Toward Drowsiness Detection Using Non-hair-Bearing EEG-Based Brain-Computer Interfaces

Drowsy driving is one of the major causes that lead to fatal accidents worldwide. For the past two decades, many studies have explored the feasibility and practicality of drowsiness detection using electroencephalogram (EEG)based brain-computer interface (BCI) systems. However, on the pathway of tra...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 26; no. 2; pp. 400 - 406
Main Authors Wei, Chun-Shu, Wang, Yu-Te, Lin, Chin-Teng, Jung, Tzyy-Ping
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Drowsy driving is one of the major causes that lead to fatal accidents worldwide. For the past two decades, many studies have explored the feasibility and practicality of drowsiness detection using electroencephalogram (EEG)based brain-computer interface (BCI) systems. However, on the pathway of transitioning laboratory-oriented BCI into real-world environments, one chief challenge is to obtain high-quality EEG with convenience and long-term wearing comfort. Recently, acquiring EEG from non-hair-bearing (NHB) scalp areas has been proposed as an alternative solution to avoid many of the technical limitations resulted from the interference of hair between electrodes and the skin. Furthermore, our pilot study has shown that informative drowsiness-related EEG features are accessible from the NHB areas. This study extends the previous work to quantitatively evaluate the performance of drowsiness detection using cross-session validation with widely studied machine-learning classifiers. The offline results showed no significant difference between the accuracy of drowsiness detection using the NHB EEG and the whole-scalp EEG across all subjects (p = 0.31). The findings of this study demonstrate the efficacy and practicality of the NHB EEG for drowsiness detection and could catalyze explorations and developments of many other real-world BCI applications.
AbstractList Drowsy driving is one of the major causes that lead to fatal accidents worldwide. For the past two decades, many studies have explored the feasibility and practicality of drowsiness detection using electroencephalogram (EEG)-based brain-computer interface (BCI) systems. However, on the pathway of transitioning laboratory-oriented BCI into real-world environments, one chief challenge is to obtain high-quality EEG with convenience and long-term wearing comfort. Recently, acquiring EEG from non-hair-bearing (NHB) scalp areas has been proposed as an alternative solution to avoid many of the technical limitations resulted from the interference of hair between electrodes and the skin. Furthermore, our pilot study has shown that informative drowsiness-related EEG features are accessible from the NHB areas. This study extends the previous work to quantitatively evaluate the performance of drowsiness detection using cross-session validation with widely studied machine-learning classifiers. The offline results showed no significant difference between the accuracy of drowsiness detection using the NHB EEG and the whole-scalp EEG across all subjects ( ). The findings of this study demonstrate the efficacy and practicality of the NHB EEG for drowsiness detection and could catalyze explorations and developments of many other real-world BCI applications.
Drowsy driving is one of the major causes that lead to fatal accidents worldwide. For the past two decades, many studies have explored the feasibility and practicality of drowsiness detection using electroencephalogram (EEG)based brain-computer interface (BCI) systems. However, on the pathway of transitioning laboratory-oriented BCI into real-world environments, one chief challenge is to obtain high-quality EEG with convenience and long-term wearing comfort. Recently, acquiring EEG from non-hair-bearing (NHB) scalp areas has been proposed as an alternative solution to avoid many of the technical limitations resulted from the interference of hair between electrodes and the skin. Furthermore, our pilot study has shown that informative drowsiness-related EEG features are accessible from the NHB areas. This study extends the previous work to quantitatively evaluate the performance of drowsiness detection using cross-session validation with widely studied machine-learning classifiers. The offline results showed no significant difference between the accuracy of drowsiness detection using the NHB EEG and the whole-scalp EEG across all subjects (p = 0.31). The findings of this study demonstrate the efficacy and practicality of the NHB EEG for drowsiness detection and could catalyze explorations and developments of many other real-world BCI applications.
Drowsy driving is one of the major causes that lead to fatal accidents worldwide. For the past two decades, many studies have explored the feasibility and practicality of drowsiness detection using electroencephalogram (EEG)-based brain-computer interface (BCI) systems. However, on the pathway of transitioning laboratory-oriented BCI into real-world environments, one chief challenge is to obtain high-quality EEG with convenience and long-term wearing comfort. Recently, acquiring EEG from non-hair-bearing (NHB) scalp areas has been proposed as an alternative solution to avoid many of the technical limitations resulted from the interference of hair between electrodes and the skin. Furthermore, our pilot study has shown that informative drowsiness-related EEG features are accessible from the NHB areas. This study extends the previous work to quantitatively evaluate the performance of drowsiness detection using cross-session validation with widely studied machine-learning classifiers. The offline results showed no significant difference between the accuracy of drowsiness detection using the NHB EEG and the whole-scalp EEG across all subjects ( ). The findings of this study demonstrate the efficacy and practicality of the NHB EEG for drowsiness detection and could catalyze explorations and developments of many other real-world BCI applications.Drowsy driving is one of the major causes that lead to fatal accidents worldwide. For the past two decades, many studies have explored the feasibility and practicality of drowsiness detection using electroencephalogram (EEG)-based brain-computer interface (BCI) systems. However, on the pathway of transitioning laboratory-oriented BCI into real-world environments, one chief challenge is to obtain high-quality EEG with convenience and long-term wearing comfort. Recently, acquiring EEG from non-hair-bearing (NHB) scalp areas has been proposed as an alternative solution to avoid many of the technical limitations resulted from the interference of hair between electrodes and the skin. Furthermore, our pilot study has shown that informative drowsiness-related EEG features are accessible from the NHB areas. This study extends the previous work to quantitatively evaluate the performance of drowsiness detection using cross-session validation with widely studied machine-learning classifiers. The offline results showed no significant difference between the accuracy of drowsiness detection using the NHB EEG and the whole-scalp EEG across all subjects ( ). The findings of this study demonstrate the efficacy and practicality of the NHB EEG for drowsiness detection and could catalyze explorations and developments of many other real-world BCI applications.
Drowsy driving is one of the major causes that lead to fatal accidents worldwide. For the past two decades, many studies have explored the feasibility and practicality of drowsiness detection using electroencephalogram (EEG)-based brain-computer interface (BCI) systems. However, on the pathway of transitioning laboratory-oriented BCI into real-world environments, one chief challenge is to obtain high-quality EEG with convenience and long-term wearing comfort. Recently, acquiring EEG from non-hair-bearing (NHB) scalp areas has been proposed as an alternative solution to avoid many of the technical limitations resulted from the interference of hair between electrodes and the skin. Furthermore, our pilot study has shown that informative drowsiness-related EEG features are accessible from the NHB areas. This study extends the previous work to quantitatively evaluate the performance of drowsiness detection using cross-session validation with widely studied machine-learning classifiers. The offline results showed no significant difference between the accuracy of drowsiness detection using the NHB EEG and the whole-scalp EEG across all subjects ([Formula Omitted]). The findings of this study demonstrate the efficacy and practicality of the NHB EEG for drowsiness detection and could catalyze explorations and developments of many other real-world BCI applications.
Author Wei, Chun-Shu
Jung, Tzyy-Ping
Wang, Yu-Te
Lin, Chin-Teng
Author_xml – sequence: 1
  givenname: Chun-Shu
  orcidid: 0000-0002-5259-2015
  surname: Wei
  fullname: Wei, Chun-Shu
  email: cswei@sccn.ucsd.edu
  organization: Department of BioengineeringJacobs School of Engineering
– sequence: 2
  givenname: Yu-Te
  surname: Wang
  fullname: Wang, Yu-Te
  email: yute@sccn.ucsd.edu
  organization: Swartz Center for Computational NeuroscienceInstitute for Neural Computation
– sequence: 3
  givenname: Chin-Teng
  orcidid: 0000-0001-8371-8197
  surname: Lin
  fullname: Lin, Chin-Teng
  email: chin-teng.lin@uts.edu.au
  organization: Centre for Artificial Intelligence, FEIT, University of Technology Sydney, City Campus, Sydney, NSW, Australia
– sequence: 4
  givenname: Tzyy-Ping
  orcidid: 0000-0002-8377-2166
  surname: Jung
  fullname: Jung, Tzyy-Ping
  email: jung@sccn.ucsd.edu
  organization: Swartz Center for Computational NeuroscienceInstitute for Neural Computation
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29432111$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAUhUVJaV79Ay0UQzfZaKp7LdnysjOZPCCk0Ey6FbJ83TrMWBPJJvTfR85MusiiG0kcvnO5OueYHfS-J8Y-gZgBiOrb6vbu53KGAvQMy0rkqnrHjkApzQWCOJjeueQyR3HIjmN8EALKQpUf2CFWSQWAI_Zr5Z9saLLz4J9i11OM2TkN5IbO99l9Un5nt77nf2wX-JxsmITl8pLPbaQmmwfb9XzhN9txoJBd9-lsraN4yt63dh3p4_4-YfcXy9Xiit_8uLxefL_hTkI58BZBaq2kdKouGmVbJGFVUzdto21eIiFo0aJuCFyNeVs51IAFkhQ11Y3NT9jZbu42-MeR4mA2XXS0Xtue_BgNpj9XoIsCEvr1Dfrgx9Cn7V4okEVVqkR92VNjvaHGbEO3seGveU0sAXoHuOBjDNQa1w12imtIYawNCDOVY17KMVM5Zl9OsuIb6-v0_5o-70wdEf0zaJQlos6fAcX_mUQ
CODEN ITNSB3
CitedBy_id crossref_primary_10_1016_j_bspc_2024_107222
crossref_primary_10_1109_TIV_2023_3339673
crossref_primary_10_1016_j_clinph_2020_11_033
crossref_primary_10_1109_JSEN_2023_3307766
crossref_primary_10_1088_1741_2552_ac697d
crossref_primary_10_1177_2096595819896200
crossref_primary_10_1038_s41597_021_01094_4
crossref_primary_10_1109_JSEN_2024_3492176
crossref_primary_10_1016_j_bspc_2021_103023
crossref_primary_10_3389_fnins_2019_00822
crossref_primary_10_3390_s21072372
crossref_primary_10_1007_s41870_021_00811_x
crossref_primary_10_1016_j_bspc_2021_102443
crossref_primary_10_1016_j_eswa_2021_116443
crossref_primary_10_1007_s10548_023_01016_0
crossref_primary_10_1109_TNSRE_2023_3267114
crossref_primary_10_2139_ssrn_4133048
crossref_primary_10_1109_TNSRE_2023_3336897
crossref_primary_10_3390_e20030196
crossref_primary_10_1016_j_ins_2022_12_088
crossref_primary_10_1109_ACCESS_2019_2947759
crossref_primary_10_1109_TITS_2021_3105326
crossref_primary_10_1109_TNSRE_2023_3339768
crossref_primary_10_1515_bams_2019_0053
crossref_primary_10_1002_adma_202211012
crossref_primary_10_1109_TIM_2023_3307756
crossref_primary_10_1109_TNSRE_2020_2999599
crossref_primary_10_1109_TCYB_2019_2924237
crossref_primary_10_1002_tee_22876
crossref_primary_10_3390_s22093331
crossref_primary_10_1080_10447318_2024_2443268
crossref_primary_10_3390_e24121715
crossref_primary_10_1016_j_aei_2020_101157
crossref_primary_10_1007_s11042_022_13150_1
crossref_primary_10_3390_brainsci9120348
crossref_primary_10_1109_TMC_2020_2984278
crossref_primary_10_1016_j_engappai_2024_109153
crossref_primary_10_1109_TNSRE_2020_3009376
crossref_primary_10_1007_s00521_022_07209_1
crossref_primary_10_1109_ACCESS_2019_2942838
crossref_primary_10_3389_fnhum_2022_901387
crossref_primary_10_1016_j_eswa_2023_120279
crossref_primary_10_1080_15389588_2019_1622005
crossref_primary_10_1088_1361_6579_abf336
crossref_primary_10_1088_1741_2552_abf609
crossref_primary_10_1109_ACCESS_2022_3205734
crossref_primary_10_1109_JBHI_2021_3096984
crossref_primary_10_1109_ACCESS_2019_2926444
crossref_primary_10_1109_JSYST_2020_3032609
crossref_primary_10_3390_s20247252
crossref_primary_10_3390_bioengineering10060664
crossref_primary_10_1109_TCDS_2018_2869903
crossref_primary_10_3390_math13050802
crossref_primary_10_3390_s23041874
crossref_primary_10_1109_TNSRE_2019_2906371
crossref_primary_10_1109_TNSRE_2021_3126264
crossref_primary_10_1109_TNSRE_2021_3079505
crossref_primary_10_1109_TAFFC_2021_3133443
crossref_primary_10_26599_BSA_2019_9050005
crossref_primary_10_1007_s11227_025_06947_y
crossref_primary_10_1109_TBME_2024_3361716
crossref_primary_10_2139_ssrn_4158273
crossref_primary_10_1016_j_aei_2024_102575
crossref_primary_10_1016_j_neucom_2024_128961
crossref_primary_10_1021_acsapm_3c01368
crossref_primary_10_3390_mi10080518
crossref_primary_10_1109_JBHI_2024_3377373
crossref_primary_10_3389_fnsys_2021_578875
crossref_primary_10_1016_j_procs_2019_04_132
crossref_primary_10_1038_s41597_019_0027_4
crossref_primary_10_1134_S1054661821030020
crossref_primary_10_1109_TSMC_2020_3041382
crossref_primary_10_3390_electronics14061069
crossref_primary_10_1016_j_engappai_2023_106237
crossref_primary_10_1016_j_ymeth_2021_04_017
crossref_primary_10_1080_10255842_2022_2112574
crossref_primary_10_1080_27706710_2024_2400063
crossref_primary_10_1109_JBHI_2024_3402324
crossref_primary_10_3389_fncom_2023_1232925
crossref_primary_10_3390_s18124477
crossref_primary_10_1007_s00521_023_09090_y
crossref_primary_10_1016_j_neuroimage_2018_03_032
crossref_primary_10_3389_fphys_2023_1153268
crossref_primary_10_22531_muglajsci_1481648
crossref_primary_10_1007_s11517_024_03036_9
crossref_primary_10_3390_s23218741
crossref_primary_10_3390_s18092856
crossref_primary_10_1016_j_bspc_2021_102857
crossref_primary_10_1039_C8RA04846K
crossref_primary_10_3389_fnins_2022_842635
crossref_primary_10_1088_1741_2552_ac41ac
crossref_primary_10_1016_j_amar_2020_100114
crossref_primary_10_1109_TNNLS_2022_3147208
crossref_primary_10_1109_TNSRE_2023_3299156
Cites_doi 10.1109/TBME.2009.2038990
10.1016/j.annemergmed.2005.01.015
10.1109/ACCESS.2013.2260791
10.1016/j.neubiorev.2006.06.007
10.1126/science.aad8127
10.1088/1741-2560/8/2/025008
10.1109/SMC.2015.560
10.1109/TNSRE.2006.875637
10.1016/j.neuroimage.2010.04.250
10.1586/17434440.4.4.463
10.1016/S0013-4694(97)00070-9
10.1080/10447318.2013.780869
10.1109/MC.2012.107
10.1109/10.553713
10.1023/A:1009715923555
10.1038/srep16743
10.1109/TNSRE.2012.2236576
10.1088/1741-2560/4/2/R01
10.1109/TNSRE.2013.2293139
10.1016/0013-4694(93)90064-3
10.1109/TNSRE.2015.2496184
10.3389/fnins.2014.00321
10.1007/978-3-642-02812-0_44
10.1016/j.neuroimage.2007.10.036
10.3390/s141223758
10.1109/TNSRE.2003.814433
10.1109/EMBC.2013.6609968
10.1016/S0022-4375(03)00027-6
10.1109/TCSI.2005.857555
10.1016/j.biopsycho.2011.03.003
10.1109/TBME.2013.2264956
10.1111/j.1469-1809.1936.tb02137.x
10.1097/WNP.0b013e3181775993
10.1145/1961189.1961199
10.1109/JPROC.2012.2184830
10.1109/TBME.2010.2102353
10.1111/j.1365-2869.2006.00545.x
10.1109/TNSRE.2011.2174652
10.1073/pnas.1424875112
10.1126/science.1250169
10.1016/j.jneumeth.2003.10.009
10.1109/NEBC.2004.1300002
10.1109/TNSRE.2016.2573819
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2018.2790359
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 406
ExternalDocumentID 29432111
10_1109_TNSRE_2018_2790359
8247228
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Army Research Laboratory through the Cooperative Agreement
  grantid: W911NF-10-2-0022; W911NF-10-D-0002/TO 0023
  funderid: 10.13039/100006754
– fundername: Australian Research Council
  grantid: DP180100670; DP180100656
  funderid: 10.13039/501100000923
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c417t-f21488544c5b6d5af2e0a5dbdfd8a372e2180f28de1cb23f9c281262e40bebda3
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Fri Jul 11 03:26:17 EDT 2025
Mon Jul 14 10:02:21 EDT 2025
Wed Feb 19 02:36:14 EST 2025
Tue Jul 01 00:43:16 EDT 2025
Thu Apr 24 22:50:52 EDT 2025
Wed Aug 27 02:51:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-f21488544c5b6d5af2e0a5dbdfd8a372e2180f28de1cb23f9c281262e40bebda3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5259-2015
0000-0002-8377-2166
0000-0001-8371-8197
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8247228
PMID 29432111
PQID 2001146975
PQPubID 85423
PageCount 7
ParticipantIDs ieee_primary_8247228
pubmed_primary_29432111
crossref_citationtrail_10_1109_TNSRE_2018_2790359
proquest_miscellaneous_2001918661
proquest_journals_2001146975
crossref_primary_10_1109_TNSRE_2018_2790359
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
ref10
ref17
ref16
ref19
ref18
(ref46) 2016
ref48
ref47
ref42
ref41
ref43
kothe (ref26) 2013
(ref45) 2016
ref49
ref8
ref7
mitler (ref23) 1988
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
(ref44) 2016
ref38
ref24
ref25
ref20
wei (ref21) 2015
chen (ref15) 2014; 14
ref22
ref28
ref27
ref29
References_xml – ident: ref36
  doi: 10.1109/TBME.2009.2038990
– ident: ref1
  doi: 10.1016/j.annemergmed.2005.01.015
– ident: ref11
  doi: 10.1109/ACCESS.2013.2260791
– ident: ref40
  doi: 10.1016/j.neubiorev.2006.06.007
– ident: ref49
  doi: 10.1126/science.aad8127
– ident: ref14
  doi: 10.1088/1741-2560/8/2/025008
– ident: ref38
  doi: 10.1109/SMC.2015.560
– ident: ref32
  doi: 10.1109/TNSRE.2006.875637
– ident: ref41
  doi: 10.1016/j.neuroimage.2010.04.250
– ident: ref9
  doi: 10.1586/17434440.4.4.463
– ident: ref48
  doi: 10.1016/S0013-4694(97)00070-9
– ident: ref30
  doi: 10.1080/10447318.2013.780869
– ident: ref10
  doi: 10.1109/MC.2012.107
– ident: ref3
  doi: 10.1109/10.553713
– ident: ref33
  doi: 10.1023/A:1009715923555
– ident: ref19
  doi: 10.1038/srep16743
– ident: ref37
  doi: 10.1109/TNSRE.2012.2236576
– year: 1988
  ident: ref23
  publication-title: 101 questions about sleep and dreams
– ident: ref31
  doi: 10.1088/1741-2560/4/2/R01
– ident: ref7
  doi: 10.1109/TNSRE.2013.2293139
– ident: ref2
  doi: 10.1016/0013-4694(93)90064-3
– ident: ref18
  doi: 10.1109/TNSRE.2015.2496184
– ident: ref42
  doi: 10.3389/fnins.2014.00321
– ident: ref39
  doi: 10.1007/978-3-642-02812-0_44
– ident: ref22
  doi: 10.1016/j.neuroimage.2007.10.036
– volume: 14
  start-page: 23758
  year: 2014
  ident: ref15
  article-title: Soft, comfortable polymer dry electrodes for high quality ECG and EEG recording
  publication-title: SENSORS
  doi: 10.3390/s141223758
– year: 2016
  ident: ref46
  publication-title: EMOTIV EPOC+ 14 Channel Mobile EEG-Emotiv
– ident: ref8
  doi: 10.1109/TNSRE.2003.814433
– ident: ref24
  doi: 10.1109/EMBC.2013.6609968
– ident: ref27
  doi: 10.1016/S0022-4375(03)00027-6
– ident: ref5
  doi: 10.1109/TCSI.2005.857555
– year: 2016
  ident: ref45
  publication-title: Muse-Muse The Brain Sensing Headband
– ident: ref6
  doi: 10.1016/j.biopsycho.2011.03.003
– year: 2016
  ident: ref44
  publication-title: EEG Headsets | NeuroSky Store
– ident: ref16
  doi: 10.1109/TBME.2013.2264956
– ident: ref29
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– ident: ref35
  doi: 10.1097/WNP.0b013e3181775993
– ident: ref34
  doi: 10.1145/1961189.1961199
– ident: ref43
  doi: 10.1109/JPROC.2012.2184830
– ident: ref13
  doi: 10.1109/TBME.2010.2102353
– ident: ref28
  doi: 10.1111/j.1365-2869.2006.00545.x
– ident: ref12
  doi: 10.1109/TNSRE.2011.2174652
– year: 2013
  ident: ref26
  publication-title: The Artifact Subspace Reconstruction Method
– ident: ref17
  doi: 10.1073/pnas.1424875112
– ident: ref47
  doi: 10.1126/science.1250169
– ident: ref25
  doi: 10.1016/j.jneumeth.2003.10.009
– start-page: 6638
  year: 2015
  ident: ref21
  article-title: Toward non-hair-bearing brain-computer interfaces for neurocognitive lapse detection
  publication-title: Proc IEEE Eng Med Biol Soc Annu Int Conf (EMBC)
– ident: ref4
  doi: 10.1109/NEBC.2004.1300002
– ident: ref20
  doi: 10.1109/TNSRE.2016.2573819
SSID ssj0017657
Score 2.563158
Snippet Drowsy driving is one of the major causes that lead to fatal accidents worldwide. For the past two decades, many studies have explored the feasibility and...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 400
SubjectTerms Automobile Driving - psychology
Automobiles
Brain
Brain-Computer Interfaces
Brain-computer interfaces (BCI)
Cognition - physiology
Computer applications
Discriminant Analysis
Driving ability
Drowsiness
EEG
Electrodes
electroencephalogram (EEG)
Electroencephalography
Electroencephalography - methods
Fatigue
Feasibility studies
Feature extraction
Hair
Human-computer interface
Humans
Implants
Interfaces
Interference
Learning algorithms
non-hair-bearing electrodes
Pilot Projects
Reproducibility of Results
Scalp
Skin
Sleep deprivation
Support Vector Machine
Wakefulness - physiology
Title Toward Drowsiness Detection Using Non-hair-Bearing EEG-Based Brain-Computer Interfaces
URI https://ieeexplore.ieee.org/document/8247228
https://www.ncbi.nlm.nih.gov/pubmed/29432111
https://www.proquest.com/docview/2001146975
https://www.proquest.com/docview/2001918661
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PXGBQvlIKchIwAW8TbxOYh9ZuqVC6h7KFvUW2c5YIFAWleyFX4_HTiKKAHGL4klia2bisf3mDcBzOtSk_EVuQizMpROWmxIV92Eu8JVUwmpKFD5fVWeX8v1VebUDr6dcGESM4DOc0WU8y283bktbZcdKELWh2oXdsHBLuVrTiUFdRVbP4MCSy7nIxwSZXB-vVx8uloTiUjNRa-KsIwpgHaSKorgxH8UCK3-PNeOcc3oHzsfeJqjJl9m2tzP34zcix_8dzj7cHoJP9iZZy13Ywe4evPiVaJitE8sAe8kubnB4H8DHdUTYspOwcE9geXaCfURydSwiD9hq0_FP5vM1XwT_oRvL5Tu-CPNkyxZUioKPNSRY3Ij0BAe7D5eny_XbMz5UZeBOFnXPvQgrKFVK6UpbtaXxAnNTtrb1rTLzWmAIGnIvVIuFs2LutRMhiKgEytyibc38Aex1mw4fAStMrT2GlhCkhH9HrnNlMVhI6dHp0ogMilE3jRuGS5UzvjZx6ZLrJqq2IdU2g2ozeDU98y0RdvxT-oD0MkkOKsngaDSBZvDp71Swk1K4dV1m8GxqDt5IRyymw802yWjiECwyeJhMZ3r3aHGHf_7mY7hFPUuI8CPY66-3-CQEPL19Gi39J61X-R4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB615UAvvMojUMBIwKV4G3vtJD6ydMsC3T20KeotshNbIFAWleyFX4_HTiKKAHGL4klia8aZsf3NNwDP8VAT8xep9rEwFTU3VEtbUOd9gctEwY3CROHlKluci_cX8mILXo25MNbaAD6zE7wMZ_nNut7gVtlhwZHasNiGa97vSxaztcYzgzwLvJ5-CgsqpjwdUmRSdViuzk7niOMqJjxXyFqHJMDKSzHGrnikUGLl79Fm8DrHN2E59DeCTb5MNp2Z1D9-o3L83wHdght9-EleR3u5DVu2vQMvfqUaJmXkGSAvyekVFu89-FgGjC058kv3CJcnR7YLWK6WBOwBWa1b-kl_vqQzP4Pwxnz-ls68p2zIDItR0KGKBAlbkQ4BYXfh_HhevlnQvi4DrQXLO-q4X0MVUohamqyR2nGbatmYxjWFnubc-rAhdbxoLKsNnzpVcx9GZNyK1FjT6Ok92GnXrX0AhOlcOetbfJji_x6pSgtjvY1IZ2slNU-ADbqp6n64WDvjaxUWL6mqgmorVG3VqzaBg_GZb5Gy45_Se6iXUbJXSQL7gwlU_az-jiU7MYlb5TKBZ2Ozn494yKJbu95EGYUsgiyB-9F0xncPFvfwz998CtcX5fKkOnm3-vAIdrGXER--Dzvd5cY-9uFPZ54Eq_8J0Kz8Zw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Drowsiness+Detection+Using+Non-hair-Bearing+EEG-Based+Brain-Computer+Interfaces&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Wei%2C+Chun-Shu&rft.au=Wang%2C+Yu-Te&rft.au=Lin%2C+Chin-Teng&rft.au=Jung%2C+Tzyy-Ping&rft.date=2018-02-01&rft.issn=1558-0210&rft.eissn=1558-0210&rft.volume=26&rft.issue=2&rft.spage=400&rft_id=info:doi/10.1109%2FTNSRE.2018.2790359&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon