Repertoire of Epitopes Recognized by Serum IgG from Humans Vaccinated with Herpes Simplex Virus 2 Glycoprotein D

The results of a clinical trial of a subunit vaccine against genital herpes were recently reported (R. B. Belshe, P. A. Leone, D. I. Bernstein, A. Wald, M. J. Levin, J. T. Stapleton, I. Gorfinkel, R. L. Morrow, M. G. Ewell, A. Stokes-Riner, G. Dubin, T. C. Heineman, J. M. Schulte, C. D. Deal, N. Eng...

Full description

Saved in:
Bibliographic Details
Published inJournal of virology Vol. 88; no. 14; pp. 7786 - 7795
Main Authors Whitbeck, J. Charles, Huang, Zhen-Yu, Cairns, Tina M., Gallagher, John R., Lou, Huan, Ponce-de-Leon, Manuel, Belshe, Robert B., Eisenberg, Roselyn J., Cohen, Gary H.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.07.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The results of a clinical trial of a subunit vaccine against genital herpes were recently reported (R. B. Belshe, P. A. Leone, D. I. Bernstein, A. Wald, M. J. Levin, J. T. Stapleton, I. Gorfinkel, R. L. Morrow, M. G. Ewell, A. Stokes-Riner, G. Dubin, T. C. Heineman, J. M. Schulte, C. D. Deal, N. Engl. J. Med. 366: 34–43, 2012, doi:10.1056/NEJMoa1103151). The vaccine consisted of a soluble form of herpes simplex virus 2 (HSV-2) glycoprotein D (gD2) with adjuvant. The goal of the current study was to examine the composition of the humoral response to gD2 within a selected subset of vaccinated individuals. Serum samples from 30 vaccine recipients were selected based upon relative enzyme-linked immunosorbent assay (ELISA) titers against gD2; 10 samples had high titers, 10 had medium titers, and the remaining 10 had low ELISA titers. We employed a novel, biosensor-based monoclonal antibody (MAb)-blocking assay to determine whether gD2 vaccination elicited IgG responses against epitopes overlapping those of well-characterized MAbs. Importantly, IgGs from the majority of gD2-immunized subjects competed for gD binding with four antigenically distinct virus-neutralizing MAbs (MC2, MC5, MC23, and DL11). Screening of patient IgGs against overlapping peptides spanning the gD2 ectodomain revealed that about half of the samples contained antibodies against linear epitopes within the N and C termini of gD2. We found that the virus-neutralizing abilities of the 10 most potent samples correlated with overall gD-binding activity and to an even greater extent with the combined content of IgGs against the epitopes of MAbs MC2, MC5, MC23, and DL11. This suggests that optimal virus-neutralizing activity is achieved by strong and balanced responses to the four major discontinuous neutralizing epitopes of gD2. IMPORTANCE Several herpes simplex virus 2 (HSV-2) subunit vaccine studies have been conducted in human subjects using a recombinant form of HSV-2 glycoprotein D (gD2). Although several distinct, well-characterized virus-neutralizing epitopes on gD2 are targeted by murine monoclonal antibodies, it is not known whether the same epitopes are targeted by the humoral response to gD2 in humans. We have developed a novel, biosensor-based competition assay to directly address this important question. Using this approach, we identified epitopes that elicit strong humoral responses in humans, as well as other epitopes that elicit much weaker responses. These data provide new insight into the human response to known neutralizing gD2 epitopes and reveal characteristics of this response that may guide future vaccine development.
AbstractList The results of a clinical trial of a subunit vaccine against genital herpes were recently reported (R. B. Belshe, P. A. Leone, D. I. Bernstein, A. Wald, M. J. Levin, J. T. Stapleton, I. Gorfinkel, R. L. Morrow, M. G. Ewell, A. Stokes-Riner, G. Dubin, T. C. Heineman, J. M. Schulte, C. D. Deal, N. Engl. J. Med. 366: 34-43, 2012, doi:10.1056/NEJMoa1103151). The vaccine consisted of a soluble form of herpes simplex virus 2 (HSV-2) glycoprotein D (gD2) with adjuvant. The goal of the current study was to examine the composition of the humoral response to gD2 within a selected subset of vaccinated individuals. Serum samples from 30 vaccine recipients were selected based upon relative enzyme-linked immunosorbent assay (ELISA) titers against gD2; 10 samples had high titers, 10 had medium titers, and the remaining 10 had low ELISA titers. We employed a novel, biosensor-based monoclonal antibody (MAb)-blocking assay to determine whether gD2 vaccination elicited IgG responses against epitopes overlapping those of well-characterized MAbs. Importantly, IgGs from the majority of gD2-immunized subjects competed for gD binding with four antigenically distinct virus-neutralizing MAbs (MC2, MC5, MC23, and DL11). Screening of patient IgGs against overlapping peptides spanning the gD2 ectodomain revealed that about half of the samples contained antibodies against linear epitopes within the N and C termini of gD2. We found that the virus-neutralizing abilities of the 10 most potent samples correlated with overall gD-binding activity and to an even greater extent with the combined content of IgGs against the epitopes of MAbs MC2, MC5, MC23, and DL11. This suggests that optimal virus-neutralizing activity is achieved by strong and balanced responses to the four major discontinuous neutralizing epitopes of gD2. Importance: Several herpes simplex virus 2 (HSV-2) subunit vaccine studies have been conducted in human subjects using a recombinant form of HSV-2 glycoprotein D (gD2). Although several distinct, well-characterized virus-neutralizing epitopes on gD2 are targeted by murine monoclonal antibodies, it is not known whether the same epitopes are targeted by the humoral response to gD2 in humans. We have developed a novel, biosensor-based competition assay to directly address this important question. Using this approach, we identified epitopes that elicit strong humoral responses in humans, as well as other epitopes that elicit much weaker responses. These data provide new insight into the human response to known neutralizing gD2 epitopes and reveal characteristics of this response that may guide future vaccine development.
The results of a clinical trial of a subunit vaccine against genital herpes were recently reported (R. B. Belshe, P. A. Leone, D. I. Bernstein, A. Wald, M. J. Levin, J. T. Stapleton, I. Gorfinkel, R. L. Morrow, M. G. Ewell, A. Stokes-Riner, G. Dubin, T. C. Heineman, J. M. Schulte, C. D. Deal, N. Engl. J. Med. 366: 34–43, 2012, doi:10.1056/NEJMoa1103151). The vaccine consisted of a soluble form of herpes simplex virus 2 (HSV-2) glycoprotein D (gD2) with adjuvant. The goal of the current study was to examine the composition of the humoral response to gD2 within a selected subset of vaccinated individuals. Serum samples from 30 vaccine recipients were selected based upon relative enzyme-linked immunosorbent assay (ELISA) titers against gD2; 10 samples had high titers, 10 had medium titers, and the remaining 10 had low ELISA titers. We employed a novel, biosensor-based monoclonal antibody (MAb)-blocking assay to determine whether gD2 vaccination elicited IgG responses against epitopes overlapping those of well-characterized MAbs. Importantly, IgGs from the majority of gD2-immunized subjects competed for gD binding with four antigenically distinct virus-neutralizing MAbs (MC2, MC5, MC23, and DL11). Screening of patient IgGs against overlapping peptides spanning the gD2 ectodomain revealed that about half of the samples contained antibodies against linear epitopes within the N and C termini of gD2. We found that the virus-neutralizing abilities of the 10 most potent samples correlated with overall gD-binding activity and to an even greater extent with the combined content of IgGs against the epitopes of MAbs MC2, MC5, MC23, and DL11. This suggests that optimal virus-neutralizing activity is achieved by strong and balanced responses to the four major discontinuous neutralizing epitopes of gD2. IMPORTANCE Several herpes simplex virus 2 (HSV-2) subunit vaccine studies have been conducted in human subjects using a recombinant form of HSV-2 glycoprotein D (gD2). Although several distinct, well-characterized virus-neutralizing epitopes on gD2 are targeted by murine monoclonal antibodies, it is not known whether the same epitopes are targeted by the humoral response to gD2 in humans. We have developed a novel, biosensor-based competition assay to directly address this important question. Using this approach, we identified epitopes that elicit strong humoral responses in humans, as well as other epitopes that elicit much weaker responses. These data provide new insight into the human response to known neutralizing gD2 epitopes and reveal characteristics of this response that may guide future vaccine development.
The results of a clinical trial of a subunit vaccine against genital herpes were recently reported (R. B. Belshe, P. A. Leone, D. I. Bernstein, A. Wald, M. J. Levin, J. T. Stapleton, I. Gorfinkel, R. L. Morrow, M. G. Ewell, A. Stokes-Riner, G. Dubin, T. C. Heineman, J. M. Schulte, C. D. Deal, N. Engl. J. Med. 366: 34-43, 2012, doi:10.1056/NEJMoa1103151). The vaccine consisted of a soluble form of herpes simplex virus 2 (HSV-2) glycoprotein D (gD2) with adjuvant. The goal of the current study was to examine the composition of the humoral response to gD2 within a selected subset of vaccinated individuals. Serum samples from 30 vaccine recipients were selected based upon relative enzyme-linked immunosorbent assay (ELISA) titers against gD2; 10 samples had high titers, 10 had medium titers, and the remaining 10 had low ELISA titers. We employed a novel, biosensor-based monoclonal antibody (MAb)-blocking assay to determine whether gD2 vaccination elicited IgG responses against epitopes overlapping those of well-characterized MAbs. Importantly, IgGs from the majority of gD2-immunized subjects competed for gD binding with four antigenically distinct virus-neutralizing MAbs (MC2, MC5, MC23, and DL11). Screening of patient IgGs against overlapping peptides spanning the gD2 ectodomain revealed that about half of the samples contained antibodies against linear epitopes within the N and C termini of gD2. We found that the virus-neutralizing abilities of the 10 most potent samples correlated with overall gD-binding activity and to an even greater extent with the combined content of IgGs against the epitopes of MAbs MC2, MC5, MC23, and DL11. This suggests that optimal virus-neutralizing activity is achieved by strong and balanced responses to the four major discontinuous neutralizing epitopes of gD2. Importance: Several herpes simplex virus 2 (HSV-2) subunit vaccine studies have been conducted in human subjects using a recombinant form of HSV-2 glycoprotein D (gD2). Although several distinct, well-characterized virus-neutralizing epitopes on gD2 are targeted by murine monoclonal antibodies, it is not known whether the same epitopes are targeted by the humoral response to gD2 in humans. We have developed a novel, biosensor-based competition assay to directly address this important question. Using this approach, we identified epitopes that elicit strong humoral responses in humans, as well as other epitopes that elicit much weaker responses. These data provide new insight into the human response to known neutralizing gD2 epitopes and reveal characteristics of this response that may guide future vaccine development.The results of a clinical trial of a subunit vaccine against genital herpes were recently reported (R. B. Belshe, P. A. Leone, D. I. Bernstein, A. Wald, M. J. Levin, J. T. Stapleton, I. Gorfinkel, R. L. Morrow, M. G. Ewell, A. Stokes-Riner, G. Dubin, T. C. Heineman, J. M. Schulte, C. D. Deal, N. Engl. J. Med. 366: 34-43, 2012, doi:10.1056/NEJMoa1103151). The vaccine consisted of a soluble form of herpes simplex virus 2 (HSV-2) glycoprotein D (gD2) with adjuvant. The goal of the current study was to examine the composition of the humoral response to gD2 within a selected subset of vaccinated individuals. Serum samples from 30 vaccine recipients were selected based upon relative enzyme-linked immunosorbent assay (ELISA) titers against gD2; 10 samples had high titers, 10 had medium titers, and the remaining 10 had low ELISA titers. We employed a novel, biosensor-based monoclonal antibody (MAb)-blocking assay to determine whether gD2 vaccination elicited IgG responses against epitopes overlapping those of well-characterized MAbs. Importantly, IgGs from the majority of gD2-immunized subjects competed for gD binding with four antigenically distinct virus-neutralizing MAbs (MC2, MC5, MC23, and DL11). Screening of patient IgGs against overlapping peptides spanning the gD2 ectodomain revealed that about half of the samples contained antibodies against linear epitopes within the N and C termini of gD2. We found that the virus-neutralizing abilities of the 10 most potent samples correlated with overall gD-binding activity and to an even greater extent with the combined content of IgGs against the epitopes of MAbs MC2, MC5, MC23, and DL11. This suggests that optimal virus-neutralizing activity is achieved by strong and balanced responses to the four major discontinuous neutralizing epitopes of gD2. Importance: Several herpes simplex virus 2 (HSV-2) subunit vaccine studies have been conducted in human subjects using a recombinant form of HSV-2 glycoprotein D (gD2). Although several distinct, well-characterized virus-neutralizing epitopes on gD2 are targeted by murine monoclonal antibodies, it is not known whether the same epitopes are targeted by the humoral response to gD2 in humans. We have developed a novel, biosensor-based competition assay to directly address this important question. Using this approach, we identified epitopes that elicit strong humoral responses in humans, as well as other epitopes that elicit much weaker responses. These data provide new insight into the human response to known neutralizing gD2 epitopes and reveal characteristics of this response that may guide future vaccine development.
Author Belshe, Robert B.
Whitbeck, J. Charles
Cairns, Tina M.
Huang, Zhen-Yu
Lou, Huan
Cohen, Gary H.
Gallagher, John R.
Ponce-de-Leon, Manuel
Eisenberg, Roselyn J.
Author_xml – sequence: 1
  givenname: J. Charles
  surname: Whitbeck
  fullname: Whitbeck, J. Charles
  organization: Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
– sequence: 2
  givenname: Zhen-Yu
  surname: Huang
  fullname: Huang, Zhen-Yu
  organization: Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
– sequence: 3
  givenname: Tina M.
  surname: Cairns
  fullname: Cairns, Tina M.
  organization: Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
– sequence: 4
  givenname: John R.
  surname: Gallagher
  fullname: Gallagher, John R.
  organization: Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
– sequence: 5
  givenname: Huan
  surname: Lou
  fullname: Lou, Huan
  organization: Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
– sequence: 6
  givenname: Manuel
  surname: Ponce-de-Leon
  fullname: Ponce-de-Leon, Manuel
  organization: Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
– sequence: 7
  givenname: Robert B.
  surname: Belshe
  fullname: Belshe, Robert B.
  organization: Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
– sequence: 8
  givenname: Roselyn J.
  surname: Eisenberg
  fullname: Eisenberg, Roselyn J.
  organization: Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
– sequence: 9
  givenname: Gary H.
  surname: Cohen
  fullname: Cohen, Gary H.
  organization: Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24789783$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFvFCEYhompsdvqzbPh6MGpwMDAXExMbXfXNDFpdeONsOzHFjMDU2C066931rZGjQdPHL7nffOG5wgdhBgAoeeUnFDK1Ov3q-UJIYLzivJHaEZJqyohKD9AM0IYq0StPh-io5y_EEI5b_gTdMi4VK1U9QwNlzBAKtEnwNHhs8GXOEDGl2DjNvjvsMHrHb6CNPZ4uZ1jl2KPF2NvQsYrY60PpkzMN1-u8QLSPnrl-6GDW7zyacyY4Xm3s3FIsYAP-N1T9NiZLsOz-_cYfTo_-3i6qC4-zJenby8qy6ksFQDUtCZiA1zxtZEgbMMaR0RLiLVUOqXAMAOWSdKYWhoniW1BqLXjtTOmPkZv7nqHcd3DxkIoyXR6SL43aaej8frPS_DXehu_ak5aKSWdCl7eF6R4M0IuuvfZQteZAHHMmorpE5uG8_9B65ZLIZs9-uL3Wb_2PBiZAHYH2BRzTuC09cUUH_crfacp0XvtetKuf2rXlE-hV3-FHnr_if8AEzOvcg
CitedBy_id crossref_primary_10_1128_JVI_00053_21
crossref_primary_10_3389_fimmu_2018_00932
crossref_primary_10_1128_JVI_01930_14
crossref_primary_10_1016_j_nano_2018_12_002
crossref_primary_10_1128_JVI_00070_19
crossref_primary_10_5812_jjm_32183
crossref_primary_10_1371_journal_pone_0217668
crossref_primary_10_3390_antib13020040
crossref_primary_10_1586_14760584_2014_951336
crossref_primary_10_1371_journal_pone_0176687
crossref_primary_10_3389_fimmu_2023_1085911
crossref_primary_10_1016_j_vaccine_2018_11_076
crossref_primary_10_1126_sciadv_abo4435
crossref_primary_10_1016_j_trsl_2020_03_004
crossref_primary_10_1128_JVI_01213_15
crossref_primary_10_3390_v14030540
crossref_primary_10_3389_fimmu_2016_00640
crossref_primary_10_3389_fimmu_2023_1143870
crossref_primary_10_1128_JVI_00517_16
crossref_primary_10_1371_journal_pone_0214467
crossref_primary_10_1080_10826068_2015_1045610
crossref_primary_10_1016_j_vaccine_2019_05_068
crossref_primary_10_3390_molecules25163659
crossref_primary_10_1128_JVI_00335_20
crossref_primary_10_1371_journal_ppat_1006430
crossref_primary_10_1371_journal_pone_0116800
Cites_doi 10.1038/sj.emboj.7600875
10.1086/514103
10.1016/S0140-6736(94)92581-X
10.1016/j.pcl.2012.12.005
10.1128/JVI.79.10.6260-6271.2005
10.1093/infdis/157.1.156
10.1093/infdis/167.5.1045
10.1007/978-1-4615-3410-5_24
10.1097/01.aids.0000198081.09337.a7
10.1371/journal.pone.0002230
10.1093/infdis/jiu177
10.1128/jvi.53.2.634-644.1985
10.1128/JVI.01727-13
10.1107/S0907444913016776
10.1128/jvi.69.7.4471-4483.1995
10.1016/S1097-2765(01)00298-2
10.1128/JVI.74.23.10863-10872.2000
10.1056/NEJMoa1103151
10.1128/jvi.60.1.157-166.1986
10.1128/JVI.06480-11
10.1007/s11908-009-0066-7
10.1128/JVI.73.12.9879-9890.1999
10.1128/JVI.72.5.3595-3601.1998
10.1128/JVI.02192-07
10.1128/JVI.02745-12
10.3390/v4050800
10.1086/374002
10.1016/S0140-6736(00)04638-9
10.7326/0003-4819-122-12-199506150-00001
10.1093/infdis/157.5.897
10.1371/journal.ppat.1002277
10.1126/science.2983428
10.1097/OLQ.0b013e318286bb53
10.1056/NEJMoa011915
10.1093/infdis/153.6.1055
10.1093/infdis/jit651
10.1128/JVI.72.9.7064-7074.1998
10.1128/JVI.01700-10
10.1128/jvi.63.5.2325-2334.1989
10.1128/jvi.62.9.3274-3280.1988
ContentType Journal Article
Copyright Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology
Copyright_xml – notice: Copyright © 2014, American Society for Microbiology. All Rights Reserved.
– notice: Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
7U9
H94
5PM
DOI 10.1128/JVI.00544-14
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Immunology Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Immunology Abstracts
Virology and AIDS Abstracts
DatabaseTitleList MEDLINE

AIDS and Cancer Research Abstracts
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1098-5514
EndPage 7795
ExternalDocumentID PMC4097771
24789783
10_1128_JVI_00544_14
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R56 AI076231
– fundername: NIAID NIH HHS
  grantid: R21 AI056045
– fundername: NIAID NIH HHS
  grantid: R01 AI018289
– fundername: NIAID NIH HHS
  grantid: HHSN272200800003C
– fundername: PHS HHS
  grantid: HHSN272200800003C
– fundername: NIAID NIH HHS
  grantid: R37 AI018289
– fundername: NIAID NIH HHS
  grantid: R01 AI076231
– fundername: NIAID NIH HHS
  grantid: AI-18289
– fundername: NIAID NIH HHS
  grantid: AI-056045
– fundername: NIAID NIH HHS
  grantid: AI-076231
GroupedDBID ---
-~X
0R~
18M
29L
2WC
39C
4.4
53G
5GY
5RE
5VS
85S
AAFWJ
AAGFI
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
AENEX
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
N9A
O9-
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
W2D
W8F
WH7
WOQ
YQT
~02
~KM
.55
.GJ
3O-
41~
6TJ
AAYJJ
ADXHL
AFFNX
AI.
C1A
CGR
CUY
CVF
D0S
ECM
EIF
MVM
NPM
OHT
VH1
X7M
Y6R
ZGI
ZXP
7X8
7T5
7U9
H94
5PM
ID FETCH-LOGICAL-c417t-eee31305de484ba7e5c626f05900cc17f88ea2aec2706a37af70c9e58bf43faa3
ISSN 0022-538X
1098-5514
IngestDate Thu Aug 21 18:03:55 EDT 2025
Fri Jul 11 15:58:58 EDT 2025
Fri Jul 11 10:37:01 EDT 2025
Mon Jul 21 05:53:30 EDT 2025
Tue Jul 01 01:02:31 EDT 2025
Thu Apr 24 22:50:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License Copyright © 2014, American Society for Microbiology. All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c417t-eee31305de484ba7e5c626f05900cc17f88ea2aec2706a37af70c9e58bf43faa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://jvi.asm.org/content/jvi/88/14/7786.full.pdf
PMID 24789783
PQID 1539475761
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4097771
proquest_miscellaneous_1547866441
proquest_miscellaneous_1539475761
pubmed_primary_24789783
crossref_citationtrail_10_1128_JVI_00544_14
crossref_primary_10_1128_JVI_00544_14
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of virology
PublicationTitleAlternate J Virol
PublicationYear 2014
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
Corey L (e_1_3_2_10_2) 1999; 282
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
2834467 - J Infect Dis. 1988 May;157(5):897-902
12444179 - N Engl J Med. 2002 Nov 21;347(21):1652-61
23365421 - J Virol. 2013 Apr;87(7):3930-42
18493617 - PLoS One. 2008;3(5):e2230
24100313 - Acta Crystallogr D Biol Crystallogr. 2013 Oct;69(Pt 10):1935-45
10432030 - JAMA. 1999 Jul 28;282(4):331-40
7911177 - Lancet. 1994 Jun 11;343(8911):1460-3
18032483 - J Virol. 2008 Jan;82(2):700-9
24049165 - J Virol. 2013 Dec;87(23):12656-66
11069980 - J Virol. 2000 Dec;74(23):10863-72
11511370 - Mol Cell. 2001 Jul;8(1):169-79
22754650 - Viruses. 2012 May;4(5):800-32
21980294 - PLoS Pathog. 2011 Sep;7(9):e1002277
16292345 - EMBO J. 2005 Dec 7;24(23):4144-53
24285844 - J Infect Dis. 2014 Mar;209(6):828-36
7769707 - J Virol. 1995 Jul;69(7):4471-83
19857385 - Curr Infect Dis Rep. 2009 Nov;11(6):457-64
15858010 - J Virol. 2005 May;79(10):6260-71
16327322 - AIDS. 2006 Jan 2;20(1):73-83
2826603 - J Infect Dis. 1988 Jan;157(1):156-63
23403598 - Sex Transm Dis. 2013 Mar;40(3):187-93
8387560 - J Infect Dis. 1993 May;167(5):1045-52
2578577 - J Virol. 1985 Feb;53(2):634-44
1338265 - Adv Exp Med Biol. 1992;327:217-28
23481105 - Pediatr Clin North Am. 2013 Apr;60(2):351-65
9359709 - J Infect Dis. 1997 Nov;176(5):1129-34
10559300 - J Virol. 1999 Dec;73(12):9879-90
20861251 - J Virol. 2010 Dec;84(23):12292-9
2427745 - J Virol. 1986 Oct;60(1):157-66
12599070 - J Infect Dis. 2003 Feb 15;187(4):542-9
11377626 - Lancet. 2001 May 12;357(9267):1513-8
3009643 - J Infect Dis. 1986 Jun;153(6):1055-61
2467994 - J Virol. 1989 May;63(5):2325-34
22130533 - J Virol. 2012 Feb;86(3):1563-76
2983428 - Science. 1985 Mar 22;227(4693):1490-2
7755223 - Ann Intern Med. 1995 Jun 15;122(12):889-98
9696799 - J Virol. 1998 Sep;72(9):7064-74
2841479 - J Virol. 1988 Sep;62(9):3274-80
22216840 - N Engl J Med. 2012 Jan 5;366(1):34-43
9557640 - J Virol. 1998 May;72(5):3595-601
24652496 - J Infect Dis. 2014 Aug 15;210(4):571-5
References_xml – ident: e_1_3_2_17_2
  doi: 10.1038/sj.emboj.7600875
– ident: e_1_3_2_42_2
  doi: 10.1086/514103
– ident: e_1_3_2_41_2
  doi: 10.1016/S0140-6736(94)92581-X
– ident: e_1_3_2_7_2
  doi: 10.1016/j.pcl.2012.12.005
– ident: e_1_3_2_30_2
  doi: 10.1128/JVI.79.10.6260-6271.2005
– ident: e_1_3_2_40_2
  doi: 10.1093/infdis/157.1.156
– ident: e_1_3_2_8_2
  doi: 10.1093/infdis/167.5.1045
– ident: e_1_3_2_19_2
  doi: 10.1007/978-1-4615-3410-5_24
– volume: 282
  start-page: 331
  year: 1999
  ident: e_1_3_2_10_2
  article-title: Recombinant glycoprotein vaccine for the prevention of genital HSV-2 infection: two randomized controlled trials
  publication-title: Chiron HSV Vaccine Study Group. JAMA
– ident: e_1_3_2_5_2
  doi: 10.1097/01.aids.0000198081.09337.a7
– ident: e_1_3_2_6_2
  doi: 10.1371/journal.pone.0002230
– ident: e_1_3_2_13_2
  doi: 10.1093/infdis/jiu177
– ident: e_1_3_2_27_2
  doi: 10.1128/jvi.53.2.634-644.1985
– ident: e_1_3_2_34_2
  doi: 10.1128/JVI.01727-13
– ident: e_1_3_2_24_2
  doi: 10.1107/S0907444913016776
– ident: e_1_3_2_31_2
  doi: 10.1128/jvi.69.7.4471-4483.1995
– ident: e_1_3_2_16_2
  doi: 10.1016/S1097-2765(01)00298-2
– ident: e_1_3_2_29_2
  doi: 10.1128/JVI.74.23.10863-10872.2000
– ident: e_1_3_2_12_2
  doi: 10.1056/NEJMoa1103151
– ident: e_1_3_2_26_2
  doi: 10.1128/jvi.60.1.157-166.1986
– ident: e_1_3_2_20_2
  doi: 10.1128/JVI.06480-11
– ident: e_1_3_2_3_2
  doi: 10.1007/s11908-009-0066-7
– ident: e_1_3_2_23_2
  doi: 10.1128/JVI.73.12.9879-9890.1999
– ident: e_1_3_2_21_2
  doi: 10.1128/JVI.72.5.3595-3601.1998
– ident: e_1_3_2_33_2
  doi: 10.1128/JVI.02192-07
– ident: e_1_3_2_38_2
  doi: 10.1128/JVI.02745-12
– ident: e_1_3_2_15_2
  doi: 10.3390/v4050800
– ident: e_1_3_2_37_2
  doi: 10.1086/374002
– ident: e_1_3_2_4_2
  doi: 10.1016/S0140-6736(00)04638-9
– ident: e_1_3_2_9_2
  doi: 10.7326/0003-4819-122-12-199506150-00001
– ident: e_1_3_2_36_2
  doi: 10.1093/infdis/157.5.897
– ident: e_1_3_2_18_2
  doi: 10.1371/journal.ppat.1002277
– ident: e_1_3_2_35_2
  doi: 10.1126/science.2983428
– ident: e_1_3_2_2_2
  doi: 10.1097/OLQ.0b013e318286bb53
– ident: e_1_3_2_11_2
  doi: 10.1056/NEJMoa011915
– ident: e_1_3_2_39_2
  doi: 10.1093/infdis/153.6.1055
– ident: e_1_3_2_14_2
  doi: 10.1093/infdis/jit651
– ident: e_1_3_2_22_2
  doi: 10.1128/JVI.72.9.7064-7074.1998
– ident: e_1_3_2_25_2
  doi: 10.1128/JVI.01700-10
– ident: e_1_3_2_32_2
  doi: 10.1128/jvi.63.5.2325-2334.1989
– ident: e_1_3_2_28_2
  doi: 10.1128/jvi.62.9.3274-3280.1988
– reference: 2467994 - J Virol. 1989 May;63(5):2325-34
– reference: 7769707 - J Virol. 1995 Jul;69(7):4471-83
– reference: 9557640 - J Virol. 1998 May;72(5):3595-601
– reference: 24285844 - J Infect Dis. 2014 Mar;209(6):828-36
– reference: 16292345 - EMBO J. 2005 Dec 7;24(23):4144-53
– reference: 9696799 - J Virol. 1998 Sep;72(9):7064-74
– reference: 24652496 - J Infect Dis. 2014 Aug 15;210(4):571-5
– reference: 2427745 - J Virol. 1986 Oct;60(1):157-66
– reference: 21980294 - PLoS Pathog. 2011 Sep;7(9):e1002277
– reference: 3009643 - J Infect Dis. 1986 Jun;153(6):1055-61
– reference: 15858010 - J Virol. 2005 May;79(10):6260-71
– reference: 2826603 - J Infect Dis. 1988 Jan;157(1):156-63
– reference: 12444179 - N Engl J Med. 2002 Nov 21;347(21):1652-61
– reference: 7755223 - Ann Intern Med. 1995 Jun 15;122(12):889-98
– reference: 11377626 - Lancet. 2001 May 12;357(9267):1513-8
– reference: 8387560 - J Infect Dis. 1993 May;167(5):1045-52
– reference: 1338265 - Adv Exp Med Biol. 1992;327:217-28
– reference: 18493617 - PLoS One. 2008;3(5):e2230
– reference: 19857385 - Curr Infect Dis Rep. 2009 Nov;11(6):457-64
– reference: 2983428 - Science. 1985 Mar 22;227(4693):1490-2
– reference: 7911177 - Lancet. 1994 Jun 11;343(8911):1460-3
– reference: 11511370 - Mol Cell. 2001 Jul;8(1):169-79
– reference: 10559300 - J Virol. 1999 Dec;73(12):9879-90
– reference: 23365421 - J Virol. 2013 Apr;87(7):3930-42
– reference: 18032483 - J Virol. 2008 Jan;82(2):700-9
– reference: 23403598 - Sex Transm Dis. 2013 Mar;40(3):187-93
– reference: 12599070 - J Infect Dis. 2003 Feb 15;187(4):542-9
– reference: 20861251 - J Virol. 2010 Dec;84(23):12292-9
– reference: 22754650 - Viruses. 2012 May;4(5):800-32
– reference: 11069980 - J Virol. 2000 Dec;74(23):10863-72
– reference: 22216840 - N Engl J Med. 2012 Jan 5;366(1):34-43
– reference: 24100313 - Acta Crystallogr D Biol Crystallogr. 2013 Oct;69(Pt 10):1935-45
– reference: 2841479 - J Virol. 1988 Sep;62(9):3274-80
– reference: 10432030 - JAMA. 1999 Jul 28;282(4):331-40
– reference: 2578577 - J Virol. 1985 Feb;53(2):634-44
– reference: 23481105 - Pediatr Clin North Am. 2013 Apr;60(2):351-65
– reference: 24049165 - J Virol. 2013 Dec;87(23):12656-66
– reference: 22130533 - J Virol. 2012 Feb;86(3):1563-76
– reference: 9359709 - J Infect Dis. 1997 Nov;176(5):1129-34
– reference: 2834467 - J Infect Dis. 1988 May;157(5):897-902
– reference: 16327322 - AIDS. 2006 Jan 2;20(1):73-83
SSID ssj0014464
Score 2.2785437
Snippet The results of a clinical trial of a subunit vaccine against genital herpes were recently reported (R. B. Belshe, P. A. Leone, D. I. Bernstein, A. Wald, M. J....
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 7786
SubjectTerms Antibodies, Neutralizing - blood
Antibodies, Viral - blood
Antibodies, Viral - immunology
Enzyme-Linked Immunosorbent Assay
Epitopes - immunology
Herpes simplex virus 2
Herpesvirus 2, Human - immunology
Herpesvirus Vaccines - administration & dosage
Herpesvirus Vaccines - immunology
Humans
Immunoglobulin G - blood
Immunoglobulin G - immunology
Neutralization Tests
Protein Binding
Vaccines and Antiviral Agents
Viral Envelope Proteins - immunology
Title Repertoire of Epitopes Recognized by Serum IgG from Humans Vaccinated with Herpes Simplex Virus 2 Glycoprotein D
URI https://www.ncbi.nlm.nih.gov/pubmed/24789783
https://www.proquest.com/docview/1539475761
https://www.proquest.com/docview/1547866441
https://pubmed.ncbi.nlm.nih.gov/PMC4097771
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKEBIviO-VLxkJnqKMJnFi5xHB1q4aQ4K2KrxEjmuvkUZatYlE98K_ztlOmpQCGrxEVeI6ke_n89357meEXvVgzhDKem4Yc-YSlUqXsVnoEhGnHo8CJZQODXw4jwZjMpyG007nRytrqSzSI3H127qS_5Eq3AO56irZf5DstlO4Ab9BvnAFCcP1WjIG61muigVoLZMguITZuZS68MMkBV1Z4xK0QfnNOb3o21ISE7VfOxMuRJbzos4-H8iV_uvnTLMFf3cm2apcO77Tv9yIheFyyPIqOXjfktWlcjvB-XlWgNCMnh3WG_oNfqoI9de5zN0vZbMJkq2sTT-C72qCtH0d6b-okGXyfD61IxUe2Wa1tisHQMFO7dpjFa7mM9VWW1sjM9ZGHmnpV81211qrKbUndO6vA76ubRhOTo-0TUrcqpMduu3zj8nJ-OwsGR1PRzfQTR_8jKAO91TbUOArk5puXn94XTnhszftvndtmj1H5dd825YBM7qL7lTywm8tjO6hjszvo1v2LNLNA7RswIQXCtdgwg2YcLrBBkwYwIQ1mLAFE27AhDWYsAUTrsCEDZiwj9tgwu8fovHJ8ejdwK2O43AF8WjhSikDsHjCmSSMpJzKUIA3rMy5s0J4VDEmuc-l8Gkv4gHlivZELEOWKhIozoNH6CBf5PIQ4YjSMIoJp7FgJKYqFgJc64DPIpVqj7-LnHpAE1Fx1esjUy4T47P6LIHhT8zwg-_aRa-3rZeWo-UP7V7WsklAieqdMZ7LRblOYNmPCQXX2_tbG9BpkXYfuuixlef2bT480jHULqI7kt420CTuu0_ybG7I3DXfHKXek2u89ym63UyrZ-igWJXyOZjERfrCwPYnIqi6aA
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Repertoire+of+Epitopes+Recognized+by+Serum+IgG+from+Humans+Vaccinated+with+Herpes+Simplex+Virus+2+Glycoprotein+D&rft.jtitle=Journal+of+virology&rft.au=Whitbeck%2C+J+Charles&rft.au=Huang%2C+Zhen-Yu&rft.au=Cairns%2C+Tina+M&rft.au=Gallagher%2C+John+R&rft.date=2014-07-01&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=88&rft.issue=14&rft.spage=7786&rft.epage=7795&rft_id=info:doi/10.1128%2FJVI.00544-14&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon