Decision-Tree-Initialized Dendritic Neuron Model for Fast and Accurate Data Classification

This work proposes a decision tree (DT)-based method for initializing a dendritic neuron model (DNM). Neural networks become larger and larger, thus consuming more and more computing resources. This calls for a strong need to prune neurons that do not contribute much to their network's output....

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 33; no. 9; pp. 4173 - 4183
Main Authors Luo, Xudong, Wen, Xiaohao, Zhou, MengChu, Abusorrah, Abdullah, Huang, Lukui
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work proposes a decision tree (DT)-based method for initializing a dendritic neuron model (DNM). Neural networks become larger and larger, thus consuming more and more computing resources. This calls for a strong need to prune neurons that do not contribute much to their network's output. Pruning those with low contribution may lead to a loss of accuracy of DNM. Our proposed method is novel because 1) it can reduce the number of dendrites in DNM while improving training efficiency without affecting accuracy and 2) it can select proper initialization weight and threshold of neurons. The Adam algorithm is used to train DNM after its initialization with our proposed DT-based method. To verify its effectiveness, we apply it to seven benchmark datasets. The results show that decision-tree-initialized DNM is significantly better than the original DNM, k-nearest neighbor, support vector machine, back-propagation neural network, and DT classification methods. It exhibits the lowest model complexity and highest training speed without losing any accuracy. The interactions among attributes can also be observed in its dendritic neurons.
AbstractList This work proposes a decision tree (DT)-based method for initializing a dendritic neuron model (DNM). Neural networks become larger and larger, thus consuming more and more computing resources. This calls for a strong need to prune neurons that do not contribute much to their network's output. Pruning those with low contribution may lead to a loss of accuracy of DNM. Our proposed method is novel because 1) it can reduce the number of dendrites in DNM while improving training efficiency without affecting accuracy and 2) it can select proper initialization weight and threshold of neurons. The Adam algorithm is used to train DNM after its initialization with our proposed DT-based method. To verify its effectiveness, we apply it to seven benchmark datasets. The results show that decision-tree-initialized DNM is significantly better than the original DNM, k-nearest neighbor, support vector machine, back-propagation neural network, and DT classification methods. It exhibits the lowest model complexity and highest training speed without losing any accuracy. The interactions among attributes can also be observed in its dendritic neurons.
This work proposes a decision tree (DT)-based method for initializing a dendritic neuron model (DNM). Neural networks become larger and larger, thus consuming more and more computing resources. This calls for a strong need to prune neurons that do not contribute much to their network's output. Pruning those with low contribution may lead to a loss of accuracy of DNM. Our proposed method is novel because 1) it can reduce the number of dendrites in DNM while improving training efficiency without affecting accuracy and 2) it can select proper initialization weight and threshold of neurons. The Adam algorithm is used to train DNM after its initialization with our proposed DT-based method. To verify its effectiveness, we apply it to seven benchmark datasets. The results show that decision-tree-initialized DNM is significantly better than the original DNM, k-nearest neighbor, support vector machine, back-propagation neural network, and DT classification methods. It exhibits the lowest model complexity and highest training speed without losing any accuracy. The interactions among attributes can also be observed in its dendritic neurons.This work proposes a decision tree (DT)-based method for initializing a dendritic neuron model (DNM). Neural networks become larger and larger, thus consuming more and more computing resources. This calls for a strong need to prune neurons that do not contribute much to their network's output. Pruning those with low contribution may lead to a loss of accuracy of DNM. Our proposed method is novel because 1) it can reduce the number of dendrites in DNM while improving training efficiency without affecting accuracy and 2) it can select proper initialization weight and threshold of neurons. The Adam algorithm is used to train DNM after its initialization with our proposed DT-based method. To verify its effectiveness, we apply it to seven benchmark datasets. The results show that decision-tree-initialized DNM is significantly better than the original DNM, k-nearest neighbor, support vector machine, back-propagation neural network, and DT classification methods. It exhibits the lowest model complexity and highest training speed without losing any accuracy. The interactions among attributes can also be observed in its dendritic neurons.
