed reinforcement learning solution can identify optimal attack sequences under several attack objectives. It also indicates that attacker's learned information helps the defender to enhance the security of the system. |
---|---|
AbstractList | Existing smart grid security research investigates different attack techniques and cascading failures from the attackers’ viewpoints, while the defenders’ or the operators’ protection strategies are somehow neglected. Game theoretic methods are applied for the attacker–defender games in the smart grid security area. Yet, most of the existing works only use the one-shot game and do not consider the dynamic process of the electric power grid. In this paper, we propose a new solution for a multistage game (also called a dynamic game) between the attacker and the defender based on reinforcement learning to identify the optimal attack sequences given certain objectives (e.g., transmission line outages or generation loss). Different from a one-shot game, the attacker here learns a sequence of attack actions applying for the transmission lines and the defender protects a set of selected lines. After each time step, the cascading failure will be measured, and the line outage (and/or generation loss) will be used as the feedback for the attacker to generate the next action. The performance is evaluated on W&W 6-bus and IEEE 39-bus systems. A comparison between a multistage attack and a one-shot attack is conducted to show the significance of the multistage attack. Furthermore, different protection strategies are evaluated in simulation, which shows that the proposed reinforcement learning solution can identify optimal attack sequences under several attack objectives. It also indicates that attacker’s learned information helps the defender to enhance the security of the system. Existing smart grid security research investigates different attack techniques and cascading failures from the attackers' viewpoints, while the defenders' or the operators' protection strategies are somehow neglected. Game theoretic methods are applied for the attacker-defender games in the smart grid security area. Yet, most of the existing works only use the one-shot game and do not consider the dynamic process of the electric power grid. In this paper, we propose a new solution for a multistage game (also called a dynamic game) between the attacker and the defender based on reinforcement learning to identify the optimal attack sequences given certain objectives (e.g., transmission line outages or generation loss). Different from a one-shot game, the attacker here learns a sequence of attack actions applying for the transmission lines and the defender protects a set of selected lines. After each time step, the cascading failure will be measured, and the line outage (and/or generation loss) will be used as the feedback for the attacker to generate the next action. The performance is evaluated on W&W 6-bus and IEEE 39-bus systems. A comparison between a multistage attack and a one-shot attack is conducted to show the significance of the multistage attack. Furthermore, different protection strategies are evaluated in simulation, which shows that the proposed reinforcement learning solution can identify optimal attack sequences under several attack objectives. It also indicates that attacker's learned information helps the defender to enhance the security of the system.Existing smart grid security research investigates different attack techniques and cascading failures from the attackers' viewpoints, while the defenders' or the operators' protection strategies are somehow neglected. Game theoretic methods are applied for the attacker-defender games in the smart grid security area. Yet, most of the existing works only use the one-shot game and do not consider the dynamic process of the electric power grid. In this paper, we propose a new solution for a multistage game (also called a dynamic game) between the attacker and the defender based on reinforcement learning to identify the optimal attack sequences given certain objectives (e.g., transmission line outages or generation loss). Different from a one-shot game, the attacker here learns a sequence of attack actions applying for the transmission lines and the defender protects a set of selected lines. After each time step, the cascading failure will be measured, and the line outage (and/or generation loss) will be used as the feedback for the attacker to generate the next action. The performance is evaluated on W&W 6-bus and IEEE 39-bus systems. A comparison between a multistage attack and a one-shot attack is conducted to show the significance of the multistage attack. Furthermore, different protection strategies are evaluated in simulation, which shows that the proposed reinforcement learning solution can identify optimal attack sequences under several attack objectives. It also indicates that attacker's learned information helps the defender to enhance the security of the system. |
Author | Ni, Zhen Paul, Shuva |
Author_xml | – sequence: 1 givenname: Zhen orcidid: 0000-0003-3166-4726 surname: Ni fullname: Ni, Zhen email: zhen.ni@sdstate.edu organization: Electrical Engineering and Computer Science Department, South Dakota State University, Brookings, SD, USA – sequence: 2 givenname: Shuva orcidid: 0000-0002-4219-4152 surname: Paul fullname: Paul, Shuva email: shuva.paul@sdstate.edu organization: Electrical Engineering and Computer Science Department, South Dakota State University, Brookings, SD, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30624227$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kT1PwzAQhi0E4vsPgIQssbC0-CNxHLYKQUEUkChIbJadXJBR4oDtDPx7XFo6MHCLb3je89377qFN1ztA6IiSMaWkPH9-eJjNx4xQOWZS5jknG2iXUcFGjEu5ue6L1x10GMI7SSVILrJyG-1wIljGWLGL7ib4fmijDVG_AZ7qDrB1eN5pH_HU2xrPoRq8jV8XeIKfwLqm9xV04CKegfbOujc879sh2t4doK1GtwEOV-8-erm-er68Gc0ep7eXk9moymgRR02phTEk10QUApjRkK6oOKOkLgxJazeZoE0GtDTG8CqXBoqcM8IZ1EUNhu-js-XcD99_DhCi6myooG21g34IKo3IRV7SUib09A_63g_epe1UOl9mhBJeJupkRQ2mg1p9eJsM-FK_NiWALYHK9yF4aNYIJWoRh_qJQy3iUKs4kkj-EVU26oVR0Wvb_i89XkotAKz_koJwSQv-Dcu0lYQ |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_3390_en16041608 crossref_primary_10_1109_COMST_2021_3073036 crossref_primary_10_1109_TPWRS_2021_3091616 crossref_primary_10_1080_23335777_2019_1624620 crossref_primary_10_1016_j_ijepes_2022_108798 crossref_primary_10_1109_JIOT_2022_3194694 crossref_primary_10_1016_j_arcontrol_2022_01_001 crossref_primary_10_1109_ACCESS_2021_3084217 crossref_primary_10_1109_TII_2019_2955966 crossref_primary_10_1016_j_arcontrol_2020_03_001 crossref_primary_10_1109_JIOT_2024_3476458 crossref_primary_10_1109_JSYST_2021_3123904 crossref_primary_10_1109_TNSE_2020_2965999 crossref_primary_10_1007_s11071_023_08419_5 crossref_primary_10_3390_en17112790 crossref_primary_10_1016_j_egyr_2024_06_068 crossref_primary_10_1016_j_ijepes_2022_108601 crossref_primary_10_3390_act11040099 crossref_primary_10_1109_TCE_2023_3279138 crossref_primary_10_7717_peerj_cs_643 crossref_primary_10_1109_ACCESS_2023_3312376 crossref_primary_10_1146_annurev_environ_020220_061831 crossref_primary_10_1109_TCSI_2022_3221274 crossref_primary_10_1016_j_dcan_2022_05_005 crossref_primary_10_3389_fenrg_2023_1141374 crossref_primary_10_1109_TNNLS_2021_3107375 crossref_primary_10_16984_saufenbilder_955914 crossref_primary_10_1145_3596222 crossref_primary_10_1016_j_engappai_2025_110091 crossref_primary_10_1109_ACCESS_2024_3462170 crossref_primary_10_1515_ijeeps_2023_0015 crossref_primary_10_1109_TEMPR_2023_3298794 crossref_primary_10_1142_S0217984924501483 crossref_primary_10_2139_ssrn_4141002 crossref_primary_10_1109_ACCESS_2020_3028740 crossref_primary_10_1177_15501477211059934 crossref_primary_10_1109_TIE_2022_3176301 crossref_primary_10_1109_TNNLS_2019_2955857 crossref_primary_10_1109_ACCESS_2019_2962134 crossref_primary_10_1016_j_jksuci_2023_01_018 crossref_primary_10_1109_ACCESS_2021_3052884 crossref_primary_10_1016_j_esr_2024_101299 crossref_primary_10_1109_ACCESS_2020_3035152 crossref_primary_10_1109_ACCESS_2022_3140595 crossref_primary_10_1109_TII_2024_3379645 crossref_primary_10_1016_j_measen_2024_101077 crossref_primary_10_1109_TNNLS_2019_2927227 crossref_primary_10_1109_TNNLS_2020_3006080 crossref_primary_10_1109_TETCI_2023_3299294 crossref_primary_10_1109_TSG_2024_3358838 crossref_primary_10_1103_PRXEnergy_1_033005 crossref_primary_10_32604_cmc_2022_019562 crossref_primary_10_1109_ACCESS_2023_3239834 crossref_primary_10_3390_pr10071351 crossref_primary_10_1016_j_ijepes_2023_109210 crossref_primary_10_1109_JIOT_2024_3396641 crossref_primary_10_1016_j_hcc_2023_100167 crossref_primary_10_1016_j_neucom_2019_09_088 crossref_primary_10_1109_TCDS_2023_3323572 crossref_primary_10_1109_TNNLS_2020_2985588 crossref_primary_10_1109_TNNLS_2021_3088907 crossref_primary_10_1109_OAJPE_2024_3489477 crossref_primary_10_1007_s11042_021_10554_3 crossref_primary_10_1109_ACCESS_2024_3441931 crossref_primary_10_1007_s44199_025_00109_y crossref_primary_10_1007_s44163_025_00239_3 crossref_primary_10_1109_ACCESS_2019_2920317 crossref_primary_10_1016_j_ijepes_2021_107021 crossref_primary_10_3390_math10193450 crossref_primary_10_1109_TNNLS_2021_3060187 crossref_primary_10_3390_smartcities4020029 crossref_primary_10_1109_ACCESS_2020_3029171 crossref_primary_10_1016_j_apenergy_2020_116069 crossref_primary_10_1109_TSG_2022_3199187 crossref_primary_10_1016_j_seta_2021_101284 crossref_primary_10_1109_TIFS_2023_3268532 crossref_primary_10_1109_JIOT_2020_3040957 crossref_primary_10_1109_TPWRD_2021_3061358 crossref_primary_10_1109_TNNLS_2019_2955165 crossref_primary_10_1080_15325008_2023_2268073 crossref_primary_10_3389_fenrg_2024_1443677 crossref_primary_10_1109_TSG_2023_3343100 crossref_primary_10_1109_TII_2023_3246529 crossref_primary_10_1109_TNNLS_2021_3121870 crossref_primary_10_1007_s11277_023_10664_1 crossref_primary_10_3390_jsan10030043 crossref_primary_10_3390_electronics8090991 crossref_primary_10_1016_j_neucom_2021_01_070 crossref_primary_10_1007_s40815_020_01035_0 crossref_primary_10_1016_j_energy_2020_118870 crossref_primary_10_1049_gtd2_12443 crossref_primary_10_1109_TPWRS_2021_3060009 crossref_primary_10_1587_nolta_12_738 crossref_primary_10_3390_jsan10030053 crossref_primary_10_1016_j_rineng_2024_103884 crossref_primary_10_1016_j_compeleceng_2024_109405 crossref_primary_10_1063_5_0235716 crossref_primary_10_1109_ACCESS_2019_2961517 crossref_primary_10_1109_TNNLS_2021_3105668 crossref_primary_10_3390_s23167216 |
Cites_doi | 10.1109/TSMCB.2012.2203336 10.1109/ICCW.2017.7962716 10.1007/978-1-4612-4002-0 10.1109/TSG.2016.2631622 10.1109/ISGT.2017.8086078 10.1162/089976699300016070 10.1109/TPWRS.2016.2618365 10.1109/MSP.2012.2186410 10.1109/TPWRS.2012.2183624 10.1109/TSG.2016.2561266 10.1002/rnc.1760 10.1109/TSG.2012.2224391 10.1109/MCOM.2012.6257523 10.1109/TNNLS.2017.2773458 10.1109/TPWRS.2016.2577633 10.1162/neco.1994.6.6.1185 10.1016/j.jare.2013.12.005 10.1016/j.ijepes.2017.01.016 10.1109/TPWRS.2016.2518660 10.1109/TNNLS.2014.2350835 10.1109/TIFS.2014.2363786 10.1109/TSG.2018.2790704 10.1007/BF00992698 10.1109/TPWRS.2012.2226480 10.1109/MIS.2011.26 10.1109/SSCI.2017.8285291 10.1109/TNN.2008.2000204 10.1038/nature08932 10.1016/j.ijepes.2016.02.045 10.1109/RWEEK.2017.8088670 10.1109/TPWRS.2014.2312424 10.1145/318789.318894 10.1109/TIFS.2014.2299404 10.1038/srep44499 10.1016/j.epsr.2017.05.020 10.1109/TNNLS.2016.2609500 10.1109/TSG.2015.2440095 10.1109/TNNLS.2016.2638863 10.1109/TPDS.2013.2295814 10.1109/HICSS.2010.35 10.1109/JPROC.2011.2165269 10.1109/IJCNN.2010.5596754 10.1016/j.automatica.2010.10.033 10.1109/TNNLS.2016.2582849 10.1109/TWC.2017.2720658 10.1109/TNNLS.2015.2496299 10.1109/TIFS.2016.2607701 10.1109/TNNLS.2016.2561300 10.1109/IJCNN.2018.8489202 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2018.2885530 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 2695 |
ExternalDocumentID | 30624227 10_1109_TNNLS_2018_2885530 8603817 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Science Foundation grantid: OIA-1833005 funderid: 10.13039/100000001 – fundername: South Dakota Board of Regents grantid: FY2018 funderid: 10.13039/100008629 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c417t-f9a6bb05a0676e2bae201c3210d7b0216f461f4e19bbb3c58be7532032ed7deb3 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 08:46:51 EDT 2025 Mon Jun 30 03:14:18 EDT 2025 Wed Feb 19 02:36:31 EST 2025 Thu Apr 24 22:54:56 EDT 2025 Tue Jul 01 00:27:29 EDT 2025 Wed Aug 27 02:41:42 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-f9a6bb05a0676e2bae201c3210d7b0216f461f4e19bbb3c58be7532032ed7deb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3166-4726 0000-0002-4219-4152 |
PMID | 30624227 |
PQID | 2278401039 |
PQPubID | 85436 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2165659198 ieee_primary_8603817 crossref_citationtrail_10_1109_TNNLS_2018_2885530 crossref_primary_10_1109_TNNLS_2018_2885530 proquest_journals_2278401039 pubmed_primary_30624227 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | osborne (ref28) 1994 ref57 ba?ar (ref40) 2008 ref13 ref12 neyman (ref56) 1999 ref15 ref58 ref14 ref52 ref55 ref11 ref54 ref10 ref16 ref19 ref18 watkins (ref46) 1992 ref51 ref50 chatterjee (ref49) 2004 alpaydin (ref47) 2012 ref48 ref42 ref41 ref44 ref43 (ref17) 2013 ref8 ref7 ref9 ref4 ref3 ref6 ref5 overbye (ref53) 2012 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref38 hu (ref45) 1998 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref29 ba?ar (ref39) 1998 |
References_xml | – ident: ref27 doi: 10.1109/TSMCB.2012.2203336 – year: 2013 ident: ref17 publication-title: Arkansas Man Charged in Connection With Power Grid Sabotage – ident: ref16 doi: 10.1109/ICCW.2017.7962716 – ident: ref48 doi: 10.1007/978-1-4612-4002-0 – ident: ref11 doi: 10.1109/TSG.2016.2631622 – ident: ref18 doi: 10.1109/ISGT.2017.8086078 – ident: ref57 doi: 10.1162/089976699300016070 – ident: ref8 doi: 10.1109/TPWRS.2016.2618365 – start-page: 242 year: 1998 ident: ref45 article-title: Multiagent reinforcement learning: Theoretical framework and an algorithm publication-title: Proc 15th Int Conf Mach Learn (ICML) – ident: ref29 doi: 10.1109/MSP.2012.2186410 – ident: ref52 doi: 10.1109/TPWRS.2012.2183624 – ident: ref36 doi: 10.1109/TSG.2016.2561266 – ident: ref43 doi: 10.1002/rnc.1760 – ident: ref34 doi: 10.1109/TSG.2012.2224391 – ident: ref33 doi: 10.1109/MCOM.2012.6257523 – ident: ref26 doi: 10.1109/TNNLS.2017.2773458 – ident: ref9 doi: 10.1109/TPWRS.2016.2577633 – year: 2008 ident: ref40 publication-title: $ \cal H _ \infty $ Optimal Control and Related Minimax Design Problems – year: 1994 ident: ref28 publication-title: A Course in Game Theory – ident: ref55 doi: 10.1162/neco.1994.6.6.1185 – ident: ref54 doi: 10.1016/j.jare.2013.12.005 – ident: ref4 doi: 10.1016/j.ijepes.2017.01.016 – ident: ref2 doi: 10.1109/TPWRS.2016.2518660 – ident: ref24 doi: 10.1109/TNNLS.2014.2350835 – year: 1998 ident: ref39 publication-title: Dynamic Noncooperative Game Theory – ident: ref12 doi: 10.1109/TIFS.2014.2363786 – ident: ref37 doi: 10.1109/TSG.2018.2790704 – year: 1992 ident: ref46 article-title: Q-Learning publication-title: Machine Learning doi: 10.1007/BF00992698 – ident: ref50 doi: 10.1109/TPWRS.2012.2226480 – ident: ref5 doi: 10.1109/MIS.2011.26 – year: 2012 ident: ref53 publication-title: Power System Analysis and Design – ident: ref19 doi: 10.1109/SSCI.2017.8285291 – ident: ref41 doi: 10.1109/TNN.2008.2000204 – year: 1999 ident: ref56 publication-title: Stochastic Games and Applications – year: 2012 ident: ref47 publication-title: Introduction to Machine Learning – ident: ref3 doi: 10.1038/nature08932 – ident: ref30 doi: 10.1016/j.ijepes.2016.02.045 – ident: ref14 doi: 10.1109/RWEEK.2017.8088670 – ident: ref7 doi: 10.1109/TPWRS.2014.2312424 – ident: ref58 doi: 10.1145/318789.318894 – ident: ref13 doi: 10.1109/TIFS.2014.2299404 – ident: ref1 doi: 10.1038/srep44499 – ident: ref31 doi: 10.1016/j.epsr.2017.05.020 – ident: ref23 doi: 10.1109/TNNLS.2016.2609500 – ident: ref32 doi: 10.1109/TSG.2015.2440095 – year: 2004 ident: ref49 publication-title: Computer Science Logic – ident: ref22 doi: 10.1109/TNNLS.2016.2638863 – ident: ref10 doi: 10.1109/TPDS.2013.2295814 – ident: ref51 doi: 10.1109/HICSS.2010.35 – ident: ref6 doi: 10.1109/JPROC.2011.2165269 – ident: ref42 doi: 10.1109/IJCNN.2010.5596754 – ident: ref44 doi: 10.1016/j.automatica.2010.10.033 – ident: ref21 doi: 10.1109/TNNLS.2016.2582849 – ident: ref15 doi: 10.1109/TWC.2017.2720658 – ident: ref25 doi: 10.1109/TNNLS.2015.2496299 – ident: ref38 doi: 10.1109/TIFS.2016.2607701 – ident: ref20 doi: 10.1109/TNNLS.2016.2561300 – ident: ref35 doi: 10.1109/IJCNN.2018.8489202 |
SSID | ssj0000605649 |
Score | 2.6126728 |
Snippet | Existing smart grid security research investigates different attack techniques and cascading failures from the attackers' viewpoints, while the defenders' or... Existing smart grid security research investigates different attack techniques and cascading failures from the attackers’ viewpoints, while the defenders’ or... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2684 |
SubjectTerms | Electric power Electric power grids Electricity distribution Game theory Games Learning Machine learning Markov decision process and vulnerability analysis Multistage multistage game Power system dynamics Power transmission lines Reinforcement Reinforcement learning Security Smart grid smart grid security Smart grids Transmission lines |
Title | A Multistage Game in Smart Grid Security: A Reinforcement Learning Solution |
URI | https://ieeexplore.ieee.org/document/8603817 https://www.ncbi.nlm.nih.gov/pubmed/30624227 https://www.proquest.com/docview/2278401039 https://www.proquest.com/docview/2165659198 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BB8SlFOgjLVSu1BvNkmQdx-a2QgXUlj2wIO0t8mOCUCGL6O6lv75jx4kqRKveIsVJnJmx5vN4Zj6AT9KrVeUqFVrQBiUXmGpreUqexUjnFAr0cciLqTi_5l_n5XwNPg-1MIgYks9w5C_DWb5b2JUPlR1JERrKrcM6bdy6Wq0hnpIRLhcB7Ra5KNJiXM37GplMHV1Np99nPpFLjgopPVXOFmwSWiYH5flk_nBJgWPl73AzuJ3TbbjoJ9xlm_wYrZZmZH896eX4v3_0El5E_MkmncHswBq2u7DdczuwuNT34NuEhdpcAo83yM70PbLbls3uydLY2eOtY7NIfHfMJuwSQ_9VG0KNLLZsvWF9yO0VXJ9-uTo5TyPxQmp5Xi3TRmlhTFZqcmUCC6ORJGd9tY-rDIEC0XCRNxxzZYwZ21IarDzBxLhAVznanr-GjXbR4ltgldYcjbTjxlnuSmuqQmeFFbxBJbSxCeS97Gsbu5J7coy7OuxOMlUH1dVedXVUXQKHwzMPXU-Of47e83IfRkaRJ7Dfq7iOy_Zn7euCuWe-UAl8HG7TgvOnKLrFxYrG-H5FJZm3TOBNZxrDu3uLevf8N9_DFs0spqjtw8bycYUHhGmW5kMw5t-Nt-74 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4xkBgvg8HYwhgz0t62lCR1HHtv1TQo0PZhLVLfIv-4ILSRImhf9tdjO06E0DbtLVKcxLk76z6f7-4D-MSdWkUqYiaZ3aCkDGOpNY2tZ1HcGIEMXRxyPGHDK3oxz-dr8KWrhUFEn3yGPXfpz_LNQq9cqOyEM99Q7gVsWL-fp021VhdRSSwyZx7vZinL4qxfzNsqmUSczCaT0dSlcvFexrkjy9mCTYuXrYtyjDJPnJJnWfk74PSO53Qbxu2Um3yTn73VUvX072fdHP_3n3bgVUCgZNCYzGtYw3oXtlt2BxIW-x5cDoivzrXw8RrJmbxFclOT6a21NXJ2f2PINFDffSUD8gN9B1btg40kNG29Jm3Q7Q1cnX6ffRvGgXoh1jQtlnElJFMqyaV1ZgwzJdFKTrt6H1MoCwtYRVlaUUyFUqqvc66wcBQT_QxNYewGfR_W60WN74AUUlJUXPcro6nJtSoymWSa0QoFk0pHkLayL3XoS-7oMX6Vfn-SiNKrrnSqK4PqIvjcPXPXdOX45-g9J_duZBB5BIetisuwcB9KVxlMHfeFiOC4u22XnDtHkTUuVnaM61iUWwPnEbxtTKN7d2tRB3_-5kd4OZyNR-XofHL5HrbsLEPC2iGsL-9X-MEinKU68ob9CCyP8kE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multistage+Game+in+Smart+Grid+Security%3A+A+Reinforcement+Learning+Solution&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Ni%2C+Zhen&rft.au=Paul%2C+Shuva&rft.date=2019-09-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=30&rft.issue=9&rft.spage=2684&rft.epage=2695&rft_id=info:doi/10.1109%2FTNNLS.2018.2885530&rft_id=info%3Apmid%2F30624227&rft.externalDocID=8603817 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |