Thermally activated delayed fluorescence exciplex emitters for high-performance organic light-emitting diodes
Owing to their natural thermally activated delayed fluorescence (TADF) characteristics, the development of exciplex emitters for organic light-emitting diodes (OLEDs) has witnessed booming progress in recent years. Formed between electron-donating and electron-accepting molecules, exciplexes with in...
Saved in:
Published in | Materials horizons Vol. 8; no. 2; pp. 41 - 425 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.02.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2051-6347 2051-6355 2051-6355 |
DOI | 10.1039/d0mh01245a |
Cover
Loading…
Abstract | Owing to their natural thermally activated delayed fluorescence (TADF) characteristics, the development of exciplex emitters for organic light-emitting diodes (OLEDs) has witnessed booming progress in recent years. Formed between electron-donating and electron-accepting molecules, exciplexes with intermolecular charge transfer processes have unique advantages compared with unimolecular TADF materials, offering a new way to develop high-performance TADF emitters. In this review, a comprehensive overview of TADF exciplex emitters is presented with a focus on the relationship between the constituents of exciplexes and their electroluminescence performance. We summarize and discuss the latest and most significant developments of TADF exciplex emitters. Notably, the design principles of efficient TADF exciplex emitters are systematically categorized into three systems within this review. These progressive achievements of TADF exciplex emitters point out future challenges to trigger more research endeavors in this growing field.
Owing to their natural thermally activated delayed fluorescence (TADF) characteristics, the development of exciplex emitters for organic light-emitting diodes (OLEDs) has witnessed booming progress in recent years. |
---|---|
AbstractList | Owing to their natural thermally activated delayed fluorescence (TADF) characteristics, the development of exciplex emitters for organic light-emitting diodes (OLEDs) has witnessed booming progress in recent years. Formed between electron-donating and electron-accepting molecules, exciplexes with intermolecular charge transfer processes have unique advantages compared with unimolecular TADF materials, offering a new way to develop high-performance TADF emitters. In this review, a comprehensive overview of TADF exciplex emitters is presented with a focus on the relationship between the constituents of exciplexes and their electroluminescence performance. We summarize and discuss the latest and most significant developments of TADF exciplex emitters. Notably, the design principles of efficient TADF exciplex emitters are systematically categorized into three systems within this review. These progressive achievements of TADF exciplex emitters point out future challenges to trigger more research endeavors in this growing field.Owing to their natural thermally activated delayed fluorescence (TADF) characteristics, the development of exciplex emitters for organic light-emitting diodes (OLEDs) has witnessed booming progress in recent years. Formed between electron-donating and electron-accepting molecules, exciplexes with intermolecular charge transfer processes have unique advantages compared with unimolecular TADF materials, offering a new way to develop high-performance TADF emitters. In this review, a comprehensive overview of TADF exciplex emitters is presented with a focus on the relationship between the constituents of exciplexes and their electroluminescence performance. We summarize and discuss the latest and most significant developments of TADF exciplex emitters. Notably, the design principles of efficient TADF exciplex emitters are systematically categorized into three systems within this review. These progressive achievements of TADF exciplex emitters point out future challenges to trigger more research endeavors in this growing field. Owing to their natural thermally activated delayed fluorescence (TADF) characteristics, the development of exciplex emitters for organic light-emitting diodes (OLEDs) has witnessed booming progress in recent years. Formed between electron-donating and electron-accepting molecules, exciplexes with intermolecular charge transfer processes have unique advantages compared with unimolecular TADF materials, offering a new way to develop high-performance TADF emitters. In this review, a comprehensive overview of TADF exciplex emitters is presented with a focus on the relationship between the constituents of exciplexes and their electroluminescence performance. We summarize and discuss the latest and most significant developments of TADF exciplex emitters. Notably, the design principles of efficient TADF exciplex emitters are systematically categorized into three systems within this review. These progressive achievements of TADF exciplex emitters point out future challenges to trigger more research endeavors in this growing field. Owing to their natural thermally activated delayed fluorescence (TADF) characteristics, the development of exciplex emitters for organic light-emitting diodes (OLEDs) has witnessed booming progress in recent years. Formed between electron-donating and electron-accepting molecules, exciplexes with intermolecular charge transfer processes have unique advantages compared with unimolecular TADF materials, offering a new way to develop high-performance TADF emitters. In this review, a comprehensive overview of TADF exciplex emitters is presented with a focus on the relationship between the constituents of exciplexes and their electroluminescence performance. We summarize and discuss the latest and most significant developments of TADF exciplex emitters. Notably, the design principles of efficient TADF exciplex emitters are systematically categorized into three systems within this review. These progressive achievements of TADF exciplex emitters point out future challenges to trigger more research endeavors in this growing field. Owing to their natural thermally activated delayed fluorescence (TADF) characteristics, the development of exciplex emitters for organic light-emitting diodes (OLEDs) has witnessed booming progress in recent years. |
Author | Tao, Si-Lu Zheng, Cai-Jun Zhang, Ming Lin, Hui |
AuthorAffiliation | School of Optoelectronic Science and Engineering University of Electronic Science and Technology of China (UESTC) |
AuthorAffiliation_xml | – name: University of Electronic Science and Technology of China (UESTC) – name: School of Optoelectronic Science and Engineering |
Author_xml | – sequence: 1 givenname: Ming surname: Zhang fullname: Zhang, Ming – sequence: 2 givenname: Cai-Jun surname: Zheng fullname: Zheng, Cai-Jun – sequence: 3 givenname: Hui surname: Lin fullname: Lin, Hui – sequence: 4 givenname: Si-Lu surname: Tao fullname: Tao, Si-Lu |
BookMark | eNptkUFrGzEQhUVJoEnqS--FhV5CYNuRtLvWHk3SNAWHXNLzMpZmbRntypXkEP_7ynFxweQ0M8z3hpl5l-xs9CMx9pnDNw6y_W5gWAEXVY0f2IWAmpeNrOuzY15NP7JJjGsA4LKqQcEFG55XFAZ0blegTvYFE5nCkMNdjr3b-kBR06ipoFdtN45eCxpsShRi0ftQrOxyVW4o5HzAPebDEkerC5cbqXxj7bgsjPWG4id23qOLNPkXr9jv-x_Ptw_l_Onnr9vZvNQVn2aVWXCFra4w162SgKox3NCCN_k6oepFIxccGwDdQys0NFrJtgWs9dQoUcsrdn2Yuwn-z5Zi6gabz3AOR_Lb2IkGxP4fEjL69QRd-20Y83adqFQrplwKlSk4UDr4GAP1nbYJk_VjCmhdx6HbW9DdwePDmwWzLLk5kWyCHTDs3oe_HOAQ9ZH776f8C0-ykyc |
CitedBy_id | crossref_primary_10_1016_j_polymer_2021_124468 crossref_primary_10_1002_cptc_202300253 crossref_primary_10_1007_s40843_024_3067_x crossref_primary_10_1021_acsami_2c22266 crossref_primary_10_1007_s10854_022_08113_z crossref_primary_10_1021_acsami_4c21196 crossref_primary_10_1039_D3TC00341H crossref_primary_10_1016_j_cej_2022_138174 crossref_primary_10_1016_j_dyepig_2023_111528 crossref_primary_10_1002_adom_202300432 crossref_primary_10_1016_j_orgel_2022_106528 crossref_primary_10_1088_1742_6596_2174_1_012030 crossref_primary_10_1039_D4RA02394C crossref_primary_10_1039_D3CP03214K crossref_primary_10_1039_D4TC03393K crossref_primary_10_1016_j_dyepig_2024_112075 crossref_primary_10_1021_acsami_1c17707 crossref_primary_10_1007_s13391_023_00442_3 crossref_primary_10_1039_D2NR03049G crossref_primary_10_1126_sciadv_adf4060 crossref_primary_10_1021_acsaelm_3c00047 crossref_primary_10_1039_D2ME00134A crossref_primary_10_1016_j_dyepig_2024_112118 crossref_primary_10_1039_D1MH01030A crossref_primary_10_1016_j_comptc_2023_114277 crossref_primary_10_1002_adfm_202422927 crossref_primary_10_1088_1361_6463_ac683d crossref_primary_10_1016_j_orgel_2021_106415 crossref_primary_10_1002_adom_202303131 crossref_primary_10_1016_j_dyepig_2023_111084 crossref_primary_10_1021_acsami_3c10003 crossref_primary_10_1039_D1TC04950J crossref_primary_10_1002_cptc_202400273 crossref_primary_10_1016_j_cej_2024_150618 crossref_primary_10_1016_j_jphotochem_2024_115925 crossref_primary_10_1103_PhysRevApplied_19_054067 crossref_primary_10_1002_adma_202403584 crossref_primary_10_1039_D3SC03267A crossref_primary_10_1021_acs_joc_2c02774 crossref_primary_10_1007_s11426_023_1546_5 crossref_primary_10_1016_j_jlumin_2023_120274 crossref_primary_10_1016_j_cej_2021_134314 crossref_primary_10_12677_japc_2024_132030 crossref_primary_10_1002_chem_202403500 crossref_primary_10_1039_D3QM01067H crossref_primary_10_3390_molecules26185568 crossref_primary_10_1016_j_orgel_2022_106497 crossref_primary_10_1002_adfm_202103321 crossref_primary_10_1002_adfm_202401789 crossref_primary_10_1016_j_mser_2022_100689 crossref_primary_10_1021_acs_jpca_2c05392 crossref_primary_10_1039_D1SC07180G crossref_primary_10_1016_j_optmat_2024_116513 crossref_primary_10_1016_j_dyepig_2023_111185 crossref_primary_10_1039_D3TC02347H crossref_primary_10_1021_acsami_4c21674 crossref_primary_10_1002_rpm_20230023 crossref_primary_10_1039_D2TC00711H crossref_primary_10_1016_j_cej_2023_143721 crossref_primary_10_2139_ssrn_4047155 crossref_primary_10_3116_16091833_Ukr_J_Phys_Opt_2024_04001 crossref_primary_10_1016_j_dyepig_2022_110876 crossref_primary_10_1016_j_jphotochemrev_2024_100664 crossref_primary_10_1039_D1MH00529D crossref_primary_10_1109_TED_2024_3469176 crossref_primary_10_6023_A22070335 crossref_primary_10_1021_acsmaterialslett_4c01643 crossref_primary_10_1016_j_dyepig_2023_111572 crossref_primary_10_1021_acsaenm_4c00196 crossref_primary_10_1016_j_orgel_2024_107130 crossref_primary_10_1002_adfm_202414808 crossref_primary_10_1021_acs_jpcc_2c06520 crossref_primary_10_1002_adom_202101791 crossref_primary_10_1002_adma_202306678 crossref_primary_10_1016_j_isci_2022_103804 crossref_primary_10_1021_acs_inorgchem_2c03804 crossref_primary_10_1002_cptc_202200287 crossref_primary_10_1016_j_cej_2024_155549 crossref_primary_10_1039_D4SC03667K crossref_primary_10_1039_D2TC02694E crossref_primary_10_1016_j_cclet_2024_110760 crossref_primary_10_1039_D1QM00425E crossref_primary_10_1039_D2TC04638E crossref_primary_10_1021_acsenergylett_1c02631 crossref_primary_10_1039_D1DT02269E crossref_primary_10_1016_j_dyepig_2022_110389 crossref_primary_10_1039_D2NJ02516G crossref_primary_10_1002_pssa_202100064 crossref_primary_10_1016_j_optmat_2025_116745 crossref_primary_10_1016_j_cej_2021_133546 crossref_primary_10_1021_acsaelm_2c00483 crossref_primary_10_1039_D1TC05935A crossref_primary_10_1021_jacs_3c04213 crossref_primary_10_1038_s41467_021_26995_1 crossref_primary_10_3390_coatings14101294 crossref_primary_10_1007_s11664_023_10470_2 crossref_primary_10_1002_adom_202202292 crossref_primary_10_1039_D3MH00526G crossref_primary_10_3390_ijms24087568 crossref_primary_10_1088_1361_6641_ad3e23 crossref_primary_10_1016_j_orgel_2021_106312 crossref_primary_10_6023_cjoc202401024 crossref_primary_10_1016_j_saa_2025_125827 |
Cites_doi | 10.1002/anie.201600113 10.1021/acs.jpcc.5b05292 10.1063/1.4802716 10.1002/adom.201300467 10.1002/advs.201801938 10.1002/ejoc.201300544 10.1021/acs.jpcc.6b05198 10.1021/acsami.6b13405 10.1038/nmat3500 10.1039/C4CC01590H 10.1002/adma.201500013 10.1021/acs.jpclett.8b03646 10.1002/adfm.201200116 10.1039/C9MH00373H 10.1038/s41467-018-05527-4 10.1021/ja312197b 10.1038/s41467-019-13289-w 10.1103/PhysRevB.46.15072 10.1021/jp312029e 10.1038/nphoton.2012.31 10.1002/adfm.201505014 10.1021/jp401440s 10.1016/j.orgel.2019.105449 10.1021/ja0263588 10.1038/s41566-017-0087-y 10.1021/am501164s 10.1038/natrevmats.2018.20 10.1002/adma.201904114 10.1126/science.265.5173.765 10.1039/C9TC06212B 10.1021/acsami.6b16083 10.1021/am402032z 10.1103/PhysRevLett.82.3673 10.1126/sciadv.1603282 10.1016/j.dyepig.2019.03.053 10.1039/C7TC05392D 10.1002/adma.200900983 10.1021/acs.chemmater.5b01188 10.1002/adma.201402532 10.1002/adfm.201301750 10.1002/adma.201300753 10.1038/nmat4424 10.1038/srep05161 10.1021/acsami.8b18284 10.1021/acs.chemmater.6b05324 10.1021/acsaelm.0c00062 10.1021/acsami.7b18318 10.1038/nmat4154 10.1002/adom.201801554 10.1002/adma.201305733 10.1002/adma.201500267 10.1039/C6TC05264A 10.1038/nphoton.2014.12 10.1021/acsami.5b05597 10.1126/science.1249625 10.1021/am507050g 10.1039/c3cc47130f 10.1002/9783527650002 10.1039/D0TC00085J 10.1002/anie.201804218 10.1016/j.orgel.2019.105477 10.1021/ja00097a027 10.3389/fchem.2019.00016 10.1038/nature11687 10.1002/adom.201801160 10.1088/0957-4484/27/22/224001 10.1021/acsami.5b11895 10.1002/adma.201502897 10.1063/1.98799 10.1002/adma.201605444 10.1063/1.1409582 10.1021/acs.jpclett.9b01140 10.1016/j.orgel.2016.08.001 10.1038/ncomms9476 10.1002/adma.201203615 10.1039/C7RA08142A 10.1002/admi.201800025 10.1103/PhysRevB.60.14422 10.1038/25954 10.1016/j.cplett.2008.05.086 10.1002/adfm.201400948 10.1002/adma.201504290 10.1002/anie.201308486 10.1002/cphc.201600662 10.1002/adma.201906614 10.1002/adfm.201302924 10.1039/C9TC03092A 10.1038/ncomms13680 10.1021/acsami.9b04365 10.1002/adom.201801462 10.1021/acsami.6b13689 10.1002/adma.201405062 10.1016/j.orgel.2018.12.039 10.1063/1.4737006 10.1016/0301-0104(88)87143-X 10.1021/acsphotonics.7b00567 10.1021/acsabm.8b00116 10.1021/acs.chemmater.6b00478 10.1002/anie.201307601 10.1039/C5MH00258C 10.1016/j.orgel.2015.06.017 10.1002/adom.201801648 10.1002/adom.201901917 10.1038/347539a0 10.1038/ncomms5016 10.3169/mta.3.108 10.1016/j.cplett.2006.11.033 10.1038/s41467-017-02419-x |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7SR 7TB 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/d0mh01245a |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2051-6355 |
EndPage | 425 |
ExternalDocumentID | 10_1039_D0MH01245A d0mh01245a |
GroupedDBID | 0R 4.4 AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACIWK ACLDK ADMRA ADSRN AENEX AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- HZ H~N J3I O-G O9- RCNCU RIG RPMJG RRC RSCEA 0R~ AAJAE AARTK AAWGC AAXHV AAYXX ABASK ABEMK ABPDG ABXOH AEFDR AENGV AETIL AFLYV AFOGI AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY 7SR 7TB 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c417t-edb18a9c4ac419830a86d1deb16245285b63b1a600cf092c06c83990a5c7d8253 |
ISSN | 2051-6347 2051-6355 |
IngestDate | Fri Jul 11 11:21:01 EDT 2025 Mon Jun 30 04:01:42 EDT 2025 Thu Apr 24 23:06:39 EDT 2025 Tue Jul 01 01:36:13 EDT 2025 Sat Jan 08 03:48:26 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c417t-edb18a9c4ac419830a86d1deb16245285b63b1a600cf092c06c83990a5c7d8253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7732-1206 0000-0002-4157-4313 0000-0001-6232-9934 |
PQID | 2489271328 |
PQPubID | 2047518 |
PageCount | 25 |
ParticipantIDs | crossref_primary_10_1039_D0MH01245A rsc_primary_d0mh01245a proquest_miscellaneous_2602634730 crossref_citationtrail_10_1039_D0MH01245A proquest_journals_2489271328 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Materials horizons |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Baldo (D0MH01245A-(cit9)/*[position()=1]) 1999; 60 Tang (D0MH01245A-(cit1)/*[position()=1]) 1987; 51 dos Santos (D0MH01245A-(cit90)/*[position()=1]) 2016; 120 Hung (D0MH01245A-(cit78)/*[position()=1]) 2016; 8 Hu (D0MH01245A-(cit67)/*[position()=1]) 2020; 8 Zhang (D0MH01245A-(cit100)/*[position()=1]) 2019; 6 Stewart (D0MH01245A-(cit59)/*[position()=1]) 2013; 117 Liu (D0MH01245A-(cit51)/*[position()=1]) 2018; 1 Swanson (D0MH01245A-(cit8)/*[position()=1]) 1992; 46 Virgili (D0MH01245A-(cit64)/*[position()=1]) 2006; 433 Im (D0MH01245A-(cit68)/*[position()=1]) 2017; 29 Liu (D0MH01245A-(cit99)/*[position()=1]) 2016; 26 Wang (D0MH01245A-(cit50)/*[position()=1]) 2017; 7 Partee (D0MH01245A-(cit14)/*[position()=1]) 1999; 82 Liu (D0MH01245A-(cit75)/*[position()=1]) 2015; 27 Lundberg (D0MH01245A-(cit48)/*[position()=1]) 2019; 10 Kaji (D0MH01245A-(cit26)/*[position()=1]) 2015; 6 Colella (D0MH01245A-(cit111)/*[position()=1]) 2019; 10 Chapran (D0MH01245A-(cit94)/*[position()=1]) 2019; 11 Hung (D0MH01245A-(cit113)/*[position()=1]) 2017; 9 Cintare (D0MH01245A-(cit87)/*[position()=1]) 2018; 6 Goushi (D0MH01245A-(cit71)/*[position()=1]) 2012; 101 Mamada (D0MH01245A-(cit92)/*[position()=1]) 2018; 57 Etherington (D0MH01245A-(cit24)/*[position()=1]) 2016; 7 Al Amin (D0MH01245A-(cit41)/*[position()=1]) 2020; 2 Jailauekov (D0MH01245A-(cit42)/*[position()=1]) 2013; 12 Sasabe (D0MH01245A-(cit2)/*[position()=1]) 2013 Jankus (D0MH01245A-(cit62)/*[position()=1]) 2013; 25 Wu (D0MH01245A-(cit114)/*[position()=1]) 2019; 11 Deptare (D0MH01245A-(cit44)/*[position()=1]) 2015; 14 Cui (D0MH01245A-(cit28)/*[position()=1]) 2017; 8 Jeon (D0MH01245A-(cit101)/*[position()=1]) 2019; 7 Uoyama (D0MH01245A-(cit21)/*[position()=1]) 2012; 492 Liu (D0MH01245A-(cit5)/*[position()=1]) 2018; 3 Zhang (D0MH01245A-(cit27)/*[position()=1]) 2016; 3 Cherpak (D0MH01245A-(cit104)/*[position()=1]) 2015; 7 Nakanotani (D0MH01245A-(cit107)/*[position()=1]) 2014; 5 Zhang (D0MH01245A-(cit23)/*[position()=1]) 2014; 8 Tao (D0MH01245A-(cit3)/*[position()=1]) 2014; 26 Michael (D0MH01245A-(cit4)/*[position()=1]) 2017; 29 Hosokai (D0MH01245A-(cit89)/*[position()=1]) 2017; 3 Zhao (D0MH01245A-(cit40)/*[position()=1]) 2019; 6 Liu (D0MH01245A-(cit85)/*[position()=1]) 2015; 27 Goushi (D0MH01245A-(cit33)/*[position()=1]) 2012; 6 Frederichs (D0MH01245A-(cit54)/*[position()=1]) 2008; 460 Sarma (D0MH01245A-(cit69)/*[position()=1]) 2018; 10 Zhang (D0MH01245A-(cit73)/*[position()=1]) 2014; 6 Wang (D0MH01245A-(cit96)/*[position()=1]) 2020; 8 Hung (D0MH01245A-(cit72)/*[position()=1]) 2013; 5 Jeon (D0MH01245A-(cit112)/*[position()=1]) 2020; 76 Zhang (D0MH01245A-(cit81)/*[position()=1]) 2015; 25 Kim (D0MH01245A-(cit13)/*[position()=1]) 2014; 26 Kim (D0MH01245A-(cit29)/*[position()=1]) 2018; 12 Kolosov (D0MH01245A-(cit61)/*[position()=1]) 2002; 124 Jenekhe (D0MH01245A-(cit60)/*[position()=1]) 1994; 265 Liu (D0MH01245A-(cit52)/*[position()=1]) 2019; 166 Chen (D0MH01245A-(cit77)/*[position()=1]) 2016; 28 Wang (D0MH01245A-(cit39)/*[position()=1]) 2019; 31 Chen (D0MH01245A-(cit82)/*[position()=1]) 2015; 27 Endo (D0MH01245A-(cit20)/*[position()=1]) 2009; 21 Kim (D0MH01245A-(cit34)/*[position()=1]) 2014; 24 Li (D0MH01245A-(cit19)/*[position()=1]) 2014; 24 Wang (D0MH01245A-(cit56)/*[position()=1]) 2019; 7 Yao (D0MH01245A-(cit17)/*[position()=1]) 2014; 53 Li (D0MH01245A-(cit63)/*[position()=1]) 2014; 50 Jankus (D0MH01245A-(cit80)/*[position()=1]) 2014; 24 Simon (D0MH01245A-(cit43)/*[position()=1]) 2014; 343 Oh (D0MH01245A-(cit84)/*[position()=1]) 2015; 119 Yuan (D0MH01245A-(cit110)/*[position()=1]) 2019; 7 Zhang (D0MH01245A-(cit16)/*[position()=1]) 2013; 49 Nishikitani (D0MH01245A-(cit47)/*[position()=1]) 2019 Cai (D0MH01245A-(cit93)/*[position()=1]) 2019; 7 Shizu (D0MH01245A-(cit30)/*[position()=1]) 2015; 3 Adachi (D0MH01245A-(cit11)/*[position()=1]) 2001; 90 Nakanotani (D0MH01245A-(cit108)/*[position()=1]) 2016; 2 Pan (D0MH01245A-(cit18)/*[position()=1]) 2014; 2 Kim (D0MH01245A-(cit25)/*[position()=1]) 2015; 27 Chaudhuri (D0MH01245A-(cit22)/*[position()=1]) 2013; 52 Dias (D0MH01245A-(cit31)/*[position()=1]) 2013; 25 Song (D0MH01245A-(cit46)/*[position()=1]) 2017; 9 Pang (D0MH01245A-(cit45)/*[position()=1]) 2017; 4 Ian (D0MH01245A-(cit57)/*[position()=1]) 1994; 116 Charpran (D0MH01245A-(cit36)/*[position()=1]) 2017; 9 Liu (D0MH01245A-(cit6)/*[position()=1]) 2020; 8 Liang (D0MH01245A-(cit95)/*[position()=1]) 2019; 10 Baldo (D0MH01245A-(cit10)/*[position()=1]) 1998; 395 Im (D0MH01245A-(cit55)/*[position()=1]) 2017; 29 Zhang (D0MH01245A-(cit105)/*[position()=1]) 2019; 7 Liang (D0MH01245A-(cit37)/*[position()=1]) 2017; 5 Charpran (D0MH01245A-(cit65)/*[position()=1]) 2019; 11 Zhang (D0MH01245A-(cit76)/*[position()=1]) 2015; 7 Data (D0MH01245A-(cit91)/*[position()=1]) 2016; 55 Zhong (D0MH01245A-(cit102)/*[position()=1]) 2020; 76 Kim (D0MH01245A-(cit98)/*[position()=1]) 2016; 28 Mo (D0MH01245A-(cit86)/*[position()=1]) 2016; 26 Liu (D0MH01245A-(cit106)/*[position()=1]) 2015; 27 Lin (D0MH01245A-(cit38)/*[position()=1]) 2018; 9 Qin (D0MH01245A-(cit66)/*[position()=1]) 2019; 7 Wang (D0MH01245A-(cit70)/*[position()=1]) 2019; 66 Chung (D0MH01245A-(cit49)/*[position()=1]) 2013; 117 Li (D0MH01245A-(cit15)/*[position()=1]) 2012; 22 Jeon (D0MH01245A-(cit83)/*[position()=1]) 2016; 27 Park (D0MH01245A-(cit97)/*[position()=1]) 2013; 102 Zhang (D0MH01245A-(cit12)/*[position()=1]) 2004; 16 Gibson (D0MH01245A-(cit88)/*[position()=1]) 2016; 17 Hung (D0MH01245A-(cit74)/*[position()=1]) 2014; 4 Valeur (D0MH01245A-(cit53)/*[position()=1]) 2012 Burroughes (D0MH01245A-(cit7)/*[position()=1]) 1990; 347 Zoran (D0MH01245A-(cit58)/*[position()=1]) 1988; 127 Park (D0MH01245A-(cit35)/*[position()=1]) 2013; 135 Nguyen (D0MH01245A-(cit103)/*[position()=1]) 2020; 32 Hirata (D0MH01245A-(cit32)/*[position()=1]) 2015; 14 Li (D0MH01245A-(cit109)/*[position()=1]) 2018; 5 Lin (D0MH01245A-(cit79)/*[position()=1]) 2016; 38 |
References_xml | – issn: 2012 publication-title: Molecular Fluorescence: Principles and Applications doi: Valeur Berberan-santos – volume: 55 start-page: 5739 year: 2016 ident: D0MH01245A-(cit91)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201600113 – volume: 119 start-page: 22618 year: 2015 ident: D0MH01245A-(cit84)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b05292 – volume: 102 start-page: 153306 year: 2013 ident: D0MH01245A-(cit97)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4802716 – volume: 2 start-page: 1501470 year: 2016 ident: D0MH01245A-(cit108)/*[position()=1] publication-title: Nat. Commun. – volume: 2 start-page: 510 year: 2014 ident: D0MH01245A-(cit18)/*[position()=1] publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201300467 – volume: 6 start-page: 1801938 year: 2019 ident: D0MH01245A-(cit100)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201801938 – start-page: 7653 year: 2013 ident: D0MH01245A-(cit2)/*[position()=1] publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201300544 – volume: 120 start-page: 18259 year: 2016 ident: D0MH01245A-(cit90)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b05198 – volume: 9 start-page: 2711 year: 2017 ident: D0MH01245A-(cit46)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b13405 – volume: 12 start-page: 66 year: 2013 ident: D0MH01245A-(cit42)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3500 – volume: 50 start-page: 6174 year: 2014 ident: D0MH01245A-(cit63)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC01590H – volume: 27 start-page: 2025 year: 2015 ident: D0MH01245A-(cit106)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201500013 – volume: 10 start-page: 793 year: 2019 ident: D0MH01245A-(cit111)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b03646 – volume: 22 start-page: 2797 year: 2012 ident: D0MH01245A-(cit15)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200116 – volume: 6 start-page: 1425 year: 2019 ident: D0MH01245A-(cit40)/*[position()=1] publication-title: Mater. Horiz. doi: 10.1039/C9MH00373H – volume: 9 start-page: 3111 year: 2018 ident: D0MH01245A-(cit38)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-05527-4 – volume: 135 start-page: 4757 year: 2013 ident: D0MH01245A-(cit35)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja312197b – volume: 10 start-page: 5307 year: 2019 ident: D0MH01245A-(cit48)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-13289-w – volume: 46 start-page: 15072 year: 1992 ident: D0MH01245A-(cit8)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.46.15072 – volume: 117 start-page: 3909 year: 2013 ident: D0MH01245A-(cit59)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp312029e – volume: 6 start-page: 253 year: 2012 ident: D0MH01245A-(cit33)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.31 – volume: 26 start-page: 2002 year: 2016 ident: D0MH01245A-(cit99)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201505014 – volume: 117 start-page: 11285 year: 2013 ident: D0MH01245A-(cit49)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp401440s – volume: 76 start-page: 105449 year: 2020 ident: D0MH01245A-(cit102)/*[position()=1] publication-title: Org. Electron. doi: 10.1016/j.orgel.2019.105449 – volume: 124 start-page: 9945 year: 2002 ident: D0MH01245A-(cit61)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0263588 – volume: 12 start-page: 98 year: 2018 ident: D0MH01245A-(cit29)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/s41566-017-0087-y – volume: 6 start-page: 11907 year: 2014 ident: D0MH01245A-(cit73)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am501164s – volume: 3 start-page: 18020 year: 2018 ident: D0MH01245A-(cit5)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2018.20 – volume: 31 start-page: 1904114 year: 2019 ident: D0MH01245A-(cit39)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201904114 – volume: 265 start-page: 765 year: 1994 ident: D0MH01245A-(cit60)/*[position()=1] publication-title: Science doi: 10.1126/science.265.5173.765 – volume: 8 start-page: 2700 year: 2020 ident: D0MH01245A-(cit96)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C9TC06212B – volume: 9 start-page: 7355 year: 2017 ident: D0MH01245A-(cit113)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b16083 – volume: 5 start-page: 6826 year: 2013 ident: D0MH01245A-(cit72)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am402032z – volume: 82 start-page: 18 year: 1999 ident: D0MH01245A-(cit14)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.82.3673 – volume: 3 start-page: e1603282 year: 2017 ident: D0MH01245A-(cit89)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.1603282 – volume: 166 start-page: 416 year: 2019 ident: D0MH01245A-(cit52)/*[position()=1] publication-title: Dyes Pigm. doi: 10.1016/j.dyepig.2019.03.053 – volume: 6 start-page: 1543 year: 2018 ident: D0MH01245A-(cit87)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C7TC05392D – volume: 16 start-page: 5 year: 2004 ident: D0MH01245A-(cit12)/*[position()=1] publication-title: Adv. Mater. – volume: 21 start-page: 4802 year: 2009 ident: D0MH01245A-(cit20)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200900983 – volume: 27 start-page: 5206 year: 2015 ident: D0MH01245A-(cit82)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b01188 – volume: 26 start-page: 7931 year: 2014 ident: D0MH01245A-(cit3)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201402532 – volume: 24 start-page: 1609 year: 2014 ident: D0MH01245A-(cit19)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201301750 – volume: 25 start-page: 3707 year: 2013 ident: D0MH01245A-(cit31)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201300753 – volume: 14 start-page: 1130 year: 2015 ident: D0MH01245A-(cit44)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4424 – volume: 4 start-page: 5161 year: 2014 ident: D0MH01245A-(cit74)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep05161 – volume: 11 start-page: 13460 year: 2019 ident: D0MH01245A-(cit65)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b18284 – volume: 29 start-page: 1946 year: 2017 ident: D0MH01245A-(cit68)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b05324 – volume: 2 start-page: 1011 year: 2020 ident: D0MH01245A-(cit41)/*[position()=1] publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.0c00062 – volume: 10 start-page: 19279 year: 2018 ident: D0MH01245A-(cit69)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b18318 – volume: 14 start-page: 330 year: 2015 ident: D0MH01245A-(cit32)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4154 – volume: 7 start-page: 1801554 year: 2019 ident: D0MH01245A-(cit93)/*[position()=1] publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201801554 – volume: 26 start-page: 3844 year: 2014 ident: D0MH01245A-(cit13)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201305733 – volume: 27 start-page: 2515 year: 2015 ident: D0MH01245A-(cit25)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201500267 – volume: 5 start-page: 2397 year: 2017 ident: D0MH01245A-(cit37)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C6TC05264A – volume: 8 start-page: 326 year: 2014 ident: D0MH01245A-(cit23)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2014.12 – volume: 7 start-page: 24983 year: 2015 ident: D0MH01245A-(cit76)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05597 – volume: 343 start-page: 512 year: 2014 ident: D0MH01245A-(cit43)/*[position()=1] publication-title: Science doi: 10.1126/science.1249625 – volume: 7 start-page: 1219 year: 2015 ident: D0MH01245A-(cit104)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am507050g – volume: 49 start-page: 11302 year: 2013 ident: D0MH01245A-(cit16)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c3cc47130f – volume-title: Molecular Fluorescence: Principles and Applications year: 2012 ident: D0MH01245A-(cit53)/*[position()=1] doi: 10.1002/9783527650002 – volume: 8 start-page: 5636 year: 2020 ident: D0MH01245A-(cit6)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/D0TC00085J – volume: 11 start-page: 13460 year: 2019 ident: D0MH01245A-(cit94)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b18284 – volume: 57 start-page: 04218 year: 2018 ident: D0MH01245A-(cit92)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201804218 – volume: 76 start-page: 105477 year: 2020 ident: D0MH01245A-(cit112)/*[position()=1] publication-title: Org. Electron. doi: 10.1016/j.orgel.2019.105477 – volume: 116 start-page: 8176 year: 1994 ident: D0MH01245A-(cit57)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00097a027 – volume: 7 start-page: 16 year: 2019 ident: D0MH01245A-(cit105)/*[position()=1] publication-title: Front. Chem. doi: 10.3389/fchem.2019.00016 – volume: 492 start-page: 234 year: 2012 ident: D0MH01245A-(cit21)/*[position()=1] publication-title: Nature doi: 10.1038/nature11687 – volume: 7 start-page: 1801160 year: 2019 ident: D0MH01245A-(cit66)/*[position()=1] publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201801160 – volume: 27 start-page: 224001 year: 2016 ident: D0MH01245A-(cit83)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/27/22/224001 – volume: 8 start-page: 4811 year: 2016 ident: D0MH01245A-(cit78)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b11895 – volume: 27 start-page: 7079 year: 2015 ident: D0MH01245A-(cit75)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201502897 – volume: 51 start-page: 913 year: 1987 ident: D0MH01245A-(cit1)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.98799 – volume: 29 start-page: 1605444 year: 2017 ident: D0MH01245A-(cit4)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201605444 – volume: 90 start-page: 5048 year: 2001 ident: D0MH01245A-(cit11)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.1409582 – volume: 10 start-page: 2811 year: 2019 ident: D0MH01245A-(cit95)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b01140 – volume: 38 start-page: 69 year: 2016 ident: D0MH01245A-(cit79)/*[position()=1] publication-title: Org. Electron. doi: 10.1016/j.orgel.2016.08.001 – volume: 6 start-page: 8476 year: 2015 ident: D0MH01245A-(cit26)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms9476 – start-page: 1907309 year: 2019 ident: D0MH01245A-(cit47)/*[position()=1] publication-title: Adv. Funct. Mater. – volume: 25 start-page: 1455 year: 2013 ident: D0MH01245A-(cit62)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201203615 – volume: 7 start-page: 40842 year: 2017 ident: D0MH01245A-(cit50)/*[position()=1] publication-title: RSC Adv doi: 10.1039/C7RA08142A – volume: 5 start-page: 1800025 year: 2018 ident: D0MH01245A-(cit109)/*[position()=1] publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201800025 – volume: 60 start-page: 422 year: 1999 ident: D0MH01245A-(cit9)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.60.14422 – volume: 395 start-page: 151 year: 1998 ident: D0MH01245A-(cit10)/*[position()=1] publication-title: Nature doi: 10.1038/25954 – volume: 460 start-page: 116 year: 2008 ident: D0MH01245A-(cit54)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2008.05.086 – volume: 24 start-page: 6178 year: 2014 ident: D0MH01245A-(cit80)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201400948 – volume: 28 start-page: 239 year: 2016 ident: D0MH01245A-(cit77)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201504290 – volume: 53 start-page: 2119 year: 2014 ident: D0MH01245A-(cit17)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201308486 – volume: 17 start-page: 2956 year: 2016 ident: D0MH01245A-(cit88)/*[position()=1] publication-title: ChemPhysChem doi: 10.1002/cphc.201600662 – volume: 32 start-page: 1906614 year: 2020 ident: D0MH01245A-(cit103)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201906614 – volume: 24 start-page: 2746 year: 2014 ident: D0MH01245A-(cit34)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201302924 – volume: 7 start-page: 11329 year: 2019 ident: D0MH01245A-(cit56)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C9TC03092A – volume: 7 start-page: 13680 year: 2016 ident: D0MH01245A-(cit24)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms13680 – volume: 11 start-page: 19294 year: 2019 ident: D0MH01245A-(cit114)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b04365 – volume: 7 start-page: 1801462 year: 2019 ident: D0MH01245A-(cit101)/*[position()=1] publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201801462 – volume: 9 start-page: 4750 year: 2017 ident: D0MH01245A-(cit36)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b13689 – volume: 27 start-page: 2378 year: 2015 ident: D0MH01245A-(cit85)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201405062 – volume: 66 start-page: 227 year: 2019 ident: D0MH01245A-(cit70)/*[position()=1] publication-title: Org. Electron. doi: 10.1016/j.orgel.2018.12.039 – volume: 29 start-page: 1946 year: 2017 ident: D0MH01245A-(cit55)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b05324 – volume: 101 start-page: 0233060 year: 2012 ident: D0MH01245A-(cit71)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4737006 – volume: 127 start-page: 451 year: 1988 ident: D0MH01245A-(cit58)/*[position()=1] publication-title: Chem. Phys. doi: 10.1016/0301-0104(88)87143-X – volume: 4 start-page: 1899 year: 2017 ident: D0MH01245A-(cit45)/*[position()=1] publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b00567 – volume: 1 start-page: 185 year: 2018 ident: D0MH01245A-(cit51)/*[position()=1] publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.8b00116 – volume: 28 start-page: 1936 year: 2016 ident: D0MH01245A-(cit98)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00478 – volume: 52 start-page: 13449 year: 2013 ident: D0MH01245A-(cit22)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201307601 – volume: 3 start-page: 145 year: 2016 ident: D0MH01245A-(cit27)/*[position()=1] publication-title: Mater. Horiz. doi: 10.1039/C5MH00258C – volume: 25 start-page: 6 year: 2015 ident: D0MH01245A-(cit81)/*[position()=1] publication-title: Org. Electron. doi: 10.1016/j.orgel.2015.06.017 – volume: 26 start-page: 6703 year: 2016 ident: D0MH01245A-(cit86)/*[position()=1] publication-title: Adv. Mater. – volume: 7 start-page: 1801648 year: 2019 ident: D0MH01245A-(cit110)/*[position()=1] publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201801648 – volume: 8 start-page: 1901917 year: 2020 ident: D0MH01245A-(cit67)/*[position()=1] publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201901917 – volume: 347 start-page: 539 year: 1990 ident: D0MH01245A-(cit7)/*[position()=1] publication-title: Nature doi: 10.1038/347539a0 – volume: 5 start-page: 4016 year: 2014 ident: D0MH01245A-(cit107)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms5016 – volume: 3 start-page: 108 year: 2015 ident: D0MH01245A-(cit30)/*[position()=1] publication-title: ITE Trans. Media Technol. Appl. doi: 10.3169/mta.3.108 – volume: 433 start-page: 145 year: 2006 ident: D0MH01245A-(cit64)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2006.11.033 – volume: 8 start-page: 2250 year: 2017 ident: D0MH01245A-(cit28)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-017-02419-x |
SSID | ssj0001345080 |
Score | 2.5408971 |
SecondaryResourceType | review_article |
Snippet | Owing to their natural thermally activated delayed fluorescence (TADF) characteristics, the development of exciplex emitters for organic light-emitting diodes... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 41 |
SubjectTerms | Charge transfer Electroluminescence Emitters Emitters (electron) Fluorescence Light emitting diodes Organic light emitting diodes |
Title | Thermally activated delayed fluorescence exciplex emitters for high-performance organic light-emitting diodes |
URI | https://www.proquest.com/docview/2489271328 https://www.proquest.com/docview/2602634730 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67QIHxNdEYSAjuKAqI4mdxD5OY6hMKxc6abfKcWwtUtpMXYO2HfjbebbjJPs4DC5J6zpukvfz8_Oz3-8h9FkoJvO0yINQExLQTMuACa0DTjlVWawLLYxrYPYznZ7S47PkbDT6M4wu2eT78ubBuJL_kSqUgVxNlOw_SLZrFArgM8gXjiBhOD5WxqBXq-raUmL8FsZ6NKyP13DWVVOvLVcT9Fx1ZR3qVxO1LC2fpt1daKiKg4tB5IBL8SQnlWUXsXWNJ6Eo66LdauhzP4mNe77Jeb0ub7zLb-iAnvkx0RYqV3goyuC46XcBOQKDaVP2DgTruv1VBifN0CERR34Ps9dbMfTzICWOSHNfDcscI69XvGyAr3igRGnbmhuPqQuMvqfqQ2KYUr-FsymMsTTpyFJ7Pu0741y3-9CuuxO-6K_dQjsxTDNAse8cHM1_nPReOkLBgjWOuu6pPMct4V_7Bm5bNf1UZWvt88hYe2X-HD1rJxr4wKHmBRqp1Uv0dEA_-QotO_zgDj-4xQ8e4gd7_GCPHwyYwXfxg1v84Nv4wQ4_r9Hp96P54TRo028EkkYZ1CryiAkuqYDvnJFQsLSIChjcU7Ncz5I8JXkkwGKWOuSxDFMJ1jYPRSKzgsUJ2UXbq3ql3iDMoQmiuGIwH6G0SBnPuZI6VTlYp1SHY_TFv76FbLnpTYqUanFfVmP0qat74RhZHqy156WwaHvs5SKmjMdZRGI2Rh-7n0GfmkUysVJ1A3VMTjYQM4Gb2gXpdf9RhMtz27Z4-6g7eIee9L1jD21v1o16DwbsJv_Qouwv8QOduA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermally+activated+delayed+fluorescence+exciplex+emitters+for+high-performance+organic+light-emitting+diodes&rft.jtitle=Materials+horizons&rft.au=Zhang%2C+Ming&rft.au=Zheng%2C+Cai-Jun&rft.au=Lin%2C+Hui&rft.au=Tao%2C+Si-Lu&rft.date=2021-02-01&rft.issn=2051-6347&rft.eissn=2051-6355&rft.volume=8&rft.issue=2&rft.spage=401&rft.epage=425&rft_id=info:doi/10.1039%2FD0MH01245A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D0MH01245A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-6347&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-6347&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-6347&client=summon |