Thermally activated delayed fluorescence exciplex emitters for high-performance organic light-emitting diodes

Owing to their natural thermally activated delayed fluorescence (TADF) characteristics, the development of exciplex emitters for organic light-emitting diodes (OLEDs) has witnessed booming progress in recent years. Formed between electron-donating and electron-accepting molecules, exciplexes with in...

Full description

Saved in:
Bibliographic Details
Published inMaterials horizons Vol. 8; no. 2; pp. 41 - 425
Main Authors Zhang, Ming, Zheng, Cai-Jun, Lin, Hui, Tao, Si-Lu
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.02.2021
Subjects
Online AccessGet full text
ISSN2051-6347
2051-6355
2051-6355
DOI10.1039/d0mh01245a

Cover

Loading…
Abstract Owing to their natural thermally activated delayed fluorescence (TADF) characteristics, the development of exciplex emitters for organic light-emitting diodes (OLEDs) has witnessed booming progress in recent years. Formed between electron-donating and electron-accepting molecules, exciplexes with intermolecular charge transfer processes have unique advantages compared with unimolecular TADF materials, offering a new way to develop high-performance TADF emitters. In this review, a comprehensive overview of TADF exciplex emitters is presented with a focus on the relationship between the constituents of exciplexes and their electroluminescence performance. We summarize and discuss the latest and most significant developments of TADF exciplex emitters. Notably, the design principles of efficient TADF exciplex emitters are systematically categorized into three systems within this review. These progressive achievements of TADF exciplex emitters point out future challenges to trigger more research endeavors in this growing field. Owing to their natural thermally activated delayed fluorescence (TADF) characteristics, the development of exciplex emitters for organic light-emitting diodes (OLEDs) has witnessed booming progress in recent years.
AbstractList Owing to their natural thermally activated delayed fluorescence (TADF) characteristics, the development of exciplex emitters for organic light-emitting diodes (OLEDs) has witnessed booming progress in recent years. Formed between electron-donating and electron-accepting molecules, exciplexes with intermolecular charge transfer processes have unique advantages compared with unimolecular TADF materials, offering a new way to develop high-performance TADF emitters. In this review, a comprehensive overview of TADF exciplex emitters is presented with a focus on the relationship between the constituents of exciplexes and their electroluminescence performance. We summarize and discuss the latest and most significant developments of TADF exciplex emitters. Notably, the design principles of efficient TADF exciplex emitters are systematically categorized into three systems within this review. These progressive achievements of TADF exciplex emitters point out future challenges to trigger more research endeavors in this growing field.Owing to their natural thermally activated delayed fluorescence (TADF) characteristics, the development of exciplex emitters for organic light-emitting diodes (OLEDs) has witnessed booming progress in recent years. Formed between electron-donating and electron-accepting molecules, exciplexes with intermolecular charge transfer processes have unique advantages compared with unimolecular TADF materials, offering a new way to develop high-performance TADF emitters. In this review, a comprehensive overview of TADF exciplex emitters is presented with a focus on the relationship between the constituents of exciplexes and their electroluminescence performance. We summarize and discuss the latest and most significant developments of TADF exciplex emitters. Notably, the design principles of efficient TADF exciplex emitters are systematically categorized into three systems within this review. These progressive achievements of TADF exciplex emitters point out future challenges to trigger more research endeavors in this growing field.
Owing to their natural thermally activated delayed fluorescence (TADF) characteristics, the development of exciplex emitters for organic light-emitting diodes (OLEDs) has witnessed booming progress in recent years. Formed between electron-donating and electron-accepting molecules, exciplexes with intermolecular charge transfer processes have unique advantages compared with unimolecular TADF materials, offering a new way to develop high-performance TADF emitters. In this review, a comprehensive overview of TADF exciplex emitters is presented with a focus on the relationship between the constituents of exciplexes and their electroluminescence performance. We summarize and discuss the latest and most significant developments of TADF exciplex emitters. Notably, the design principles of efficient TADF exciplex emitters are systematically categorized into three systems within this review. These progressive achievements of TADF exciplex emitters point out future challenges to trigger more research endeavors in this growing field.
Owing to their natural thermally activated delayed fluorescence (TADF) characteristics, the development of exciplex emitters for organic light-emitting diodes (OLEDs) has witnessed booming progress in recent years. Formed between electron-donating and electron-accepting molecules, exciplexes with intermolecular charge transfer processes have unique advantages compared with unimolecular TADF materials, offering a new way to develop high-performance TADF emitters. In this review, a comprehensive overview of TADF exciplex emitters is presented with a focus on the relationship between the constituents of exciplexes and their electroluminescence performance. We summarize and discuss the latest and most significant developments of TADF exciplex emitters. Notably, the design principles of efficient TADF exciplex emitters are systematically categorized into three systems within this review. These progressive achievements of TADF exciplex emitters point out future challenges to trigger more research endeavors in this growing field. Owing to their natural thermally activated delayed fluorescence (TADF) characteristics, the development of exciplex emitters for organic light-emitting diodes (OLEDs) has witnessed booming progress in recent years.
Author Tao, Si-Lu
Zheng, Cai-Jun
Zhang, Ming
Lin, Hui
AuthorAffiliation School of Optoelectronic Science and Engineering
University of Electronic Science and Technology of China (UESTC)
AuthorAffiliation_xml – name: University of Electronic Science and Technology of China (UESTC)
– name: School of Optoelectronic Science and Engineering
Author_xml – sequence: 1
  givenname: Ming
  surname: Zhang
  fullname: Zhang, Ming
– sequence: 2
  givenname: Cai-Jun
  surname: Zheng
  fullname: Zheng, Cai-Jun
– sequence: 3
  givenname: Hui
  surname: Lin
  fullname: Lin, Hui
– sequence: 4
  givenname: Si-Lu
  surname: Tao
  fullname: Tao, Si-Lu
BookMark eNptkUFrGzEQhUVJoEnqS--FhV5CYNuRtLvWHk3SNAWHXNLzMpZmbRntypXkEP_7ynFxweQ0M8z3hpl5l-xs9CMx9pnDNw6y_W5gWAEXVY0f2IWAmpeNrOuzY15NP7JJjGsA4LKqQcEFG55XFAZ0blegTvYFE5nCkMNdjr3b-kBR06ipoFdtN45eCxpsShRi0ftQrOxyVW4o5HzAPebDEkerC5cbqXxj7bgsjPWG4id23qOLNPkXr9jv-x_Ptw_l_Onnr9vZvNQVn2aVWXCFra4w162SgKox3NCCN_k6oepFIxccGwDdQys0NFrJtgWs9dQoUcsrdn2Yuwn-z5Zi6gabz3AOR_Lb2IkGxP4fEjL69QRd-20Y83adqFQrplwKlSk4UDr4GAP1nbYJk_VjCmhdx6HbW9DdwePDmwWzLLk5kWyCHTDs3oe_HOAQ9ZH776f8C0-ykyc
CitedBy_id crossref_primary_10_1016_j_polymer_2021_124468
crossref_primary_10_1002_cptc_202300253
crossref_primary_10_1007_s40843_024_3067_x
crossref_primary_10_1021_acsami_2c22266
crossref_primary_10_1007_s10854_022_08113_z
crossref_primary_10_1021_acsami_4c21196
crossref_primary_10_1039_D3TC00341H
crossref_primary_10_1016_j_cej_2022_138174
crossref_primary_10_1016_j_dyepig_2023_111528
crossref_primary_10_1002_adom_202300432
crossref_primary_10_1016_j_orgel_2022_106528
crossref_primary_10_1088_1742_6596_2174_1_012030
crossref_primary_10_1039_D4RA02394C
crossref_primary_10_1039_D3CP03214K
crossref_primary_10_1039_D4TC03393K
crossref_primary_10_1016_j_dyepig_2024_112075
crossref_primary_10_1021_acsami_1c17707
crossref_primary_10_1007_s13391_023_00442_3
crossref_primary_10_1039_D2NR03049G
crossref_primary_10_1126_sciadv_adf4060
crossref_primary_10_1021_acsaelm_3c00047
crossref_primary_10_1039_D2ME00134A
crossref_primary_10_1016_j_dyepig_2024_112118
crossref_primary_10_1039_D1MH01030A
crossref_primary_10_1016_j_comptc_2023_114277
crossref_primary_10_1002_adfm_202422927
crossref_primary_10_1088_1361_6463_ac683d
crossref_primary_10_1016_j_orgel_2021_106415
crossref_primary_10_1002_adom_202303131
crossref_primary_10_1016_j_dyepig_2023_111084
crossref_primary_10_1021_acsami_3c10003
crossref_primary_10_1039_D1TC04950J
crossref_primary_10_1002_cptc_202400273
crossref_primary_10_1016_j_cej_2024_150618
crossref_primary_10_1016_j_jphotochem_2024_115925
crossref_primary_10_1103_PhysRevApplied_19_054067
crossref_primary_10_1002_adma_202403584
crossref_primary_10_1039_D3SC03267A
crossref_primary_10_1021_acs_joc_2c02774
crossref_primary_10_1007_s11426_023_1546_5
crossref_primary_10_1016_j_jlumin_2023_120274
crossref_primary_10_1016_j_cej_2021_134314
crossref_primary_10_12677_japc_2024_132030
crossref_primary_10_1002_chem_202403500
crossref_primary_10_1039_D3QM01067H
crossref_primary_10_3390_molecules26185568
crossref_primary_10_1016_j_orgel_2022_106497
crossref_primary_10_1002_adfm_202103321
crossref_primary_10_1002_adfm_202401789
crossref_primary_10_1016_j_mser_2022_100689
crossref_primary_10_1021_acs_jpca_2c05392
crossref_primary_10_1039_D1SC07180G
crossref_primary_10_1016_j_optmat_2024_116513
crossref_primary_10_1016_j_dyepig_2023_111185
crossref_primary_10_1039_D3TC02347H
crossref_primary_10_1021_acsami_4c21674
crossref_primary_10_1002_rpm_20230023
crossref_primary_10_1039_D2TC00711H
crossref_primary_10_1016_j_cej_2023_143721
crossref_primary_10_2139_ssrn_4047155
crossref_primary_10_3116_16091833_Ukr_J_Phys_Opt_2024_04001
crossref_primary_10_1016_j_dyepig_2022_110876
crossref_primary_10_1016_j_jphotochemrev_2024_100664
crossref_primary_10_1039_D1MH00529D
crossref_primary_10_1109_TED_2024_3469176
crossref_primary_10_6023_A22070335
crossref_primary_10_1021_acsmaterialslett_4c01643
crossref_primary_10_1016_j_dyepig_2023_111572
crossref_primary_10_1021_acsaenm_4c00196
crossref_primary_10_1016_j_orgel_2024_107130
crossref_primary_10_1002_adfm_202414808
crossref_primary_10_1021_acs_jpcc_2c06520
crossref_primary_10_1002_adom_202101791
crossref_primary_10_1002_adma_202306678
crossref_primary_10_1016_j_isci_2022_103804
crossref_primary_10_1021_acs_inorgchem_2c03804
crossref_primary_10_1002_cptc_202200287
crossref_primary_10_1016_j_cej_2024_155549
crossref_primary_10_1039_D4SC03667K
crossref_primary_10_1039_D2TC02694E
crossref_primary_10_1016_j_cclet_2024_110760
crossref_primary_10_1039_D1QM00425E
crossref_primary_10_1039_D2TC04638E
crossref_primary_10_1021_acsenergylett_1c02631
crossref_primary_10_1039_D1DT02269E
crossref_primary_10_1016_j_dyepig_2022_110389
crossref_primary_10_1039_D2NJ02516G
crossref_primary_10_1002_pssa_202100064
crossref_primary_10_1016_j_optmat_2025_116745
crossref_primary_10_1016_j_cej_2021_133546
crossref_primary_10_1021_acsaelm_2c00483
crossref_primary_10_1039_D1TC05935A
crossref_primary_10_1021_jacs_3c04213
crossref_primary_10_1038_s41467_021_26995_1
crossref_primary_10_3390_coatings14101294
crossref_primary_10_1007_s11664_023_10470_2
crossref_primary_10_1002_adom_202202292
crossref_primary_10_1039_D3MH00526G
crossref_primary_10_3390_ijms24087568
crossref_primary_10_1088_1361_6641_ad3e23
crossref_primary_10_1016_j_orgel_2021_106312
crossref_primary_10_6023_cjoc202401024
crossref_primary_10_1016_j_saa_2025_125827
Cites_doi 10.1002/anie.201600113
10.1021/acs.jpcc.5b05292
10.1063/1.4802716
10.1002/adom.201300467
10.1002/advs.201801938
10.1002/ejoc.201300544
10.1021/acs.jpcc.6b05198
10.1021/acsami.6b13405
10.1038/nmat3500
10.1039/C4CC01590H
10.1002/adma.201500013
10.1021/acs.jpclett.8b03646
10.1002/adfm.201200116
10.1039/C9MH00373H
10.1038/s41467-018-05527-4
10.1021/ja312197b
10.1038/s41467-019-13289-w
10.1103/PhysRevB.46.15072
10.1021/jp312029e
10.1038/nphoton.2012.31
10.1002/adfm.201505014
10.1021/jp401440s
10.1016/j.orgel.2019.105449
10.1021/ja0263588
10.1038/s41566-017-0087-y
10.1021/am501164s
10.1038/natrevmats.2018.20
10.1002/adma.201904114
10.1126/science.265.5173.765
10.1039/C9TC06212B
10.1021/acsami.6b16083
10.1021/am402032z
10.1103/PhysRevLett.82.3673
10.1126/sciadv.1603282
10.1016/j.dyepig.2019.03.053
10.1039/C7TC05392D
10.1002/adma.200900983
10.1021/acs.chemmater.5b01188
10.1002/adma.201402532
10.1002/adfm.201301750
10.1002/adma.201300753
10.1038/nmat4424
10.1038/srep05161
10.1021/acsami.8b18284
10.1021/acs.chemmater.6b05324
10.1021/acsaelm.0c00062
10.1021/acsami.7b18318
10.1038/nmat4154
10.1002/adom.201801554
10.1002/adma.201305733
10.1002/adma.201500267
10.1039/C6TC05264A
10.1038/nphoton.2014.12
10.1021/acsami.5b05597
10.1126/science.1249625
10.1021/am507050g
10.1039/c3cc47130f
10.1002/9783527650002
10.1039/D0TC00085J
10.1002/anie.201804218
10.1016/j.orgel.2019.105477
10.1021/ja00097a027
10.3389/fchem.2019.00016
10.1038/nature11687
10.1002/adom.201801160
10.1088/0957-4484/27/22/224001
10.1021/acsami.5b11895
10.1002/adma.201502897
10.1063/1.98799
10.1002/adma.201605444
10.1063/1.1409582
10.1021/acs.jpclett.9b01140
10.1016/j.orgel.2016.08.001
10.1038/ncomms9476
10.1002/adma.201203615
10.1039/C7RA08142A
10.1002/admi.201800025
10.1103/PhysRevB.60.14422
10.1038/25954
10.1016/j.cplett.2008.05.086
10.1002/adfm.201400948
10.1002/adma.201504290
10.1002/anie.201308486
10.1002/cphc.201600662
10.1002/adma.201906614
10.1002/adfm.201302924
10.1039/C9TC03092A
10.1038/ncomms13680
10.1021/acsami.9b04365
10.1002/adom.201801462
10.1021/acsami.6b13689
10.1002/adma.201405062
10.1016/j.orgel.2018.12.039
10.1063/1.4737006
10.1016/0301-0104(88)87143-X
10.1021/acsphotonics.7b00567
10.1021/acsabm.8b00116
10.1021/acs.chemmater.6b00478
10.1002/anie.201307601
10.1039/C5MH00258C
10.1016/j.orgel.2015.06.017
10.1002/adom.201801648
10.1002/adom.201901917
10.1038/347539a0
10.1038/ncomms5016
10.3169/mta.3.108
10.1016/j.cplett.2006.11.033
10.1038/s41467-017-02419-x
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7SR
7TB
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/d0mh01245a
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2051-6355
EndPage 425
ExternalDocumentID 10_1039_D0MH01245A
d0mh01245a
GroupedDBID 0R
4.4
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
HZ
H~N
J3I
O-G
O9-
RCNCU
RIG
RPMJG
RRC
RSCEA
0R~
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABPDG
ABXOH
AEFDR
AENGV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
7SR
7TB
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c417t-edb18a9c4ac419830a86d1deb16245285b63b1a600cf092c06c83990a5c7d8253
ISSN 2051-6347
2051-6355
IngestDate Fri Jul 11 11:21:01 EDT 2025
Mon Jun 30 04:01:42 EDT 2025
Thu Apr 24 23:06:39 EDT 2025
Tue Jul 01 01:36:13 EDT 2025
Sat Jan 08 03:48:26 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c417t-edb18a9c4ac419830a86d1deb16245285b63b1a600cf092c06c83990a5c7d8253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7732-1206
0000-0002-4157-4313
0000-0001-6232-9934
PQID 2489271328
PQPubID 2047518
PageCount 25
ParticipantIDs crossref_primary_10_1039_D0MH01245A
rsc_primary_d0mh01245a
proquest_miscellaneous_2602634730
crossref_citationtrail_10_1039_D0MH01245A
proquest_journals_2489271328
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Materials horizons
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Baldo (D0MH01245A-(cit9)/*[position()=1]) 1999; 60
Tang (D0MH01245A-(cit1)/*[position()=1]) 1987; 51
dos Santos (D0MH01245A-(cit90)/*[position()=1]) 2016; 120
Hung (D0MH01245A-(cit78)/*[position()=1]) 2016; 8
Hu (D0MH01245A-(cit67)/*[position()=1]) 2020; 8
Zhang (D0MH01245A-(cit100)/*[position()=1]) 2019; 6
Stewart (D0MH01245A-(cit59)/*[position()=1]) 2013; 117
Liu (D0MH01245A-(cit51)/*[position()=1]) 2018; 1
Swanson (D0MH01245A-(cit8)/*[position()=1]) 1992; 46
Virgili (D0MH01245A-(cit64)/*[position()=1]) 2006; 433
Im (D0MH01245A-(cit68)/*[position()=1]) 2017; 29
Liu (D0MH01245A-(cit99)/*[position()=1]) 2016; 26
Wang (D0MH01245A-(cit50)/*[position()=1]) 2017; 7
Partee (D0MH01245A-(cit14)/*[position()=1]) 1999; 82
Liu (D0MH01245A-(cit75)/*[position()=1]) 2015; 27
Lundberg (D0MH01245A-(cit48)/*[position()=1]) 2019; 10
Kaji (D0MH01245A-(cit26)/*[position()=1]) 2015; 6
Colella (D0MH01245A-(cit111)/*[position()=1]) 2019; 10
Chapran (D0MH01245A-(cit94)/*[position()=1]) 2019; 11
Hung (D0MH01245A-(cit113)/*[position()=1]) 2017; 9
Cintare (D0MH01245A-(cit87)/*[position()=1]) 2018; 6
Goushi (D0MH01245A-(cit71)/*[position()=1]) 2012; 101
Mamada (D0MH01245A-(cit92)/*[position()=1]) 2018; 57
Etherington (D0MH01245A-(cit24)/*[position()=1]) 2016; 7
Al Amin (D0MH01245A-(cit41)/*[position()=1]) 2020; 2
Jailauekov (D0MH01245A-(cit42)/*[position()=1]) 2013; 12
Sasabe (D0MH01245A-(cit2)/*[position()=1]) 2013
Jankus (D0MH01245A-(cit62)/*[position()=1]) 2013; 25
Wu (D0MH01245A-(cit114)/*[position()=1]) 2019; 11
Deptare (D0MH01245A-(cit44)/*[position()=1]) 2015; 14
Cui (D0MH01245A-(cit28)/*[position()=1]) 2017; 8
Jeon (D0MH01245A-(cit101)/*[position()=1]) 2019; 7
Uoyama (D0MH01245A-(cit21)/*[position()=1]) 2012; 492
Liu (D0MH01245A-(cit5)/*[position()=1]) 2018; 3
Zhang (D0MH01245A-(cit27)/*[position()=1]) 2016; 3
Cherpak (D0MH01245A-(cit104)/*[position()=1]) 2015; 7
Nakanotani (D0MH01245A-(cit107)/*[position()=1]) 2014; 5
Zhang (D0MH01245A-(cit23)/*[position()=1]) 2014; 8
Tao (D0MH01245A-(cit3)/*[position()=1]) 2014; 26
Michael (D0MH01245A-(cit4)/*[position()=1]) 2017; 29
Hosokai (D0MH01245A-(cit89)/*[position()=1]) 2017; 3
Zhao (D0MH01245A-(cit40)/*[position()=1]) 2019; 6
Liu (D0MH01245A-(cit85)/*[position()=1]) 2015; 27
Goushi (D0MH01245A-(cit33)/*[position()=1]) 2012; 6
Frederichs (D0MH01245A-(cit54)/*[position()=1]) 2008; 460
Sarma (D0MH01245A-(cit69)/*[position()=1]) 2018; 10
Zhang (D0MH01245A-(cit73)/*[position()=1]) 2014; 6
Wang (D0MH01245A-(cit96)/*[position()=1]) 2020; 8
Hung (D0MH01245A-(cit72)/*[position()=1]) 2013; 5
Jeon (D0MH01245A-(cit112)/*[position()=1]) 2020; 76
Zhang (D0MH01245A-(cit81)/*[position()=1]) 2015; 25
Kim (D0MH01245A-(cit13)/*[position()=1]) 2014; 26
Kim (D0MH01245A-(cit29)/*[position()=1]) 2018; 12
Kolosov (D0MH01245A-(cit61)/*[position()=1]) 2002; 124
Jenekhe (D0MH01245A-(cit60)/*[position()=1]) 1994; 265
Liu (D0MH01245A-(cit52)/*[position()=1]) 2019; 166
Chen (D0MH01245A-(cit77)/*[position()=1]) 2016; 28
Wang (D0MH01245A-(cit39)/*[position()=1]) 2019; 31
Chen (D0MH01245A-(cit82)/*[position()=1]) 2015; 27
Endo (D0MH01245A-(cit20)/*[position()=1]) 2009; 21
Kim (D0MH01245A-(cit34)/*[position()=1]) 2014; 24
Li (D0MH01245A-(cit19)/*[position()=1]) 2014; 24
Wang (D0MH01245A-(cit56)/*[position()=1]) 2019; 7
Yao (D0MH01245A-(cit17)/*[position()=1]) 2014; 53
Li (D0MH01245A-(cit63)/*[position()=1]) 2014; 50
Jankus (D0MH01245A-(cit80)/*[position()=1]) 2014; 24
Simon (D0MH01245A-(cit43)/*[position()=1]) 2014; 343
Oh (D0MH01245A-(cit84)/*[position()=1]) 2015; 119
Yuan (D0MH01245A-(cit110)/*[position()=1]) 2019; 7
Zhang (D0MH01245A-(cit16)/*[position()=1]) 2013; 49
Nishikitani (D0MH01245A-(cit47)/*[position()=1]) 2019
Cai (D0MH01245A-(cit93)/*[position()=1]) 2019; 7
Shizu (D0MH01245A-(cit30)/*[position()=1]) 2015; 3
Adachi (D0MH01245A-(cit11)/*[position()=1]) 2001; 90
Nakanotani (D0MH01245A-(cit108)/*[position()=1]) 2016; 2
Pan (D0MH01245A-(cit18)/*[position()=1]) 2014; 2
Kim (D0MH01245A-(cit25)/*[position()=1]) 2015; 27
Chaudhuri (D0MH01245A-(cit22)/*[position()=1]) 2013; 52
Dias (D0MH01245A-(cit31)/*[position()=1]) 2013; 25
Song (D0MH01245A-(cit46)/*[position()=1]) 2017; 9
Pang (D0MH01245A-(cit45)/*[position()=1]) 2017; 4
Ian (D0MH01245A-(cit57)/*[position()=1]) 1994; 116
Charpran (D0MH01245A-(cit36)/*[position()=1]) 2017; 9
Liu (D0MH01245A-(cit6)/*[position()=1]) 2020; 8
Liang (D0MH01245A-(cit95)/*[position()=1]) 2019; 10
Baldo (D0MH01245A-(cit10)/*[position()=1]) 1998; 395
Im (D0MH01245A-(cit55)/*[position()=1]) 2017; 29
Zhang (D0MH01245A-(cit105)/*[position()=1]) 2019; 7
Liang (D0MH01245A-(cit37)/*[position()=1]) 2017; 5
Charpran (D0MH01245A-(cit65)/*[position()=1]) 2019; 11
Zhang (D0MH01245A-(cit76)/*[position()=1]) 2015; 7
Data (D0MH01245A-(cit91)/*[position()=1]) 2016; 55
Zhong (D0MH01245A-(cit102)/*[position()=1]) 2020; 76
Kim (D0MH01245A-(cit98)/*[position()=1]) 2016; 28
Mo (D0MH01245A-(cit86)/*[position()=1]) 2016; 26
Liu (D0MH01245A-(cit106)/*[position()=1]) 2015; 27
Lin (D0MH01245A-(cit38)/*[position()=1]) 2018; 9
Qin (D0MH01245A-(cit66)/*[position()=1]) 2019; 7
Wang (D0MH01245A-(cit70)/*[position()=1]) 2019; 66
Chung (D0MH01245A-(cit49)/*[position()=1]) 2013; 117
Li (D0MH01245A-(cit15)/*[position()=1]) 2012; 22
Jeon (D0MH01245A-(cit83)/*[position()=1]) 2016; 27
Park (D0MH01245A-(cit97)/*[position()=1]) 2013; 102
Zhang (D0MH01245A-(cit12)/*[position()=1]) 2004; 16
Gibson (D0MH01245A-(cit88)/*[position()=1]) 2016; 17
Hung (D0MH01245A-(cit74)/*[position()=1]) 2014; 4
Valeur (D0MH01245A-(cit53)/*[position()=1]) 2012
Burroughes (D0MH01245A-(cit7)/*[position()=1]) 1990; 347
Zoran (D0MH01245A-(cit58)/*[position()=1]) 1988; 127
Park (D0MH01245A-(cit35)/*[position()=1]) 2013; 135
Nguyen (D0MH01245A-(cit103)/*[position()=1]) 2020; 32
Hirata (D0MH01245A-(cit32)/*[position()=1]) 2015; 14
Li (D0MH01245A-(cit109)/*[position()=1]) 2018; 5
Lin (D0MH01245A-(cit79)/*[position()=1]) 2016; 38
References_xml – issn: 2012
  publication-title: Molecular Fluorescence: Principles and Applications
  doi: Valeur Berberan-santos
– volume: 55
  start-page: 5739
  year: 2016
  ident: D0MH01245A-(cit91)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201600113
– volume: 119
  start-page: 22618
  year: 2015
  ident: D0MH01245A-(cit84)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b05292
– volume: 102
  start-page: 153306
  year: 2013
  ident: D0MH01245A-(cit97)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4802716
– volume: 2
  start-page: 1501470
  year: 2016
  ident: D0MH01245A-(cit108)/*[position()=1]
  publication-title: Nat. Commun.
– volume: 2
  start-page: 510
  year: 2014
  ident: D0MH01245A-(cit18)/*[position()=1]
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201300467
– volume: 6
  start-page: 1801938
  year: 2019
  ident: D0MH01245A-(cit100)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201801938
– start-page: 7653
  year: 2013
  ident: D0MH01245A-(cit2)/*[position()=1]
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201300544
– volume: 120
  start-page: 18259
  year: 2016
  ident: D0MH01245A-(cit90)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b05198
– volume: 9
  start-page: 2711
  year: 2017
  ident: D0MH01245A-(cit46)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b13405
– volume: 12
  start-page: 66
  year: 2013
  ident: D0MH01245A-(cit42)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3500
– volume: 50
  start-page: 6174
  year: 2014
  ident: D0MH01245A-(cit63)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC01590H
– volume: 27
  start-page: 2025
  year: 2015
  ident: D0MH01245A-(cit106)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500013
– volume: 10
  start-page: 793
  year: 2019
  ident: D0MH01245A-(cit111)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b03646
– volume: 22
  start-page: 2797
  year: 2012
  ident: D0MH01245A-(cit15)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200116
– volume: 6
  start-page: 1425
  year: 2019
  ident: D0MH01245A-(cit40)/*[position()=1]
  publication-title: Mater. Horiz.
  doi: 10.1039/C9MH00373H
– volume: 9
  start-page: 3111
  year: 2018
  ident: D0MH01245A-(cit38)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05527-4
– volume: 135
  start-page: 4757
  year: 2013
  ident: D0MH01245A-(cit35)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja312197b
– volume: 10
  start-page: 5307
  year: 2019
  ident: D0MH01245A-(cit48)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13289-w
– volume: 46
  start-page: 15072
  year: 1992
  ident: D0MH01245A-(cit8)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.46.15072
– volume: 117
  start-page: 3909
  year: 2013
  ident: D0MH01245A-(cit59)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp312029e
– volume: 6
  start-page: 253
  year: 2012
  ident: D0MH01245A-(cit33)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.31
– volume: 26
  start-page: 2002
  year: 2016
  ident: D0MH01245A-(cit99)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201505014
– volume: 117
  start-page: 11285
  year: 2013
  ident: D0MH01245A-(cit49)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp401440s
– volume: 76
  start-page: 105449
  year: 2020
  ident: D0MH01245A-(cit102)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2019.105449
– volume: 124
  start-page: 9945
  year: 2002
  ident: D0MH01245A-(cit61)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0263588
– volume: 12
  start-page: 98
  year: 2018
  ident: D0MH01245A-(cit29)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-017-0087-y
– volume: 6
  start-page: 11907
  year: 2014
  ident: D0MH01245A-(cit73)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am501164s
– volume: 3
  start-page: 18020
  year: 2018
  ident: D0MH01245A-(cit5)/*[position()=1]
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2018.20
– volume: 31
  start-page: 1904114
  year: 2019
  ident: D0MH01245A-(cit39)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904114
– volume: 265
  start-page: 765
  year: 1994
  ident: D0MH01245A-(cit60)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.265.5173.765
– volume: 8
  start-page: 2700
  year: 2020
  ident: D0MH01245A-(cit96)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC06212B
– volume: 9
  start-page: 7355
  year: 2017
  ident: D0MH01245A-(cit113)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b16083
– volume: 5
  start-page: 6826
  year: 2013
  ident: D0MH01245A-(cit72)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am402032z
– volume: 82
  start-page: 18
  year: 1999
  ident: D0MH01245A-(cit14)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.82.3673
– volume: 3
  start-page: e1603282
  year: 2017
  ident: D0MH01245A-(cit89)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1603282
– volume: 166
  start-page: 416
  year: 2019
  ident: D0MH01245A-(cit52)/*[position()=1]
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2019.03.053
– volume: 6
  start-page: 1543
  year: 2018
  ident: D0MH01245A-(cit87)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC05392D
– volume: 16
  start-page: 5
  year: 2004
  ident: D0MH01245A-(cit12)/*[position()=1]
  publication-title: Adv. Mater.
– volume: 21
  start-page: 4802
  year: 2009
  ident: D0MH01245A-(cit20)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200900983
– volume: 27
  start-page: 5206
  year: 2015
  ident: D0MH01245A-(cit82)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b01188
– volume: 26
  start-page: 7931
  year: 2014
  ident: D0MH01245A-(cit3)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402532
– volume: 24
  start-page: 1609
  year: 2014
  ident: D0MH01245A-(cit19)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201301750
– volume: 25
  start-page: 3707
  year: 2013
  ident: D0MH01245A-(cit31)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201300753
– volume: 14
  start-page: 1130
  year: 2015
  ident: D0MH01245A-(cit44)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4424
– volume: 4
  start-page: 5161
  year: 2014
  ident: D0MH01245A-(cit74)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep05161
– volume: 11
  start-page: 13460
  year: 2019
  ident: D0MH01245A-(cit65)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b18284
– volume: 29
  start-page: 1946
  year: 2017
  ident: D0MH01245A-(cit68)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b05324
– volume: 2
  start-page: 1011
  year: 2020
  ident: D0MH01245A-(cit41)/*[position()=1]
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.0c00062
– volume: 10
  start-page: 19279
  year: 2018
  ident: D0MH01245A-(cit69)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b18318
– volume: 14
  start-page: 330
  year: 2015
  ident: D0MH01245A-(cit32)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4154
– volume: 7
  start-page: 1801554
  year: 2019
  ident: D0MH01245A-(cit93)/*[position()=1]
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201801554
– volume: 26
  start-page: 3844
  year: 2014
  ident: D0MH01245A-(cit13)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305733
– volume: 27
  start-page: 2515
  year: 2015
  ident: D0MH01245A-(cit25)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500267
– volume: 5
  start-page: 2397
  year: 2017
  ident: D0MH01245A-(cit37)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC05264A
– volume: 8
  start-page: 326
  year: 2014
  ident: D0MH01245A-(cit23)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2014.12
– volume: 7
  start-page: 24983
  year: 2015
  ident: D0MH01245A-(cit76)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b05597
– volume: 343
  start-page: 512
  year: 2014
  ident: D0MH01245A-(cit43)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1249625
– volume: 7
  start-page: 1219
  year: 2015
  ident: D0MH01245A-(cit104)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am507050g
– volume: 49
  start-page: 11302
  year: 2013
  ident: D0MH01245A-(cit16)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc47130f
– volume-title: Molecular Fluorescence: Principles and Applications
  year: 2012
  ident: D0MH01245A-(cit53)/*[position()=1]
  doi: 10.1002/9783527650002
– volume: 8
  start-page: 5636
  year: 2020
  ident: D0MH01245A-(cit6)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC00085J
– volume: 11
  start-page: 13460
  year: 2019
  ident: D0MH01245A-(cit94)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b18284
– volume: 57
  start-page: 04218
  year: 2018
  ident: D0MH01245A-(cit92)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201804218
– volume: 76
  start-page: 105477
  year: 2020
  ident: D0MH01245A-(cit112)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2019.105477
– volume: 116
  start-page: 8176
  year: 1994
  ident: D0MH01245A-(cit57)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00097a027
– volume: 7
  start-page: 16
  year: 2019
  ident: D0MH01245A-(cit105)/*[position()=1]
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2019.00016
– volume: 492
  start-page: 234
  year: 2012
  ident: D0MH01245A-(cit21)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature11687
– volume: 7
  start-page: 1801160
  year: 2019
  ident: D0MH01245A-(cit66)/*[position()=1]
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201801160
– volume: 27
  start-page: 224001
  year: 2016
  ident: D0MH01245A-(cit83)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/27/22/224001
– volume: 8
  start-page: 4811
  year: 2016
  ident: D0MH01245A-(cit78)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b11895
– volume: 27
  start-page: 7079
  year: 2015
  ident: D0MH01245A-(cit75)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502897
– volume: 51
  start-page: 913
  year: 1987
  ident: D0MH01245A-(cit1)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.98799
– volume: 29
  start-page: 1605444
  year: 2017
  ident: D0MH01245A-(cit4)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605444
– volume: 90
  start-page: 5048
  year: 2001
  ident: D0MH01245A-(cit11)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1409582
– volume: 10
  start-page: 2811
  year: 2019
  ident: D0MH01245A-(cit95)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b01140
– volume: 38
  start-page: 69
  year: 2016
  ident: D0MH01245A-(cit79)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2016.08.001
– volume: 6
  start-page: 8476
  year: 2015
  ident: D0MH01245A-(cit26)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9476
– start-page: 1907309
  year: 2019
  ident: D0MH01245A-(cit47)/*[position()=1]
  publication-title: Adv. Funct. Mater.
– volume: 25
  start-page: 1455
  year: 2013
  ident: D0MH01245A-(cit62)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201203615
– volume: 7
  start-page: 40842
  year: 2017
  ident: D0MH01245A-(cit50)/*[position()=1]
  publication-title: RSC Adv
  doi: 10.1039/C7RA08142A
– volume: 5
  start-page: 1800025
  year: 2018
  ident: D0MH01245A-(cit109)/*[position()=1]
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201800025
– volume: 60
  start-page: 422
  year: 1999
  ident: D0MH01245A-(cit9)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.60.14422
– volume: 395
  start-page: 151
  year: 1998
  ident: D0MH01245A-(cit10)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/25954
– volume: 460
  start-page: 116
  year: 2008
  ident: D0MH01245A-(cit54)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2008.05.086
– volume: 24
  start-page: 6178
  year: 2014
  ident: D0MH01245A-(cit80)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201400948
– volume: 28
  start-page: 239
  year: 2016
  ident: D0MH01245A-(cit77)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504290
– volume: 53
  start-page: 2119
  year: 2014
  ident: D0MH01245A-(cit17)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201308486
– volume: 17
  start-page: 2956
  year: 2016
  ident: D0MH01245A-(cit88)/*[position()=1]
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201600662
– volume: 32
  start-page: 1906614
  year: 2020
  ident: D0MH01245A-(cit103)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906614
– volume: 24
  start-page: 2746
  year: 2014
  ident: D0MH01245A-(cit34)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201302924
– volume: 7
  start-page: 11329
  year: 2019
  ident: D0MH01245A-(cit56)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC03092A
– volume: 7
  start-page: 13680
  year: 2016
  ident: D0MH01245A-(cit24)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13680
– volume: 11
  start-page: 19294
  year: 2019
  ident: D0MH01245A-(cit114)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b04365
– volume: 7
  start-page: 1801462
  year: 2019
  ident: D0MH01245A-(cit101)/*[position()=1]
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201801462
– volume: 9
  start-page: 4750
  year: 2017
  ident: D0MH01245A-(cit36)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b13689
– volume: 27
  start-page: 2378
  year: 2015
  ident: D0MH01245A-(cit85)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405062
– volume: 66
  start-page: 227
  year: 2019
  ident: D0MH01245A-(cit70)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2018.12.039
– volume: 29
  start-page: 1946
  year: 2017
  ident: D0MH01245A-(cit55)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b05324
– volume: 101
  start-page: 0233060
  year: 2012
  ident: D0MH01245A-(cit71)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4737006
– volume: 127
  start-page: 451
  year: 1988
  ident: D0MH01245A-(cit58)/*[position()=1]
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(88)87143-X
– volume: 4
  start-page: 1899
  year: 2017
  ident: D0MH01245A-(cit45)/*[position()=1]
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b00567
– volume: 1
  start-page: 185
  year: 2018
  ident: D0MH01245A-(cit51)/*[position()=1]
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.8b00116
– volume: 28
  start-page: 1936
  year: 2016
  ident: D0MH01245A-(cit98)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00478
– volume: 52
  start-page: 13449
  year: 2013
  ident: D0MH01245A-(cit22)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201307601
– volume: 3
  start-page: 145
  year: 2016
  ident: D0MH01245A-(cit27)/*[position()=1]
  publication-title: Mater. Horiz.
  doi: 10.1039/C5MH00258C
– volume: 25
  start-page: 6
  year: 2015
  ident: D0MH01245A-(cit81)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2015.06.017
– volume: 26
  start-page: 6703
  year: 2016
  ident: D0MH01245A-(cit86)/*[position()=1]
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1801648
  year: 2019
  ident: D0MH01245A-(cit110)/*[position()=1]
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201801648
– volume: 8
  start-page: 1901917
  year: 2020
  ident: D0MH01245A-(cit67)/*[position()=1]
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201901917
– volume: 347
  start-page: 539
  year: 1990
  ident: D0MH01245A-(cit7)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/347539a0
– volume: 5
  start-page: 4016
  year: 2014
  ident: D0MH01245A-(cit107)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5016
– volume: 3
  start-page: 108
  year: 2015
  ident: D0MH01245A-(cit30)/*[position()=1]
  publication-title: ITE Trans. Media Technol. Appl.
  doi: 10.3169/mta.3.108
– volume: 433
  start-page: 145
  year: 2006
  ident: D0MH01245A-(cit64)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2006.11.033
– volume: 8
  start-page: 2250
  year: 2017
  ident: D0MH01245A-(cit28)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02419-x
SSID ssj0001345080
Score 2.5408971
SecondaryResourceType review_article
Snippet Owing to their natural thermally activated delayed fluorescence (TADF) characteristics, the development of exciplex emitters for organic light-emitting diodes...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 41
SubjectTerms Charge transfer
Electroluminescence
Emitters
Emitters (electron)
Fluorescence
Light emitting diodes
Organic light emitting diodes
Title Thermally activated delayed fluorescence exciplex emitters for high-performance organic light-emitting diodes
URI https://www.proquest.com/docview/2489271328
https://www.proquest.com/docview/2602634730
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67QIHxNdEYSAjuKAqI4mdxD5OY6hMKxc6abfKcWwtUtpMXYO2HfjbebbjJPs4DC5J6zpukvfz8_Oz3-8h9FkoJvO0yINQExLQTMuACa0DTjlVWawLLYxrYPYznZ7S47PkbDT6M4wu2eT78ubBuJL_kSqUgVxNlOw_SLZrFArgM8gXjiBhOD5WxqBXq-raUmL8FsZ6NKyP13DWVVOvLVcT9Fx1ZR3qVxO1LC2fpt1daKiKg4tB5IBL8SQnlWUXsXWNJ6Eo66LdauhzP4mNe77Jeb0ub7zLb-iAnvkx0RYqV3goyuC46XcBOQKDaVP2DgTruv1VBifN0CERR34Ps9dbMfTzICWOSHNfDcscI69XvGyAr3igRGnbmhuPqQuMvqfqQ2KYUr-FsymMsTTpyFJ7Pu0741y3-9CuuxO-6K_dQjsxTDNAse8cHM1_nPReOkLBgjWOuu6pPMct4V_7Bm5bNf1UZWvt88hYe2X-HD1rJxr4wKHmBRqp1Uv0dEA_-QotO_zgDj-4xQ8e4gd7_GCPHwyYwXfxg1v84Nv4wQ4_r9Hp96P54TRo028EkkYZ1CryiAkuqYDvnJFQsLSIChjcU7Ncz5I8JXkkwGKWOuSxDFMJ1jYPRSKzgsUJ2UXbq3ql3iDMoQmiuGIwH6G0SBnPuZI6VTlYp1SHY_TFv76FbLnpTYqUanFfVmP0qat74RhZHqy156WwaHvs5SKmjMdZRGI2Rh-7n0GfmkUysVJ1A3VMTjYQM4Gb2gXpdf9RhMtz27Z4-6g7eIee9L1jD21v1o16DwbsJv_Qouwv8QOduA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermally+activated+delayed+fluorescence+exciplex+emitters+for+high-performance+organic+light-emitting+diodes&rft.jtitle=Materials+horizons&rft.au=Zhang%2C+Ming&rft.au=Zheng%2C+Cai-Jun&rft.au=Lin%2C+Hui&rft.au=Tao%2C+Si-Lu&rft.date=2021-02-01&rft.issn=2051-6347&rft.eissn=2051-6355&rft.volume=8&rft.issue=2&rft.spage=401&rft.epage=425&rft_id=info:doi/10.1039%2FD0MH01245A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D0MH01245A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-6347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-6347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-6347&client=summon