Efficient multivariate linear mixed model algorithms for genome-wide association studies
Multivariate linear mixed models implemented in the GEMMA software package add speed, power and the ability to test for genome-wide associations between genetic polymorphisms and multiple correlated phenotypes. Multivariate linear mixed models (mvLMMs) are powerful tools for testing associations bet...
Saved in:
Published in | Nature methods Vol. 11; no. 4; pp. 407 - 409 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.04.2014
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multivariate linear mixed models implemented in the GEMMA software package add speed, power and the ability to test for genome-wide associations between genetic polymorphisms and multiple correlated phenotypes.
Multivariate linear mixed models (mvLMMs) are powerful tools for testing associations between single-nucleotide polymorphisms and multiple correlated phenotypes while controlling for population stratification in genome-wide association studies. We present efficient algorithms in the genome-wide efficient mixed model association (GEMMA) software for fitting mvLMMs and computing likelihood ratio tests. These algorithms offer improved computation speed, power and
P
-value calibration over existing methods, and can deal with more than two phenotypes. |
---|---|
AbstractList | Multivariate linear mixed models (mvLMMs) are powerful tools for testing associations between single-nucleotide polymorphisms and multiple correlated phenotypes while controlling for population stratification in genome-wide association studies. We present efficient algorithms in the genome-wide efficient mixed model association (GEMMA) software for fitting mvLMMs and computing likelihood ratio tests. These algorithms offer improved computation speed, power and P-value calibration over existing methods, and can deal with more than two phenotypes. Multivariate linear mixed models implemented in the GEMMA software package add speed, power and the ability to test for genome-wide associations between genetic polymorphisms and multiple correlated phenotypes. Multivariate linear mixed models (mvLMMs) are powerful tools for testing associations between single-nucleotide polymorphisms and multiple correlated phenotypes while controlling for population stratification in genome-wide association studies. We present efficient algorithms in the genome-wide efficient mixed model association (GEMMA) software for fitting mvLMMs and computing likelihood ratio tests. These algorithms offer improved computation speed, power and P -value calibration over existing methods, and can deal with more than two phenotypes. Multivariate linear mixed models (mvLMMs) are powerful tools for testing associations between single-nucleotide polymorphisms and multiple correlated phenotypes while controlling for population stratification in genome-wide association studies. We present efficient algorithms in the genome-wide efficient mixed model association (GEMMA) software for fitting mvLMMs and computing likelihood ratio tests. These algorithms offer improved computation speed, power and P-value calibration over existing methods, and can deal with more than two phenotypes.Multivariate linear mixed models (mvLMMs) are powerful tools for testing associations between single-nucleotide polymorphisms and multiple correlated phenotypes while controlling for population stratification in genome-wide association studies. We present efficient algorithms in the genome-wide efficient mixed model association (GEMMA) software for fitting mvLMMs and computing likelihood ratio tests. These algorithms offer improved computation speed, power and P-value calibration over existing methods, and can deal with more than two phenotypes. |
Author | Zhou, Xiang Stephens, Matthew |
Author_xml | – sequence: 1 givenname: Xiang surname: Zhou fullname: Zhou, Xiang email: xz7@uchicago.edu organization: Department of Human Genetics, University of Chicago, Department of Statistics, University of Chicago – sequence: 2 givenname: Matthew surname: Stephens fullname: Stephens, Matthew email: mstephens@uchicago.edu organization: Department of Human Genetics, University of Chicago, Department of Statistics, University of Chicago |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24531419$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0U1rFjEQB_AgFfuiFz-ABLyIsjWz2exmj1JaFQq9VPAWstnJ05RNUpOsrd--aZ8-INVT5vD7D5OZQ7IXYkBC3gI7Bsbl5-CxXB23spMvyAGITjYDMLG3q9kI--Qw52vGOO9a8Yrst53g0MF4QH6eWuuMw1CoX5fifuvkdEG6uIA6Ue_ucKY-zrhQvWxicuXKZ2pjohsM0WNz62akOudoas7FQHNZZ4f5NXlp9ZLxzdN7RH6cnV6efGvOL75-P_ly3pgOhtLYoe_7sZOTtMaM0sDct1wDG_k84Sj5aMVszTS0FgbJwRo2mXG0LesHsLw3_Ih82Pa9SfHXirko77LBZdEB45oVCADZchCi0vfP6HVcU6jTVSWGvi6kH6p696TWyeOsbpLzOv1Ru51VwLbApJhzQquMK49_L0m7RQFTD2dRj2dRD2epkY_PIruu_8WftjhXFDaY_hrzX30PFdWd-A |
CitedBy_id | crossref_primary_10_1093_bioinformatics_btx512 crossref_primary_10_1002_ajhb_23289 crossref_primary_10_1111_pcmr_12820 crossref_primary_10_1016_j_ajhg_2014_12_021 crossref_primary_10_1186_s13073_024_01369_6 crossref_primary_10_1534_genetics_117_300673 crossref_primary_10_1007_s11063_018_9847_z crossref_primary_10_48130_forres_0024_0009 crossref_primary_10_1016_j_cels_2020_12_002 crossref_primary_10_1038_s41467_022_30678_w crossref_primary_10_1080_15592294_2023_2252631 crossref_primary_10_1371_journal_pgen_1006869 crossref_primary_10_1016_j_cj_2022_07_018 crossref_primary_10_1186_s12859_018_2066_9 crossref_primary_10_1534_genetics_116_189308 crossref_primary_10_1093_genetics_iyab159 crossref_primary_10_1093_molbev_msad248 crossref_primary_10_3389_fgene_2021_667358 crossref_primary_10_3389_fpls_2022_927673 crossref_primary_10_3835_plantgenome2018_01_0002 crossref_primary_10_1093_nargab_lqaa010 crossref_primary_10_1186_s13059_016_0903_6 crossref_primary_10_1186_s12859_016_0899_7 crossref_primary_10_3389_fpls_2020_545748 crossref_primary_10_1016_j_jia_2024_07_026 crossref_primary_10_1038_s41598_020_64963_9 crossref_primary_10_1016_j_fertnstert_2017_09_023 crossref_primary_10_1093_jxb_eraa426 crossref_primary_10_1016_j_xgen_2024_100545 crossref_primary_10_1172_JCI172885 crossref_primary_10_1007_s11032_024_01442_3 crossref_primary_10_1534_genetics_115_178590 crossref_primary_10_3390_plants11091108 crossref_primary_10_1093_genetics_iyab189 crossref_primary_10_1186_s12864_016_2475_y crossref_primary_10_1093_hmg_ddw088 crossref_primary_10_1186_s12711_018_0377_y crossref_primary_10_1002_ece3_4898 crossref_primary_10_1186_s12870_019_1631_3 crossref_primary_10_1534_genetics_116_198473 crossref_primary_10_1007_s11357_023_00968_2 crossref_primary_10_3389_fgene_2021_742934 crossref_primary_10_1093_bib_bbab389 crossref_primary_10_1111_age_13289 crossref_primary_10_1111_nph_17329 crossref_primary_10_3168_jds_2018_15480 crossref_primary_10_1186_s12864_016_2948_z crossref_primary_10_3389_fgene_2019_00030 crossref_primary_10_3389_fpls_2024_1356619 crossref_primary_10_1002_tpg2_20200 crossref_primary_10_1126_scitranslmed_aao2966 crossref_primary_10_3390_genes12122020 crossref_primary_10_1093_bioinformatics_btv222 crossref_primary_10_1146_annurev_ecolsys_020720_042553 crossref_primary_10_3389_fgene_2021_648831 crossref_primary_10_1093_bioinformatics_btw314 crossref_primary_10_1111_eva_13127 crossref_primary_10_1371_journal_pbio_3000214 crossref_primary_10_1007_s00122_021_03809_y crossref_primary_10_1038_s10038_020_00835_4 crossref_primary_10_1186_s12864_021_07719_7 crossref_primary_10_1093_hr_uhae141 crossref_primary_10_1016_j_ajhg_2014_11_011 crossref_primary_10_1093_molbev_msad031 crossref_primary_10_1002_aro2_58 crossref_primary_10_1002_art_41171 crossref_primary_10_1111_evo_14559 crossref_primary_10_1093_g3journal_jkaa053 crossref_primary_10_3389_fpls_2022_790005 crossref_primary_10_1093_bioinformatics_btv254 crossref_primary_10_1111_voxs_12217 crossref_primary_10_1186_s12864_019_6231_y crossref_primary_10_1186_s12864_015_1945_y crossref_primary_10_3389_fgene_2020_602526 crossref_primary_10_3390_ani13182964 crossref_primary_10_1007_s10519_021_10043_1 crossref_primary_10_1186_s40535_015_0016_4 crossref_primary_10_1038_s41437_024_00688_z crossref_primary_10_1038_s41559_018_0629_9 crossref_primary_10_1186_s12864_018_5317_2 crossref_primary_10_1371_journal_pgen_1006661 crossref_primary_10_1002_bimj_202300130 crossref_primary_10_1210_en_2019_00408 crossref_primary_10_3390_biology12030429 crossref_primary_10_1007_s10519_017_9842_6 crossref_primary_10_1016_j_xplc_2022_100351 crossref_primary_10_1371_journal_pgen_1007758 crossref_primary_10_3835_plantgenome2016_07_0064 crossref_primary_10_1017_S0016672317000052 crossref_primary_10_1111_evo_13758 crossref_primary_10_1016_j_ekir_2023_02_1085 crossref_primary_10_1111_gbb_12262 crossref_primary_10_3389_fgene_2019_01048 crossref_primary_10_3389_fpls_2020_576078 crossref_primary_10_1111_nph_15197 crossref_primary_10_1002_gepi_21911 crossref_primary_10_1016_j_tig_2015_12_004 crossref_primary_10_1073_pnas_1909186116 crossref_primary_10_1080_01621459_2018_1513363 crossref_primary_10_3389_fpls_2022_1015583 crossref_primary_10_1038_srep36671 crossref_primary_10_1038_s41467_019_09373_w crossref_primary_10_1016_j_ajhg_2014_03_016 crossref_primary_10_1371_journal_pone_0156744 crossref_primary_10_1038_s41598_025_87852_5 crossref_primary_10_1142_S0219720016440054 crossref_primary_10_1007_s12041_018_0885_0 crossref_primary_10_1038_s41437_020_00390_w crossref_primary_10_1080_1828051X_2018_1507626 crossref_primary_10_7554_eLife_49898 crossref_primary_10_1111_nph_19660 crossref_primary_10_1093_nargab_lqaa003 crossref_primary_10_3390_plants13192676 crossref_primary_10_2527_jas_2016_1137 crossref_primary_10_1002_tpg2_20405 crossref_primary_10_3389_fgene_2018_00401 crossref_primary_10_1038_s41437_021_00479_w crossref_primary_10_3390_plants12071557 crossref_primary_10_1186_s12917_024_04263_w crossref_primary_10_1093_bib_bby075 crossref_primary_10_1038_s41467_020_17696_2 crossref_primary_10_1098_rspb_2021_2277 crossref_primary_10_1186_s12859_019_2978_z crossref_primary_10_5194_aab_62_113_2019 crossref_primary_10_1111_tpj_15983 crossref_primary_10_1534_g3_119_400098 crossref_primary_10_2135_cropsci2018_09_0555 crossref_primary_10_1111_mec_16058 crossref_primary_10_1038_s41431_019_0514_2 crossref_primary_10_1007_s10681_018_2284_2 crossref_primary_10_1038_s41590_018_0049_7 crossref_primary_10_3389_fimmu_2023_1069379 crossref_primary_10_1186_s12864_022_08667_6 crossref_primary_10_3389_fgene_2018_00519 crossref_primary_10_1111_biom_12680 crossref_primary_10_1016_j_ajhg_2017_09_027 crossref_primary_10_1080_19490976_2023_2287618 crossref_primary_10_1038_s42003_023_04532_8 crossref_primary_10_1098_rsob_170125 crossref_primary_10_3390_cimb45090450 crossref_primary_10_1038_s41588_024_02044_7 crossref_primary_10_1093_bioinformatics_bty204 crossref_primary_10_7554_eLife_75244 crossref_primary_10_1016_j_ajhg_2014_09_007 crossref_primary_10_1098_rspb_2017_1106 crossref_primary_10_1038_s41467_018_07642_8 crossref_primary_10_1214_21_AOAS1572 crossref_primary_10_1038_s41587_020_0681_2 crossref_primary_10_1007_s10682_022_10175_8 crossref_primary_10_1038_srep16970 crossref_primary_10_1093_gigascience_giad061 crossref_primary_10_1093_genetics_iyaf009 crossref_primary_10_3389_fgene_2018_00220 crossref_primary_10_3389_fgene_2018_00341 crossref_primary_10_1002_gepi_22124 crossref_primary_10_1002_gepi_22245 crossref_primary_10_1093_pcp_pcae079 crossref_primary_10_1002_gepi_22128 crossref_primary_10_1371_journal_pgen_1009293 crossref_primary_10_1111_tpj_15600 crossref_primary_10_1182_bloodadvances_2022007673 crossref_primary_10_1038_s41588_020_00741_7 crossref_primary_10_1002_sim_6605 crossref_primary_10_1093_bioinformatics_btw012 crossref_primary_10_3389_fgene_2020_543890 crossref_primary_10_1007_s10142_023_01224_8 crossref_primary_10_1111_ahg_12149 crossref_primary_10_1534_g3_120_401239 crossref_primary_10_1371_journal_pgen_1011245 crossref_primary_10_1007_s00439_019_02001_z crossref_primary_10_3390_genes11121448 crossref_primary_10_1016_j_gene_2022_146702 crossref_primary_10_3389_fpls_2023_1178778 crossref_primary_10_1111_ahg_12260 crossref_primary_10_1016_j_jid_2019_05_032 crossref_primary_10_1038_s41598_017_13665_w crossref_primary_10_1093_evolut_qpad096 crossref_primary_10_1371_journal_pgen_1010151 crossref_primary_10_1214_15_EJS984 crossref_primary_10_1007_s00122_020_03626_9 crossref_primary_10_1002_gepi_22116 crossref_primary_10_1111_nph_19589 crossref_primary_10_1016_j_jia_2023_11_048 crossref_primary_10_1017_S0033291717002318 crossref_primary_10_1186_s12864_016_3169_1 crossref_primary_10_3389_fgene_2020_00243 crossref_primary_10_1371_journal_pone_0260709 crossref_primary_10_1093_genetics_iyae179 crossref_primary_10_1016_j_cub_2024_10_019 crossref_primary_10_1186_s13073_018_0568_8 crossref_primary_10_1007_s00122_021_03842_x crossref_primary_10_1007_s00253_020_10636_6 crossref_primary_10_1371_journal_pone_0140348 crossref_primary_10_1016_j_isci_2023_106024 crossref_primary_10_1002_gepi_22105 crossref_primary_10_1038_nmeth_3439 crossref_primary_10_1186_s12864_017_3928_7 crossref_primary_10_1017_gheg_2017_16 crossref_primary_10_1002_jbm4_10241 crossref_primary_10_1111_jipb_13380 crossref_primary_10_1016_j_ajhg_2020_03_013 crossref_primary_10_1038_s41386_022_01265_w crossref_primary_10_1016_j_envint_2018_11_037 crossref_primary_10_1016_j_gpb_2020_10_007 crossref_primary_10_3390_ani13050808 crossref_primary_10_1038_ng_3075 crossref_primary_10_1093_bioinformatics_bty249 crossref_primary_10_3748_wjg_v22_i3_949 crossref_primary_10_1093_g3journal_jkad118 crossref_primary_10_1093_genetics_iyab087 crossref_primary_10_1186_s13059_020_1942_6 crossref_primary_10_1007_s00122_024_04679_w crossref_primary_10_1093_biostatistics_kxx007 crossref_primary_10_1534_g3_119_400228 crossref_primary_10_1038_s41598_024_59695_z crossref_primary_10_1038_srep24718 crossref_primary_10_1186_s12859_017_1791_9 crossref_primary_10_1214_19_AOAS1312 crossref_primary_10_3389_fpls_2016_00070 crossref_primary_10_1016_j_aquaculture_2024_741025 crossref_primary_10_1186_s12859_022_05082_2 crossref_primary_10_1111_age_13386 crossref_primary_10_1038_s41467_017_01576_3 crossref_primary_10_1016_j_ajhg_2023_08_016 crossref_primary_10_1002_gepi_22050 crossref_primary_10_1038_s41467_019_09480_8 crossref_primary_10_1159_000496867 crossref_primary_10_3390_ani14010005 crossref_primary_10_1002_gepi_22045 crossref_primary_10_1186_s12711_023_00857_4 crossref_primary_10_1128_mBio_00663_19 crossref_primary_10_1186_s12863_020_0833_x crossref_primary_10_1186_s40535_015_0008_4 crossref_primary_10_1016_j_cj_2020_06_007 crossref_primary_10_1371_journal_pone_0152667 crossref_primary_10_1111_age_13031 crossref_primary_10_1016_j_xhgg_2025_100406 crossref_primary_10_1093_pcp_pcaf015 crossref_primary_10_1002_gepi_22156 crossref_primary_10_3390_ijms26072961 crossref_primary_10_3390_plants12152773 crossref_primary_10_1038_s41398_018_0258_8 crossref_primary_10_1016_j_pbi_2015_02_010 crossref_primary_10_1016_j_aquaculture_2024_742018 crossref_primary_10_1126_science_abb7222 crossref_primary_10_1016_j_ajhg_2015_03_004 crossref_primary_10_1093_g3journal_jkad132 crossref_primary_10_3389_fgene_2019_00334 crossref_primary_10_1038_s41467_018_08147_0 crossref_primary_10_1177_2047487316682186 crossref_primary_10_1186_s12870_018_1434_y crossref_primary_10_1371_journal_pone_0299109 crossref_primary_10_3390_ijms241814275 crossref_primary_10_1017_S0033291719003416 crossref_primary_10_1093_bioinformatics_btx166 crossref_primary_10_1016_j_cmi_2016_12_008 crossref_primary_10_1152_physiolgenomics_00115_2019 crossref_primary_10_1093_bioinformatics_btac369 crossref_primary_10_1093_bioinformatics_bty253 crossref_primary_10_1111_mec_13743 crossref_primary_10_1093_g3journal_jkab060 crossref_primary_10_1371_journal_pone_0260911 crossref_primary_10_3389_fgene_2016_00015 crossref_primary_10_1093_genetics_iyac183 crossref_primary_10_1038_nrg3868 crossref_primary_10_1093_bioinformatics_btw081 crossref_primary_10_1080_01621459_2020_1799809 crossref_primary_10_1186_s12711_016_0190_4 crossref_primary_10_1186_s13059_023_03076_8 crossref_primary_10_3389_fsysb_2022_1005758 crossref_primary_10_1016_j_ajhg_2016_11_015 crossref_primary_10_1098_rspb_2022_0477 crossref_primary_10_1002_gepi_22263 crossref_primary_10_1080_01584197_2019_1586446 crossref_primary_10_1016_j_aquaculture_2024_741394 crossref_primary_10_1017_S0954579416000717 crossref_primary_10_1093_g3journal_jkab186 crossref_primary_10_1111_age_13508 crossref_primary_10_3389_fmicb_2019_00809 crossref_primary_10_3389_fpls_2024_1466857 crossref_primary_10_1126_science_adf6218 crossref_primary_10_3389_fgene_2021_650370 crossref_primary_10_1371_journal_pgen_1010447 crossref_primary_10_1038_s41467_019_10927_1 crossref_primary_10_1111_mec_15349 crossref_primary_10_1080_24709360_2018_1529346 crossref_primary_10_1111_anzs_12208 crossref_primary_10_3390_ani8120239 crossref_primary_10_1038_s41591_024_02944_5 crossref_primary_10_1214_20_EJS1764 crossref_primary_10_1016_j_psj_2025_104872 crossref_primary_10_1016_j_ajhg_2016_04_013 crossref_primary_10_1080_15592294_2020_1827717 crossref_primary_10_1111_mec_17525 crossref_primary_10_1186_s12711_023_00818_x crossref_primary_10_1186_s12864_018_4851_2 crossref_primary_10_1111_nph_14500 crossref_primary_10_3389_fpls_2021_626565 crossref_primary_10_1016_j_molp_2022_02_012 crossref_primary_10_1080_00071668_2023_2272982 crossref_primary_10_1007_s00438_020_01724_3 crossref_primary_10_1002_gepi_22513 crossref_primary_10_1016_j_animal_2020_100051 crossref_primary_10_1111_gbb_12844 crossref_primary_10_1038_mp_2014_105 crossref_primary_10_1159_000445057 crossref_primary_10_1111_1755_0998_12776 crossref_primary_10_3389_fgene_2019_00702 crossref_primary_10_1371_journal_pgen_1010786 crossref_primary_10_1038_s41598_023_30415_3 crossref_primary_10_3389_fpls_2019_00956 crossref_primary_10_1007_s00122_016_2750_y crossref_primary_10_1002_sta4_476 crossref_primary_10_1111_cobi_13900 crossref_primary_10_1186_s13059_021_02416_w crossref_primary_10_1080_00071668_2023_2249840 crossref_primary_10_1186_s12903_021_01670_5 crossref_primary_10_7717_peerj_4259 crossref_primary_10_1186_s12864_018_4899_z crossref_primary_10_1186_s12859_023_05505_8 crossref_primary_10_1038_s43016_021_00380_z crossref_primary_10_3389_fgene_2023_1143395 crossref_primary_10_1214_17_EJS1386 crossref_primary_10_3390_agriculture13030705 crossref_primary_10_3390_ani12030277 crossref_primary_10_21105_joss_01435 crossref_primary_10_1111_1755_0998_12785 crossref_primary_10_1038_s41598_021_92455_x crossref_primary_10_1016_j_jspi_2023_03_002 crossref_primary_10_1038_s41598_021_98370_5 crossref_primary_10_1016_j_ajhg_2019_10_001 crossref_primary_10_1016_j_biopsych_2018_01_020 crossref_primary_10_1038_s41588_018_0268_8 crossref_primary_10_1002_sta4_102 crossref_primary_10_1186_s13073_024_01329_0 crossref_primary_10_3390_ijms23031842 crossref_primary_10_1002_csc2_20348 crossref_primary_10_3390_genes11060609 crossref_primary_10_1111_nph_15642 crossref_primary_10_1111_pbi_14278 crossref_primary_10_1534_genetics_115_184572 crossref_primary_10_3390_ani9060305 crossref_primary_10_1016_j_ajhg_2024_06_010 crossref_primary_10_1016_j_aquaculture_2025_742119 crossref_primary_10_1186_s12864_024_11090_8 crossref_primary_10_3390_plants11233277 crossref_primary_10_1098_rstb_2020_0512 crossref_primary_10_1155_2021_8812282 crossref_primary_10_1186_s12870_023_04701_1 crossref_primary_10_3389_fpls_2022_880631 crossref_primary_10_1093_jxb_erae025 crossref_primary_10_1371_journal_pone_0189955 crossref_primary_10_1038_s41591_023_02653_5 crossref_primary_10_1111_pbi_14047 crossref_primary_10_1093_bioinformatics_bty197 crossref_primary_10_1002_ece3_7159 crossref_primary_10_1159_000446239 crossref_primary_10_1093_bioinformatics_btz167 crossref_primary_10_1038_s41893_018_0150_9 crossref_primary_10_1371_journal_pgen_1010474 crossref_primary_10_1371_journal_pgen_1011563 crossref_primary_10_1186_s12864_016_2612_7 crossref_primary_10_1089_cmb_2022_0067 crossref_primary_10_1038_s41467_025_56884_w crossref_primary_10_3389_fgene_2021_654804 crossref_primary_10_1186_s12859_023_05519_2 crossref_primary_10_1038_ncomms8270 crossref_primary_10_1016_j_jia_2022_08_063 crossref_primary_10_1097_FPC_0000000000000293 crossref_primary_10_3390_ani12182419 crossref_primary_10_1038_s41431_018_0100_z crossref_primary_10_1186_s12864_018_5379_1 crossref_primary_10_1038_s41598_019_53560_0 crossref_primary_10_1534_genetics_120_303059 crossref_primary_10_1371_journal_pone_0150975 crossref_primary_10_1002_ajmg_b_32692 crossref_primary_10_1016_j_plantsci_2019_04_018 crossref_primary_10_1016_j_tig_2020_01_009 crossref_primary_10_1094_PHYTO_01_16_0042_FI crossref_primary_10_1186_s12864_017_3982_1 crossref_primary_10_1038_s41586_020_2302_0 crossref_primary_10_4018_IJWP_2018070102 crossref_primary_10_1186_s12864_023_09594_w crossref_primary_10_1038_s41467_021_23130_y crossref_primary_10_1111_tpj_17009 crossref_primary_10_1016_j_psj_2024_104632 crossref_primary_10_1016_j_psj_2024_103677 crossref_primary_10_1111_mec_15403 crossref_primary_10_3748_wjg_v29_i2_310 crossref_primary_10_3389_fpls_2021_621097 crossref_primary_10_3389_fgene_2019_00619 crossref_primary_10_1016_j_plantsci_2024_112110 crossref_primary_10_1111_ppl_13144 crossref_primary_10_1038_s41467_024_55496_0 crossref_primary_10_3389_fcvm_2023_1089963 crossref_primary_10_1038_s41398_020_01146_0 crossref_primary_10_1038_s41598_020_79005_7 crossref_primary_10_1093_bib_bbac067 crossref_primary_10_1093_hmg_ddz054 crossref_primary_10_1093_bib_bbab096 crossref_primary_10_1371_journal_pgen_1009974 crossref_primary_10_3390_ijms24065868 crossref_primary_10_1093_bioinformatics_btad193 crossref_primary_10_1186_s12863_023_01164_z crossref_primary_10_1016_j_aquaculture_2024_741622 crossref_primary_10_1126_sciadv_abn8281 crossref_primary_10_3168_jds_2015_10444 crossref_primary_10_1534_g3_118_200770 crossref_primary_10_1016_j_aquaculture_2022_739090 crossref_primary_10_1016_j_aqrep_2022_101178 crossref_primary_10_1016_j_tig_2021_06_004 crossref_primary_10_1016_j_livsci_2024_105430 crossref_primary_10_1093_g3journal_jkab406 crossref_primary_10_1016_j_xhgg_2023_100204 crossref_primary_10_1016_j_jgg_2024_09_003 crossref_primary_10_1111_nph_14220 crossref_primary_10_1165_rcmb_2016_0176OC crossref_primary_10_1093_nar_gkx204 crossref_primary_10_1371_journal_pcbi_1007882 crossref_primary_10_1371_journal_pgen_1006693 crossref_primary_10_1186_s12863_018_0605_z crossref_primary_10_1371_journal_pone_0259278 crossref_primary_10_1111_dom_15491 crossref_primary_10_1016_j_ajhg_2020_11_017 crossref_primary_10_1038_s41467_017_00453_3 crossref_primary_10_1186_s12711_017_0289_2 crossref_primary_10_1038_srep27882 crossref_primary_10_1002_gepi_21942 crossref_primary_10_3168_jds_2022_21923 crossref_primary_10_1186_s13059_014_0547_3 crossref_primary_10_1007_s10994_019_05848_5 crossref_primary_10_3389_fpls_2024_1360729 crossref_primary_10_3389_fpls_2022_1099409 crossref_primary_10_1038_s41588_018_0193_x crossref_primary_10_1371_journal_pgen_1005594 crossref_primary_10_1038_s41598_017_09788_9 crossref_primary_10_1186_s13073_017_0494_1 crossref_primary_10_1371_journal_pgen_1009713 crossref_primary_10_1038_s41598_021_86817_8 crossref_primary_10_1093_hr_uhae315 crossref_primary_10_1111_tpj_14170 crossref_primary_10_1186_s12863_020_0837_6 crossref_primary_10_1098_rspb_2021_1785 crossref_primary_10_1371_journal_pone_0214346 crossref_primary_10_3168_jds_2020_18209 crossref_primary_10_1002_gepi_21937 crossref_primary_10_1214_18_AOAS1222 crossref_primary_10_1007_s00415_022_11307_4 crossref_primary_10_1186_s12864_015_1795_7 crossref_primary_10_1093_bioadv_vbad192 crossref_primary_10_1186_s12870_024_05805_y crossref_primary_10_1186_s12711_015_0170_0 crossref_primary_10_1038_s41467_019_11664_1 crossref_primary_10_1016_j_aquaculture_2023_740127 crossref_primary_10_1111_nph_15777 crossref_primary_10_1007_s00180_019_00939_2 crossref_primary_10_1002_tpg2_20275 crossref_primary_10_1093_plphys_kiab346 crossref_primary_10_3390_ijms232314536 crossref_primary_10_1111_tpj_15592 crossref_primary_10_1016_j_ajhg_2016_01_017 crossref_primary_10_1038_s41598_021_03861_0 crossref_primary_10_1111_mec_13099 crossref_primary_10_1002_ece3_6691 crossref_primary_10_1016_j_ajhg_2020_12_006 crossref_primary_10_1111_tpj_15236 crossref_primary_10_1371_journal_pcbi_1005788 crossref_primary_10_1094_PBIOMES_09_22_0059_R crossref_primary_10_1186_s12919_018_0135_8 crossref_primary_10_1007_s00122_024_04572_6 crossref_primary_10_3390_ani11082259 crossref_primary_10_1038_s41431_019_0545_8 crossref_primary_10_1111_mec_17218 crossref_primary_10_1007_s10519_018_9936_9 crossref_primary_10_1371_journal_pgen_1009652 crossref_primary_10_1016_j_algal_2023_103309 crossref_primary_10_1093_hr_uhad289 crossref_primary_10_1186_s12864_018_5058_2 crossref_primary_10_1016_j_ygeno_2020_09_023 crossref_primary_10_1186_s12711_016_0252_7 crossref_primary_10_1038_ng_3865 crossref_primary_10_1073_pnas_1705423114 crossref_primary_10_1159_000375409 crossref_primary_10_1007_s00122_022_04103_1 crossref_primary_10_1016_j_jsxm_2019_09_012 crossref_primary_10_1371_journal_pone_0190788 crossref_primary_10_3892_etm_2017_5113 crossref_primary_10_1186_s40246_018_0180_4 crossref_primary_10_1186_s12915_024_01844_x crossref_primary_10_1534_genetics_119_302949 crossref_primary_10_1186_s12859_020_03804_y crossref_primary_10_1038_ng_3975 crossref_primary_10_1214_21_EJS1859 crossref_primary_10_1186_s40104_020_00515_5 crossref_primary_10_1371_journal_pone_0169893 crossref_primary_10_1093_evlett_qrae042 crossref_primary_10_1534_genetics_118_301342 crossref_primary_10_1002_bies_202100109 crossref_primary_10_1093_plphys_kiab395 crossref_primary_10_1093_jxb_erad481 crossref_primary_10_1038_ncomms8432 crossref_primary_10_1002_gepi_21988 crossref_primary_10_1534_genetics_116_199646 crossref_primary_10_1016_j_ajhg_2014_12_006 crossref_primary_10_1186_s12863_018_0649_0 crossref_primary_10_1093_jxb_erac393 crossref_primary_10_3390_genes13020235 crossref_primary_10_1186_s12711_015_0161_1 crossref_primary_10_1371_journal_pgen_1009754 crossref_primary_10_1038_s41380_019_0558_2 crossref_primary_10_1371_journal_pone_0201186 crossref_primary_10_1002_tpg2_20008 crossref_primary_10_1186_s12864_023_09295_4 crossref_primary_10_1093_bib_bbac039 crossref_primary_10_1534_g3_118_200551 crossref_primary_10_1038_gene_2015_59 crossref_primary_10_1038_s41398_022_02074_x crossref_primary_10_1093_bioinformatics_btab710 crossref_primary_10_1093_bioinformatics_bty810 crossref_primary_10_1214_17_AOAS1052 crossref_primary_10_1186_s13059_019_1813_1 crossref_primary_10_1016_j_csbj_2021_10_019 crossref_primary_10_1038_s41467_019_11874_7 crossref_primary_10_1016_j_plantsci_2020_110731 crossref_primary_10_1016_j_jaut_2020_102422 crossref_primary_10_3390_genes13112131 crossref_primary_10_1371_journal_pgen_1006482 crossref_primary_10_1016_j_jplph_2022_153784 crossref_primary_10_1111_mec_17305 crossref_primary_10_1007_s00335_022_09969_6 crossref_primary_10_1038_ncomms15606 crossref_primary_10_2139_ssrn_3307375 crossref_primary_10_1016_j_jgg_2022_06_004 crossref_primary_10_1017_thg_2022_39 crossref_primary_10_3389_fvets_2021_807003 crossref_primary_10_1534_genetics_116_189712 crossref_primary_10_1038_ng_3513 crossref_primary_10_1007_s10126_017_9747_7 crossref_primary_10_1111_nph_19937 |
Cites_doi | 10.1534/genetics.113.151217 10.1371/journal.pgen.1000587 10.1093/bioinformatics/bts474 10.1371/journal.pone.0065245 10.1371/journal.pgen.1003264 10.1017/S0016672309000111 10.1534/genetics.107.080101 10.1038/nmeth.1681 10.1038/ng.271 10.1038/ng1702 10.1016/j.ajhg.2013.03.010 10.1086/519795 10.1186/1297-9686-23-1-67 10.1038/nmeth.2037 10.1038/ng.2310 10.1371/journal.pgen.1002637 10.2307/2533274 10.1071/AR03164 10.1214/12-AOAS586 10.1371/journal.pone.0034861 10.1038/ng.2376 10.1534/genetics.108.088427 10.1098/rstb.2003.1437 10.1631/jzus.2007.B0815 10.1101/gr.099234.109 10.1214/09-STS307 10.1093/bioinformatics/btn563 10.1016/j.ajhg.2010.11.011 10.1371/journal.pgen.1001317 10.1038/ng.548 10.1038/ng.546 |
ContentType | Journal Article |
Copyright | Springer Nature America, Inc. 2014 Copyright Nature Publishing Group Apr 2014 |
Copyright_xml | – notice: Springer Nature America, Inc. 2014 – notice: Copyright Nature Publishing Group Apr 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QO 7SS 7TK 7U9 7X2 7X7 7XB 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. L6V LK8 M0K M0S M1P M2P M7N M7P M7S P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U RC3 7X8 |
DOI | 10.1038/nmeth.2848 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Materials Science Database (NC LIVE) ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1548-7105 |
EndPage | 409 |
ExternalDocumentID | 3415770231 24531419 10_1038_nmeth_2848 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL092206 – fundername: NHGRI NIH HHS grantid: R56 HG002585 – fundername: NHGRI NIH HHS grantid: HG02585 – fundername: NHGRI NIH HHS grantid: R01 HG002585 – fundername: NHLBI NIH HHS grantid: HL092206 |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 7X2 7X7 7XC 88E 88I 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AAHBH AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACGOD ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFRAH AFSHS AGAYW AHBCP AHMBA AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ BVXVI CCPQU CS3 D1I D1J D1K DB5 DU5 DWQXO EBS EE. EJD EMOBN ESX F5P FEDTE FSGXE FYUFA FZEXT GNUQQ HCIFZ HMCUK HVGLF HZ~ IAO IHR INH INR ITC K6- KB. L6V LK5 LK8 M0K M1P M2P M7P M7R M7S NNMJJ O9- ODYON P2P P62 PATMY PCBAR PDBOC PQQKQ PROAC PSQYO PTHSS PYCSY Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM 7QL 7QO 7SS 7TK 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c417t-f7666948b8fcc98c1d623a1093dbe9839f5dfcb72f17831fc0bc99f20671f36c3 |
IEDL.DBID | 7X7 |
ISSN | 1548-7091 1548-7105 |
IngestDate | Fri Jul 11 03:47:03 EDT 2025 Fri Jul 25 08:58:30 EDT 2025 Thu Apr 03 07:27:08 EDT 2025 Tue Jul 01 00:44:27 EDT 2025 Thu Apr 24 22:58:03 EDT 2025 Fri Feb 21 02:37:46 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-f7666948b8fcc98c1d623a1093dbe9839f5dfcb72f17831fc0bc99f20671f36c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 24531419 |
PQID | 1557641967 |
PQPubID | 28015 |
PageCount | 3 |
ParticipantIDs | proquest_miscellaneous_1511823155 proquest_journals_1557641967 pubmed_primary_24531419 crossref_citationtrail_10_1038_nmeth_2848 crossref_primary_10_1038_nmeth_2848 springer_journals_10_1038_nmeth_2848 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-04-01 |
PublicationDateYYYYMMDD | 2014-04-01 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | Techniques for life scientists and chemists |
PublicationTitle | Nature methods |
PublicationTitleAbbrev | Nat Methods |
PublicationTitleAlternate | Nat Methods |
PublicationYear | 2014 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | KangHMNat. Genet.2010423483541:CAS:528:DC%2BC3cXivVCisb8%3D10.1038/ng.548 SabattiCNat. Genet.20094135461:CAS:528:DC%2BD1cXhsVKlt7zO10.1038/ng.271 ZhouXCarbonettoPStephensMPLoS Genet.20139e10032641:CAS:528:DC%2BC3sXktlSksLw%3D10.1371/journal.pgen.1003264 AmosCIAm. J. Hum. Genet.1994545355431:STN:280:DyaK2c7mtFSjsA%3D%3D81166231918121 MeyerKJ. Zhejiang Univ. Sci. B2007881582110.1631/jzus.2007.B0815 AstleWBaldingDJStat. Sci.20092445147110.1214/09-STS307 LippertCNat. Methods201188338351:CAS:528:DC%2BC3MXhtFWku7nF10.1038/nmeth.1681 YuJMNat. Genet.2006382032081:CAS:528:DC%2BD28XotlGmuw%3D%3D10.1038/ng1702 KostemEEskinEAm. J. Hum. Genet.2013925585641:CAS:528:DC%2BC3sXlsFeksbs%3D10.1016/j.ajhg.2013.03.010 GilmourARThompsonRCullisBRBiometrics1995511440145010.2307/2533274 KangHMGenetics20081781709172310.1534/genetics.107.080101 Meyer, K. PX × AI: Algorithmics for better convergence in restricted maximum likelihood estimation. in 8th World Congress on Genetics Applied to Livestock Production (Belo Horizonte, Brasil, 2006). ListgartenJNat. Methods201295255261:CAS:528:DC%2BC38XotVWhurw%3D10.1038/nmeth.2037 ZhouXStephensMNat. Genet.2012448218241:CAS:528:DC%2BC38Xos12gur0%3D10.1038/ng.2310 PurcellSAm. J. Hum. Genet.2007815595751:CAS:528:DC%2BD2sXhtVSqurrL10.1086/519795 Trzaskowski, M., Yang, J., Visscher, P.M. & Plomin, R. Mol. Psychiatry 10.1038/mp.2012.191 (29 January 2013). O'reillyPFPLoS One20127e348611:CAS:528:DC%2BC38XntlensL8%3D10.1371/journal.pone.0034861 HayesBJVisscherPMGoddardMEGenet. Res.2009911431431:CAS:528:DC%2BD1MXht1Kks7bN10.1017/S0016672309000111 KorteANat. Genet.201244106610711:CAS:528:DC%2BC38Xht1Wktr3I10.1038/ng.2376 YangJALeeSHGoddardMEVisscherPMAm. J. Hum. Genet.20118876821:CAS:528:DC%2BC3MXktVejtg%3D%3D10.1016/j.ajhg.2010.11.011 PirinenMDonnellyPSpencerCCAAnn. Appl. Stat.2013736939010.1214/12-AOAS586 StephensMPLoS One20138e652451:CAS:528:DC%2BC3sXhtFKktLrO10.1371/journal.pone.0065245 LeeSHYangJGoddardMEVisscherPMWrayNRBioinformatics201228254025421:CAS:528:DC%2BC38XhsVehtbnM10.1093/bioinformatics/bts474 BanerjeeSYandellBSYiNJGenetics20081792275228910.1534/genetics.108.088427 PriceALPLoS Genet.20117e10013171:CAS:528:DC%2BC3MXjtVWjtLc%3D10.1371/journal.pgen.1001317 MeyerKGenet. Sel. Evol.199123678310.1186/1297-9686-23-1-67 MeyerKJohnstonDJGraserHUAust. J. Agric. Res.20045519521010.1071/AR03164 FerreiraMARPurcellSMBioinformatics2009251321331:CAS:528:DC%2BD1MXmvFSn10.1093/bioinformatics/btn563 RuncieDEMukherjeeSGenetics201319475376710.1534/genetics.113.151217 VattikutiSGuoJChowCCPLoS Genet.20128e10026371:CAS:528:DC%2BC38XlsFaltL0%3D10.1371/journal.pgen.1002637 KimSXingEPPLoS Genet.20095e100058710.1371/journal.pgen.1000587 BennettBJGenome Res.2010202812901:CAS:528:DC%2BC3cXhs1Ghtbk%3D10.1101/gr.099234.109 Henderson, C.R. Applications of Linear Models in Animal Breeding (University of Guelph, 1984). ZhangZWNat. Genet.2010423553601:CAS:528:DC%2BC3cXivVCju7Y%3D10.1038/ng.546 KruukLEPhil. Trans. R. Soc. Lond. B200435987389010.1098/rstb.2003.1437 S Vattikuti (BFnmeth2848_CR6) 2012; 8 S Purcell (BFnmeth2848_CR33) 2007; 81 K Meyer (BFnmeth2848_CR10) 1991; 23 S Banerjee (BFnmeth2848_CR18) 2008; 179 C Sabatti (BFnmeth2848_CR32) 2009; 41 CI Amos (BFnmeth2848_CR7) 1994; 54 AL Price (BFnmeth2848_CR2) 2011; 7 C Lippert (BFnmeth2848_CR12) 2011; 8 E Kostem (BFnmeth2848_CR28) 2013; 92 S Kim (BFnmeth2848_CR20) 2009; 5 A Korte (BFnmeth2848_CR3) 2012; 44 K Meyer (BFnmeth2848_CR9) 2004; 55 HM Kang (BFnmeth2848_CR27) 2008; 178 M Pirinen (BFnmeth2848_CR13) 2013; 7 BFnmeth2848_CR26 X Zhou (BFnmeth2848_CR16) 2013; 9 MAR Ferreira (BFnmeth2848_CR19) 2009; 25 J Listgarten (BFnmeth2848_CR30) 2012; 9 DE Runcie (BFnmeth2848_CR29) 2013; 194 HM Kang (BFnmeth2848_CR11) 2010; 42 ZW Zhang (BFnmeth2848_CR15) 2010; 42 BFnmeth2848_CR1 PF O'reilly (BFnmeth2848_CR21) 2012; 7 JA Yang (BFnmeth2848_CR23) 2011; 88 K Meyer (BFnmeth2848_CR24) 2007; 8 BFnmeth2848_CR5 JM Yu (BFnmeth2848_CR14) 2006; 38 BJ Bennett (BFnmeth2848_CR31) 2010; 20 SH Lee (BFnmeth2848_CR4) 2012; 28 M Stephens (BFnmeth2848_CR22) 2013; 8 BJ Hayes (BFnmeth2848_CR35) 2009; 91 LE Kruuk (BFnmeth2848_CR8) 2004; 359 AR Gilmour (BFnmeth2848_CR25) 1995; 51 W Astle (BFnmeth2848_CR34) 2009; 24 X Zhou (BFnmeth2848_CR17) 2012; 44 |
References_xml | – reference: MeyerKGenet. Sel. Evol.199123678310.1186/1297-9686-23-1-67 – reference: YangJALeeSHGoddardMEVisscherPMAm. J. Hum. Genet.20118876821:CAS:528:DC%2BC3MXktVejtg%3D%3D10.1016/j.ajhg.2010.11.011 – reference: YuJMNat. Genet.2006382032081:CAS:528:DC%2BD28XotlGmuw%3D%3D10.1038/ng1702 – reference: StephensMPLoS One20138e652451:CAS:528:DC%2BC3sXhtFKktLrO10.1371/journal.pone.0065245 – reference: AmosCIAm. J. Hum. Genet.1994545355431:STN:280:DyaK2c7mtFSjsA%3D%3D81166231918121 – reference: ZhangZWNat. Genet.2010423553601:CAS:528:DC%2BC3cXivVCju7Y%3D10.1038/ng.546 – reference: VattikutiSGuoJChowCCPLoS Genet.20128e10026371:CAS:528:DC%2BC38XlsFaltL0%3D10.1371/journal.pgen.1002637 – reference: Meyer, K. PX × AI: Algorithmics for better convergence in restricted maximum likelihood estimation. in 8th World Congress on Genetics Applied to Livestock Production (Belo Horizonte, Brasil, 2006). – reference: GilmourARThompsonRCullisBRBiometrics1995511440145010.2307/2533274 – reference: AstleWBaldingDJStat. Sci.20092445147110.1214/09-STS307 – reference: PriceALPLoS Genet.20117e10013171:CAS:528:DC%2BC3MXjtVWjtLc%3D10.1371/journal.pgen.1001317 – reference: O'reillyPFPLoS One20127e348611:CAS:528:DC%2BC38XntlensL8%3D10.1371/journal.pone.0034861 – reference: BanerjeeSYandellBSYiNJGenetics20081792275228910.1534/genetics.108.088427 – reference: Trzaskowski, M., Yang, J., Visscher, P.M. & Plomin, R. Mol. Psychiatry 10.1038/mp.2012.191 (29 January 2013). – reference: KimSXingEPPLoS Genet.20095e100058710.1371/journal.pgen.1000587 – reference: MeyerKJ. Zhejiang Univ. Sci. B2007881582110.1631/jzus.2007.B0815 – reference: ListgartenJNat. Methods201295255261:CAS:528:DC%2BC38XotVWhurw%3D10.1038/nmeth.2037 – reference: MeyerKJohnstonDJGraserHUAust. J. Agric. Res.20045519521010.1071/AR03164 – reference: LippertCNat. Methods201188338351:CAS:528:DC%2BC3MXhtFWku7nF10.1038/nmeth.1681 – reference: SabattiCNat. Genet.20094135461:CAS:528:DC%2BD1cXhsVKlt7zO10.1038/ng.271 – reference: BennettBJGenome Res.2010202812901:CAS:528:DC%2BC3cXhs1Ghtbk%3D10.1101/gr.099234.109 – reference: HayesBJVisscherPMGoddardMEGenet. Res.2009911431431:CAS:528:DC%2BD1MXht1Kks7bN10.1017/S0016672309000111 – reference: KangHMGenetics20081781709172310.1534/genetics.107.080101 – reference: KangHMNat. Genet.2010423483541:CAS:528:DC%2BC3cXivVCisb8%3D10.1038/ng.548 – reference: KruukLEPhil. Trans. R. Soc. Lond. B200435987389010.1098/rstb.2003.1437 – reference: PirinenMDonnellyPSpencerCCAAnn. Appl. Stat.2013736939010.1214/12-AOAS586 – reference: ZhouXCarbonettoPStephensMPLoS Genet.20139e10032641:CAS:528:DC%2BC3sXktlSksLw%3D10.1371/journal.pgen.1003264 – reference: LeeSHYangJGoddardMEVisscherPMWrayNRBioinformatics201228254025421:CAS:528:DC%2BC38XhsVehtbnM10.1093/bioinformatics/bts474 – reference: ZhouXStephensMNat. Genet.2012448218241:CAS:528:DC%2BC38Xos12gur0%3D10.1038/ng.2310 – reference: KorteANat. Genet.201244106610711:CAS:528:DC%2BC38Xht1Wktr3I10.1038/ng.2376 – reference: KostemEEskinEAm. J. Hum. Genet.2013925585641:CAS:528:DC%2BC3sXlsFeksbs%3D10.1016/j.ajhg.2013.03.010 – reference: RuncieDEMukherjeeSGenetics201319475376710.1534/genetics.113.151217 – reference: Henderson, C.R. Applications of Linear Models in Animal Breeding (University of Guelph, 1984). – reference: FerreiraMARPurcellSMBioinformatics2009251321331:CAS:528:DC%2BD1MXmvFSn10.1093/bioinformatics/btn563 – reference: PurcellSAm. J. Hum. Genet.2007815595751:CAS:528:DC%2BD2sXhtVSqurrL10.1086/519795 – volume: 194 start-page: 753 year: 2013 ident: BFnmeth2848_CR29 publication-title: Genetics doi: 10.1534/genetics.113.151217 – volume: 5 start-page: e1000587 year: 2009 ident: BFnmeth2848_CR20 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000587 – volume: 28 start-page: 2540 year: 2012 ident: BFnmeth2848_CR4 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts474 – volume: 8 start-page: e65245 year: 2013 ident: BFnmeth2848_CR22 publication-title: PLoS One doi: 10.1371/journal.pone.0065245 – volume: 9 start-page: e1003264 year: 2013 ident: BFnmeth2848_CR16 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003264 – volume: 54 start-page: 535 year: 1994 ident: BFnmeth2848_CR7 publication-title: Am. J. Hum. Genet. – volume: 91 start-page: 143 year: 2009 ident: BFnmeth2848_CR35 publication-title: Genet. Res. doi: 10.1017/S0016672309000111 – volume: 178 start-page: 1709 year: 2008 ident: BFnmeth2848_CR27 publication-title: Genetics doi: 10.1534/genetics.107.080101 – ident: BFnmeth2848_CR5 – volume: 8 start-page: 833 year: 2011 ident: BFnmeth2848_CR12 publication-title: Nat. Methods doi: 10.1038/nmeth.1681 – volume: 41 start-page: 35 year: 2009 ident: BFnmeth2848_CR32 publication-title: Nat. Genet. doi: 10.1038/ng.271 – volume: 38 start-page: 203 year: 2006 ident: BFnmeth2848_CR14 publication-title: Nat. Genet. doi: 10.1038/ng1702 – volume: 92 start-page: 558 year: 2013 ident: BFnmeth2848_CR28 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2013.03.010 – volume: 81 start-page: 559 year: 2007 ident: BFnmeth2848_CR33 publication-title: Am. J. Hum. Genet. doi: 10.1086/519795 – volume: 23 start-page: 67 year: 1991 ident: BFnmeth2848_CR10 publication-title: Genet. Sel. Evol. doi: 10.1186/1297-9686-23-1-67 – volume: 9 start-page: 525 year: 2012 ident: BFnmeth2848_CR30 publication-title: Nat. Methods doi: 10.1038/nmeth.2037 – volume: 44 start-page: 821 year: 2012 ident: BFnmeth2848_CR17 publication-title: Nat. Genet. doi: 10.1038/ng.2310 – volume: 8 start-page: e1002637 year: 2012 ident: BFnmeth2848_CR6 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002637 – volume: 51 start-page: 1440 year: 1995 ident: BFnmeth2848_CR25 publication-title: Biometrics doi: 10.2307/2533274 – volume: 55 start-page: 195 year: 2004 ident: BFnmeth2848_CR9 publication-title: Aust. J. Agric. Res. doi: 10.1071/AR03164 – volume: 7 start-page: 369 year: 2013 ident: BFnmeth2848_CR13 publication-title: Ann. Appl. Stat. doi: 10.1214/12-AOAS586 – ident: BFnmeth2848_CR1 – volume: 7 start-page: e34861 year: 2012 ident: BFnmeth2848_CR21 publication-title: PLoS One doi: 10.1371/journal.pone.0034861 – volume: 44 start-page: 1066 year: 2012 ident: BFnmeth2848_CR3 publication-title: Nat. Genet. doi: 10.1038/ng.2376 – ident: BFnmeth2848_CR26 – volume: 179 start-page: 2275 year: 2008 ident: BFnmeth2848_CR18 publication-title: Genetics doi: 10.1534/genetics.108.088427 – volume: 359 start-page: 873 year: 2004 ident: BFnmeth2848_CR8 publication-title: Phil. Trans. R. Soc. Lond. B doi: 10.1098/rstb.2003.1437 – volume: 8 start-page: 815 year: 2007 ident: BFnmeth2848_CR24 publication-title: J. Zhejiang Univ. Sci. B doi: 10.1631/jzus.2007.B0815 – volume: 20 start-page: 281 year: 2010 ident: BFnmeth2848_CR31 publication-title: Genome Res. doi: 10.1101/gr.099234.109 – volume: 24 start-page: 451 year: 2009 ident: BFnmeth2848_CR34 publication-title: Stat. Sci. doi: 10.1214/09-STS307 – volume: 25 start-page: 132 year: 2009 ident: BFnmeth2848_CR19 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn563 – volume: 88 start-page: 76 year: 2011 ident: BFnmeth2848_CR23 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2010.11.011 – volume: 7 start-page: e1001317 year: 2011 ident: BFnmeth2848_CR2 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1001317 – volume: 42 start-page: 348 year: 2010 ident: BFnmeth2848_CR11 publication-title: Nat. Genet. doi: 10.1038/ng.548 – volume: 42 start-page: 355 year: 2010 ident: BFnmeth2848_CR15 publication-title: Nat. Genet. doi: 10.1038/ng.546 |
SSID | ssj0033425 |
Score | 2.6150074 |
Snippet | Multivariate linear mixed models implemented in the GEMMA software package add speed, power and the ability to test for genome-wide associations between... Multivariate linear mixed models (mvLMMs) are powerful tools for testing associations between single-nucleotide polymorphisms and multiple correlated... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 407 |
SubjectTerms | 45/43 49/23 631/114/2415 631/208/480 Algorithms Bioinformatics Biological Microscopy Biological Techniques Biomedical Engineering/Biotechnology brief-communication Calibration Genome Genomes Life Sciences Likelihood Functions Linear Models Mathematical models Multivariate Analysis Polymorphism, Single Nucleotide - genetics Proteomics Software |
Title | Efficient multivariate linear mixed model algorithms for genome-wide association studies |
URI | https://link.springer.com/article/10.1038/nmeth.2848 https://www.ncbi.nlm.nih.gov/pubmed/24531419 https://www.proquest.com/docview/1557641967 https://www.proquest.com/docview/1511823155 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9xADLYoqFIvVaGvtICmKpcepjQ7k8zkhADtgpCKqqpIe4vmSZHYLGWXtvx77EmytFrEJZdxkont2J_Hlg2wI7UNviglj7EouAxScyuF55U23nhhgo10Dvn1tDw-kyfjYtwduM26ssreJiZD7aeOzsh30e-pUqK-qL2rX5ymRlF2tRuh8QTWqHUZabUaLwIuIWQaukqonCt0jH17UqF3GxrQ_Blts_7fIS2hzKUMaXI8oxfwvEOMbL8V8TqshGYDnrYzJG9fwniYmkCg72CpOPA3Br-IHxnBR3PNJhd_g2dp3g0zl-f4RfOfkxlDqMqoPesk8D8XPjBzLyU2a0sLX8HZaPjj8Jh34xK4k7ma86gwFKmQ-To6V2mXe4Q2htpFeRsqBEKx8NFZNYi50iKP7ot1VRWpf3seRenEa1htpk14C0xbXDTSS19GqaXVhYoBgZ9GcBmKgcrgU8-z2nW9xGmkxWWdctpC14m_NfE3g48L2qu2g8aDVJs96-vuL5rV9zLP4MNiGfWfkhqmCdMboqEQSSBpBm9akS1eM5BoYfD-DHZ6Gf7z8KU9vHt8D-_hGaKlrmxnE1bn1zdhCxHJ3G4ntcOrHh1tw9rB8PTb9zst4uSc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RUFUuFfSZQltXpYceXEjsxM6hqqrCdimPE0h7S_2kSGwW2AXKn-pvZOwkS9FWvXH2xLHG45lvPOMZgDUutbN5wan3eU6545JqziwtpbLKMuW0D_eQe_tF_5D_GOSDOfjTvYUJaZWdToyK2o5MuCNfR7snCo7yIr6cntHQNSpEV7sWGo1Y7LjrK3TZxp-3N3F_P2RZb-vgW5-2XQWo4amYUC8QsZe4RumNKaVJLSIAFaoqWe1KxAs-t95okflUSJZ6s6FNWfpQ5jz1rDAM530AC5yhJQ8v03vfO83PGI9NXoMXQAUa4q4cKpPrdWgI_QltgbxrAGdQ7UxENhq63hI8bhEq-dqI1DLMufoJPGx6Vl4_hcFWLDqBtorEZMRLdLYRr5IAV9U5GR7_dpbE_jpEnRwhBye_hmOC0JiEcrBDR6-OrSPqVirIuEllfAaH98LI5zBfj2r3EojUOKi45bbwXHItc-EdAk2JYNblmUjgY8ezyrS1y0MLjZMqxtCZrCJ_q8DfBN5PaU-bih3_pFrtWF-1p3Zc3cpYAu-mw3jeQhBF1W50EWiCS8aQNIEXzZZNf5Nx1Gj4fQJr3R7-NfnMGl79fw1v4VH_YG-32t3e31mBRURqbcrQKsxPzi_ca0RDE_0miiCBn_ct8zcOhB8b |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK7gEo0XA_gaedhEPHho15nume45GKKyGxDdECPJ3sZ-Kgk7C-wi8tf4dVbPY9Es4cZ5ano61V93fdVVUwWwxaV2Ns049T5NKXdcUs2ZpblUVlmmnPbhHvLrINs95J-H6XABrtp_YUJaZXsmVge1HZtwR95FuycyjngRXd-kRRzs9LdPTmnoIBUirW07jRoi--7yAt23yfu9HVzr10nS733_tEubDgPU8FhMqRfI3nOcr_TG5NLEFtmAChWWrHY5cgefWm-0SHwsJIu9eadNnvtQ8jz2LDMMx70HiyJ4RR1Y_NgbHHxr7QBjvGr5GnwCKtAst8VRmeyWoT30W7QM8n9zOMdx5-KzldnrL8Gjhq-SDzXAlmHBlStwv-5gefkYhr2qBAVaLlKlJv5G1xvZKwnkVZ2R0dEfZ0nVbYeo45-ow-mv0YQgUSahOOzI0Ysj64i6xgiZ1ImNT-DwTlT5FDrluHTPgUiNDxW33GaeS65lKrxD2imR2ro0ERG8aXVWmKaSeWiocVxUEXUmi0q_RdBvBK9msid1_Y4bpdZa1RfNHp4U14iLYHP2GHdfCKmo0o3Pg0xw0BiKRvCsXrLZZxKO5xu-H8FWu4b_DD43hxe3z-ElPEC8F1_2Bvur8BBpW5M_tAad6dm5W0dqNNUbDQYJ_Lhr2P8F_ookrQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+multivariate+linear+mixed+model+algorithms+for+genome-wide+association+studies&rft.jtitle=Nature+methods&rft.au=Zhou%2C+Xiang&rft.au=Stephens%2C+Matthew&rft.date=2014-04-01&rft.pub=Nature+Publishing+Group+US&rft.issn=1548-7091&rft.eissn=1548-7105&rft.volume=11&rft.issue=4&rft.spage=407&rft.epage=409&rft_id=info:doi/10.1038%2Fnmeth.2848&rft.externalDocID=10_1038_nmeth_2848 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7091&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7091&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7091&client=summon |