Abortive intrabronchial infection of rhesus macaques with varicella-zoster virus provides partial protection against simian varicella virus challenge

Varicella-zoster virus (VZV) is a human neurotropic alphaherpesvirus and the etiological agent of varicella (chickenpox) and herpes zoster (HZ, shingles). Previously, inoculation of monkeys via the subcutaneous, intratracheal, intravenous, or oral-nasal-conjunctival routes did not recapitulate all t...

Full description

Saved in:
Bibliographic Details
Published inJournal of virology Vol. 89; no. 3; pp. 1781 - 1793
Main Authors Meyer, Christine, Engelmann, Flora, Arnold, Nicole, Krah, David L, ter Meulen, Jan, Haberthur, Kristen, Dewane, Jesse, Messaoudi, Ilhem
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Varicella-zoster virus (VZV) is a human neurotropic alphaherpesvirus and the etiological agent of varicella (chickenpox) and herpes zoster (HZ, shingles). Previously, inoculation of monkeys via the subcutaneous, intratracheal, intravenous, or oral-nasal-conjunctival routes did not recapitulate all the hallmarks of VZV infection, including varicella, immunity, latency, and reactivation. Intrabronchial inoculation of rhesus macaques (RMs) with simian varicella virus (SVV), a homolog of VZV, recapitulates virologic and immunologic hallmarks of VZV infection in humans. Given that VZV is acquired primarily via the respiratory route, we investigated whether intrabronchial inoculation of RMs with VZV would result in a robust model. Despite the lack of varicella and viral replication in either the lungs or whole blood, all four RMs generated an immune response characterized by the generation of VZV-specific antibodies and T cells. Two of 4 VZV-inoculated RMs were challenged with SVV to determine cross-protection. VZV-immune RMs displayed no varicella rash and had lower SVV viral loads and earlier and stronger humoral and cellular immune responses than controls. In contrast to the results for SVV DNA, no VZV DNA was detected in sensory ganglia at necropsy. In summary, following an abortive VZV infection, RMs developed an adaptive immune response that conferred partial protection against SVV challenge. These data suggest that a replication-incompetent VZV vaccine that does not establish latency may provide sufficient protection against VZV disease and that VZV vaccination of RMs followed by SVV challenge provides a model to evaluate new vaccines and therapeutics against VZV. Although VZV vaccine strain Oka is attenuated, it can cause mild varicella, establish latency, and in rare cases, reactivate to cause herpes zoster (HZ). Moreover, studies suggest that the HZ vaccine (Zostavax) only confers short-lived immunity. The development of more efficacious vaccines would be facilitated by a robust animal model of VZV infection. The data presented in this report show that intrabronchial inoculation of rhesus macaques (RMs) with VZV resulted in an abortive VZV infection. Nevertheless, all animals generated a humoral and cellular immune response that conferred partial cross-protection against simian varicella virus (SVV) challenge. Additionally, VZV DNA was not detected in the sensory ganglia, suggesting that viremia might be required for the establishment of latency. Therefore, VZV vaccination of RMs followed by SVV challenge is a model that will support the development of vaccines that boost protective T cell responses against VZV.
AbstractList ABSTRACT Varicella-zoster virus (VZV) is a human neurotropic alphaherpesvirus and the etiological agent of varicella (chickenpox) and herpes zoster (HZ, shingles). Previously, inoculation of monkeys via the subcutaneous, intratracheal, intravenous, or oral-nasal-conjunctival routes did not recapitulate all the hallmarks of VZV infection, including varicella, immunity, latency, and reactivation. Intrabronchial inoculation of rhesus macaques (RMs) with simian varicella virus (SVV), a homolog of VZV, recapitulates virologic and immunologic hallmarks of VZV infection in humans. Given that VZV is acquired primarily via the respiratory route, we investigated whether intrabronchial inoculation of RMs with VZV would result in a robust model. Despite the lack of varicella and viral replication in either the lungs or whole blood, all four RMs generated an immune response characterized by the generation of VZV-specific antibodies and T cells. Two of 4 VZV-inoculated RMs were challenged with SVV to determine cross-protection. VZV-immune RMs displayed no varicella rash and had lower SVV viral loads and earlier and stronger humoral and cellular immune responses than controls. In contrast to the results for SVV DNA, no VZV DNA was detected in sensory ganglia at necropsy. In summary, following an abortive VZV infection, RMs developed an adaptive immune response that conferred partial protection against SVV challenge. These data suggest that a replication-incompetent VZV vaccine that does not establish latency may provide sufficient protection against VZV disease and that VZV vaccination of RMs followed by SVV challenge provides a model to evaluate new vaccines and therapeutics against VZV. IMPORTANCE Although VZV vaccine strain Oka is attenuated, it can cause mild varicella, establish latency, and in rare cases, reactivate to cause herpes zoster (HZ). Moreover, studies suggest that the HZ vaccine (Zostavax) only confers short-lived immunity. The development of more efficacious vaccines would be facilitated by a robust animal model of VZV infection. The data presented in this report show that intrabronchial inoculation of rhesus macaques (RMs) with VZV resulted in an abortive VZV infection. Nevertheless, all animals generated a humoral and cellular immune response that conferred partial cross-protection against simian varicella virus (SVV) challenge. Additionally, VZV DNA was not detected in the sensory ganglia, suggesting that viremia might be required for the establishment of latency. Therefore, VZV vaccination of RMs followed by SVV challenge is a model that will support the development of vaccines that boost protective T cell responses against VZV.
Varicella-zoster virus (VZV) is a human neurotropic alphaherpesvirus and the etiological agent of varicella (chickenpox) and herpes zoster (HZ, shingles). Previously, inoculation of monkeys via the subcutaneous, intratracheal, intravenous, or oral-nasal-conjunctival routes did not recapitulate all the hallmarks of VZV infection, including varicella, immunity, latency, and reactivation. Intrabronchial inoculation of rhesus macaques (RMs) with simian varicella virus (SVV), a homolog of VZV, recapitulates virologic and immunologic hallmarks of VZV infection in humans. Given that VZV is acquired primarily via the respiratory route, we investigated whether intrabronchial inoculation of RMs with VZV would result in a robust model. Despite the lack of varicella and viral replication in either the lungs or whole blood, all four RMs generated an immune response characterized by the generation of VZV-specific antibodies and T cells. Two of 4 VZV-inoculated RMs were challenged with SVV to determine cross-protection. VZV-immune RMs displayed no varicella rash and had lower SVV viral loads and earlier and stronger humoral and cellular immune responses than controls. In contrast to the results for SVV DNA, no VZV DNA was detected in sensory ganglia at necropsy. In summary, following an abortive VZV infection, RMs developed an adaptive immune response that conferred partial protection against SVV challenge. These data suggest that a replication-incompetent VZV vaccine that does not establish latency may provide sufficient protection against VZV disease and that VZV vaccination of RMs followed by SVV challenge provides a model to evaluate new vaccines and therapeutics against VZV. Although VZV vaccine strain Oka is attenuated, it can cause mild varicella, establish latency, and in rare cases, reactivate to cause herpes zoster (HZ). Moreover, studies suggest that the HZ vaccine (Zostavax) only confers short-lived immunity. The development of more efficacious vaccines would be facilitated by a robust animal model of VZV infection. The data presented in this report show that intrabronchial inoculation of rhesus macaques (RMs) with VZV resulted in an abortive VZV infection. Nevertheless, all animals generated a humoral and cellular immune response that conferred partial cross-protection against simian varicella virus (SVV) challenge. Additionally, VZV DNA was not detected in the sensory ganglia, suggesting that viremia might be required for the establishment of latency. Therefore, VZV vaccination of RMs followed by SVV challenge is a model that will support the development of vaccines that boost protective T cell responses against VZV.
UNLABELLEDVaricella-zoster virus (VZV) is a human neurotropic alphaherpesvirus and the etiological agent of varicella (chickenpox) and herpes zoster (HZ, shingles). Previously, inoculation of monkeys via the subcutaneous, intratracheal, intravenous, or oral-nasal-conjunctival routes did not recapitulate all the hallmarks of VZV infection, including varicella, immunity, latency, and reactivation. Intrabronchial inoculation of rhesus macaques (RMs) with simian varicella virus (SVV), a homolog of VZV, recapitulates virologic and immunologic hallmarks of VZV infection in humans. Given that VZV is acquired primarily via the respiratory route, we investigated whether intrabronchial inoculation of RMs with VZV would result in a robust model. Despite the lack of varicella and viral replication in either the lungs or whole blood, all four RMs generated an immune response characterized by the generation of VZV-specific antibodies and T cells. Two of 4 VZV-inoculated RMs were challenged with SVV to determine cross-protection. VZV-immune RMs displayed no varicella rash and had lower SVV viral loads and earlier and stronger humoral and cellular immune responses than controls. In contrast to the results for SVV DNA, no VZV DNA was detected in sensory ganglia at necropsy. In summary, following an abortive VZV infection, RMs developed an adaptive immune response that conferred partial protection against SVV challenge. These data suggest that a replication-incompetent VZV vaccine that does not establish latency may provide sufficient protection against VZV disease and that VZV vaccination of RMs followed by SVV challenge provides a model to evaluate new vaccines and therapeutics against VZV.IMPORTANCEAlthough VZV vaccine strain Oka is attenuated, it can cause mild varicella, establish latency, and in rare cases, reactivate to cause herpes zoster (HZ). Moreover, studies suggest that the HZ vaccine (Zostavax) only confers short-lived immunity. The development of more efficacious vaccines would be facilitated by a robust animal model of VZV infection. The data presented in this report show that intrabronchial inoculation of rhesus macaques (RMs) with VZV resulted in an abortive VZV infection. Nevertheless, all animals generated a humoral and cellular immune response that conferred partial cross-protection against simian varicella virus (SVV) challenge. Additionally, VZV DNA was not detected in the sensory ganglia, suggesting that viremia might be required for the establishment of latency. Therefore, VZV vaccination of RMs followed by SVV challenge is a model that will support the development of vaccines that boost protective T cell responses against VZV.
Varicella-zoster virus (VZV) is a human neurotropic alphaherpesvirus and the etiological agent of varicella (chickenpox) and herpes zoster (HZ, shingles). Previously, inoculation of monkeys via the subcutaneous, intratracheal, intravenous, or oral-nasal-conjunctival routes did not recapitulate all the hallmarks of VZV infection, including varicella, immunity, latency, and reactivation. Intrabronchial inoculation of rhesus macaques (RMs) with simian varicella virus (SVV), a homolog of VZV, recapitulates virologic and immunologic hallmarks of VZV infection in humans. Given that VZV is acquired primarily via the respiratory route, we investigated whether intrabronchial inoculation of RMs with VZV would result in a robust model. Despite the lack of varicella and viral replication in either the lungs or whole blood, all four RMs generated an immune response characterized by the generation of VZV-specific antibodies and T cells. Two of 4 VZV-inoculated RMs were challenged with SVV to determine cross-protection. VZV-immune RMs displayed no varicella rash and had lower SVV viral loads and earlier and stronger humoral and cellular immune responses than controls. In contrast to the results for SVV DNA, no VZV DNA was detected in sensory ganglia at necropsy. In summary, following an abortive VZV infection, RMs developed an adaptive immune response that conferred partial protection against SVV challenge. These data suggest that a replication-incompetent VZV vaccine that does not establish latency may provide sufficient protection against VZV disease and that VZV vaccination of RMs followed by SVV challenge provides a model to evaluate new vaccines and therapeutics against VZV. IMPORTANCE Although VZV vaccine strain Oka is attenuated, it can cause mild varicella, establish latency, and in rare cases, reactivate to cause herpes zoster (HZ). Moreover, studies suggest that the HZ vaccine (Zostavax) only confers short-lived immunity. The development of more efficacious vaccines would be facilitated by a robust animal model of VZV infection. The data presented in this report show that intrabronchial inoculation of rhesus macaques (RMs) with VZV resulted in an abortive VZV infection. Nevertheless, all animals generated a humoral and cellular immune response that conferred partial cross-protection against simian varicella virus (SVV) challenge. Additionally, VZV DNA was not detected in the sensory ganglia, suggesting that viremia might be required for the establishment of latency. Therefore, VZV vaccination of RMs followed by SVV challenge is a model that will support the development of vaccines that boost protective T cell responses against VZV.
Varicella-zoster virus (VZV) is a human neurotropic alphaherpesvirus and the etiological agent of varicella (chickenpox) and herpes zoster (HZ, shingles). Previously, inoculation of monkeys via the subcutaneous, intratracheal, intravenous, or oral-nasal-conjunctival routes did not recapitulate all the hallmarks of VZV infection, including varicella, immunity, latency, and reactivation. Intrabronchial inoculation of rhesus macaques (RMs) with simian varicella virus (SVV), a homolog of VZV, recapitulates virologic and immunologic hallmarks of VZV infection in humans. Given that VZV is acquired primarily via the respiratory route, we investigated whether intrabronchial inoculation of RMs with VZV would result in a robust model. Despite the lack of varicella and viral replication in either the lungs or whole blood, all four RMs generated an immune response characterized by the generation of VZV-specific antibodies and T cells. Two of 4 VZV-inoculated RMs were challenged with SVV to determine cross-protection. VZV-immune RMs displayed no varicella rash and had lower SVV viral loads and earlier and stronger humoral and cellular immune responses than controls. In contrast to the results for SVV DNA, no VZV DNA was detected in sensory ganglia at necropsy. In summary, following an abortive VZV infection, RMs developed an adaptive immune response that conferred partial protection against SVV challenge. These data suggest that a replication-incompetent VZV vaccine that does not establish latency may provide sufficient protection against VZV disease and that VZV vaccination of RMs followed by SVV challenge provides a model to evaluate new vaccines and therapeutics against VZV. IMPORTANCE Although VZV vaccine strain Oka is attenuated, it can cause mild varicella, establish latency, and in rare cases, reactivate to cause herpes zoster (HZ). Moreover, studies suggest that the HZ vaccine (Zostavax) only confers short-lived immunity. The development of more efficacious vaccines would be facilitated by a robust animal model of VZV infection. The data presented in this report show that intrabronchial inoculation of rhesus macaques (RMs) with VZV resulted in an abortive VZV infection. Nevertheless, all animals generated a humoral and cellular immune response that conferred partial cross-protection against simian varicella virus (SVV) challenge. Additionally, VZV DNA was not detected in the sensory ganglia, suggesting that viremia might be required for the establishment of latency. Therefore, VZV vaccination of RMs followed by SVV challenge is a model that will support the development of vaccines that boost protective T cell responses against VZV.
Author Meyer, Christine
Dewane, Jesse
Engelmann, Flora
Arnold, Nicole
ter Meulen, Jan
Messaoudi, Ilhem
Haberthur, Kristen
Krah, David L
Author_xml – sequence: 1
  givenname: Christine
  surname: Meyer
  fullname: Meyer, Christine
  organization: Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, USA
– sequence: 2
  givenname: Flora
  surname: Engelmann
  fullname: Engelmann, Flora
  organization: Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
– sequence: 3
  givenname: Nicole
  surname: Arnold
  fullname: Arnold, Nicole
  organization: Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
– sequence: 4
  givenname: David L
  surname: Krah
  fullname: Krah, David L
  organization: Vaccine Analytical Development, Merck Sharp and Dohme Corp., West Point, Pennsylvania, USA
– sequence: 5
  givenname: Jan
  surname: ter Meulen
  fullname: ter Meulen, Jan
  organization: Immune Design, Seattle, Washington, USA
– sequence: 6
  givenname: Kristen
  surname: Haberthur
  fullname: Haberthur, Kristen
  organization: Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
– sequence: 7
  givenname: Jesse
  surname: Dewane
  fullname: Dewane, Jesse
  organization: Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, USA
– sequence: 8
  givenname: Ilhem
  surname: Messaoudi
  fullname: Messaoudi, Ilhem
  email: messaoud@ucr.edu
  organization: Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, USA Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA messaoud@ucr.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25410871$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhi3Uim4LN84oRw6kePyReC9IVQW0VaVeCuJmTbzOxiixF9ubCv4H_xdvuxS49WTZ8_jRzLzH5MAHbwl5BfQUgKl3V18uTykHJmoQz8gC6FLVUoI4IAtKGaslV1-PyHFK3ygFIRrxnBwxKYCqFhbk11kXYnazrZzPEbsYvBkcjuXaW5Nd8FXoqzjYtE3VhAa_b22q7lweqhmjM3Ycsf4ZUraxml0s0CaG2a0KtMEiLqbykPcqXKPzKVfJTQ79X8P-qxlwHK1f2xfksMcx2Zf784R8_vjh9vyivr75dHl-dl0bAW2urWlpI1ZGKrNsBVOWt6oB7DvGmenKrK1aio5zRAsNwwaBdZJJXK5sb_re8BPy_sG72XaTXRm728GoN9FNGH_ogE7_X_Fu0Oswa8EpbaUogjd7QQy7zWQ9uXQ_krdhmzQ0DRVcSCmfgErGlQDRFvTtA2piSCna_rEjoHoXui6h6_vQNeyaeP3vFI_wn5T5b9jUrzE
CitedBy_id crossref_primary_10_1111_cei_12809
crossref_primary_10_1186_s42826_021_00091_3
crossref_primary_10_12688_f1000research_7153_1
crossref_primary_10_3389_fmicb_2018_03170
crossref_primary_10_1111_cei_12646
crossref_primary_10_3390_vaccines9040310
crossref_primary_10_1016_j_vaccine_2020_06_062
crossref_primary_10_3389_fcimb_2022_943587
crossref_primary_10_3390_v14061214
crossref_primary_10_1128_JVI_01375_18
Cites_doi 10.1016/0042-6822(84)90263-0
10.1371/journal.ppat.1000657
10.1542/peds.18.1.109
10.1016/j.ophtha.2007.10.009
10.1086/653605
10.1099/0022-1317-73-5-1209
10.1007/s00705-010-0889-4
10.1086/379048
10.1056/NEJM198002213020807
10.1093/cid/ciu058
10.3181/00379727-166-41071
10.1056/NEJMoa021662
10.1128/JVI.76.22.11447-11459.2002
10.1128/iai.15.3.807-812.1977
10.1128/iai.12.2.261-266.1975
10.1080/13550280390201722
10.1016/S1386-6532(10)70002-0
10.1136/bmj.321.7264.794
10.1371/journal.ppat.1002367
10.1016/j.anl.2006.09.005
10.1073/pnas.95.20.11969
10.1128/JVI.06264-11
10.1086/514261
10.1073/pnas.0501045102
10.1038/labinvest.2013.128
10.1016/S0022-3476(84)80113-4
10.4049/jimmunol.168.1.29
10.1542/peds.68.5.735
10.1016/j.jdermsci.2012.10.015
10.1086/528696
10.3389/fimmu.2012.00302
10.1186/1471-2180-13-284
10.1128/JVI.76.22.11425-11433.2002
10.1086/517426
10.1086/605611
10.3109/08830189809042997
10.1093/infdis/165.1.119
10.1002/jmv.1890140403
10.1016/j.vaccine.2012.04.059
10.1002/jmv.1890230403
10.1086/340868
10.1099/0022-1317-42-1-171
10.1097/INF.0b013e318259fc8a
10.1086/382029
10.1542/peds.2010-3385
10.1086/514077
10.1093/infdis/169.1.91
10.1038/nrmicro3215
10.1016/j.vaccine.2014.03.057
10.1093/infdis/163.4.746
10.1128/iai.37.2.407-412.1982
10.1128/JVI.74.18.8413-8424.2000
10.1128/jvi.61.10.2951-2955.1987
10.1093/infdis/171.1.13
10.1186/1743-422X-10-278
10.1056/NEJMoa051016
10.1084/jem.20040634
10.1016/S0264-410X(02)00245-1
10.1086/651199
10.1006/viro.2001.0912
10.1056/NEJM196905292802201
10.1097/00008480-200402000-00015
10.1099/0022-1317-55-1-207
10.1093/cid/cis638
10.1128/JVI.72.2.965-974.1998
10.1093/infdis/142.3.414
10.1002/(SICI)1096-9071(199612)50:4<289::AID-JMV2>3.0.CO;2-4
10.1016/0168-1702(92)90017-4
10.1016/S0022-3476(81)80697-X
10.1093/infdis/127.6.617
10.1007/82_2010_27
10.1007/s13365-011-0069-7
10.1128/JVI.00407-13
10.1002/jmv.1890220403
10.1086/522159
10.1093/infdis/137.5.531
10.1002/jnr.490260110
10.1128/jvi.69.9.5236-5242.1995
10.1016/0042-6822(92)90022-H
10.1128/JVI.01148-07
10.1002/rmv.1789
10.1093/infdis/149.4.501
10.1016/j.vaccine.2009.10.086
10.1016/j.brainresrev.2004.07.008
ContentType Journal Article
Copyright Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology
Copyright_xml – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved.
– notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7U9
H94
5PM
DOI 10.1128/JVI.03124-14
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
AIDS and Cancer Research Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate VZV Protects Rhesus Macaques from SVV Challenge
EISSN 1098-5514
Editor Longnecker, R. M.
Editor_xml – sequence: 1
  givenname: R. M.
  surname: Longnecker
  fullname: Longnecker, R. M.
EndPage 1793
ExternalDocumentID 10_1128_JVI_03124_14
25410871
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: NIH R01AG037042
– fundername: NIH HHS
  grantid: U42 OD010426
– fundername: NIA NIH HHS
  grantid: R01 AG037042
– fundername: NIAID NIH HHS
  grantid: 2T32AI007472-16
– fundername: NIAID NIH HHS
  grantid: T32 AI007472
– fundername: NIH HHS
  grantid: P51 OD011092
– fundername: NIH HHS
  grantid: NIH 8P51 OD011092-53
GroupedDBID ---
-~X
.55
.GJ
0R~
18M
29L
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
6TJ
85S
AAYJJ
ABPPZ
ACGFO
ACNCT
ADBBV
AENEX
AFFNX
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CGR
CS3
CUY
CVF
D0S
DIK
E3Z
EBS
ECM
EIF
EJD
F20
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
MVM
N9A
NPM
O9-
OHT
OK1
P2P
RHF
RHI
RNS
RPM
RSF
TR2
UCJ
UPT
VH1
W2D
W8F
WH7
WOQ
X7M
Y6R
YQT
ZGI
ZXP
~02
~KM
AAYXX
CITATION
7X8
7U9
H94
5PM
ID FETCH-LOGICAL-c417t-ec7064dc58c97428e37861afb232cb4467894b33aae162a6a12b525a9defcffc3
IEDL.DBID RPM
ISSN 0022-538X
IngestDate Tue Sep 17 20:55:47 EDT 2024
Fri Oct 25 05:32:20 EDT 2024
Fri Oct 25 21:46:21 EDT 2024
Thu Sep 12 17:16:36 EDT 2024
Sat Sep 28 08:04:24 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Copyright © 2015, American Society for Microbiology. All Rights Reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-ec7064dc58c97428e37861afb232cb4467894b33aae162a6a12b525a9defcffc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Meyer C, Engelmann F, Arnold N, Krah DL, ter Meulen J, Haberthur K, Dewane J, Messaoudi I. 2015. Abortive intrabronchial infection of rhesus macaques with varicella-zoster virus provides partial protection against simian varicella virus challenge. J Virol 89:1781–1793. doi:10.1128/JVI.03124-14.
OpenAccessLink https://jvi.asm.org/content/jvi/89/3/1781.full.pdf
PMID 25410871
PQID 1652384147
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4300754
proquest_miscellaneous_1660434555
proquest_miscellaneous_1652384147
crossref_primary_10_1128_JVI_03124_14
pubmed_primary_25410871
PublicationCentury 2000
PublicationDate 2015-02-01
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of virology
PublicationTitleAlternate J Virol
PublicationYear 2015
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References 11009518 - BMJ. 2000 Sep 30;321(7264):794-6
20550454 - Clin Infect Dis. 2010 Jul 15;51(2):197-213
4350517 - J Infect Dis. 1973 Jun;127(6):617-25
21788222 - Pediatrics. 2011 Aug;128(2):214-20
4341396 - J Am Vet Med Assoc. 1972 Sep 15;161(6):690-2
6086866 - J Pediatr. 1984 Aug;105(2):200-5
18243930 - Ophthalmology. 2008 Feb;115(2 Suppl):S3-12
3040898 - J Med Virol. 1987 Aug;22(4):307-13
1309369 - J Infect Dis. 1992 Jan;165(1):119-26
15930418 - N Engl J Med. 2005 Jun 2;352(22):2271-84
24010815 - Virol J. 2013;10:278
23596286 - J Virol. 2013 Jun;87(12):6943-54
23087687 - Front Immunol. 2012 Oct 10;3:302
19911054 - PLoS Pathog. 2009 Nov;5(11):e1000657
22554464 - Vaccine. 2012 Jun 29;30(31):4581-4
6273782 - Pediatrics. 1981 Nov;68(5):735-7
9751774 - Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11969-74
12775423 - J Neurovirol. 2003 Jun;9(3):404-7
12388706 - J Virol. 2002 Nov;76(22):11447-59
207782 - J Infect Dis. 1978 May;137(5):531-40
15452178 - J Exp Med. 2004 Oct 4;200(7):917-25
168152 - Infect Immun. 1975 Aug;12(2):261-6
24681264 - Vaccine. 2014 May 7;32(22):2525-33
14593591 - J Infect Dis. 2003 Nov 1;188(9):1336-44
24189270 - Lab Invest. 2014 Jan;94(1):98-106
7798653 - J Infect Dis. 1995 Jan;171(1):13-7
7636965 - J Virol. 1995 Sep;69(9):5236-42
11751943 - J Immunol. 2002 Jan 1;168(1):29-43
8277202 - J Infect Dis. 1994 Jan;169(1):91-4
22622699 - Pediatr Infect Dis J. 2012 Aug;31(8):e133-40
2359148 - J Neurosci Res. 1990 May;26(1):83-9
23303966 - Trans Am Clin Climatol Assoc. 2012;123:17-33; discussion 33-5
19712037 - J Infect Dis. 2009 Oct 1;200(7):1068-77
17913822 - J Virol. 2007 Dec;81(23):13200-8
2826674 - J Med Virol. 1987 Dec;23(4):317-22
9852973 - J Infect Dis. 1998 Nov;178 Suppl 1:S48-51
17055202 - Auris Nasus Larynx. 2007 Jun;34(2):159-64
22258257 - J Virol. 2012 Apr;86(7):3626-34
8950684 - J Med Virol. 1996 Dec;50(4):289-92
7205447 - J Pediatr. 1981 Mar;98(3):368-73
24470276 - Clin Infect Dis. 2014 Apr;58(8):1125-8
14401571 - J Am Vet Med Assoc. 1960 Mar 15;136:256-7
1316940 - J Gen Virol. 1992 May;73 ( Pt 5):1209-15
215708 - J Gen Virol. 1979 Jan;42(1):171-8
1310185 - Virology. 1992 Feb;186(2):562-72
6288560 - Infect Immun. 1982 Aug;37(2):407-12
24313978 - BMC Microbiol. 2013;13:284
22102814 - PLoS Pathog. 2011 Nov;7(11):e1002367
4181206 - N Engl J Med. 1969 May 29;280(22):1191-4
3041014 - J Virol. 1987 Oct;61(10):2951-5
9444989 - J Virol. 1998 Feb;72(2):965-74
12477940 - N Engl J Med. 2002 Dec 12;347(24):1909-15
6255038 - J Infect Dis. 1980 Sep;142(3):414-20
12060885 - Clin Infect Dis. 2002 Jul 1;35(1):102-4
24509782 - Nat Rev Microbiol. 2014 Mar;12(3):197-210
1337232 - Virus Res. 1992 Dec;26(3):255-66
7351951 - N Engl J Med. 1980 Feb 21;302(8):450-3
22205584 - J Neurovirol. 2011 Dec;17(6):590-9
23183011 - J Dermatol Sci. 2013 Mar;69(3):243-9
9607852 - J Infect Dis. 1998 Jun;177(6):1701-4
192676 - Infect Immun. 1977 Mar;15(3):807-12
6271904 - J Gen Virol. 1981 Jul;55(Pt 1):207-11
6096500 - J Med Virol. 1984;14(4):305-12
13335330 - Pediatrics. 1956 Jul;18(1):109-49
9291302 - J Infect Dis. 1997 Sep;176(3):578-85
9505191 - Int Rev Immunol. 1998;16(3-4):249-84
18419349 - J Infect Dis. 2008 Mar 15;197(6):825-35
18419402 - J Infect Dis. 2008 Mar 1;197 Suppl 2:S228-36
14758119 - Curr Opin Pediatr. 2004 Feb;16(1):80-4
12388703 - J Virol. 2002 Nov;76(22):11425-33
21487663 - Arch Virol. 2011 May;156(5):739-46
20170376 - J Infect Dis. 2010 Apr 1;201(7):1024-30
15464211 - Brain Res Brain Res Rev. 2004 Oct;46(2):234-42
20369316 - Curr Top Microbiol Immunol. 2010;342:291-308
15851670 - Proc Natl Acad Sci U S A. 2005 May 3;102(18):6490-5
6327833 - J Infect Dis. 1984 Apr;149(4):501-4
19874924 - Vaccine. 2010 Jan 8;28(3):686-91
12126906 - Vaccine. 2002 Jul 26;20(23-24):2942-9
14999603 - J Infect Dis. 2004 Mar 15;189(6):1009-12
6259644 - Proc Soc Exp Biol Med. 1981 Mar;166(3):339-47
20510263 - J Clin Virol. 2010 May;48 Suppl 1:S2-7
24687808 - Rev Med Virol. 2014 Jul;24(4):254-73
10954541 - J Virol. 2000 Sep;74(18):8413-24
6330994 - Virology. 1984 Jul 15;136(1):241-6
11352673 - Virology. 2001 May 25;284(1):123-30
22828595 - Clin Infect Dis. 2012 Nov 15;55(10):1320-8
1849161 - J Infect Dis. 1991 Apr;163(4):746-51
e_1_3_2_49_2
Heuschele WP (e_1_3_2_53_2) 1960; 136
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_87_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_85_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_89_2
e_1_3_2_60_2
e_1_3_2_83_2
e_1_3_2_81_2
Cohen JI (e_1_3_2_6_2) 2007
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_73_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_79_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_77_2
e_1_3_2_50_2
e_1_3_2_71_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_86_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_69_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_88_2
Gershon AA (e_1_3_2_26_2) 2012; 123
e_1_3_2_61_2
e_1_3_2_82_2
e_1_3_2_80_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_76_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_2_2
White RJ (e_1_3_2_54_2) 1972; 161
e_1_3_2_72_2
e_1_3_2_70_2
References_xml – ident: e_1_3_2_64_2
  doi: 10.1016/0042-6822(84)90263-0
– ident: e_1_3_2_69_2
  doi: 10.1371/journal.ppat.1000657
– ident: e_1_3_2_12_2
  doi: 10.1542/peds.18.1.109
– ident: e_1_3_2_9_2
  doi: 10.1016/j.ophtha.2007.10.009
– ident: e_1_3_2_23_2
  doi: 10.1086/653605
– ident: e_1_3_2_60_2
  doi: 10.1099/0022-1317-73-5-1209
– ident: e_1_3_2_72_2
  doi: 10.1007/s00705-010-0889-4
– ident: e_1_3_2_21_2
  doi: 10.1086/379048
– ident: e_1_3_2_2_2
  doi: 10.1056/NEJM198002213020807
– ident: e_1_3_2_28_2
  doi: 10.1093/cid/ciu058
– ident: e_1_3_2_70_2
  doi: 10.3181/00379727-166-41071
– ident: e_1_3_2_30_2
  doi: 10.1056/NEJMoa021662
– ident: e_1_3_2_37_2
  doi: 10.1128/JVI.76.22.11447-11459.2002
– ident: e_1_3_2_66_2
  doi: 10.1128/iai.15.3.807-812.1977
– ident: e_1_3_2_67_2
  doi: 10.1128/iai.12.2.261-266.1975
– volume: 123
  start-page: 17
  year: 2012
  ident: e_1_3_2_26_2
  article-title: Latency of varicella zoster virus in dorsal root, cranial, and enteric ganglia in vaccinated children
  publication-title: Trans Am Clin Climatol Assoc
  contributor:
    fullname: Gershon AA
– ident: e_1_3_2_11_2
  doi: 10.1080/13550280390201722
– ident: e_1_3_2_7_2
  doi: 10.1016/S1386-6532(10)70002-0
– ident: e_1_3_2_8_2
  doi: 10.1136/bmj.321.7264.794
– ident: e_1_3_2_84_2
  doi: 10.1371/journal.ppat.1002367
– ident: e_1_3_2_10_2
  doi: 10.1016/j.anl.2006.09.005
– ident: e_1_3_2_49_2
  doi: 10.1073/pnas.95.20.11969
– ident: e_1_3_2_59_2
  doi: 10.1128/JVI.06264-11
– ident: e_1_3_2_82_2
  doi: 10.1086/514261
– ident: e_1_3_2_50_2
  doi: 10.1073/pnas.0501045102
– ident: e_1_3_2_80_2
  doi: 10.1038/labinvest.2013.128
– ident: e_1_3_2_20_2
  doi: 10.1016/S0022-3476(84)80113-4
– ident: e_1_3_2_76_2
  doi: 10.4049/jimmunol.168.1.29
– ident: e_1_3_2_5_2
  doi: 10.1542/peds.68.5.735
– ident: e_1_3_2_25_2
  doi: 10.1016/j.jdermsci.2012.10.015
– ident: e_1_3_2_35_2
  doi: 10.1086/528696
– ident: e_1_3_2_77_2
  doi: 10.3389/fimmu.2012.00302
– ident: e_1_3_2_88_2
  doi: 10.1186/1471-2180-13-284
– start-page: 2773
  volume-title: Fields virology
  year: 2007
  ident: e_1_3_2_6_2
  contributor:
    fullname: Cohen JI
– ident: e_1_3_2_83_2
  doi: 10.1128/JVI.76.22.11425-11433.2002
– ident: e_1_3_2_14_2
  doi: 10.1086/517426
– ident: e_1_3_2_22_2
  doi: 10.1086/605611
– ident: e_1_3_2_75_2
  doi: 10.3109/08830189809042997
– ident: e_1_3_2_17_2
  doi: 10.1093/infdis/165.1.119
– ident: e_1_3_2_73_2
  doi: 10.1002/jmv.1890140403
– ident: e_1_3_2_79_2
  doi: 10.1016/j.vaccine.2012.04.059
– volume: 161
  start-page: 690
  year: 1972
  ident: e_1_3_2_54_2
  article-title: Chickenpox in young anthropoid apes: clinical and laboratory findings
  publication-title: J Am Vet Med Assoc
  contributor:
    fullname: White RJ
– ident: e_1_3_2_55_2
  doi: 10.1002/jmv.1890230403
– ident: e_1_3_2_29_2
  doi: 10.1086/340868
– ident: e_1_3_2_58_2
  doi: 10.1099/0022-1317-42-1-171
– ident: e_1_3_2_38_2
  doi: 10.1097/INF.0b013e318259fc8a
– ident: e_1_3_2_4_2
  doi: 10.1086/382029
– ident: e_1_3_2_32_2
  doi: 10.1542/peds.2010-3385
– ident: e_1_3_2_16_2
  doi: 10.1086/514077
– ident: e_1_3_2_3_2
  doi: 10.1093/infdis/169.1.91
– ident: e_1_3_2_52_2
  doi: 10.1038/nrmicro3215
– ident: e_1_3_2_89_2
  doi: 10.1016/j.vaccine.2014.03.057
– ident: e_1_3_2_43_2
  doi: 10.1093/infdis/163.4.746
– ident: e_1_3_2_41_2
  doi: 10.1128/iai.37.2.407-412.1982
– ident: e_1_3_2_78_2
  doi: 10.1128/JVI.74.18.8413-8424.2000
– ident: e_1_3_2_57_2
  doi: 10.1128/jvi.61.10.2951-2955.1987
– ident: e_1_3_2_15_2
  doi: 10.1093/infdis/171.1.13
– ident: e_1_3_2_85_2
  doi: 10.1186/1743-422X-10-278
– ident: e_1_3_2_33_2
  doi: 10.1056/NEJMoa051016
– ident: e_1_3_2_51_2
  doi: 10.1084/jem.20040634
– ident: e_1_3_2_40_2
  doi: 10.1016/S0264-410X(02)00245-1
– ident: e_1_3_2_24_2
  doi: 10.1086/651199
– ident: e_1_3_2_63_2
  doi: 10.1006/viro.2001.0912
– ident: e_1_3_2_18_2
  doi: 10.1056/NEJM196905292802201
– ident: e_1_3_2_31_2
  doi: 10.1097/00008480-200402000-00015
– ident: e_1_3_2_74_2
  doi: 10.1099/0022-1317-55-1-207
– ident: e_1_3_2_36_2
  doi: 10.1093/cid/cis638
– ident: e_1_3_2_48_2
  doi: 10.1128/JVI.72.2.965-974.1998
– ident: e_1_3_2_42_2
  doi: 10.1093/infdis/142.3.414
– ident: e_1_3_2_56_2
  doi: 10.1002/(SICI)1096-9071(199612)50:4<289::AID-JMV2>3.0.CO;2-4
– ident: e_1_3_2_62_2
  doi: 10.1016/0168-1702(92)90017-4
– ident: e_1_3_2_19_2
  doi: 10.1016/S0022-3476(81)80697-X
– ident: e_1_3_2_65_2
  doi: 10.1093/infdis/127.6.617
– ident: e_1_3_2_87_2
  doi: 10.1007/82_2010_27
– ident: e_1_3_2_45_2
  doi: 10.1007/s13365-011-0069-7
– ident: e_1_3_2_68_2
  doi: 10.1128/JVI.00407-13
– ident: e_1_3_2_86_2
  doi: 10.1002/jmv.1890220403
– ident: e_1_3_2_34_2
  doi: 10.1086/522159
– ident: e_1_3_2_13_2
  doi: 10.1093/infdis/137.5.531
– ident: e_1_3_2_81_2
  doi: 10.1002/jnr.490260110
– ident: e_1_3_2_47_2
  doi: 10.1128/jvi.69.9.5236-5242.1995
– ident: e_1_3_2_61_2
  doi: 10.1016/0042-6822(92)90022-H
– volume: 136
  start-page: 256
  year: 1960
  ident: e_1_3_2_53_2
  article-title: Varicella (chicken pox) in three young anthropoid apes
  publication-title: J Am Vet Med Assoc
  contributor:
    fullname: Heuschele WP
– ident: e_1_3_2_71_2
  doi: 10.1128/JVI.01148-07
– ident: e_1_3_2_27_2
  doi: 10.1002/rmv.1789
– ident: e_1_3_2_44_2
  doi: 10.1093/infdis/149.4.501
– ident: e_1_3_2_39_2
  doi: 10.1016/j.vaccine.2009.10.086
– ident: e_1_3_2_46_2
  doi: 10.1016/j.brainresrev.2004.07.008
SSID ssj0014464
Score 2.2572486
Snippet Varicella-zoster virus (VZV) is a human neurotropic alphaherpesvirus and the etiological agent of varicella (chickenpox) and herpes zoster (HZ, shingles)....
ABSTRACT Varicella-zoster virus (VZV) is a human neurotropic alphaherpesvirus and the etiological agent of varicella (chickenpox) and herpes zoster (HZ,...
UNLABELLEDVaricella-zoster virus (VZV) is a human neurotropic alphaherpesvirus and the etiological agent of varicella (chickenpox) and herpes zoster (HZ,...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 1781
SubjectTerms Alphaherpesvirus
Animals
Antibodies, Viral - blood
Chickenpox - immunology
Chickenpox - pathology
Chickenpox - prevention & control
Chickenpox - veterinary
Cross Protection
DNA, Viral - genetics
DNA, Viral - isolation & purification
Ganglia - virology
Herpesvirus 3, Human - immunology
Macaca mulatta
Male
Pathogenesis and Immunity
Primate Diseases - immunology
Primate Diseases - prevention & control
T-Lymphocytes - immunology
Varicella-zoster virus
Title Abortive intrabronchial infection of rhesus macaques with varicella-zoster virus provides partial protection against simian varicella virus challenge
URI https://www.ncbi.nlm.nih.gov/pubmed/25410871
https://search.proquest.com/docview/1652384147
https://search.proquest.com/docview/1660434555
https://pubmed.ncbi.nlm.nih.gov/PMC4300754
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLYKEhIv0zYu6wbISPCYtnZsxzyiagiQiio2qoqX6NhxIBJNUS8P-yH8X46TuFAm7WFviXxLfL7Y53POhZCTTPQMcCcjUMxFuPp5Z2XkPGBEnCWcg60O9Ac36vJOXI_luEVk8IWpjPatKTrl06RTFo-VbeXzxHaDnVh3OOiL2O90ortBNhCggaI3vw6Q34gQIhy_5nGwdue6ez266iCIuYiYz8eD3Ij1dMLWt6S_9MyP5pLv9p-Lz-RTozjS8_oBv5CWK7-SrTqV5J8d8uJzXPmli1755mY2Lb0V8xPe1tZWJZ3m9PbRzZdzOgALfnTqT2HpCHxgIYRDdO89PmZ0VMyw0rD20cMLPynY07AO6eC7ggcoUK-kv4oJwuuth6ZpP2Ro2SV3Fz9_9y-jJuVCZAVLFpGzCeoomZXaItHg2sWJVgxyg4qXNTi1iT4TJo4BHFMcFDBuJJdwlrnc5rmN98hmOS3dN0JZJpxC8m1QAxVYqo3JdK6A57GCXMk2OQ2znj7XkTXSipFwnaKg0kpQyEza5DiIJEXoV29TuulynjKFLFoLJpJ_1VE9EQspcbz9Woyr0YL82yRZE_Cqgg-9vV6CiKxCcDcI_P7fLX-QbVS9ZG3_fUA2F7OlO0T1ZmGOKji_Aoao_ZY
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFD5iTNN4mWAXVm7zpO0xbe3YjnlEFahlFFUbVNVeIttxRiSaol4e9kP2f3ecxIyCxMPeEvmW-JzY3-ecC8CXjHeNZk5EWlIX4ernnZWR82jD4yxhTNvqQH94KfvX_HwiJhsggi9MZbRvTdEub6ftsripbCvvprYT7MQ6o2GPx36n450X8BK_1y4PJL35eYAMh4cg4Vg-CfbuTHXOx4M2qjHjEfUZeZAd0a5K6Pqm9ARpPjaYfLADnW3DmwY6kpP6EXdgw5Vv4VWdTPL3O_jjs1z5xYsMfHMzn5XejvkWb2t7q5LMcvL9xi1WCzLUVvvRiT-HJWPtQwuhQkQ_vc_HnIyLOVYa1V56eOGnBXsa1UEdfFf6ly4QWZIfxRQV7F8PTdNeyNHyHq7PTq96_ahJuhBZTpNl5GyCKCWzQlmkGky5OFGS6twg9LIGpzZRx9zEsdaOSqalpswIJvRx5nKb5zb-AJvlrHQfgdCMO4n02yAG5ViqjMlULjXLY6lzKVrwNcx6elfH1kgrTsJUioJKK0EhN2nB5yCSFJW_epvSzVaLlErk0YpTnjxXR3Z5zIXA8XZrMd6PFuTfgmRNwPcVfPDt9RLUySoId6ODe__d8hO87l8NL9KLweW3fdhCICZqa_AD2FzOV-4Qwc7SHFWq_RcAGAD7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgE2gvE-O2DgZGgsc0tWM73iMqq9ZBpwpYVfESHTs2i7SmVS8P-yH7vxznMlaQeOAtkW-Jz0n8fcnncwh5n4ueAe5kBIq5CN9-YbMych4wIslTzsFWH_RHF-rsUpxP5fReqq9KtG9N0S2vZ92yuKq0lYuZjVudWDwe9UUSVjoRL3IfPyS7-Mz2VEvUmx8IyHJEGygcy6et5p3r-Hwy7KIrcxGxkJUHGRLr6ZRtL0x_oc0_RZP3VqHBE7LfwEf6sb7MA_LAlU_Jozqh5M0zchsyXYUXGB2G5mY5L4OW-RpPa81VSeeefr1yq82KjsBCGJ2Gb7F0AiG8EDpF9CPs-1jSSbHESuN6px4ehKnBnsZ1YIfQFfyEAtEl_VbM0Ml-99A07bd5Wp6Ty8Hp9_5Z1CReiKxg6TpyNkWkklupLdINrl2SasXAG4Rf1uDUpvpEmCQBcExxUMC4kVzCSe689d4mL8hOOS_dIaEsF04hBTeIQwWWamNy7RVwnyjwSnbIh3bWs0UdXyOreAnXGRoqqwyF_KRD3rUmyfABqO6mdPPNKmMKubQWTKT_qqN6IhFS4ngvazPejdbav0PSLQPfVQgBuLdL0C-rQNyNHx79d8u35PH40yD7Mrz4_IrsIRaTtSD8NdlZLzfuGPHO2rypPPsXomkCDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abortive+Intrabronchial+Infection+of+Rhesus+Macaques+with+Varicella-Zoster+Virus+Provides+Partial+Protection+against+Simian+Varicella+Virus+Challenge&rft.jtitle=Journal+of+virology&rft.au=Meyer%2C+Christine&rft.au=Engelmann%2C+Flora&rft.au=Arnold%2C+Nicole&rft.au=Krah%2C+David+L.&rft.date=2015-02-01&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=89&rft.issue=3&rft.spage=1781&rft.epage=1793&rft_id=info:doi/10.1128%2FJVI.03124-14&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_JVI_03124_14
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon