Efficient multivariate linear mixed model algorithms for genome-wide association studies

Multivariate linear mixed models implemented in the GEMMA software package add speed, power and the ability to test for genome-wide associations between genetic polymorphisms and multiple correlated phenotypes. Multivariate linear mixed models (mvLMMs) are powerful tools for testing associations bet...

Full description

Saved in:
Bibliographic Details
Published inNature methods Vol. 11; no. 4; pp. 407 - 409
Main Authors Zhou, Xiang, Stephens, Matthew
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.04.2014
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multivariate linear mixed models implemented in the GEMMA software package add speed, power and the ability to test for genome-wide associations between genetic polymorphisms and multiple correlated phenotypes. Multivariate linear mixed models (mvLMMs) are powerful tools for testing associations between single-nucleotide polymorphisms and multiple correlated phenotypes while controlling for population stratification in genome-wide association studies. We present efficient algorithms in the genome-wide efficient mixed model association (GEMMA) software for fitting mvLMMs and computing likelihood ratio tests. These algorithms offer improved computation speed, power and P -value calibration over existing methods, and can deal with more than two phenotypes.
AbstractList Multivariate linear mixed models (mvLMMs) are powerful tools for testing associations between single-nucleotide polymorphisms and multiple correlated phenotypes while controlling for population stratification in genome-wide association studies. We present efficient algorithms in the genome-wide efficient mixed model association (GEMMA) software for fitting mvLMMs and computing likelihood ratio tests. These algorithms offer improved computation speed, power and P-value calibration over existing methods, and can deal with more than two phenotypes.
Multivariate linear mixed models implemented in the GEMMA software package add speed, power and the ability to test for genome-wide associations between genetic polymorphisms and multiple correlated phenotypes. Multivariate linear mixed models (mvLMMs) are powerful tools for testing associations between single-nucleotide polymorphisms and multiple correlated phenotypes while controlling for population stratification in genome-wide association studies. We present efficient algorithms in the genome-wide efficient mixed model association (GEMMA) software for fitting mvLMMs and computing likelihood ratio tests. These algorithms offer improved computation speed, power and P -value calibration over existing methods, and can deal with more than two phenotypes.
Multivariate linear mixed models (mvLMMs) are powerful tools for testing associations between single-nucleotide polymorphisms and multiple correlated phenotypes while controlling for population stratification in genome-wide association studies. We present efficient algorithms in the genome-wide efficient mixed model association (GEMMA) software for fitting mvLMMs and computing likelihood ratio tests. These algorithms offer improved computation speed, power and P-value calibration over existing methods, and can deal with more than two phenotypes.Multivariate linear mixed models (mvLMMs) are powerful tools for testing associations between single-nucleotide polymorphisms and multiple correlated phenotypes while controlling for population stratification in genome-wide association studies. We present efficient algorithms in the genome-wide efficient mixed model association (GEMMA) software for fitting mvLMMs and computing likelihood ratio tests. These algorithms offer improved computation speed, power and P-value calibration over existing methods, and can deal with more than two phenotypes.
Author Zhou, Xiang
Stephens, Matthew
Author_xml – sequence: 1
  givenname: Xiang
  surname: Zhou
  fullname: Zhou, Xiang
  email: xz7@uchicago.edu
  organization: Department of Human Genetics, University of Chicago, Department of Statistics, University of Chicago
– sequence: 2
  givenname: Matthew
  surname: Stephens
  fullname: Stephens, Matthew
  email: mstephens@uchicago.edu
  organization: Department of Human Genetics, University of Chicago, Department of Statistics, University of Chicago
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24531419$$D View this record in MEDLINE/PubMed
BookMark eNpt0U1rFjEQB_AgFfuiFz-ABLyIsjWz2exmj1JaFQq9VPAWstnJ05RNUpOsrd--aZ8-INVT5vD7D5OZQ7IXYkBC3gI7Bsbl5-CxXB23spMvyAGITjYDMLG3q9kI--Qw52vGOO9a8Yrst53g0MF4QH6eWuuMw1CoX5fifuvkdEG6uIA6Ue_ucKY-zrhQvWxicuXKZ2pjohsM0WNz62akOudoas7FQHNZZ4f5NXlp9ZLxzdN7RH6cnV6efGvOL75-P_ly3pgOhtLYoe_7sZOTtMaM0sDct1wDG_k84Sj5aMVszTS0FgbJwRo2mXG0LesHsLw3_Ih82Pa9SfHXirko77LBZdEB45oVCADZchCi0vfP6HVcU6jTVSWGvi6kH6p696TWyeOsbpLzOv1Ru51VwLbApJhzQquMK49_L0m7RQFTD2dRj2dRD2epkY_PIruu_8WftjhXFDaY_hrzX30PFdWd-A
CitedBy_id crossref_primary_10_1093_bioinformatics_btx512
crossref_primary_10_1002_ajhb_23289
crossref_primary_10_1111_pcmr_12820
crossref_primary_10_1016_j_ajhg_2014_12_021
crossref_primary_10_1186_s13073_024_01369_6
crossref_primary_10_1534_genetics_117_300673
crossref_primary_10_1007_s11063_018_9847_z
crossref_primary_10_48130_forres_0024_0009
crossref_primary_10_1016_j_cels_2020_12_002
crossref_primary_10_1038_s41467_022_30678_w
crossref_primary_10_1080_15592294_2023_2252631
crossref_primary_10_1371_journal_pgen_1006869
crossref_primary_10_1016_j_cj_2022_07_018
crossref_primary_10_1186_s12859_018_2066_9
crossref_primary_10_1534_genetics_116_189308
crossref_primary_10_1093_genetics_iyab159
crossref_primary_10_1093_molbev_msad248
crossref_primary_10_3389_fgene_2021_667358
crossref_primary_10_3389_fpls_2022_927673
crossref_primary_10_3835_plantgenome2018_01_0002
crossref_primary_10_1093_nargab_lqaa010
crossref_primary_10_1186_s13059_016_0903_6
crossref_primary_10_1186_s12859_016_0899_7
crossref_primary_10_3389_fpls_2020_545748
crossref_primary_10_1016_j_jia_2024_07_026
crossref_primary_10_1038_s41598_020_64963_9
crossref_primary_10_1016_j_fertnstert_2017_09_023
crossref_primary_10_1093_jxb_eraa426
crossref_primary_10_1016_j_xgen_2024_100545
crossref_primary_10_1172_JCI172885
crossref_primary_10_1007_s11032_024_01442_3
crossref_primary_10_1534_genetics_115_178590
crossref_primary_10_3390_plants11091108
crossref_primary_10_1093_genetics_iyab189
crossref_primary_10_1186_s12864_016_2475_y
crossref_primary_10_1093_hmg_ddw088
crossref_primary_10_1186_s12711_018_0377_y
crossref_primary_10_1002_ece3_4898
crossref_primary_10_1186_s12870_019_1631_3
crossref_primary_10_1534_genetics_116_198473
crossref_primary_10_1007_s11357_023_00968_2
crossref_primary_10_3389_fgene_2021_742934
crossref_primary_10_1093_bib_bbab389
crossref_primary_10_1111_age_13289
crossref_primary_10_1111_nph_17329
crossref_primary_10_3168_jds_2018_15480
crossref_primary_10_1186_s12864_016_2948_z
crossref_primary_10_3389_fgene_2019_00030
crossref_primary_10_3389_fpls_2024_1356619
crossref_primary_10_1002_tpg2_20200
crossref_primary_10_1126_scitranslmed_aao2966
crossref_primary_10_3390_genes12122020
crossref_primary_10_1093_bioinformatics_btv222
crossref_primary_10_1146_annurev_ecolsys_020720_042553
crossref_primary_10_3389_fgene_2021_648831
crossref_primary_10_1093_bioinformatics_btw314
crossref_primary_10_1111_eva_13127
crossref_primary_10_1371_journal_pbio_3000214
crossref_primary_10_1007_s00122_021_03809_y
crossref_primary_10_1038_s10038_020_00835_4
crossref_primary_10_1186_s12864_021_07719_7
crossref_primary_10_1093_hr_uhae141
crossref_primary_10_1016_j_ajhg_2014_11_011
crossref_primary_10_1093_molbev_msad031
crossref_primary_10_1002_aro2_58
crossref_primary_10_1002_art_41171
crossref_primary_10_1111_evo_14559
crossref_primary_10_1093_g3journal_jkaa053
crossref_primary_10_3389_fpls_2022_790005
crossref_primary_10_1093_bioinformatics_btv254
crossref_primary_10_1111_voxs_12217
crossref_primary_10_1186_s12864_019_6231_y
crossref_primary_10_1186_s12864_015_1945_y
crossref_primary_10_3389_fgene_2020_602526
crossref_primary_10_3390_ani13182964
crossref_primary_10_1007_s10519_021_10043_1
crossref_primary_10_1186_s40535_015_0016_4
crossref_primary_10_1038_s41437_024_00688_z
crossref_primary_10_1038_s41559_018_0629_9
crossref_primary_10_1186_s12864_018_5317_2
crossref_primary_10_1371_journal_pgen_1006661
crossref_primary_10_1002_bimj_202300130
crossref_primary_10_1210_en_2019_00408
crossref_primary_10_3390_biology12030429
crossref_primary_10_1007_s10519_017_9842_6
crossref_primary_10_1016_j_xplc_2022_100351
crossref_primary_10_1371_journal_pgen_1007758
crossref_primary_10_3835_plantgenome2016_07_0064
crossref_primary_10_1017_S0016672317000052
crossref_primary_10_1111_evo_13758
crossref_primary_10_1016_j_ekir_2023_02_1085
crossref_primary_10_1111_gbb_12262
crossref_primary_10_3389_fgene_2019_01048
crossref_primary_10_3389_fpls_2020_576078
crossref_primary_10_1111_nph_15197
crossref_primary_10_1002_gepi_21911
crossref_primary_10_1016_j_tig_2015_12_004
crossref_primary_10_1073_pnas_1909186116
crossref_primary_10_1080_01621459_2018_1513363
crossref_primary_10_3389_fpls_2022_1015583
crossref_primary_10_1038_srep36671
crossref_primary_10_1038_s41467_019_09373_w
crossref_primary_10_1016_j_ajhg_2014_03_016
crossref_primary_10_1371_journal_pone_0156744
crossref_primary_10_1038_s41598_025_87852_5
crossref_primary_10_1142_S0219720016440054
crossref_primary_10_1007_s12041_018_0885_0
crossref_primary_10_1038_s41437_020_00390_w
crossref_primary_10_1080_1828051X_2018_1507626
crossref_primary_10_7554_eLife_49898
crossref_primary_10_1111_nph_19660
crossref_primary_10_1093_nargab_lqaa003
crossref_primary_10_3390_plants13192676
crossref_primary_10_2527_jas_2016_1137
crossref_primary_10_1002_tpg2_20405
crossref_primary_10_3389_fgene_2018_00401
crossref_primary_10_1038_s41437_021_00479_w
crossref_primary_10_3390_plants12071557
crossref_primary_10_1186_s12917_024_04263_w
crossref_primary_10_1093_bib_bby075
crossref_primary_10_1038_s41467_020_17696_2
crossref_primary_10_1098_rspb_2021_2277
crossref_primary_10_1186_s12859_019_2978_z
crossref_primary_10_5194_aab_62_113_2019
crossref_primary_10_1111_tpj_15983
crossref_primary_10_1534_g3_119_400098
crossref_primary_10_2135_cropsci2018_09_0555
crossref_primary_10_1111_mec_16058
crossref_primary_10_1038_s41431_019_0514_2
crossref_primary_10_1007_s10681_018_2284_2
crossref_primary_10_1038_s41590_018_0049_7
crossref_primary_10_3389_fimmu_2023_1069379
crossref_primary_10_1186_s12864_022_08667_6
crossref_primary_10_3389_fgene_2018_00519
crossref_primary_10_1111_biom_12680
crossref_primary_10_1016_j_ajhg_2017_09_027
crossref_primary_10_1080_19490976_2023_2287618
crossref_primary_10_1038_s42003_023_04532_8
crossref_primary_10_1098_rsob_170125
crossref_primary_10_3390_cimb45090450
crossref_primary_10_1038_s41588_024_02044_7
crossref_primary_10_1093_bioinformatics_bty204
crossref_primary_10_7554_eLife_75244
crossref_primary_10_1016_j_ajhg_2014_09_007
crossref_primary_10_1098_rspb_2017_1106
crossref_primary_10_1038_s41467_018_07642_8
crossref_primary_10_1214_21_AOAS1572
crossref_primary_10_1038_s41587_020_0681_2
crossref_primary_10_1007_s10682_022_10175_8
crossref_primary_10_1038_srep16970
crossref_primary_10_1093_gigascience_giad061
crossref_primary_10_1093_genetics_iyaf009
crossref_primary_10_3389_fgene_2018_00220
crossref_primary_10_3389_fgene_2018_00341
crossref_primary_10_1002_gepi_22124
crossref_primary_10_1002_gepi_22245
crossref_primary_10_1093_pcp_pcae079
crossref_primary_10_1002_gepi_22128
crossref_primary_10_1371_journal_pgen_1009293
crossref_primary_10_1111_tpj_15600
crossref_primary_10_1182_bloodadvances_2022007673
crossref_primary_10_1038_s41588_020_00741_7
crossref_primary_10_1002_sim_6605
crossref_primary_10_1093_bioinformatics_btw012
crossref_primary_10_3389_fgene_2020_543890
crossref_primary_10_1007_s10142_023_01224_8
crossref_primary_10_1111_ahg_12149
crossref_primary_10_1534_g3_120_401239
crossref_primary_10_1371_journal_pgen_1011245
crossref_primary_10_1007_s00439_019_02001_z
crossref_primary_10_3390_genes11121448
crossref_primary_10_1016_j_gene_2022_146702
crossref_primary_10_3389_fpls_2023_1178778
crossref_primary_10_1111_ahg_12260
crossref_primary_10_1016_j_jid_2019_05_032
crossref_primary_10_1038_s41598_017_13665_w
crossref_primary_10_1093_evolut_qpad096
crossref_primary_10_1371_journal_pgen_1010151
crossref_primary_10_1214_15_EJS984
crossref_primary_10_1007_s00122_020_03626_9
crossref_primary_10_1002_gepi_22116
crossref_primary_10_1111_nph_19589
crossref_primary_10_1016_j_jia_2023_11_048
crossref_primary_10_1017_S0033291717002318
crossref_primary_10_1186_s12864_016_3169_1
crossref_primary_10_3389_fgene_2020_00243
crossref_primary_10_1371_journal_pone_0260709
crossref_primary_10_1093_genetics_iyae179
crossref_primary_10_1016_j_cub_2024_10_019
crossref_primary_10_1186_s13073_018_0568_8
crossref_primary_10_1007_s00122_021_03842_x
crossref_primary_10_1007_s00253_020_10636_6
crossref_primary_10_1371_journal_pone_0140348
crossref_primary_10_1016_j_isci_2023_106024
crossref_primary_10_1002_gepi_22105
crossref_primary_10_1038_nmeth_3439
crossref_primary_10_1186_s12864_017_3928_7
crossref_primary_10_1017_gheg_2017_16
crossref_primary_10_1002_jbm4_10241
crossref_primary_10_1111_jipb_13380
crossref_primary_10_1016_j_ajhg_2020_03_013
crossref_primary_10_1038_s41386_022_01265_w
crossref_primary_10_1016_j_envint_2018_11_037
crossref_primary_10_1016_j_gpb_2020_10_007
crossref_primary_10_3390_ani13050808
crossref_primary_10_1038_ng_3075
crossref_primary_10_1093_bioinformatics_bty249
crossref_primary_10_3748_wjg_v22_i3_949
crossref_primary_10_1093_g3journal_jkad118
crossref_primary_10_1093_genetics_iyab087
crossref_primary_10_1186_s13059_020_1942_6
crossref_primary_10_1007_s00122_024_04679_w
crossref_primary_10_1093_biostatistics_kxx007
crossref_primary_10_1534_g3_119_400228
crossref_primary_10_1038_s41598_024_59695_z
crossref_primary_10_1038_srep24718
crossref_primary_10_1186_s12859_017_1791_9
crossref_primary_10_1214_19_AOAS1312
crossref_primary_10_3389_fpls_2016_00070
crossref_primary_10_1016_j_aquaculture_2024_741025
crossref_primary_10_1186_s12859_022_05082_2
crossref_primary_10_1111_age_13386
crossref_primary_10_1038_s41467_017_01576_3
crossref_primary_10_1016_j_ajhg_2023_08_016
crossref_primary_10_1002_gepi_22050
crossref_primary_10_1038_s41467_019_09480_8
crossref_primary_10_1159_000496867
crossref_primary_10_3390_ani14010005
crossref_primary_10_1002_gepi_22045
crossref_primary_10_1186_s12711_023_00857_4
crossref_primary_10_1128_mBio_00663_19
crossref_primary_10_1186_s12863_020_0833_x
crossref_primary_10_1186_s40535_015_0008_4
crossref_primary_10_1016_j_cj_2020_06_007
crossref_primary_10_1371_journal_pone_0152667
crossref_primary_10_1111_age_13031
crossref_primary_10_1016_j_xhgg_2025_100406
crossref_primary_10_1093_pcp_pcaf015
crossref_primary_10_1002_gepi_22156
crossref_primary_10_3390_ijms26072961
crossref_primary_10_3390_plants12152773
crossref_primary_10_1038_s41398_018_0258_8
crossref_primary_10_1016_j_pbi_2015_02_010
crossref_primary_10_1016_j_aquaculture_2024_742018
crossref_primary_10_1126_science_abb7222
crossref_primary_10_1016_j_ajhg_2015_03_004
crossref_primary_10_1093_g3journal_jkad132
crossref_primary_10_3389_fgene_2019_00334
crossref_primary_10_1038_s41467_018_08147_0
crossref_primary_10_1177_2047487316682186
crossref_primary_10_1186_s12870_018_1434_y
crossref_primary_10_1371_journal_pone_0299109
crossref_primary_10_3390_ijms241814275
crossref_primary_10_1017_S0033291719003416
crossref_primary_10_1093_bioinformatics_btx166
crossref_primary_10_1016_j_cmi_2016_12_008
crossref_primary_10_1152_physiolgenomics_00115_2019
crossref_primary_10_1093_bioinformatics_btac369
crossref_primary_10_1093_bioinformatics_bty253
crossref_primary_10_1111_mec_13743
crossref_primary_10_1093_g3journal_jkab060
crossref_primary_10_1371_journal_pone_0260911
crossref_primary_10_3389_fgene_2016_00015
crossref_primary_10_1093_genetics_iyac183
crossref_primary_10_1038_nrg3868
crossref_primary_10_1093_bioinformatics_btw081
crossref_primary_10_1080_01621459_2020_1799809
crossref_primary_10_1186_s12711_016_0190_4
crossref_primary_10_1186_s13059_023_03076_8
crossref_primary_10_3389_fsysb_2022_1005758
crossref_primary_10_1016_j_ajhg_2016_11_015
crossref_primary_10_1098_rspb_2022_0477
crossref_primary_10_1002_gepi_22263
crossref_primary_10_1080_01584197_2019_1586446
crossref_primary_10_1016_j_aquaculture_2024_741394
crossref_primary_10_1017_S0954579416000717
crossref_primary_10_1093_g3journal_jkab186
crossref_primary_10_1111_age_13508
crossref_primary_10_3389_fmicb_2019_00809
crossref_primary_10_3389_fpls_2024_1466857
crossref_primary_10_1126_science_adf6218
crossref_primary_10_3389_fgene_2021_650370
crossref_primary_10_1371_journal_pgen_1010447
crossref_primary_10_1038_s41467_019_10927_1
crossref_primary_10_1111_mec_15349
crossref_primary_10_1080_24709360_2018_1529346
crossref_primary_10_1111_anzs_12208
crossref_primary_10_3390_ani8120239
crossref_primary_10_1038_s41591_024_02944_5
crossref_primary_10_1214_20_EJS1764
crossref_primary_10_1016_j_psj_2025_104872
crossref_primary_10_1016_j_ajhg_2016_04_013
crossref_primary_10_1080_15592294_2020_1827717
crossref_primary_10_1111_mec_17525
crossref_primary_10_1186_s12711_023_00818_x
crossref_primary_10_1186_s12864_018_4851_2
crossref_primary_10_1111_nph_14500
crossref_primary_10_3389_fpls_2021_626565
crossref_primary_10_1016_j_molp_2022_02_012
crossref_primary_10_1080_00071668_2023_2272982
crossref_primary_10_1007_s00438_020_01724_3
crossref_primary_10_1002_gepi_22513
crossref_primary_10_1016_j_animal_2020_100051
crossref_primary_10_1111_gbb_12844
crossref_primary_10_1038_mp_2014_105
crossref_primary_10_1159_000445057
crossref_primary_10_1111_1755_0998_12776
crossref_primary_10_3389_fgene_2019_00702
crossref_primary_10_1371_journal_pgen_1010786
crossref_primary_10_1038_s41598_023_30415_3
crossref_primary_10_3389_fpls_2019_00956
crossref_primary_10_1007_s00122_016_2750_y
crossref_primary_10_1002_sta4_476
crossref_primary_10_1111_cobi_13900
crossref_primary_10_1186_s13059_021_02416_w
crossref_primary_10_1080_00071668_2023_2249840
crossref_primary_10_1186_s12903_021_01670_5
crossref_primary_10_7717_peerj_4259
crossref_primary_10_1186_s12864_018_4899_z
crossref_primary_10_1186_s12859_023_05505_8
crossref_primary_10_1038_s43016_021_00380_z
crossref_primary_10_3389_fgene_2023_1143395
crossref_primary_10_1214_17_EJS1386
crossref_primary_10_3390_agriculture13030705
crossref_primary_10_3390_ani12030277
crossref_primary_10_21105_joss_01435
crossref_primary_10_1111_1755_0998_12785
crossref_primary_10_1038_s41598_021_92455_x
crossref_primary_10_1016_j_jspi_2023_03_002
crossref_primary_10_1038_s41598_021_98370_5
crossref_primary_10_1016_j_ajhg_2019_10_001
crossref_primary_10_1016_j_biopsych_2018_01_020
crossref_primary_10_1038_s41588_018_0268_8
crossref_primary_10_1002_sta4_102
crossref_primary_10_1186_s13073_024_01329_0
crossref_primary_10_3390_ijms23031842
crossref_primary_10_1002_csc2_20348
crossref_primary_10_3390_genes11060609
crossref_primary_10_1111_nph_15642
crossref_primary_10_1111_pbi_14278
crossref_primary_10_1534_genetics_115_184572
crossref_primary_10_3390_ani9060305
crossref_primary_10_1016_j_ajhg_2024_06_010
crossref_primary_10_1016_j_aquaculture_2025_742119
crossref_primary_10_1186_s12864_024_11090_8
crossref_primary_10_3390_plants11233277
crossref_primary_10_1098_rstb_2020_0512
crossref_primary_10_1155_2021_8812282
crossref_primary_10_1186_s12870_023_04701_1
crossref_primary_10_3389_fpls_2022_880631
crossref_primary_10_1093_jxb_erae025
crossref_primary_10_1371_journal_pone_0189955
crossref_primary_10_1038_s41591_023_02653_5
crossref_primary_10_1111_pbi_14047
crossref_primary_10_1093_bioinformatics_bty197
crossref_primary_10_1002_ece3_7159
crossref_primary_10_1159_000446239
crossref_primary_10_1093_bioinformatics_btz167
crossref_primary_10_1038_s41893_018_0150_9
crossref_primary_10_1371_journal_pgen_1010474
crossref_primary_10_1371_journal_pgen_1011563
crossref_primary_10_1186_s12864_016_2612_7
crossref_primary_10_1089_cmb_2022_0067
crossref_primary_10_1038_s41467_025_56884_w
crossref_primary_10_3389_fgene_2021_654804
crossref_primary_10_1186_s12859_023_05519_2
crossref_primary_10_1038_ncomms8270
crossref_primary_10_1016_j_jia_2022_08_063
crossref_primary_10_1097_FPC_0000000000000293
crossref_primary_10_3390_ani12182419
crossref_primary_10_1038_s41431_018_0100_z
crossref_primary_10_1186_s12864_018_5379_1
crossref_primary_10_1038_s41598_019_53560_0
crossref_primary_10_1534_genetics_120_303059
crossref_primary_10_1371_journal_pone_0150975
crossref_primary_10_1002_ajmg_b_32692
crossref_primary_10_1016_j_plantsci_2019_04_018
crossref_primary_10_1016_j_tig_2020_01_009
crossref_primary_10_1094_PHYTO_01_16_0042_FI
crossref_primary_10_1186_s12864_017_3982_1
crossref_primary_10_1038_s41586_020_2302_0
crossref_primary_10_4018_IJWP_2018070102
crossref_primary_10_1186_s12864_023_09594_w
crossref_primary_10_1038_s41467_021_23130_y
crossref_primary_10_1111_tpj_17009
crossref_primary_10_1016_j_psj_2024_104632
crossref_primary_10_1016_j_psj_2024_103677
crossref_primary_10_1111_mec_15403
crossref_primary_10_3748_wjg_v29_i2_310
crossref_primary_10_3389_fpls_2021_621097
crossref_primary_10_3389_fgene_2019_00619
crossref_primary_10_1016_j_plantsci_2024_112110
crossref_primary_10_1111_ppl_13144
crossref_primary_10_1038_s41467_024_55496_0
crossref_primary_10_3389_fcvm_2023_1089963
crossref_primary_10_1038_s41398_020_01146_0
crossref_primary_10_1038_s41598_020_79005_7
crossref_primary_10_1093_bib_bbac067
crossref_primary_10_1093_hmg_ddz054
crossref_primary_10_1093_bib_bbab096
crossref_primary_10_1371_journal_pgen_1009974
crossref_primary_10_3390_ijms24065868
crossref_primary_10_1093_bioinformatics_btad193
crossref_primary_10_1186_s12863_023_01164_z
crossref_primary_10_1016_j_aquaculture_2024_741622
crossref_primary_10_1126_sciadv_abn8281
crossref_primary_10_3168_jds_2015_10444
crossref_primary_10_1534_g3_118_200770
crossref_primary_10_1016_j_aquaculture_2022_739090
crossref_primary_10_1016_j_aqrep_2022_101178
crossref_primary_10_1016_j_tig_2021_06_004
crossref_primary_10_1016_j_livsci_2024_105430
crossref_primary_10_1093_g3journal_jkab406
crossref_primary_10_1016_j_xhgg_2023_100204
crossref_primary_10_1016_j_jgg_2024_09_003
crossref_primary_10_1111_nph_14220
crossref_primary_10_1165_rcmb_2016_0176OC
crossref_primary_10_1093_nar_gkx204
crossref_primary_10_1371_journal_pcbi_1007882
crossref_primary_10_1371_journal_pgen_1006693
crossref_primary_10_1186_s12863_018_0605_z
crossref_primary_10_1371_journal_pone_0259278
crossref_primary_10_1111_dom_15491
crossref_primary_10_1016_j_ajhg_2020_11_017
crossref_primary_10_1038_s41467_017_00453_3
crossref_primary_10_1186_s12711_017_0289_2
crossref_primary_10_1038_srep27882
crossref_primary_10_1002_gepi_21942
crossref_primary_10_3168_jds_2022_21923
crossref_primary_10_1186_s13059_014_0547_3
crossref_primary_10_1007_s10994_019_05848_5
crossref_primary_10_3389_fpls_2024_1360729
crossref_primary_10_3389_fpls_2022_1099409
crossref_primary_10_1038_s41588_018_0193_x
crossref_primary_10_1371_journal_pgen_1005594
crossref_primary_10_1038_s41598_017_09788_9
crossref_primary_10_1186_s13073_017_0494_1
crossref_primary_10_1371_journal_pgen_1009713
crossref_primary_10_1038_s41598_021_86817_8
crossref_primary_10_1093_hr_uhae315
crossref_primary_10_1111_tpj_14170
crossref_primary_10_1186_s12863_020_0837_6
crossref_primary_10_1098_rspb_2021_1785
crossref_primary_10_1371_journal_pone_0214346
crossref_primary_10_3168_jds_2020_18209
crossref_primary_10_1002_gepi_21937
crossref_primary_10_1214_18_AOAS1222
crossref_primary_10_1007_s00415_022_11307_4
crossref_primary_10_1186_s12864_015_1795_7
crossref_primary_10_1093_bioadv_vbad192
crossref_primary_10_1186_s12870_024_05805_y
crossref_primary_10_1186_s12711_015_0170_0
crossref_primary_10_1038_s41467_019_11664_1
crossref_primary_10_1016_j_aquaculture_2023_740127
crossref_primary_10_1111_nph_15777
crossref_primary_10_1007_s00180_019_00939_2
crossref_primary_10_1002_tpg2_20275
crossref_primary_10_1093_plphys_kiab346
crossref_primary_10_3390_ijms232314536
crossref_primary_10_1111_tpj_15592
crossref_primary_10_1016_j_ajhg_2016_01_017
crossref_primary_10_1038_s41598_021_03861_0
crossref_primary_10_1111_mec_13099
crossref_primary_10_1002_ece3_6691
crossref_primary_10_1016_j_ajhg_2020_12_006
crossref_primary_10_1111_tpj_15236
crossref_primary_10_1371_journal_pcbi_1005788
crossref_primary_10_1094_PBIOMES_09_22_0059_R
crossref_primary_10_1186_s12919_018_0135_8
crossref_primary_10_1007_s00122_024_04572_6
crossref_primary_10_3390_ani11082259
crossref_primary_10_1038_s41431_019_0545_8
crossref_primary_10_1111_mec_17218
crossref_primary_10_1007_s10519_018_9936_9
crossref_primary_10_1371_journal_pgen_1009652
crossref_primary_10_1016_j_algal_2023_103309
crossref_primary_10_1093_hr_uhad289
crossref_primary_10_1186_s12864_018_5058_2
crossref_primary_10_1016_j_ygeno_2020_09_023
crossref_primary_10_1186_s12711_016_0252_7
crossref_primary_10_1038_ng_3865
crossref_primary_10_1073_pnas_1705423114
crossref_primary_10_1159_000375409
crossref_primary_10_1007_s00122_022_04103_1
crossref_primary_10_1016_j_jsxm_2019_09_012
crossref_primary_10_1371_journal_pone_0190788
crossref_primary_10_3892_etm_2017_5113
crossref_primary_10_1186_s40246_018_0180_4
crossref_primary_10_1186_s12915_024_01844_x
crossref_primary_10_1534_genetics_119_302949
crossref_primary_10_1186_s12859_020_03804_y
crossref_primary_10_1038_ng_3975
crossref_primary_10_1214_21_EJS1859
crossref_primary_10_1186_s40104_020_00515_5
crossref_primary_10_1371_journal_pone_0169893
crossref_primary_10_1093_evlett_qrae042
crossref_primary_10_1534_genetics_118_301342
crossref_primary_10_1002_bies_202100109
crossref_primary_10_1093_plphys_kiab395
crossref_primary_10_1093_jxb_erad481
crossref_primary_10_1038_ncomms8432
crossref_primary_10_1002_gepi_21988
crossref_primary_10_1534_genetics_116_199646
crossref_primary_10_1016_j_ajhg_2014_12_006
crossref_primary_10_1186_s12863_018_0649_0
crossref_primary_10_1093_jxb_erac393
crossref_primary_10_3390_genes13020235
crossref_primary_10_1186_s12711_015_0161_1
crossref_primary_10_1371_journal_pgen_1009754
crossref_primary_10_1038_s41380_019_0558_2
crossref_primary_10_1371_journal_pone_0201186
crossref_primary_10_1002_tpg2_20008
crossref_primary_10_1186_s12864_023_09295_4
crossref_primary_10_1093_bib_bbac039
crossref_primary_10_1534_g3_118_200551
crossref_primary_10_1038_gene_2015_59
crossref_primary_10_1038_s41398_022_02074_x
crossref_primary_10_1093_bioinformatics_btab710
crossref_primary_10_1093_bioinformatics_bty810
crossref_primary_10_1214_17_AOAS1052
crossref_primary_10_1186_s13059_019_1813_1
crossref_primary_10_1016_j_csbj_2021_10_019
crossref_primary_10_1038_s41467_019_11874_7
crossref_primary_10_1016_j_plantsci_2020_110731
crossref_primary_10_1016_j_jaut_2020_102422
crossref_primary_10_3390_genes13112131
crossref_primary_10_1371_journal_pgen_1006482
crossref_primary_10_1016_j_jplph_2022_153784
crossref_primary_10_1111_mec_17305
crossref_primary_10_1007_s00335_022_09969_6
crossref_primary_10_1038_ncomms15606
crossref_primary_10_2139_ssrn_3307375
crossref_primary_10_1016_j_jgg_2022_06_004
crossref_primary_10_1017_thg_2022_39
crossref_primary_10_3389_fvets_2021_807003
crossref_primary_10_1534_genetics_116_189712
crossref_primary_10_1038_ng_3513
crossref_primary_10_1007_s10126_017_9747_7
crossref_primary_10_1111_nph_19937
Cites_doi 10.1534/genetics.113.151217
10.1371/journal.pgen.1000587
10.1093/bioinformatics/bts474
10.1371/journal.pone.0065245
10.1371/journal.pgen.1003264
10.1017/S0016672309000111
10.1534/genetics.107.080101
10.1038/nmeth.1681
10.1038/ng.271
10.1038/ng1702
10.1016/j.ajhg.2013.03.010
10.1086/519795
10.1186/1297-9686-23-1-67
10.1038/nmeth.2037
10.1038/ng.2310
10.1371/journal.pgen.1002637
10.2307/2533274
10.1071/AR03164
10.1214/12-AOAS586
10.1371/journal.pone.0034861
10.1038/ng.2376
10.1534/genetics.108.088427
10.1098/rstb.2003.1437
10.1631/jzus.2007.B0815
10.1101/gr.099234.109
10.1214/09-STS307
10.1093/bioinformatics/btn563
10.1016/j.ajhg.2010.11.011
10.1371/journal.pgen.1001317
10.1038/ng.548
10.1038/ng.546
ContentType Journal Article
Copyright Springer Nature America, Inc. 2014
Copyright Nature Publishing Group Apr 2014
Copyright_xml – notice: Springer Nature America, Inc. 2014
– notice: Copyright Nature Publishing Group Apr 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QO
7SS
7TK
7U9
7X2
7X7
7XB
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
L6V
LK8
M0K
M0S
M1P
M2P
M7N
M7P
M7S
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
RC3
7X8
DOI 10.1038/nmeth.2848
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Materials Science Database (NC LIVE)
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1548-7105
EndPage 409
ExternalDocumentID 3415770231
24531419
10_1038_nmeth_2848
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL092206
– fundername: NHGRI NIH HHS
  grantid: R56 HG002585
– fundername: NHGRI NIH HHS
  grantid: HG02585
– fundername: NHGRI NIH HHS
  grantid: R01 HG002585
– fundername: NHLBI NIH HHS
  grantid: HL092206
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
7X2
7X7
7XC
88E
88I
8AO
8CJ
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AAHBH
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACGOD
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AHBCP
AHMBA
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CS3
D1I
D1J
D1K
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESX
F5P
FEDTE
FSGXE
FYUFA
FZEXT
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IHR
INH
INR
ITC
K6-
KB.
L6V
LK5
LK8
M0K
M1P
M2P
M7P
M7R
M7S
NNMJJ
O9-
ODYON
P2P
P62
PATMY
PCBAR
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
7QL
7QO
7SS
7TK
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c417t-f7666948b8fcc98c1d623a1093dbe9839f5dfcb72f17831fc0bc99f20671f36c3
IEDL.DBID 7X7
ISSN 1548-7091
1548-7105
IngestDate Fri Jul 11 03:47:03 EDT 2025
Fri Jul 25 08:58:30 EDT 2025
Thu Apr 03 07:27:08 EDT 2025
Tue Jul 01 00:44:27 EDT 2025
Thu Apr 24 22:58:03 EDT 2025
Fri Feb 21 02:37:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-f7666948b8fcc98c1d623a1093dbe9839f5dfcb72f17831fc0bc99f20671f36c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24531419
PQID 1557641967
PQPubID 28015
PageCount 3
ParticipantIDs proquest_miscellaneous_1511823155
proquest_journals_1557641967
pubmed_primary_24531419
crossref_citationtrail_10_1038_nmeth_2848
crossref_primary_10_1038_nmeth_2848
springer_journals_10_1038_nmeth_2848
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-01
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle Techniques for life scientists and chemists
PublicationTitle Nature methods
PublicationTitleAbbrev Nat Methods
PublicationTitleAlternate Nat Methods
PublicationYear 2014
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References KangHMNat. Genet.2010423483541:CAS:528:DC%2BC3cXivVCisb8%3D10.1038/ng.548
SabattiCNat. Genet.20094135461:CAS:528:DC%2BD1cXhsVKlt7zO10.1038/ng.271
ZhouXCarbonettoPStephensMPLoS Genet.20139e10032641:CAS:528:DC%2BC3sXktlSksLw%3D10.1371/journal.pgen.1003264
AmosCIAm. J. Hum. Genet.1994545355431:STN:280:DyaK2c7mtFSjsA%3D%3D81166231918121
MeyerKJ. Zhejiang Univ. Sci. B2007881582110.1631/jzus.2007.B0815
AstleWBaldingDJStat. Sci.20092445147110.1214/09-STS307
LippertCNat. Methods201188338351:CAS:528:DC%2BC3MXhtFWku7nF10.1038/nmeth.1681
YuJMNat. Genet.2006382032081:CAS:528:DC%2BD28XotlGmuw%3D%3D10.1038/ng1702
KostemEEskinEAm. J. Hum. Genet.2013925585641:CAS:528:DC%2BC3sXlsFeksbs%3D10.1016/j.ajhg.2013.03.010
GilmourARThompsonRCullisBRBiometrics1995511440145010.2307/2533274
KangHMGenetics20081781709172310.1534/genetics.107.080101
Meyer, K. PX × AI: Algorithmics for better convergence in restricted maximum likelihood estimation. in 8th World Congress on Genetics Applied to Livestock Production (Belo Horizonte, Brasil, 2006).
ListgartenJNat. Methods201295255261:CAS:528:DC%2BC38XotVWhurw%3D10.1038/nmeth.2037
ZhouXStephensMNat. Genet.2012448218241:CAS:528:DC%2BC38Xos12gur0%3D10.1038/ng.2310
PurcellSAm. J. Hum. Genet.2007815595751:CAS:528:DC%2BD2sXhtVSqurrL10.1086/519795
Trzaskowski, M., Yang, J., Visscher, P.M. & Plomin, R. Mol. Psychiatry 10.1038/mp.2012.191 (29 January 2013).
O'reillyPFPLoS One20127e348611:CAS:528:DC%2BC38XntlensL8%3D10.1371/journal.pone.0034861
HayesBJVisscherPMGoddardMEGenet. Res.2009911431431:CAS:528:DC%2BD1MXht1Kks7bN10.1017/S0016672309000111
KorteANat. Genet.201244106610711:CAS:528:DC%2BC38Xht1Wktr3I10.1038/ng.2376
YangJALeeSHGoddardMEVisscherPMAm. J. Hum. Genet.20118876821:CAS:528:DC%2BC3MXktVejtg%3D%3D10.1016/j.ajhg.2010.11.011
PirinenMDonnellyPSpencerCCAAnn. Appl. Stat.2013736939010.1214/12-AOAS586
StephensMPLoS One20138e652451:CAS:528:DC%2BC3sXhtFKktLrO10.1371/journal.pone.0065245
LeeSHYangJGoddardMEVisscherPMWrayNRBioinformatics201228254025421:CAS:528:DC%2BC38XhsVehtbnM10.1093/bioinformatics/bts474
BanerjeeSYandellBSYiNJGenetics20081792275228910.1534/genetics.108.088427
PriceALPLoS Genet.20117e10013171:CAS:528:DC%2BC3MXjtVWjtLc%3D10.1371/journal.pgen.1001317
MeyerKGenet. Sel. Evol.199123678310.1186/1297-9686-23-1-67
MeyerKJohnstonDJGraserHUAust. J. Agric. Res.20045519521010.1071/AR03164
FerreiraMARPurcellSMBioinformatics2009251321331:CAS:528:DC%2BD1MXmvFSn10.1093/bioinformatics/btn563
RuncieDEMukherjeeSGenetics201319475376710.1534/genetics.113.151217
VattikutiSGuoJChowCCPLoS Genet.20128e10026371:CAS:528:DC%2BC38XlsFaltL0%3D10.1371/journal.pgen.1002637
KimSXingEPPLoS Genet.20095e100058710.1371/journal.pgen.1000587
BennettBJGenome Res.2010202812901:CAS:528:DC%2BC3cXhs1Ghtbk%3D10.1101/gr.099234.109
Henderson, C.R. Applications of Linear Models in Animal Breeding (University of Guelph, 1984).
ZhangZWNat. Genet.2010423553601:CAS:528:DC%2BC3cXivVCju7Y%3D10.1038/ng.546
KruukLEPhil. Trans. R. Soc. Lond. B200435987389010.1098/rstb.2003.1437
S Vattikuti (BFnmeth2848_CR6) 2012; 8
S Purcell (BFnmeth2848_CR33) 2007; 81
K Meyer (BFnmeth2848_CR10) 1991; 23
S Banerjee (BFnmeth2848_CR18) 2008; 179
C Sabatti (BFnmeth2848_CR32) 2009; 41
CI Amos (BFnmeth2848_CR7) 1994; 54
AL Price (BFnmeth2848_CR2) 2011; 7
C Lippert (BFnmeth2848_CR12) 2011; 8
E Kostem (BFnmeth2848_CR28) 2013; 92
S Kim (BFnmeth2848_CR20) 2009; 5
A Korte (BFnmeth2848_CR3) 2012; 44
K Meyer (BFnmeth2848_CR9) 2004; 55
HM Kang (BFnmeth2848_CR27) 2008; 178
M Pirinen (BFnmeth2848_CR13) 2013; 7
BFnmeth2848_CR26
X Zhou (BFnmeth2848_CR16) 2013; 9
MAR Ferreira (BFnmeth2848_CR19) 2009; 25
J Listgarten (BFnmeth2848_CR30) 2012; 9
DE Runcie (BFnmeth2848_CR29) 2013; 194
HM Kang (BFnmeth2848_CR11) 2010; 42
ZW Zhang (BFnmeth2848_CR15) 2010; 42
BFnmeth2848_CR1
PF O'reilly (BFnmeth2848_CR21) 2012; 7
JA Yang (BFnmeth2848_CR23) 2011; 88
K Meyer (BFnmeth2848_CR24) 2007; 8
BFnmeth2848_CR5
JM Yu (BFnmeth2848_CR14) 2006; 38
BJ Bennett (BFnmeth2848_CR31) 2010; 20
SH Lee (BFnmeth2848_CR4) 2012; 28
M Stephens (BFnmeth2848_CR22) 2013; 8
BJ Hayes (BFnmeth2848_CR35) 2009; 91
LE Kruuk (BFnmeth2848_CR8) 2004; 359
AR Gilmour (BFnmeth2848_CR25) 1995; 51
W Astle (BFnmeth2848_CR34) 2009; 24
X Zhou (BFnmeth2848_CR17) 2012; 44
References_xml – reference: MeyerKGenet. Sel. Evol.199123678310.1186/1297-9686-23-1-67
– reference: YangJALeeSHGoddardMEVisscherPMAm. J. Hum. Genet.20118876821:CAS:528:DC%2BC3MXktVejtg%3D%3D10.1016/j.ajhg.2010.11.011
– reference: YuJMNat. Genet.2006382032081:CAS:528:DC%2BD28XotlGmuw%3D%3D10.1038/ng1702
– reference: StephensMPLoS One20138e652451:CAS:528:DC%2BC3sXhtFKktLrO10.1371/journal.pone.0065245
– reference: AmosCIAm. J. Hum. Genet.1994545355431:STN:280:DyaK2c7mtFSjsA%3D%3D81166231918121
– reference: ZhangZWNat. Genet.2010423553601:CAS:528:DC%2BC3cXivVCju7Y%3D10.1038/ng.546
– reference: VattikutiSGuoJChowCCPLoS Genet.20128e10026371:CAS:528:DC%2BC38XlsFaltL0%3D10.1371/journal.pgen.1002637
– reference: Meyer, K. PX × AI: Algorithmics for better convergence in restricted maximum likelihood estimation. in 8th World Congress on Genetics Applied to Livestock Production (Belo Horizonte, Brasil, 2006).
– reference: GilmourARThompsonRCullisBRBiometrics1995511440145010.2307/2533274
– reference: AstleWBaldingDJStat. Sci.20092445147110.1214/09-STS307
– reference: PriceALPLoS Genet.20117e10013171:CAS:528:DC%2BC3MXjtVWjtLc%3D10.1371/journal.pgen.1001317
– reference: O'reillyPFPLoS One20127e348611:CAS:528:DC%2BC38XntlensL8%3D10.1371/journal.pone.0034861
– reference: BanerjeeSYandellBSYiNJGenetics20081792275228910.1534/genetics.108.088427
– reference: Trzaskowski, M., Yang, J., Visscher, P.M. & Plomin, R. Mol. Psychiatry 10.1038/mp.2012.191 (29 January 2013).
– reference: KimSXingEPPLoS Genet.20095e100058710.1371/journal.pgen.1000587
– reference: MeyerKJ. Zhejiang Univ. Sci. B2007881582110.1631/jzus.2007.B0815
– reference: ListgartenJNat. Methods201295255261:CAS:528:DC%2BC38XotVWhurw%3D10.1038/nmeth.2037
– reference: MeyerKJohnstonDJGraserHUAust. J. Agric. Res.20045519521010.1071/AR03164
– reference: LippertCNat. Methods201188338351:CAS:528:DC%2BC3MXhtFWku7nF10.1038/nmeth.1681
– reference: SabattiCNat. Genet.20094135461:CAS:528:DC%2BD1cXhsVKlt7zO10.1038/ng.271
– reference: BennettBJGenome Res.2010202812901:CAS:528:DC%2BC3cXhs1Ghtbk%3D10.1101/gr.099234.109
– reference: HayesBJVisscherPMGoddardMEGenet. Res.2009911431431:CAS:528:DC%2BD1MXht1Kks7bN10.1017/S0016672309000111
– reference: KangHMGenetics20081781709172310.1534/genetics.107.080101
– reference: KangHMNat. Genet.2010423483541:CAS:528:DC%2BC3cXivVCisb8%3D10.1038/ng.548
– reference: KruukLEPhil. Trans. R. Soc. Lond. B200435987389010.1098/rstb.2003.1437
– reference: PirinenMDonnellyPSpencerCCAAnn. Appl. Stat.2013736939010.1214/12-AOAS586
– reference: ZhouXCarbonettoPStephensMPLoS Genet.20139e10032641:CAS:528:DC%2BC3sXktlSksLw%3D10.1371/journal.pgen.1003264
– reference: LeeSHYangJGoddardMEVisscherPMWrayNRBioinformatics201228254025421:CAS:528:DC%2BC38XhsVehtbnM10.1093/bioinformatics/bts474
– reference: ZhouXStephensMNat. Genet.2012448218241:CAS:528:DC%2BC38Xos12gur0%3D10.1038/ng.2310
– reference: KorteANat. Genet.201244106610711:CAS:528:DC%2BC38Xht1Wktr3I10.1038/ng.2376
– reference: KostemEEskinEAm. J. Hum. Genet.2013925585641:CAS:528:DC%2BC3sXlsFeksbs%3D10.1016/j.ajhg.2013.03.010
– reference: RuncieDEMukherjeeSGenetics201319475376710.1534/genetics.113.151217
– reference: Henderson, C.R. Applications of Linear Models in Animal Breeding (University of Guelph, 1984).
– reference: FerreiraMARPurcellSMBioinformatics2009251321331:CAS:528:DC%2BD1MXmvFSn10.1093/bioinformatics/btn563
– reference: PurcellSAm. J. Hum. Genet.2007815595751:CAS:528:DC%2BD2sXhtVSqurrL10.1086/519795
– volume: 194
  start-page: 753
  year: 2013
  ident: BFnmeth2848_CR29
  publication-title: Genetics
  doi: 10.1534/genetics.113.151217
– volume: 5
  start-page: e1000587
  year: 2009
  ident: BFnmeth2848_CR20
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000587
– volume: 28
  start-page: 2540
  year: 2012
  ident: BFnmeth2848_CR4
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts474
– volume: 8
  start-page: e65245
  year: 2013
  ident: BFnmeth2848_CR22
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0065245
– volume: 9
  start-page: e1003264
  year: 2013
  ident: BFnmeth2848_CR16
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003264
– volume: 54
  start-page: 535
  year: 1994
  ident: BFnmeth2848_CR7
  publication-title: Am. J. Hum. Genet.
– volume: 91
  start-page: 143
  year: 2009
  ident: BFnmeth2848_CR35
  publication-title: Genet. Res.
  doi: 10.1017/S0016672309000111
– volume: 178
  start-page: 1709
  year: 2008
  ident: BFnmeth2848_CR27
  publication-title: Genetics
  doi: 10.1534/genetics.107.080101
– ident: BFnmeth2848_CR5
– volume: 8
  start-page: 833
  year: 2011
  ident: BFnmeth2848_CR12
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1681
– volume: 41
  start-page: 35
  year: 2009
  ident: BFnmeth2848_CR32
  publication-title: Nat. Genet.
  doi: 10.1038/ng.271
– volume: 38
  start-page: 203
  year: 2006
  ident: BFnmeth2848_CR14
  publication-title: Nat. Genet.
  doi: 10.1038/ng1702
– volume: 92
  start-page: 558
  year: 2013
  ident: BFnmeth2848_CR28
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2013.03.010
– volume: 81
  start-page: 559
  year: 2007
  ident: BFnmeth2848_CR33
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/519795
– volume: 23
  start-page: 67
  year: 1991
  ident: BFnmeth2848_CR10
  publication-title: Genet. Sel. Evol.
  doi: 10.1186/1297-9686-23-1-67
– volume: 9
  start-page: 525
  year: 2012
  ident: BFnmeth2848_CR30
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2037
– volume: 44
  start-page: 821
  year: 2012
  ident: BFnmeth2848_CR17
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2310
– volume: 8
  start-page: e1002637
  year: 2012
  ident: BFnmeth2848_CR6
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002637
– volume: 51
  start-page: 1440
  year: 1995
  ident: BFnmeth2848_CR25
  publication-title: Biometrics
  doi: 10.2307/2533274
– volume: 55
  start-page: 195
  year: 2004
  ident: BFnmeth2848_CR9
  publication-title: Aust. J. Agric. Res.
  doi: 10.1071/AR03164
– volume: 7
  start-page: 369
  year: 2013
  ident: BFnmeth2848_CR13
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/12-AOAS586
– ident: BFnmeth2848_CR1
– volume: 7
  start-page: e34861
  year: 2012
  ident: BFnmeth2848_CR21
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0034861
– volume: 44
  start-page: 1066
  year: 2012
  ident: BFnmeth2848_CR3
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2376
– ident: BFnmeth2848_CR26
– volume: 179
  start-page: 2275
  year: 2008
  ident: BFnmeth2848_CR18
  publication-title: Genetics
  doi: 10.1534/genetics.108.088427
– volume: 359
  start-page: 873
  year: 2004
  ident: BFnmeth2848_CR8
  publication-title: Phil. Trans. R. Soc. Lond. B
  doi: 10.1098/rstb.2003.1437
– volume: 8
  start-page: 815
  year: 2007
  ident: BFnmeth2848_CR24
  publication-title: J. Zhejiang Univ. Sci. B
  doi: 10.1631/jzus.2007.B0815
– volume: 20
  start-page: 281
  year: 2010
  ident: BFnmeth2848_CR31
  publication-title: Genome Res.
  doi: 10.1101/gr.099234.109
– volume: 24
  start-page: 451
  year: 2009
  ident: BFnmeth2848_CR34
  publication-title: Stat. Sci.
  doi: 10.1214/09-STS307
– volume: 25
  start-page: 132
  year: 2009
  ident: BFnmeth2848_CR19
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn563
– volume: 88
  start-page: 76
  year: 2011
  ident: BFnmeth2848_CR23
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2010.11.011
– volume: 7
  start-page: e1001317
  year: 2011
  ident: BFnmeth2848_CR2
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001317
– volume: 42
  start-page: 348
  year: 2010
  ident: BFnmeth2848_CR11
  publication-title: Nat. Genet.
  doi: 10.1038/ng.548
– volume: 42
  start-page: 355
  year: 2010
  ident: BFnmeth2848_CR15
  publication-title: Nat. Genet.
  doi: 10.1038/ng.546
SSID ssj0033425
Score 2.6150074
Snippet Multivariate linear mixed models implemented in the GEMMA software package add speed, power and the ability to test for genome-wide associations between...
Multivariate linear mixed models (mvLMMs) are powerful tools for testing associations between single-nucleotide polymorphisms and multiple correlated...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 407
SubjectTerms 45/43
49/23
631/114/2415
631/208/480
Algorithms
Bioinformatics
Biological Microscopy
Biological Techniques
Biomedical Engineering/Biotechnology
brief-communication
Calibration
Genome
Genomes
Life Sciences
Likelihood Functions
Linear Models
Mathematical models
Multivariate Analysis
Polymorphism, Single Nucleotide - genetics
Proteomics
Software
Title Efficient multivariate linear mixed model algorithms for genome-wide association studies
URI https://link.springer.com/article/10.1038/nmeth.2848
https://www.ncbi.nlm.nih.gov/pubmed/24531419
https://www.proquest.com/docview/1557641967
https://www.proquest.com/docview/1511823155
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9xADLYoqFIvVaGvtICmKpcepjQ7k8zkhADtgpCKqqpIe4vmSZHYLGWXtvx77EmytFrEJZdxkont2J_Hlg2wI7UNviglj7EouAxScyuF55U23nhhgo10Dvn1tDw-kyfjYtwduM26ssreJiZD7aeOzsh30e-pUqK-qL2rX5ymRlF2tRuh8QTWqHUZabUaLwIuIWQaukqonCt0jH17UqF3GxrQ_Blts_7fIS2hzKUMaXI8oxfwvEOMbL8V8TqshGYDnrYzJG9fwniYmkCg72CpOPA3Br-IHxnBR3PNJhd_g2dp3g0zl-f4RfOfkxlDqMqoPesk8D8XPjBzLyU2a0sLX8HZaPjj8Jh34xK4k7ma86gwFKmQ-To6V2mXe4Q2htpFeRsqBEKx8NFZNYi50iKP7ot1VRWpf3seRenEa1htpk14C0xbXDTSS19GqaXVhYoBgZ9GcBmKgcrgU8-z2nW9xGmkxWWdctpC14m_NfE3g48L2qu2g8aDVJs96-vuL5rV9zLP4MNiGfWfkhqmCdMboqEQSSBpBm9akS1eM5BoYfD-DHZ6Gf7z8KU9vHt8D-_hGaKlrmxnE1bn1zdhCxHJ3G4ntcOrHh1tw9rB8PTb9zst4uSc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RUFUuFfSZQltXpYceXEjsxM6hqqrCdimPE0h7S_2kSGwW2AXKn-pvZOwkS9FWvXH2xLHG45lvPOMZgDUutbN5wan3eU6545JqziwtpbLKMuW0D_eQe_tF_5D_GOSDOfjTvYUJaZWdToyK2o5MuCNfR7snCo7yIr6cntHQNSpEV7sWGo1Y7LjrK3TZxp-3N3F_P2RZb-vgW5-2XQWo4amYUC8QsZe4RumNKaVJLSIAFaoqWe1KxAs-t95okflUSJZ6s6FNWfpQ5jz1rDAM530AC5yhJQ8v03vfO83PGI9NXoMXQAUa4q4cKpPrdWgI_QltgbxrAGdQ7UxENhq63hI8bhEq-dqI1DLMufoJPGx6Vl4_hcFWLDqBtorEZMRLdLYRr5IAV9U5GR7_dpbE_jpEnRwhBye_hmOC0JiEcrBDR6-OrSPqVirIuEllfAaH98LI5zBfj2r3EojUOKi45bbwXHItc-EdAk2JYNblmUjgY8ezyrS1y0MLjZMqxtCZrCJ_q8DfBN5PaU-bih3_pFrtWF-1p3Zc3cpYAu-mw3jeQhBF1W50EWiCS8aQNIEXzZZNf5Nx1Gj4fQJr3R7-NfnMGl79fw1v4VH_YG-32t3e31mBRURqbcrQKsxPzi_ca0RDE_0miiCBn_ct8zcOhB8b
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK7gEo0XA_gaedhEPHho15nume45GKKyGxDdECPJ3sZ-Kgk7C-wi8tf4dVbPY9Es4cZ5ano61V93fdVVUwWwxaV2Ns049T5NKXdcUs2ZpblUVlmmnPbhHvLrINs95J-H6XABrtp_YUJaZXsmVge1HZtwR95FuycyjngRXd-kRRzs9LdPTmnoIBUirW07jRoi--7yAt23yfu9HVzr10nS733_tEubDgPU8FhMqRfI3nOcr_TG5NLEFtmAChWWrHY5cgefWm-0SHwsJIu9eadNnvtQ8jz2LDMMx70HiyJ4RR1Y_NgbHHxr7QBjvGr5GnwCKtAst8VRmeyWoT30W7QM8n9zOMdx5-KzldnrL8Gjhq-SDzXAlmHBlStwv-5gefkYhr2qBAVaLlKlJv5G1xvZKwnkVZ2R0dEfZ0nVbYeo45-ow-mv0YQgUSahOOzI0Ysj64i6xgiZ1ImNT-DwTlT5FDrluHTPgUiNDxW33GaeS65lKrxD2imR2ro0ERG8aXVWmKaSeWiocVxUEXUmi0q_RdBvBK9msid1_Y4bpdZa1RfNHp4U14iLYHP2GHdfCKmo0o3Pg0xw0BiKRvCsXrLZZxKO5xu-H8FWu4b_DD43hxe3z-ElPEC8F1_2Bvur8BBpW5M_tAad6dm5W0dqNNUbDQYJ_Lhr2P8F_ookrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+multivariate+linear+mixed+model+algorithms+for+genome-wide+association+studies&rft.jtitle=Nature+methods&rft.au=Zhou%2C+Xiang&rft.au=Stephens%2C+Matthew&rft.date=2014-04-01&rft.pub=Nature+Publishing+Group+US&rft.issn=1548-7091&rft.eissn=1548-7105&rft.volume=11&rft.issue=4&rft.spage=407&rft.epage=409&rft_id=info:doi/10.1038%2Fnmeth.2848&rft.externalDocID=10_1038_nmeth_2848
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7091&client=summon