Author Zhou, MengChu
Luo, Xudong
Abusorrah, Abdullah
Huang, Lukui
Wen, Xiaohao
Author_xml – sequence: 1
  givenname: Xudong
  orcidid: 0000-0002-3650-8450
  surname: Luo
  fullname: Luo, Xudong
  email: luoxudong@gxnu.edu.cn
  organization: Teachers College for Vocational and Technical Education, Guangxi Normal University, Guilin, China
– sequence: 2
  givenname: Xiaohao
  orcidid: 0000-0003-4368-1443
  surname: Wen
  fullname: Wen, Xiaohao
  email: wenxiaohao@gxnu.edu.cn
  organization: Teachers College for Vocational and Technical Education, Guangxi Normal University, Guilin, China
– sequence: 3
  givenname: MengChu
  orcidid: 0000-0002-5408-8752
  surname: Zhou
  fullname: Zhou, MengChu
  email: mengchu.zhou@njit.edu
  organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA
– sequence: 4
  givenname: Abdullah
  orcidid: 0000-0001-8025-0453
  surname: Abusorrah
  fullname: Abusorrah, Abdullah
  email: aabusorrah@kau.edu.sa
  organization: Center of Research Excellence in Renewable Energy and Power Systems and the Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
– sequence: 5
  givenname: Lukui
  surname: Huang
  fullname: Huang, Lukui
  email: lukui-hua59@tbs.tu.ac.th
  organization: Guangxi University of Finance and Economics, Nanning, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33729951$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtrWzEQhUVJaR7NH2ghCLLJ5rp63Ie0DHbzANdd1IXSjZClEShcS4mku0h-fZXYySKLDoiR4DuHGZ1jdBBiAIS-UDKjlMhv69Vq-WvGCKMzTrpOSvoBHTHas4ZxIQ7e7sOfQ3Sa8x2p1ZOub-UndMj5wKTs6BH6uwDjs4-hWSeA5jb44vXon8DiBQSb6tPgFUwpBvwjWhixiwlf6VywDhZfGjMlXQAvdNF4PuqcvfNGl-r4GX10esxwuu8n6PfV9_X8pln-vL6dXy4b09KhNE5w64S2ph7OTGud5oa2jhPTi5ZRLgnZ9JoaOWyk7YSEzppBMkdgI4UAfoIudr73KT5MkIva-mxgHHWAOGXFOsJE3Vy2FT1_h97FKYU6nWIDEX3LO8Eqdbanps0WrLpPfqvTo3r9tQqIHWBSzDmBU8aXl51L0n5UlKjnjNRLRuo5I7XPqErZO-mr-39FX3ciDwBvAskF6XvK_wG88pvX
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_knosys_2024_111729
crossref_primary_10_3390_molecules28020809
crossref_primary_10_1007_s10666_023_09918_w
crossref_primary_10_3390_sym14010011
crossref_primary_10_5312_wjo_v14_i10_741
crossref_primary_10_1039_D4AY01346H
crossref_primary_10_1007_s10666_023_09931_z
crossref_primary_10_1038_s41598_024_66979_x
crossref_primary_10_1109_TCYB_2022_3173632
crossref_primary_10_1016_j_exger_2024_112535
crossref_primary_10_1016_j_ins_2024_121034
crossref_primary_10_1007_s00521_023_09299_x
crossref_primary_10_3390_electronics12010094
crossref_primary_10_3934_mbe_2023328
crossref_primary_10_1080_00207543_2024_2448604
crossref_primary_10_1038_s41598_024_84895_y
crossref_primary_10_1155_2023_7037124
crossref_primary_10_29407_intensif_v8i2_22280
crossref_primary_10_3390_app13116542
crossref_primary_10_1007_s10462_024_10790_7
crossref_primary_10_1016_j_knosys_2021_107536
crossref_primary_10_1109_JIOT_2024_3413181
crossref_primary_10_1109_TETCI_2024_3367819
crossref_primary_10_1109_JAS_2023_123648
crossref_primary_10_1109_TAI_2024_3416236
crossref_primary_10_1109_TASE_2024_3360476
crossref_primary_10_1155_2022_1815170
crossref_primary_10_53941_ijndi0101004
crossref_primary_10_1080_10255842_2025_2472013
crossref_primary_10_3390_s24061729
crossref_primary_10_1109_TNNLS_2021_3105901
crossref_primary_10_3390_electronics13193911
crossref_primary_10_1016_j_knosys_2024_111442
crossref_primary_10_1109_TNNLS_2021_3105905
crossref_primary_10_1109_TNNLS_2023_3290203
Cites_doi 10.21437/Interspeech.2011-91
10.1561/9781601984616
10.1109/LGRS.2017.2771405
10.1214/aoms/1177704575
10.1109/JAS.2017.7510817
10.1109/TNNLS.2018.2869694
10.1109/TASE.2018.2865663
10.1016/j.knosys.2018.08.020
10.1007/978-3-642-27733-7_299-3
10.1109/TKDE.2009.191
10.1109/TCSS.2020.3001517
10.1016/j.csda.2009.04.009
10.1109/JAS.2019.1911447
10.1098/rstb.1982.0084
10.1109/TPAMI.2009.187
10.1109/TNNLS.2019.2935384
10.3389/fnins.2018.00435
10.1142/S0129065719500126
10.1109/ICCV.2017.155
10.1109/IJCNN.1989.118638
10.1038/nn.4301
10.1016/j.neucom.2020.01.036
10.1118/1.1429239
10.1109/TCSS.2019.2931186
10.1007/978-3-030-01237-3_12
10.1109/TITS.2019.2958741
10.1002/ecjc.1024
10.1109/TNN.2004.836241
10.3321/j.issn:0529-6579.2007.z1.029
10.1109/TMI.2016.2528162
10.2307/2530946
10.2991/iccnce.2013.121
10.1109/TMI.2014.2366792
10.1137/140990309
10.1109/JAS.2020.1003465
10.1109/JAS.2021.1003865
10.1587/transinf.2014EDP7418
10.1177/2472555218818756
10.1109/TNNLS.2018.2846646
10.1155/2019/8682124
10.1109/UIC-ATC.2017.8397411
10.1155/2019/7362931
10.1155/2018/9390410
10.1145/3236009
10.1016/j.neucom.2015.09.052
10.15388/Informatica.2004.078
10.1007/s10732-008-9080-4
10.1198/tech.2001.s629
10.1007/978-3-319-13972-2_8
10.4249/scholarpedia.1883
10.1109/TCYB.2016.2606104
10.1007/BF00116251
10.1007/s11222-009-9153-8
10.1109/PIC.2016.7949463
10.1109/TNNLS.2019.2944672
10.1007/BF01062525
10.1016/j.knosys.2016.05.031
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2021.3055991
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 4183
ExternalDocumentID 33729951
10_1109_TNNLS_2021_3055991
9380661
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Guangxi Vocational Education Teaching Reform Research Project in 2020
  grantid: GXGZJG2020B101
– fundername: Education and Teaching Reform Project of Guangxi Normal University in 2019
  grantid: 2019JGB36
  funderid: 10.13039/501100009007
– fundername: The Deanship of Scientific Research (DSR) at King Abdulaziz University
  grantid: RG-6-135-38
  funderid: 10.13039/501100004054
– fundername: Research Foundation Capacity Improvement Project for Young and Middle-Aged Teachers in Guangxi Universities of China in 2020
  grantid: 2020KY02029
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c417t-f83df8adc8ad32c4dfa3c14f30c684213900b6a1c97b9d589e5dc792f0eb988e3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Thu Jul 10 17:04:49 EDT 2025
Mon Jun 30 03:23:48 EDT 2025
Thu Apr 03 06:56:43 EDT 2025
Thu Apr 24 22:51:26 EDT 2025
Tue Jul 01 00:27:38 EDT 2025
Wed Aug 27 02:29:21 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-f83df8adc8ad32c4dfa3c14f30c684213900b6a1c97b9d589e5dc792f0eb988e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4368-1443
0000-0001-8025-0453
0000-0002-3650-8450
0000-0002-5408-8752
PMID 33729951
PQID 2708643582
PQPubID 85436
PageCount 11
ParticipantIDs crossref_primary_10_1109_TNNLS_2021_3055991
proquest_miscellaneous_2502805694
pubmed_primary_33729951
ieee_primary_9380661
proquest_journals_2708643582
crossref_citationtrail_10_1109_TNNLS_2021_3055991
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref14
Han (ref17) 2016; 56
ref58
ref53
ref52
ref10
Wen (ref6)
Louizos (ref13) 2017
Hassibi (ref15); 5
Fawcett (ref66) 2009; 31
Zhang (ref9) 2018; 2
Qian (ref38) 2019; 2019
ref46
ref45
ref48
ref47
ref42
ref41
Guo (ref3)
Ullrich (ref12) 2017
ref44
ref43
ref7
Min (ref8) 2018
ref5
ref40
Bengio (ref19) 2010; 11
ref80
ref35
ref79
ref34
Wu (ref51) 2019
ref78
ref37
ref36
ref31
ref75
ref74
ref33
ref77
ref32
ref76
Molchanov (ref18) 2016
Demšar (ref63) 2006; 7
ref1
ref39
Feiqiong (ref30) 2019
Kingma (ref55) 2014
ref71
ref70
ref73
Suzuki (ref11)
ref72
Murdoch (ref50) 2019; 116
Luo (ref2) 2017
ref24
ref68
ref23
ref67
ref26
Frosst (ref54) 2017
ref25
Ancona (ref49) 2017
ref69
ref20
ref64
ref22
ref21
ref65
ref28
Cun (ref16)
ref27
ref29
ref60
ref62
Merz (ref59) 1998
ref61
Han (ref4)
References_xml – volume: 5
  start-page: 164
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref15
  article-title: Second order derivatives for network pruning: Optimal brain surgeon
– ident: ref24
  doi: 10.21437/Interspeech.2011-91
– start-page: 2074
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref6
  article-title: Learning structured sparsity in deep neural networks
– volume-title: arXiv:1611.06440
  year: 2016
  ident: ref18
  article-title: Pruning convolutional neural networks for resource efficient inference
– ident: ref10
  doi: 10.1561/9781601984616
– ident: ref28
  doi: 10.1109/LGRS.2017.2771405
– ident: ref70
  doi: 10.1214/aoms/1177704575
– ident: ref76
  doi: 10.1109/JAS.2017.7510817
– ident: ref32
  doi: 10.1109/TNNLS.2018.2869694
– ident: ref22
  doi: 10.1109/TASE.2018.2865663
– ident: ref39
  doi: 10.1016/j.knosys.2018.08.020
– ident: ref60
  doi: 10.1007/978-3-642-27733-7_299-3
– ident: ref20
  doi: 10.1109/TKDE.2009.191
– start-page: 598
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref16
  article-title: Optimal brain damage
– ident: ref23
  doi: 10.1109/TCSS.2020.3001517
– start-page: 392
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref11
  article-title: Dual averaging and proximal gradient descent for Online alternating direction multiplier method
– start-page: 1135
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref4
  article-title: Learning both weights and connections for efficient neural network
– ident: ref64
  doi: 10.1016/j.csda.2009.04.009
– volume: 31
  start-page: 1
  issue: 8
  year: 2009
  ident: ref66
  article-title: ROC graphs: Notes and practical considerations for data mining researchers
  publication-title: Mach. Learn.
– ident: ref75
  doi: 10.1109/JAS.2019.1911447
– ident: ref34
  doi: 10.1098/rstb.1982.0084
– ident: ref65
  doi: 10.1109/TPAMI.2009.187
– ident: ref21
  doi: 10.1109/TNNLS.2019.2935384
– ident: ref29
  doi: 10.3389/fnins.2018.00435
– ident: ref40
  doi: 10.1142/S0129065719500126
– ident: ref7
  doi: 10.1109/ICCV.2017.155
– volume-title: arXiv:1908.04494
  year: 2019
  ident: ref51
  article-title: Regional tree regularization for interpretability in black box models
– ident: ref62
  doi: 10.1109/IJCNN.1989.118638
– ident: ref1
  doi: 10.1038/nn.4301
– ident: ref53
  doi: 10.1016/j.neucom.2020.01.036
– ident: ref67
  doi: 10.1118/1.1429239
– ident: ref78
  doi: 10.1109/TCSS.2019.2931186
– ident: ref5
  doi: 10.1007/978-3-030-01237-3_12
– ident: ref80
  doi: 10.1109/TITS.2019.2958741
– volume-title: arXiv:1412.6980
  year: 2014
  ident: ref55
  article-title: Adam: A method for stochastic optimization
– ident: ref35
  doi: 10.1002/ecjc.1024
– volume-title: arXiv:1711.09784
  year: 2017
  ident: ref54
  article-title: Distilling a neural network into a soft decision tree
– ident: ref14
  doi: 10.1109/TNN.2004.836241
– start-page: 15
  issue: 2
  year: 2019
  ident: ref30
  article-title: On suitability of online product sales prediction model based on convolutional neural networks
  publication-title: J. Northwest Minzu Univ., Philosophy Social Sci.
– ident: ref48
  doi: 10.3321/j.issn:0529-6579.2007.z1.029
– ident: ref27
  doi: 10.1109/TMI.2016.2528162
– ident: ref57
  doi: 10.2307/2530946
– volume: 2
  start-page: 3
  volume-title: arXiv:1807.11091
  year: 2018
  ident: ref9
  article-title: ADAM-ADMM: A unified, systematic framework of structured weight pruning for DNNs
– ident: ref72
  doi: 10.2991/iccnce.2013.121
– ident: ref26
  doi: 10.1109/TMI.2014.2366792
– ident: ref73
  doi: 10.1137/140990309
– ident: ref79
  doi: 10.1109/JAS.2020.1003465
– ident: ref77
  doi: 10.1109/JAS.2021.1003865
– ident: ref41
  doi: 10.1587/transinf.2014EDP7418
– volume-title: arXiv:1711.06104
  year: 2017
  ident: ref49
  article-title: Towards better understanding of gradient-based attribution methods for deep neural networks
– ident: ref31
  doi: 10.1177/2472555218818756
– volume-title: arXiv:1706.05791
  year: 2017
  ident: ref2
  article-title: An entropy-based pruning method for CNN compression
– volume-title: UCI Repository of Machine Learning Databases
  year: 1998
  ident: ref59
– ident: ref36
  doi: 10.1109/TNNLS.2018.2846646
– ident: ref42
  doi: 10.1155/2019/8682124
– ident: ref46
  doi: 10.1109/UIC-ATC.2017.8397411
– volume: 116
  start-page: 22071
  issue: 44
  year: 2019
  ident: ref50
  article-title: Interpretable machine learning: Definitions, methods, and applications
  publication-title: Neurocomputing
– volume-title: arXiv:1712.01312
  year: 2017
  ident: ref13
  article-title: Learning sparse neural networks through L₀ regularization
– volume: 2019
  start-page: 1
  year: 2019
  ident: ref38
  article-title: MrDNM: A novel mutual information-based dendritic neuron model
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2019/7362931
– ident: ref43
  doi: 10.1155/2018/9390410
– volume: 7
  start-page: 1
  issue: 1
  year: 2006
  ident: ref63
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– ident: ref47
  doi: 10.1145/3236009
– ident: ref37
  doi: 10.1016/j.neucom.2015.09.052
– volume: 56
  start-page: 3
  issue: 4
  year: 2016
  ident: ref17
  article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding
  publication-title: Fiber
– ident: ref33
  doi: 10.15388/Informatica.2004.078
– ident: ref69
  doi: 10.1007/s10732-008-9080-4
– volume-title: arXiv:1809.02220
  year: 2018
  ident: ref8
  article-title: 2PFPCE: Two-phase filter pruning based on conditional entropy
– ident: ref71
  doi: 10.1198/tech.2001.s629
– ident: ref25
  doi: 10.1007/978-3-319-13972-2_8
– ident: ref61
  doi: 10.4249/scholarpedia.1883
– volume: 11
  start-page: 625
  issue: 3
  year: 2010
  ident: ref19
  article-title: Why does unsupervised pre-training help deep learning?
  publication-title: J. Mach. Learn. Res.
– ident: ref74
  doi: 10.1109/TCYB.2016.2606104
– ident: ref56
  doi: 10.1007/BF00116251
– ident: ref58
  doi: 10.1007/s11222-009-9153-8
– volume-title: arXiv:1702.04008
  year: 2017
  ident: ref12
  article-title: Soft weight-sharing for neural network compression
– ident: ref45
  doi: 10.1109/PIC.2016.7949463
– ident: ref52
  doi: 10.1109/TNNLS.2019.2944672
– start-page: 1379
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref3
  article-title: Dynamic network surgery for efficient DNNs
– ident: ref68
  doi: 10.1007/BF01062525
– ident: ref44
  doi: 10.1016/j.knosys.2016.05.031
SSID ssj0000605649
Score 2.588696
Snippet This work proposes a decision tree (DT)-based method for initializing a dendritic neuron model (DNM). Neural networks become larger and larger, thus consuming...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4173
SubjectTerms Accuracy
Algorithms
Back propagation networks
Biological neural networks
Biomembranes
Classification
Computational modeling
decision tree (DT)
Decision trees
Dendrites
dendritic neuron model (DNM)
Dendritic structure
machine learning
neural network
Neural networks
Neurons
Sparse matrices
Support vector machines
Synapses
Training
Title Decision-Tree-Initialized Dendritic Neuron Model for Fast and Accurate Data Classification
URI https://ieeexplore.ieee.org/document/9380661
https://www.ncbi.nlm.nih.gov/pubmed/33729951
https://www.proquest.com/docview/2708643582
https://www.proquest.com/docview/2502805694
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHlAvtFAegYKMxA28tR07sY8Vy6oguhe20opL5NjOhSpbtcmlv74e5yEVAeIQKVKcl75x_E3m8QF8kIr5RtiG-iI4Kq0pqOZMU114pWsurNRYKHyxLs4v5bet2u7Bp7kWJoSQks_CAndTLN_vXI-_yk5NruMKGX2dR9FxG2q15v8pLPLyIrFdwQtBRV5upxoZZk436_X3H9EbFHyBLa4iKTqAxzmGrIziD5akpLHyd7qZlp3VIVxMDzxkm_xa9F29cHe_9XL83zc6gicj_yRng8E8hb3QPoPDSduBjFP9GH4uR_EdurkJgX7FHKNI2e-CJ8vQ-iSQQFJnj5agntoVieyXrOxtR2zryZlzPTahIEvbWZKUNzEnKZnBc7hcfdl8PqejDgN1kpcdbXTuG229i1sunPSNzR2XTc4cRvEih2SsLix3pqxNhNgE5V1pRMNCbbQO-QvYb3dteAXESI8t55SNrEiqWhteB_yKFDUL0nKVAZ-gqNzYpBy1Mq6q5KwwUyUkK0SyGpHM4ON8zvXQouOfo48RhnnkiEAGJxPi1TiLbytRRodPYi1xBu_nw3H-YVDFtmHXxzEKg9OqMDKDl4OlzNeeDOz1n-_5Bg4EFlOkjLUT2O9u-vA2Upyufpds-x78VfO5
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFL0qRYJuKFAKgQJGghXy1HbsxF6wqBhGM3Q6G6bSiE1wbGdDlUGdjBD9Fn6Ff8N2HhII2FViESlSnJfvtX2u7-MAvOSC2IrpCtvMGcy1yrCkRGKZWSFLyjSXIVH4bJFNz_n7lVjtwPchF8Y5F4PP3CicRl--XZtt2Co7Vqn0KyTtQihP3bev3kDbvJmNvTRfMTZ5t3w7xR2HADac5g2uZGorqa3xR8oMt5VODeVVSkzwQHn8Q0iZaWpUXir_ecoJa3LFKuJKJaVL_XNvwE2PMwRrs8OGHRziLYEs4mtGM4ZZmq_6rByijpeLxfyDtz8ZHYWiWh6G7cGtNDjJlKC_LIKR1eXvADcudJN9-NF3URvf8nm0bcqRufqteuT_2od34U6HsNFJOyTuwY6r78N-z16BusnsAD6OO3ohvLx0Ds9CFJU3Sq6cRWNX20gBgWLtkhoFxrgL5PE9muhNg3Rt0Ykx21BmA411o1HkFg1RV1HRH8D5tfzhIezW69o9AqS4DUX1hPa4j4tSKlq6ME9mJXFcU5EA7UVfmK4Me2ADuSiiOUZUETWnCJpTdJqTwOvhni9tEZJ_tj4IYh9adhJP4KjXsKKbpzYFy71Jy0O2dAIvhst-hgluI1279da3EcH9LjLFE3jYaubw7F6hH__5nc_h9nR5Ni_ms8XpE9hjIXUkxucdwW5zuXVPPaBrymdxXCH4dN1K-BOoclLZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decision-Tree-Initialized+Dendritic+Neuron+Model+for+Fast+and+Accurate+Data+Classification&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Luo%2C+Xudong&rft.au=Wen%2C+Xiaohao&rft.au=Zhou%2C+MengChu&rft.au=Abusorrah%2C+Abdullah&rft.date=2022-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=33&rft.issue=9&rft.spage=4173&rft_id=info:doi/10.1109%2FTNNLS.2021.3055991&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon