Toward Drowsiness Detection Using Non-hair-Bearing EEG-Based Brain-Computer Interfaces
Drowsy driving is one of the major causes that lead to fatal accidents worldwide. For the past two decades, many studies have explored the feasibility and practicality of drowsiness detection using electroencephalogram (EEG)based brain-computer interface (BCI) systems. However, on the pathway of tra...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 26; no. 2; pp. 400 - 406 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Drowsy driving is one of the major causes that lead to fatal accidents worldwide. For the past two decades, many studies have explored the feasibility and practicality of drowsiness detection using electroencephalogram (EEG)based brain-computer interface (BCI) systems. However, on the pathway of transitioning laboratory-oriented BCI into real-world environments, one chief challenge is to obtain high-quality EEG with convenience and long-term wearing comfort. Recently, acquiring EEG from non-hair-bearing (NHB) scalp areas has been proposed as an alternative solution to avoid many of the technical limitations resulted from the interference of hair between electrodes and the skin. Furthermore, our pilot study has shown that informative drowsiness-related EEG features are accessible from the NHB areas. This study extends the previous work to quantitatively evaluate the performance of drowsiness detection using cross-session validation with widely studied machine-learning classifiers. The offline results showed no significant difference between the accuracy of drowsiness detection using the NHB EEG and the whole-scalp EEG across all subjects (p = 0.31). The findings of this study demonstrate the efficacy and practicality of the NHB EEG for drowsiness detection and could catalyze explorations and developments of many other real-world BCI applications. |
---|---|
AbstractList | Drowsy driving is one of the major causes that lead to fatal accidents worldwide. For the past two decades, many studies have explored the feasibility and practicality of drowsiness detection using electroencephalogram (EEG)-based brain-computer interface (BCI) systems. However, on the pathway of transitioning laboratory-oriented BCI into real-world environments, one chief challenge is to obtain high-quality EEG with convenience and long-term wearing comfort. Recently, acquiring EEG from non-hair-bearing (NHB) scalp areas has been proposed as an alternative solution to avoid many of the technical limitations resulted from the interference of hair between electrodes and the skin. Furthermore, our pilot study has shown that informative drowsiness-related EEG features are accessible from the NHB areas. This study extends the previous work to quantitatively evaluate the performance of drowsiness detection using cross-session validation with widely studied machine-learning classifiers. The offline results showed no significant difference between the accuracy of drowsiness detection using the NHB EEG and the whole-scalp EEG across all subjects ( ). The findings of this study demonstrate the efficacy and practicality of the NHB EEG for drowsiness detection and could catalyze explorations and developments of many other real-world BCI applications. Drowsy driving is one of the major causes that lead to fatal accidents worldwide. For the past two decades, many studies have explored the feasibility and practicality of drowsiness detection using electroencephalogram (EEG)based brain-computer interface (BCI) systems. However, on the pathway of transitioning laboratory-oriented BCI into real-world environments, one chief challenge is to obtain high-quality EEG with convenience and long-term wearing comfort. Recently, acquiring EEG from non-hair-bearing (NHB) scalp areas has been proposed as an alternative solution to avoid many of the technical limitations resulted from the interference of hair between electrodes and the skin. Furthermore, our pilot study has shown that informative drowsiness-related EEG features are accessible from the NHB areas. This study extends the previous work to quantitatively evaluate the performance of drowsiness detection using cross-session validation with widely studied machine-learning classifiers. The offline results showed no significant difference between the accuracy of drowsiness detection using the NHB EEG and the whole-scalp EEG across all subjects (p = 0.31). The findings of this study demonstrate the efficacy and practicality of the NHB EEG for drowsiness detection and could catalyze explorations and developments of many other real-world BCI applications. Drowsy driving is one of the major causes that lead to fatal accidents worldwide. For the past two decades, many studies have explored the feasibility and practicality of drowsiness detection using electroencephalogram (EEG)-based brain-computer interface (BCI) systems. However, on the pathway of transitioning laboratory-oriented BCI into real-world environments, one chief challenge is to obtain high-quality EEG with convenience and long-term wearing comfort. Recently, acquiring EEG from non-hair-bearing (NHB) scalp areas has been proposed as an alternative solution to avoid many of the technical limitations resulted from the interference of hair between electrodes and the skin. Furthermore, our pilot study has shown that informative drowsiness-related EEG features are accessible from the NHB areas. This study extends the previous work to quantitatively evaluate the performance of drowsiness detection using cross-session validation with widely studied machine-learning classifiers. The offline results showed no significant difference between the accuracy of drowsiness detection using the NHB EEG and the whole-scalp EEG across all subjects ( ). The findings of this study demonstrate the efficacy and practicality of the NHB EEG for drowsiness detection and could catalyze explorations and developments of many other real-world BCI applications.Drowsy driving is one of the major causes that lead to fatal accidents worldwide. For the past two decades, many studies have explored the feasibility and practicality of drowsiness detection using electroencephalogram (EEG)-based brain-computer interface (BCI) systems. However, on the pathway of transitioning laboratory-oriented BCI into real-world environments, one chief challenge is to obtain high-quality EEG with convenience and long-term wearing comfort. Recently, acquiring EEG from non-hair-bearing (NHB) scalp areas has been proposed as an alternative solution to avoid many of the technical limitations resulted from the interference of hair between electrodes and the skin. Furthermore, our pilot study has shown that informative drowsiness-related EEG features are accessible from the NHB areas. This study extends the previous work to quantitatively evaluate the performance of drowsiness detection using cross-session validation with widely studied machine-learning classifiers. The offline results showed no significant difference between the accuracy of drowsiness detection using the NHB EEG and the whole-scalp EEG across all subjects ( ). The findings of this study demonstrate the efficacy and practicality of the NHB EEG for drowsiness detection and could catalyze explorations and developments of many other real-world BCI applications. Drowsy driving is one of the major causes that lead to fatal accidents worldwide. For the past two decades, many studies have explored the feasibility and practicality of drowsiness detection using electroencephalogram (EEG)-based brain-computer interface (BCI) systems. However, on the pathway of transitioning laboratory-oriented BCI into real-world environments, one chief challenge is to obtain high-quality EEG with convenience and long-term wearing comfort. Recently, acquiring EEG from non-hair-bearing (NHB) scalp areas has been proposed as an alternative solution to avoid many of the technical limitations resulted from the interference of hair between electrodes and the skin. Furthermore, our pilot study has shown that informative drowsiness-related EEG features are accessible from the NHB areas. This study extends the previous work to quantitatively evaluate the performance of drowsiness detection using cross-session validation with widely studied machine-learning classifiers. The offline results showed no significant difference between the accuracy of drowsiness detection using the NHB EEG and the whole-scalp EEG across all subjects ([Formula Omitted]). The findings of this study demonstrate the efficacy and practicality of the NHB EEG for drowsiness detection and could catalyze explorations and developments of many other real-world BCI applications. |
Author | Wei, Chun-Shu Jung, Tzyy-Ping Wang, Yu-Te Lin, Chin-Teng |
Author_xml | – sequence: 1 givenname: Chun-Shu orcidid: 0000-0002-5259-2015 surname: Wei fullname: Wei, Chun-Shu email: cswei@sccn.ucsd.edu organization: Department of BioengineeringJacobs School of Engineering – sequence: 2 givenname: Yu-Te surname: Wang fullname: Wang, Yu-Te email: yute@sccn.ucsd.edu organization: Swartz Center for Computational NeuroscienceInstitute for Neural Computation – sequence: 3 givenname: Chin-Teng orcidid: 0000-0001-8371-8197 surname: Lin fullname: Lin, Chin-Teng email: chin-teng.lin@uts.edu.au organization: Centre for Artificial Intelligence, FEIT, University of Technology Sydney, City Campus, Sydney, NSW, Australia – sequence: 4 givenname: Tzyy-Ping orcidid: 0000-0002-8377-2166 surname: Jung fullname: Jung, Tzyy-Ping email: jung@sccn.ucsd.edu organization: Swartz Center for Computational NeuroscienceInstitute for Neural Computation |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29432111$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtr3DAUhUVJaV79Ay0UQzfZaKp7LdnysjOZPCCk0Ey6FbJ83TrMWBPJJvTfR85MusiiG0kcvnO5OueYHfS-J8Y-gZgBiOrb6vbu53KGAvQMy0rkqnrHjkApzQWCOJjeueQyR3HIjmN8EALKQpUf2CFWSQWAI_Zr5Z9saLLz4J9i11OM2TkN5IbO99l9Un5nt77nf2wX-JxsmITl8pLPbaQmmwfb9XzhN9txoJBd9-lsraN4yt63dh3p4_4-YfcXy9Xiit_8uLxefL_hTkI58BZBaq2kdKouGmVbJGFVUzdto21eIiFo0aJuCFyNeVs51IAFkhQ11Y3NT9jZbu42-MeR4mA2XXS0Xtue_BgNpj9XoIsCEvr1Dfrgx9Cn7V4okEVVqkR92VNjvaHGbEO3seGveU0sAXoHuOBjDNQa1w12imtIYawNCDOVY17KMVM5Zl9OsuIb6-v0_5o-70wdEf0zaJQlos6fAcX_mUQ |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1016_j_bspc_2024_107222 crossref_primary_10_1109_TIV_2023_3339673 crossref_primary_10_1016_j_clinph_2020_11_033 crossref_primary_10_1109_JSEN_2023_3307766 crossref_primary_10_1088_1741_2552_ac697d crossref_primary_10_1177_2096595819896200 crossref_primary_10_1038_s41597_021_01094_4 crossref_primary_10_1109_JSEN_2024_3492176 crossref_primary_10_1016_j_bspc_2021_103023 crossref_primary_10_3389_fnins_2019_00822 crossref_primary_10_3390_s21072372 crossref_primary_10_1007_s41870_021_00811_x crossref_primary_10_1016_j_bspc_2021_102443 crossref_primary_10_1016_j_eswa_2021_116443 crossref_primary_10_1007_s10548_023_01016_0 crossref_primary_10_1109_TNSRE_2023_3267114 crossref_primary_10_2139_ssrn_4133048 crossref_primary_10_1109_TNSRE_2023_3336897 crossref_primary_10_3390_e20030196 crossref_primary_10_1016_j_ins_2022_12_088 crossref_primary_10_1109_ACCESS_2019_2947759 crossref_primary_10_1109_TITS_2021_3105326 crossref_primary_10_1109_TNSRE_2023_3339768 crossref_primary_10_1515_bams_2019_0053 crossref_primary_10_1002_adma_202211012 crossref_primary_10_1109_TIM_2023_3307756 crossref_primary_10_1109_TNSRE_2020_2999599 crossref_primary_10_1109_TCYB_2019_2924237 crossref_primary_10_1002_tee_22876 crossref_primary_10_3390_s22093331 crossref_primary_10_1080_10447318_2024_2443268 crossref_primary_10_3390_e24121715 crossref_primary_10_1016_j_aei_2020_101157 crossref_primary_10_1007_s11042_022_13150_1 crossref_primary_10_3390_brainsci9120348 crossref_primary_10_1109_TMC_2020_2984278 crossref_primary_10_1016_j_engappai_2024_109153 crossref_primary_10_1109_TNSRE_2020_3009376 crossref_primary_10_1007_s00521_022_07209_1 crossref_primary_10_1109_ACCESS_2019_2942838 crossref_primary_10_3389_fnhum_2022_901387 crossref_primary_10_1016_j_eswa_2023_120279 crossref_primary_10_1080_15389588_2019_1622005 crossref_primary_10_1088_1361_6579_abf336 crossref_primary_10_1088_1741_2552_abf609 crossref_primary_10_1109_ACCESS_2022_3205734 crossref_primary_10_1109_JBHI_2021_3096984 crossref_primary_10_1109_ACCESS_2019_2926444 crossref_primary_10_1109_JSYST_2020_3032609 crossref_primary_10_3390_s20247252 crossref_primary_10_3390_bioengineering10060664 crossref_primary_10_1109_TCDS_2018_2869903 crossref_primary_10_3390_math13050802 crossref_primary_10_3390_s23041874 crossref_primary_10_1109_TNSRE_2019_2906371 crossref_primary_10_1109_TNSRE_2021_3126264 crossref_primary_10_1109_TNSRE_2021_3079505 crossref_primary_10_1109_TAFFC_2021_3133443 crossref_primary_10_26599_BSA_2019_9050005 crossref_primary_10_1007_s11227_025_06947_y crossref_primary_10_1109_TBME_2024_3361716 crossref_primary_10_2139_ssrn_4158273 crossref_primary_10_1016_j_aei_2024_102575 crossref_primary_10_1016_j_neucom_2024_128961 crossref_primary_10_1021_acsapm_3c01368 crossref_primary_10_3390_mi10080518 crossref_primary_10_1109_JBHI_2024_3377373 crossref_primary_10_3389_fnsys_2021_578875 crossref_primary_10_1016_j_procs_2019_04_132 crossref_primary_10_1038_s41597_019_0027_4 crossref_primary_10_1134_S1054661821030020 crossref_primary_10_1109_TSMC_2020_3041382 crossref_primary_10_3390_electronics14061069 crossref_primary_10_1016_j_engappai_2023_106237 crossref_primary_10_1016_j_ymeth_2021_04_017 crossref_primary_10_1080_10255842_2022_2112574 crossref_primary_10_1080_27706710_2024_2400063 crossref_primary_10_1109_JBHI_2024_3402324 crossref_primary_10_3389_fncom_2023_1232925 crossref_primary_10_3390_s18124477 crossref_primary_10_1007_s00521_023_09090_y crossref_primary_10_1016_j_neuroimage_2018_03_032 crossref_primary_10_3389_fphys_2023_1153268 crossref_primary_10_22531_muglajsci_1481648 crossref_primary_10_1007_s11517_024_03036_9 crossref_primary_10_3390_s23218741 crossref_primary_10_3390_s18092856 crossref_primary_10_1016_j_bspc_2021_102857 crossref_primary_10_1039_C8RA04846K crossref_primary_10_3389_fnins_2022_842635 crossref_primary_10_1088_1741_2552_ac41ac crossref_primary_10_1016_j_amar_2020_100114 crossref_primary_10_1109_TNNLS_2022_3147208 crossref_primary_10_1109_TNSRE_2023_3299156 |
Cites_doi | 10.1109/TBME.2009.2038990 10.1016/j.annemergmed.2005.01.015 10.1109/ACCESS.2013.2260791 10.1016/j.neubiorev.2006.06.007 10.1126/science.aad8127 10.1088/1741-2560/8/2/025008 10.1109/SMC.2015.560 10.1109/TNSRE.2006.875637 10.1016/j.neuroimage.2010.04.250 10.1586/17434440.4.4.463 10.1016/S0013-4694(97)00070-9 10.1080/10447318.2013.780869 10.1109/MC.2012.107 10.1109/10.553713 10.1023/A:1009715923555 10.1038/srep16743 10.1109/TNSRE.2012.2236576 10.1088/1741-2560/4/2/R01 10.1109/TNSRE.2013.2293139 10.1016/0013-4694(93)90064-3 10.1109/TNSRE.2015.2496184 10.3389/fnins.2014.00321 10.1007/978-3-642-02812-0_44 10.1016/j.neuroimage.2007.10.036 10.3390/s141223758 10.1109/TNSRE.2003.814433 10.1109/EMBC.2013.6609968 10.1016/S0022-4375(03)00027-6 10.1109/TCSI.2005.857555 10.1016/j.biopsycho.2011.03.003 10.1109/TBME.2013.2264956 10.1111/j.1469-1809.1936.tb02137.x 10.1097/WNP.0b013e3181775993 10.1145/1961189.1961199 10.1109/JPROC.2012.2184830 10.1109/TBME.2010.2102353 10.1111/j.1365-2869.2006.00545.x 10.1109/TNSRE.2011.2174652 10.1073/pnas.1424875112 10.1126/science.1250169 10.1016/j.jneumeth.2003.10.009 10.1109/NEBC.2004.1300002 10.1109/TNSRE.2016.2573819 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TNSRE.2018.2790359 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 406 |
ExternalDocumentID | 29432111 10_1109_TNSRE_2018_2790359 8247228 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Army Research Laboratory through the Cooperative Agreement grantid: W911NF-10-2-0022; W911NF-10-D-0002/TO 0023 funderid: 10.13039/100006754 – fundername: Australian Research Council grantid: DP180100670; DP180100656 funderid: 10.13039/501100000923 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c417t-f21488544c5b6d5af2e0a5dbdfd8a372e2180f28de1cb23f9c281262e40bebda3 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Fri Jul 11 03:26:17 EDT 2025 Mon Jul 14 10:02:21 EDT 2025 Wed Feb 19 02:36:14 EST 2025 Tue Jul 01 00:43:16 EDT 2025 Thu Apr 24 22:50:52 EDT 2025 Wed Aug 27 02:51:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-f21488544c5b6d5af2e0a5dbdfd8a372e2180f28de1cb23f9c281262e40bebda3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5259-2015 0000-0002-8377-2166 0000-0001-8371-8197 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8247228 |
PMID | 29432111 |
PQID | 2001146975 |
PQPubID | 85423 |
PageCount | 7 |
ParticipantIDs | ieee_primary_8247228 pubmed_primary_29432111 crossref_citationtrail_10_1109_TNSRE_2018_2790359 proquest_miscellaneous_2001918661 proquest_journals_2001146975 crossref_primary_10_1109_TNSRE_2018_2790359 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref14 ref11 ref10 ref17 ref16 ref19 ref18 (ref46) 2016 ref48 ref47 ref42 ref41 ref43 kothe (ref26) 2013 (ref45) 2016 ref49 ref8 ref7 mitler (ref23) 1988 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 (ref44) 2016 ref38 ref24 ref25 ref20 wei (ref21) 2015 chen (ref15) 2014; 14 ref22 ref28 ref27 ref29 |
References_xml | – ident: ref36 doi: 10.1109/TBME.2009.2038990 – ident: ref1 doi: 10.1016/j.annemergmed.2005.01.015 – ident: ref11 doi: 10.1109/ACCESS.2013.2260791 – ident: ref40 doi: 10.1016/j.neubiorev.2006.06.007 – ident: ref49 doi: 10.1126/science.aad8127 – ident: ref14 doi: 10.1088/1741-2560/8/2/025008 – ident: ref38 doi: 10.1109/SMC.2015.560 – ident: ref32 doi: 10.1109/TNSRE.2006.875637 – ident: ref41 doi: 10.1016/j.neuroimage.2010.04.250 – ident: ref9 doi: 10.1586/17434440.4.4.463 – ident: ref48 doi: 10.1016/S0013-4694(97)00070-9 – ident: ref30 doi: 10.1080/10447318.2013.780869 – ident: ref10 doi: 10.1109/MC.2012.107 – ident: ref3 doi: 10.1109/10.553713 – ident: ref33 doi: 10.1023/A:1009715923555 – ident: ref19 doi: 10.1038/srep16743 – ident: ref37 doi: 10.1109/TNSRE.2012.2236576 – year: 1988 ident: ref23 publication-title: 101 questions about sleep and dreams – ident: ref31 doi: 10.1088/1741-2560/4/2/R01 – ident: ref7 doi: 10.1109/TNSRE.2013.2293139 – ident: ref2 doi: 10.1016/0013-4694(93)90064-3 – ident: ref18 doi: 10.1109/TNSRE.2015.2496184 – ident: ref42 doi: 10.3389/fnins.2014.00321 – ident: ref39 doi: 10.1007/978-3-642-02812-0_44 – ident: ref22 doi: 10.1016/j.neuroimage.2007.10.036 – volume: 14 start-page: 23758 year: 2014 ident: ref15 article-title: Soft, comfortable polymer dry electrodes for high quality ECG and EEG recording publication-title: SENSORS doi: 10.3390/s141223758 – year: 2016 ident: ref46 publication-title: EMOTIV EPOC+ 14 Channel Mobile EEG-Emotiv – ident: ref8 doi: 10.1109/TNSRE.2003.814433 – ident: ref24 doi: 10.1109/EMBC.2013.6609968 – ident: ref27 doi: 10.1016/S0022-4375(03)00027-6 – ident: ref5 doi: 10.1109/TCSI.2005.857555 – year: 2016 ident: ref45 publication-title: Muse-Muse The Brain Sensing Headband – ident: ref6 doi: 10.1016/j.biopsycho.2011.03.003 – year: 2016 ident: ref44 publication-title: EEG Headsets | NeuroSky Store – ident: ref16 doi: 10.1109/TBME.2013.2264956 – ident: ref29 doi: 10.1111/j.1469-1809.1936.tb02137.x – ident: ref35 doi: 10.1097/WNP.0b013e3181775993 – ident: ref34 doi: 10.1145/1961189.1961199 – ident: ref43 doi: 10.1109/JPROC.2012.2184830 – ident: ref13 doi: 10.1109/TBME.2010.2102353 – ident: ref28 doi: 10.1111/j.1365-2869.2006.00545.x – ident: ref12 doi: 10.1109/TNSRE.2011.2174652 – year: 2013 ident: ref26 publication-title: The Artifact Subspace Reconstruction Method – ident: ref17 doi: 10.1073/pnas.1424875112 – ident: ref47 doi: 10.1126/science.1250169 – ident: ref25 doi: 10.1016/j.jneumeth.2003.10.009 – start-page: 6638 year: 2015 ident: ref21 article-title: Toward non-hair-bearing brain-computer interfaces for neurocognitive lapse detection publication-title: Proc IEEE Eng Med Biol Soc Annu Int Conf (EMBC) – ident: ref4 doi: 10.1109/NEBC.2004.1300002 – ident: ref20 doi: 10.1109/TNSRE.2016.2573819 |
SSID | ssj0017657 |
Score | 2.563158 |
Snippet | Drowsy driving is one of the major causes that lead to fatal accidents worldwide. For the past two decades, many studies have explored the feasibility and... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 400 |
SubjectTerms | Automobile Driving - psychology Automobiles Brain Brain-Computer Interfaces Brain-computer interfaces (BCI) Cognition - physiology Computer applications Discriminant Analysis Driving ability Drowsiness EEG Electrodes electroencephalogram (EEG) Electroencephalography Electroencephalography - methods Fatigue Feasibility studies Feature extraction Hair Human-computer interface Humans Implants Interfaces Interference Learning algorithms non-hair-bearing electrodes Pilot Projects Reproducibility of Results Scalp Skin Sleep deprivation Support Vector Machine Wakefulness - physiology |
Title | Toward Drowsiness Detection Using Non-hair-Bearing EEG-Based Brain-Computer Interfaces |
URI | https://ieeexplore.ieee.org/document/8247228 https://www.ncbi.nlm.nih.gov/pubmed/29432111 https://www.proquest.com/docview/2001146975 https://www.proquest.com/docview/2001918661 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PXGBQvlIKchIwAW8TbxOYh9ZuqVC6h7KFvUW2c5YIFAWleyFX4_HTiKKAHGL4klia2bisf3mDcBzOtSk_EVuQizMpROWmxIV92Eu8JVUwmpKFD5fVWeX8v1VebUDr6dcGESM4DOc0WU8y283bktbZcdKELWh2oXdsHBLuVrTiUFdRVbP4MCSy7nIxwSZXB-vVx8uloTiUjNRa-KsIwpgHaSKorgxH8UCK3-PNeOcc3oHzsfeJqjJl9m2tzP34zcix_8dzj7cHoJP9iZZy13Ywe4evPiVaJitE8sAe8kubnB4H8DHdUTYspOwcE9geXaCfURydSwiD9hq0_FP5vM1XwT_oRvL5Tu-CPNkyxZUioKPNSRY3Ij0BAe7D5eny_XbMz5UZeBOFnXPvQgrKFVK6UpbtaXxAnNTtrb1rTLzWmAIGnIvVIuFs2LutRMhiKgEytyibc38Aex1mw4fAStMrT2GlhCkhH9HrnNlMVhI6dHp0ogMilE3jRuGS5UzvjZx6ZLrJqq2IdU2g2ozeDU98y0RdvxT-oD0MkkOKsngaDSBZvDp71Swk1K4dV1m8GxqDt5IRyymw802yWjiECwyeJhMZ3r3aHGHf_7mY7hFPUuI8CPY66-3-CQEPL19Gi39J61X-R4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB615UAvvMojUMBIwKV4G3vtJD6ydMsC3T20KeotshNbIFAWleyFX4_HTiKKAHGL4klia8aZsf3NNwDP8VAT8xep9rEwFTU3VEtbUOd9gctEwY3CROHlKluci_cX8mILXo25MNbaAD6zE7wMZ_nNut7gVtlhwZHasNiGa97vSxaztcYzgzwLvJ5-CgsqpjwdUmRSdViuzk7niOMqJjxXyFqHJMDKSzHGrnikUGLl79Fm8DrHN2E59DeCTb5MNp2Z1D9-o3L83wHdght9-EleR3u5DVu2vQMvfqUaJmXkGSAvyekVFu89-FgGjC058kv3CJcnR7YLWK6WBOwBWa1b-kl_vqQzP4Pwxnz-ls68p2zIDItR0KGKBAlbkQ4BYXfh_HhevlnQvi4DrQXLO-q4X0MVUohamqyR2nGbatmYxjWFnubc-rAhdbxoLKsNnzpVcx9GZNyK1FjT6Ok92GnXrX0AhOlcOetbfJji_x6pSgtjvY1IZ2slNU-ADbqp6n64WDvjaxUWL6mqgmorVG3VqzaBg_GZb5Gy45_Se6iXUbJXSQL7gwlU_az-jiU7MYlb5TKBZ2Ozn494yKJbu95EGYUsgiyB-9F0xncPFvfwz998CtcX5fKkOnm3-vAIdrGXER--Dzvd5cY-9uFPZ54Eq_8J0Kz8Zw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Drowsiness+Detection+Using+Non-hair-Bearing+EEG-Based+Brain-Computer+Interfaces&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Wei%2C+Chun-Shu&rft.au=Wang%2C+Yu-Te&rft.au=Lin%2C+Chin-Teng&rft.au=Jung%2C+Tzyy-Ping&rft.date=2018-02-01&rft.issn=1558-0210&rft.eissn=1558-0210&rft.volume=26&rft.issue=2&rft.spage=400&rft_id=info:doi/10.1109%2FTNSRE.2018.2790359&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |