Abortive intrabronchial infection of rhesus macaques with varicella-zoster virus provides partial protection against simian varicella virus challenge
Varicella-zoster virus (VZV) is a human neurotropic alphaherpesvirus and the etiological agent of varicella (chickenpox) and herpes zoster (HZ, shingles). Previously, inoculation of monkeys via the subcutaneous, intratracheal, intravenous, or oral-nasal-conjunctival routes did not recapitulate all t...
Saved in:
Published in | Journal of virology Vol. 89; no. 3; pp. 1781 - 1793 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.02.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Varicella-zoster virus (VZV) is a human neurotropic alphaherpesvirus and the etiological agent of varicella (chickenpox) and herpes zoster (HZ, shingles). Previously, inoculation of monkeys via the subcutaneous, intratracheal, intravenous, or oral-nasal-conjunctival routes did not recapitulate all the hallmarks of VZV infection, including varicella, immunity, latency, and reactivation. Intrabronchial inoculation of rhesus macaques (RMs) with simian varicella virus (SVV), a homolog of VZV, recapitulates virologic and immunologic hallmarks of VZV infection in humans. Given that VZV is acquired primarily via the respiratory route, we investigated whether intrabronchial inoculation of RMs with VZV would result in a robust model. Despite the lack of varicella and viral replication in either the lungs or whole blood, all four RMs generated an immune response characterized by the generation of VZV-specific antibodies and T cells. Two of 4 VZV-inoculated RMs were challenged with SVV to determine cross-protection. VZV-immune RMs displayed no varicella rash and had lower SVV viral loads and earlier and stronger humoral and cellular immune responses than controls. In contrast to the results for SVV DNA, no VZV DNA was detected in sensory ganglia at necropsy. In summary, following an abortive VZV infection, RMs developed an adaptive immune response that conferred partial protection against SVV challenge. These data suggest that a replication-incompetent VZV vaccine that does not establish latency may provide sufficient protection against VZV disease and that VZV vaccination of RMs followed by SVV challenge provides a model to evaluate new vaccines and therapeutics against VZV.
Although VZV vaccine strain Oka is attenuated, it can cause mild varicella, establish latency, and in rare cases, reactivate to cause herpes zoster (HZ). Moreover, studies suggest that the HZ vaccine (Zostavax) only confers short-lived immunity. The development of more efficacious vaccines would be facilitated by a robust animal model of VZV infection. The data presented in this report show that intrabronchial inoculation of rhesus macaques (RMs) with VZV resulted in an abortive VZV infection. Nevertheless, all animals generated a humoral and cellular immune response that conferred partial cross-protection against simian varicella virus (SVV) challenge. Additionally, VZV DNA was not detected in the sensory ganglia, suggesting that viremia might be required for the establishment of latency. Therefore, VZV vaccination of RMs followed by SVV challenge is a model that will support the development of vaccines that boost protective T cell responses against VZV. |
---|---|
AbstractList | ABSTRACT
Varicella-zoster virus (VZV) is a human neurotropic alphaherpesvirus and the etiological agent of varicella (chickenpox) and herpes zoster (HZ, shingles). Previously, inoculation of monkeys via the subcutaneous, intratracheal, intravenous, or oral-nasal-conjunctival routes did not recapitulate all the hallmarks of VZV infection, including varicella, immunity, latency, and reactivation. Intrabronchial inoculation of rhesus macaques (RMs) with simian varicella virus (SVV), a homolog of VZV, recapitulates virologic and immunologic hallmarks of VZV infection in humans. Given that VZV is acquired primarily via the respiratory route, we investigated whether intrabronchial inoculation of RMs with VZV would result in a robust model. Despite the lack of varicella and viral replication in either the lungs or whole blood, all four RMs generated an immune response characterized by the generation of VZV-specific antibodies and T cells. Two of 4 VZV-inoculated RMs were challenged with SVV to determine cross-protection. VZV-immune RMs displayed no varicella rash and had lower SVV viral loads and earlier and stronger humoral and cellular immune responses than controls. In contrast to the results for SVV DNA, no VZV DNA was detected in sensory ganglia at necropsy. In summary, following an abortive VZV infection, RMs developed an adaptive immune response that conferred partial protection against SVV challenge. These data suggest that a replication-incompetent VZV vaccine that does not establish latency may provide sufficient protection against VZV disease and that VZV vaccination of RMs followed by SVV challenge provides a model to evaluate new vaccines and therapeutics against VZV.
IMPORTANCE
Although VZV vaccine strain Oka is attenuated, it can cause mild varicella, establish latency, and in rare cases, reactivate to cause herpes zoster (HZ). Moreover, studies suggest that the HZ vaccine (Zostavax) only confers short-lived immunity. The development of more efficacious vaccines would be facilitated by a robust animal model of VZV infection. The data presented in this report show that intrabronchial inoculation of rhesus macaques (RMs) with VZV resulted in an abortive VZV infection. Nevertheless, all animals generated a humoral and cellular immune response that conferred partial cross-protection against simian varicella virus (SVV) challenge. Additionally, VZV DNA was not detected in the sensory ganglia, suggesting that viremia might be required for the establishment of latency. Therefore, VZV vaccination of RMs followed by SVV challenge is a model that will support the development of vaccines that boost protective T cell responses against VZV. Varicella-zoster virus (VZV) is a human neurotropic alphaherpesvirus and the etiological agent of varicella (chickenpox) and herpes zoster (HZ, shingles). Previously, inoculation of monkeys via the subcutaneous, intratracheal, intravenous, or oral-nasal-conjunctival routes did not recapitulate all the hallmarks of VZV infection, including varicella, immunity, latency, and reactivation. Intrabronchial inoculation of rhesus macaques (RMs) with simian varicella virus (SVV), a homolog of VZV, recapitulates virologic and immunologic hallmarks of VZV infection in humans. Given that VZV is acquired primarily via the respiratory route, we investigated whether intrabronchial inoculation of RMs with VZV would result in a robust model. Despite the lack of varicella and viral replication in either the lungs or whole blood, all four RMs generated an immune response characterized by the generation of VZV-specific antibodies and T cells. Two of 4 VZV-inoculated RMs were challenged with SVV to determine cross-protection. VZV-immune RMs displayed no varicella rash and had lower SVV viral loads and earlier and stronger humoral and cellular immune responses than controls. In contrast to the results for SVV DNA, no VZV DNA was detected in sensory ganglia at necropsy. In summary, following an abortive VZV infection, RMs developed an adaptive immune response that conferred partial protection against SVV challenge. These data suggest that a replication-incompetent VZV vaccine that does not establish latency may provide sufficient protection against VZV disease and that VZV vaccination of RMs followed by SVV challenge provides a model to evaluate new vaccines and therapeutics against VZV. Although VZV vaccine strain Oka is attenuated, it can cause mild varicella, establish latency, and in rare cases, reactivate to cause herpes zoster (HZ). Moreover, studies suggest that the HZ vaccine (Zostavax) only confers short-lived immunity. The development of more efficacious vaccines would be facilitated by a robust animal model of VZV infection. The data presented in this report show that intrabronchial inoculation of rhesus macaques (RMs) with VZV resulted in an abortive VZV infection. Nevertheless, all animals generated a humoral and cellular immune response that conferred partial cross-protection against simian varicella virus (SVV) challenge. Additionally, VZV DNA was not detected in the sensory ganglia, suggesting that viremia might be required for the establishment of latency. Therefore, VZV vaccination of RMs followed by SVV challenge is a model that will support the development of vaccines that boost protective T cell responses against VZV. UNLABELLEDVaricella-zoster virus (VZV) is a human neurotropic alphaherpesvirus and the etiological agent of varicella (chickenpox) and herpes zoster (HZ, shingles). Previously, inoculation of monkeys via the subcutaneous, intratracheal, intravenous, or oral-nasal-conjunctival routes did not recapitulate all the hallmarks of VZV infection, including varicella, immunity, latency, and reactivation. Intrabronchial inoculation of rhesus macaques (RMs) with simian varicella virus (SVV), a homolog of VZV, recapitulates virologic and immunologic hallmarks of VZV infection in humans. Given that VZV is acquired primarily via the respiratory route, we investigated whether intrabronchial inoculation of RMs with VZV would result in a robust model. Despite the lack of varicella and viral replication in either the lungs or whole blood, all four RMs generated an immune response characterized by the generation of VZV-specific antibodies and T cells. Two of 4 VZV-inoculated RMs were challenged with SVV to determine cross-protection. VZV-immune RMs displayed no varicella rash and had lower SVV viral loads and earlier and stronger humoral and cellular immune responses than controls. In contrast to the results for SVV DNA, no VZV DNA was detected in sensory ganglia at necropsy. In summary, following an abortive VZV infection, RMs developed an adaptive immune response that conferred partial protection against SVV challenge. These data suggest that a replication-incompetent VZV vaccine that does not establish latency may provide sufficient protection against VZV disease and that VZV vaccination of RMs followed by SVV challenge provides a model to evaluate new vaccines and therapeutics against VZV.IMPORTANCEAlthough VZV vaccine strain Oka is attenuated, it can cause mild varicella, establish latency, and in rare cases, reactivate to cause herpes zoster (HZ). Moreover, studies suggest that the HZ vaccine (Zostavax) only confers short-lived immunity. The development of more efficacious vaccines would be facilitated by a robust animal model of VZV infection. The data presented in this report show that intrabronchial inoculation of rhesus macaques (RMs) with VZV resulted in an abortive VZV infection. Nevertheless, all animals generated a humoral and cellular immune response that conferred partial cross-protection against simian varicella virus (SVV) challenge. Additionally, VZV DNA was not detected in the sensory ganglia, suggesting that viremia might be required for the establishment of latency. Therefore, VZV vaccination of RMs followed by SVV challenge is a model that will support the development of vaccines that boost protective T cell responses against VZV. Varicella-zoster virus (VZV) is a human neurotropic alphaherpesvirus and the etiological agent of varicella (chickenpox) and herpes zoster (HZ, shingles). Previously, inoculation of monkeys via the subcutaneous, intratracheal, intravenous, or oral-nasal-conjunctival routes did not recapitulate all the hallmarks of VZV infection, including varicella, immunity, latency, and reactivation. Intrabronchial inoculation of rhesus macaques (RMs) with simian varicella virus (SVV), a homolog of VZV, recapitulates virologic and immunologic hallmarks of VZV infection in humans. Given that VZV is acquired primarily via the respiratory route, we investigated whether intrabronchial inoculation of RMs with VZV would result in a robust model. Despite the lack of varicella and viral replication in either the lungs or whole blood, all four RMs generated an immune response characterized by the generation of VZV-specific antibodies and T cells. Two of 4 VZV-inoculated RMs were challenged with SVV to determine cross-protection. VZV-immune RMs displayed no varicella rash and had lower SVV viral loads and earlier and stronger humoral and cellular immune responses than controls. In contrast to the results for SVV DNA, no VZV DNA was detected in sensory ganglia at necropsy. In summary, following an abortive VZV infection, RMs developed an adaptive immune response that conferred partial protection against SVV challenge. These data suggest that a replication-incompetent VZV vaccine that does not establish latency may provide sufficient protection against VZV disease and that VZV vaccination of RMs followed by SVV challenge provides a model to evaluate new vaccines and therapeutics against VZV. IMPORTANCE Although VZV vaccine strain Oka is attenuated, it can cause mild varicella, establish latency, and in rare cases, reactivate to cause herpes zoster (HZ). Moreover, studies suggest that the HZ vaccine (Zostavax) only confers short-lived immunity. The development of more efficacious vaccines would be facilitated by a robust animal model of VZV infection. The data presented in this report show that intrabronchial inoculation of rhesus macaques (RMs) with VZV resulted in an abortive VZV infection. Nevertheless, all animals generated a humoral and cellular immune response that conferred partial cross-protection against simian varicella virus (SVV) challenge. Additionally, VZV DNA was not detected in the sensory ganglia, suggesting that viremia might be required for the establishment of latency. Therefore, VZV vaccination of RMs followed by SVV challenge is a model that will support the development of vaccines that boost protective T cell responses against VZV. Varicella-zoster virus (VZV) is a human neurotropic alphaherpesvirus and the etiological agent of varicella (chickenpox) and herpes zoster (HZ, shingles). Previously, inoculation of monkeys via the subcutaneous, intratracheal, intravenous, or oral-nasal-conjunctival routes did not recapitulate all the hallmarks of VZV infection, including varicella, immunity, latency, and reactivation. Intrabronchial inoculation of rhesus macaques (RMs) with simian varicella virus (SVV), a homolog of VZV, recapitulates virologic and immunologic hallmarks of VZV infection in humans. Given that VZV is acquired primarily via the respiratory route, we investigated whether intrabronchial inoculation of RMs with VZV would result in a robust model. Despite the lack of varicella and viral replication in either the lungs or whole blood, all four RMs generated an immune response characterized by the generation of VZV-specific antibodies and T cells. Two of 4 VZV-inoculated RMs were challenged with SVV to determine cross-protection. VZV-immune RMs displayed no varicella rash and had lower SVV viral loads and earlier and stronger humoral and cellular immune responses than controls. In contrast to the results for SVV DNA, no VZV DNA was detected in sensory ganglia at necropsy. In summary, following an abortive VZV infection, RMs developed an adaptive immune response that conferred partial protection against SVV challenge. These data suggest that a replication-incompetent VZV vaccine that does not establish latency may provide sufficient protection against VZV disease and that VZV vaccination of RMs followed by SVV challenge provides a model to evaluate new vaccines and therapeutics against VZV. IMPORTANCE Although VZV vaccine strain Oka is attenuated, it can cause mild varicella, establish latency, and in rare cases, reactivate to cause herpes zoster (HZ). Moreover, studies suggest that the HZ vaccine (Zostavax) only confers short-lived immunity. The development of more efficacious vaccines would be facilitated by a robust animal model of VZV infection. The data presented in this report show that intrabronchial inoculation of rhesus macaques (RMs) with VZV resulted in an abortive VZV infection. Nevertheless, all animals generated a humoral and cellular immune response that conferred partial cross-protection against simian varicella virus (SVV) challenge. Additionally, VZV DNA was not detected in the sensory ganglia, suggesting that viremia might be required for the establishment of latency. Therefore, VZV vaccination of RMs followed by SVV challenge is a model that will support the development of vaccines that boost protective T cell responses against VZV. |
Author | Meyer, Christine Dewane, Jesse Engelmann, Flora Arnold, Nicole ter Meulen, Jan Messaoudi, Ilhem Haberthur, Kristen Krah, David L |
Author_xml | – sequence: 1 givenname: Christine surname: Meyer fullname: Meyer, Christine organization: Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, USA – sequence: 2 givenname: Flora surname: Engelmann fullname: Engelmann, Flora organization: Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA – sequence: 3 givenname: Nicole surname: Arnold fullname: Arnold, Nicole organization: Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA – sequence: 4 givenname: David L surname: Krah fullname: Krah, David L organization: Vaccine Analytical Development, Merck Sharp and Dohme Corp., West Point, Pennsylvania, USA – sequence: 5 givenname: Jan surname: ter Meulen fullname: ter Meulen, Jan organization: Immune Design, Seattle, Washington, USA – sequence: 6 givenname: Kristen surname: Haberthur fullname: Haberthur, Kristen organization: Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA – sequence: 7 givenname: Jesse surname: Dewane fullname: Dewane, Jesse organization: Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, USA – sequence: 8 givenname: Ilhem surname: Messaoudi fullname: Messaoudi, Ilhem email: messaoud@ucr.edu organization: Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, USA Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA messaoud@ucr.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25410871$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1v1DAQhi3Uim4LN84oRw6kePyReC9IVQW0VaVeCuJmTbzOxiixF9ubCv4H_xdvuxS49WTZ8_jRzLzH5MAHbwl5BfQUgKl3V18uTykHJmoQz8gC6FLVUoI4IAtKGaslV1-PyHFK3ygFIRrxnBwxKYCqFhbk11kXYnazrZzPEbsYvBkcjuXaW5Nd8FXoqzjYtE3VhAa_b22q7lweqhmjM3Ycsf4ZUraxml0s0CaG2a0KtMEiLqbykPcqXKPzKVfJTQ79X8P-qxlwHK1f2xfksMcx2Zf784R8_vjh9vyivr75dHl-dl0bAW2urWlpI1ZGKrNsBVOWt6oB7DvGmenKrK1aio5zRAsNwwaBdZJJXK5sb_re8BPy_sG72XaTXRm728GoN9FNGH_ogE7_X_Fu0Oswa8EpbaUogjd7QQy7zWQ9uXQ_krdhmzQ0DRVcSCmfgErGlQDRFvTtA2piSCna_rEjoHoXui6h6_vQNeyaeP3vFI_wn5T5b9jUrzE |
CitedBy_id | crossref_primary_10_1111_cei_12809 crossref_primary_10_1186_s42826_021_00091_3 crossref_primary_10_12688_f1000research_7153_1 crossref_primary_10_3389_fmicb_2018_03170 crossref_primary_10_1111_cei_12646 crossref_primary_10_3390_vaccines9040310 crossref_primary_10_1016_j_vaccine_2020_06_062 crossref_primary_10_3389_fcimb_2022_943587 crossref_primary_10_3390_v14061214 crossref_primary_10_1128_JVI_01375_18 |
Cites_doi | 10.1016/0042-6822(84)90263-0 10.1371/journal.ppat.1000657 10.1542/peds.18.1.109 10.1016/j.ophtha.2007.10.009 10.1086/653605 10.1099/0022-1317-73-5-1209 10.1007/s00705-010-0889-4 10.1086/379048 10.1056/NEJM198002213020807 10.1093/cid/ciu058 10.3181/00379727-166-41071 10.1056/NEJMoa021662 10.1128/JVI.76.22.11447-11459.2002 10.1128/iai.15.3.807-812.1977 10.1128/iai.12.2.261-266.1975 10.1080/13550280390201722 10.1016/S1386-6532(10)70002-0 10.1136/bmj.321.7264.794 10.1371/journal.ppat.1002367 10.1016/j.anl.2006.09.005 10.1073/pnas.95.20.11969 10.1128/JVI.06264-11 10.1086/514261 10.1073/pnas.0501045102 10.1038/labinvest.2013.128 10.1016/S0022-3476(84)80113-4 10.4049/jimmunol.168.1.29 10.1542/peds.68.5.735 10.1016/j.jdermsci.2012.10.015 10.1086/528696 10.3389/fimmu.2012.00302 10.1186/1471-2180-13-284 10.1128/JVI.76.22.11425-11433.2002 10.1086/517426 10.1086/605611 10.3109/08830189809042997 10.1093/infdis/165.1.119 10.1002/jmv.1890140403 10.1016/j.vaccine.2012.04.059 10.1002/jmv.1890230403 10.1086/340868 10.1099/0022-1317-42-1-171 10.1097/INF.0b013e318259fc8a 10.1086/382029 10.1542/peds.2010-3385 10.1086/514077 10.1093/infdis/169.1.91 10.1038/nrmicro3215 10.1016/j.vaccine.2014.03.057 10.1093/infdis/163.4.746 10.1128/iai.37.2.407-412.1982 10.1128/JVI.74.18.8413-8424.2000 10.1128/jvi.61.10.2951-2955.1987 10.1093/infdis/171.1.13 10.1186/1743-422X-10-278 10.1056/NEJMoa051016 10.1084/jem.20040634 10.1016/S0264-410X(02)00245-1 10.1086/651199 10.1006/viro.2001.0912 10.1056/NEJM196905292802201 10.1097/00008480-200402000-00015 10.1099/0022-1317-55-1-207 10.1093/cid/cis638 10.1128/JVI.72.2.965-974.1998 10.1093/infdis/142.3.414 10.1002/(SICI)1096-9071(199612)50:4<289::AID-JMV2>3.0.CO;2-4 10.1016/0168-1702(92)90017-4 10.1016/S0022-3476(81)80697-X 10.1093/infdis/127.6.617 10.1007/82_2010_27 10.1007/s13365-011-0069-7 10.1128/JVI.00407-13 10.1002/jmv.1890220403 10.1086/522159 10.1093/infdis/137.5.531 10.1002/jnr.490260110 10.1128/jvi.69.9.5236-5242.1995 10.1016/0042-6822(92)90022-H 10.1128/JVI.01148-07 10.1002/rmv.1789 10.1093/infdis/149.4.501 10.1016/j.vaccine.2009.10.086 10.1016/j.brainresrev.2004.07.008 |
ContentType | Journal Article |
Copyright | Copyright © 2015, American Society for Microbiology. All Rights Reserved. Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7U9 H94 5PM |
DOI | 10.1128/JVI.03124-14 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Virology and AIDS Abstracts AIDS and Cancer Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic AIDS and Cancer Research Abstracts Virology and AIDS Abstracts |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | VZV Protects Rhesus Macaques from SVV Challenge |
EISSN | 1098-5514 |
Editor | Longnecker, R. M. |
Editor_xml | – sequence: 1 givenname: R. M. surname: Longnecker fullname: Longnecker, R. M. |
EndPage | 1793 |
ExternalDocumentID | 10_1128_JVI_03124_14 25410871 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: NIH R01AG037042 – fundername: NIH HHS grantid: U42 OD010426 – fundername: NIA NIH HHS grantid: R01 AG037042 – fundername: NIAID NIH HHS grantid: 2T32AI007472-16 – fundername: NIAID NIH HHS grantid: T32 AI007472 – fundername: NIH HHS grantid: P51 OD011092 – fundername: NIH HHS grantid: NIH 8P51 OD011092-53 |
GroupedDBID | --- -~X .55 .GJ 0R~ 18M 29L 2WC 39C 3O- 4.4 41~ 53G 5GY 5RE 5VS 6TJ 85S AAYJJ ABPPZ ACGFO ACNCT ADBBV AENEX AFFNX AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CGR CS3 CUY CVF D0S DIK E3Z EBS ECM EIF EJD F20 F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 MVM N9A NPM O9- OHT OK1 P2P RHF RHI RNS RPM RSF TR2 UCJ UPT VH1 W2D W8F WH7 WOQ X7M Y6R YQT ZGI ZXP ~02 ~KM AAYXX CITATION 7X8 7U9 H94 5PM |
ID | FETCH-LOGICAL-c417t-ec7064dc58c97428e37861afb232cb4467894b33aae162a6a12b525a9defcffc3 |
IEDL.DBID | RPM |
ISSN | 0022-538X |
IngestDate | Tue Sep 17 20:55:47 EDT 2024 Fri Oct 25 05:32:20 EDT 2024 Fri Oct 25 21:46:21 EDT 2024 Thu Sep 12 17:16:36 EDT 2024 Sat Sep 28 08:04:24 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Copyright © 2015, American Society for Microbiology. All Rights Reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-ec7064dc58c97428e37861afb232cb4467894b33aae162a6a12b525a9defcffc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Citation Meyer C, Engelmann F, Arnold N, Krah DL, ter Meulen J, Haberthur K, Dewane J, Messaoudi I. 2015. Abortive intrabronchial infection of rhesus macaques with varicella-zoster virus provides partial protection against simian varicella virus challenge. J Virol 89:1781–1793. doi:10.1128/JVI.03124-14. |
OpenAccessLink | https://jvi.asm.org/content/jvi/89/3/1781.full.pdf |
PMID | 25410871 |
PQID | 1652384147 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4300754 proquest_miscellaneous_1660434555 proquest_miscellaneous_1652384147 crossref_primary_10_1128_JVI_03124_14 pubmed_primary_25410871 |
PublicationCentury | 2000 |
PublicationDate | 2015-02-01 |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of virology |
PublicationTitleAlternate | J Virol |
PublicationYear | 2015 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | 11009518 - BMJ. 2000 Sep 30;321(7264):794-6 20550454 - Clin Infect Dis. 2010 Jul 15;51(2):197-213 4350517 - J Infect Dis. 1973 Jun;127(6):617-25 21788222 - Pediatrics. 2011 Aug;128(2):214-20 4341396 - J Am Vet Med Assoc. 1972 Sep 15;161(6):690-2 6086866 - J Pediatr. 1984 Aug;105(2):200-5 18243930 - Ophthalmology. 2008 Feb;115(2 Suppl):S3-12 3040898 - J Med Virol. 1987 Aug;22(4):307-13 1309369 - J Infect Dis. 1992 Jan;165(1):119-26 15930418 - N Engl J Med. 2005 Jun 2;352(22):2271-84 24010815 - Virol J. 2013;10:278 23596286 - J Virol. 2013 Jun;87(12):6943-54 23087687 - Front Immunol. 2012 Oct 10;3:302 19911054 - PLoS Pathog. 2009 Nov;5(11):e1000657 22554464 - Vaccine. 2012 Jun 29;30(31):4581-4 6273782 - Pediatrics. 1981 Nov;68(5):735-7 9751774 - Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11969-74 12775423 - J Neurovirol. 2003 Jun;9(3):404-7 12388706 - J Virol. 2002 Nov;76(22):11447-59 207782 - J Infect Dis. 1978 May;137(5):531-40 15452178 - J Exp Med. 2004 Oct 4;200(7):917-25 168152 - Infect Immun. 1975 Aug;12(2):261-6 24681264 - Vaccine. 2014 May 7;32(22):2525-33 14593591 - J Infect Dis. 2003 Nov 1;188(9):1336-44 24189270 - Lab Invest. 2014 Jan;94(1):98-106 7798653 - J Infect Dis. 1995 Jan;171(1):13-7 7636965 - J Virol. 1995 Sep;69(9):5236-42 11751943 - J Immunol. 2002 Jan 1;168(1):29-43 8277202 - J Infect Dis. 1994 Jan;169(1):91-4 22622699 - Pediatr Infect Dis J. 2012 Aug;31(8):e133-40 2359148 - J Neurosci Res. 1990 May;26(1):83-9 23303966 - Trans Am Clin Climatol Assoc. 2012;123:17-33; discussion 33-5 19712037 - J Infect Dis. 2009 Oct 1;200(7):1068-77 17913822 - J Virol. 2007 Dec;81(23):13200-8 2826674 - J Med Virol. 1987 Dec;23(4):317-22 9852973 - J Infect Dis. 1998 Nov;178 Suppl 1:S48-51 17055202 - Auris Nasus Larynx. 2007 Jun;34(2):159-64 22258257 - J Virol. 2012 Apr;86(7):3626-34 8950684 - J Med Virol. 1996 Dec;50(4):289-92 7205447 - J Pediatr. 1981 Mar;98(3):368-73 24470276 - Clin Infect Dis. 2014 Apr;58(8):1125-8 14401571 - J Am Vet Med Assoc. 1960 Mar 15;136:256-7 1316940 - J Gen Virol. 1992 May;73 ( Pt 5):1209-15 215708 - J Gen Virol. 1979 Jan;42(1):171-8 1310185 - Virology. 1992 Feb;186(2):562-72 6288560 - Infect Immun. 1982 Aug;37(2):407-12 24313978 - BMC Microbiol. 2013;13:284 22102814 - PLoS Pathog. 2011 Nov;7(11):e1002367 4181206 - N Engl J Med. 1969 May 29;280(22):1191-4 3041014 - J Virol. 1987 Oct;61(10):2951-5 9444989 - J Virol. 1998 Feb;72(2):965-74 12477940 - N Engl J Med. 2002 Dec 12;347(24):1909-15 6255038 - J Infect Dis. 1980 Sep;142(3):414-20 12060885 - Clin Infect Dis. 2002 Jul 1;35(1):102-4 24509782 - Nat Rev Microbiol. 2014 Mar;12(3):197-210 1337232 - Virus Res. 1992 Dec;26(3):255-66 7351951 - N Engl J Med. 1980 Feb 21;302(8):450-3 22205584 - J Neurovirol. 2011 Dec;17(6):590-9 23183011 - J Dermatol Sci. 2013 Mar;69(3):243-9 9607852 - J Infect Dis. 1998 Jun;177(6):1701-4 192676 - Infect Immun. 1977 Mar;15(3):807-12 6271904 - J Gen Virol. 1981 Jul;55(Pt 1):207-11 6096500 - J Med Virol. 1984;14(4):305-12 13335330 - Pediatrics. 1956 Jul;18(1):109-49 9291302 - J Infect Dis. 1997 Sep;176(3):578-85 9505191 - Int Rev Immunol. 1998;16(3-4):249-84 18419349 - J Infect Dis. 2008 Mar 15;197(6):825-35 18419402 - J Infect Dis. 2008 Mar 1;197 Suppl 2:S228-36 14758119 - Curr Opin Pediatr. 2004 Feb;16(1):80-4 12388703 - J Virol. 2002 Nov;76(22):11425-33 21487663 - Arch Virol. 2011 May;156(5):739-46 20170376 - J Infect Dis. 2010 Apr 1;201(7):1024-30 15464211 - Brain Res Brain Res Rev. 2004 Oct;46(2):234-42 20369316 - Curr Top Microbiol Immunol. 2010;342:291-308 15851670 - Proc Natl Acad Sci U S A. 2005 May 3;102(18):6490-5 6327833 - J Infect Dis. 1984 Apr;149(4):501-4 19874924 - Vaccine. 2010 Jan 8;28(3):686-91 12126906 - Vaccine. 2002 Jul 26;20(23-24):2942-9 14999603 - J Infect Dis. 2004 Mar 15;189(6):1009-12 6259644 - Proc Soc Exp Biol Med. 1981 Mar;166(3):339-47 20510263 - J Clin Virol. 2010 May;48 Suppl 1:S2-7 24687808 - Rev Med Virol. 2014 Jul;24(4):254-73 10954541 - J Virol. 2000 Sep;74(18):8413-24 6330994 - Virology. 1984 Jul 15;136(1):241-6 11352673 - Virology. 2001 May 25;284(1):123-30 22828595 - Clin Infect Dis. 2012 Nov 15;55(10):1320-8 1849161 - J Infect Dis. 1991 Apr;163(4):746-51 e_1_3_2_49_2 Heuschele WP (e_1_3_2_53_2) 1960; 136 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_87_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_85_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_89_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_81_2 Cohen JI (e_1_3_2_6_2) 2007 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_73_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_79_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_77_2 e_1_3_2_50_2 e_1_3_2_71_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_65_2 e_1_3_2_86_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_69_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_88_2 Gershon AA (e_1_3_2_26_2) 2012; 123 e_1_3_2_61_2 e_1_3_2_82_2 e_1_3_2_80_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_76_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_2_2 White RJ (e_1_3_2_54_2) 1972; 161 e_1_3_2_72_2 e_1_3_2_70_2 |
References_xml | – ident: e_1_3_2_64_2 doi: 10.1016/0042-6822(84)90263-0 – ident: e_1_3_2_69_2 doi: 10.1371/journal.ppat.1000657 – ident: e_1_3_2_12_2 doi: 10.1542/peds.18.1.109 – ident: e_1_3_2_9_2 doi: 10.1016/j.ophtha.2007.10.009 – ident: e_1_3_2_23_2 doi: 10.1086/653605 – ident: e_1_3_2_60_2 doi: 10.1099/0022-1317-73-5-1209 – ident: e_1_3_2_72_2 doi: 10.1007/s00705-010-0889-4 – ident: e_1_3_2_21_2 doi: 10.1086/379048 – ident: e_1_3_2_2_2 doi: 10.1056/NEJM198002213020807 – ident: e_1_3_2_28_2 doi: 10.1093/cid/ciu058 – ident: e_1_3_2_70_2 doi: 10.3181/00379727-166-41071 – ident: e_1_3_2_30_2 doi: 10.1056/NEJMoa021662 – ident: e_1_3_2_37_2 doi: 10.1128/JVI.76.22.11447-11459.2002 – ident: e_1_3_2_66_2 doi: 10.1128/iai.15.3.807-812.1977 – ident: e_1_3_2_67_2 doi: 10.1128/iai.12.2.261-266.1975 – volume: 123 start-page: 17 year: 2012 ident: e_1_3_2_26_2 article-title: Latency of varicella zoster virus in dorsal root, cranial, and enteric ganglia in vaccinated children publication-title: Trans Am Clin Climatol Assoc contributor: fullname: Gershon AA – ident: e_1_3_2_11_2 doi: 10.1080/13550280390201722 – ident: e_1_3_2_7_2 doi: 10.1016/S1386-6532(10)70002-0 – ident: e_1_3_2_8_2 doi: 10.1136/bmj.321.7264.794 – ident: e_1_3_2_84_2 doi: 10.1371/journal.ppat.1002367 – ident: e_1_3_2_10_2 doi: 10.1016/j.anl.2006.09.005 – ident: e_1_3_2_49_2 doi: 10.1073/pnas.95.20.11969 – ident: e_1_3_2_59_2 doi: 10.1128/JVI.06264-11 – ident: e_1_3_2_82_2 doi: 10.1086/514261 – ident: e_1_3_2_50_2 doi: 10.1073/pnas.0501045102 – ident: e_1_3_2_80_2 doi: 10.1038/labinvest.2013.128 – ident: e_1_3_2_20_2 doi: 10.1016/S0022-3476(84)80113-4 – ident: e_1_3_2_76_2 doi: 10.4049/jimmunol.168.1.29 – ident: e_1_3_2_5_2 doi: 10.1542/peds.68.5.735 – ident: e_1_3_2_25_2 doi: 10.1016/j.jdermsci.2012.10.015 – ident: e_1_3_2_35_2 doi: 10.1086/528696 – ident: e_1_3_2_77_2 doi: 10.3389/fimmu.2012.00302 – ident: e_1_3_2_88_2 doi: 10.1186/1471-2180-13-284 – start-page: 2773 volume-title: Fields virology year: 2007 ident: e_1_3_2_6_2 contributor: fullname: Cohen JI – ident: e_1_3_2_83_2 doi: 10.1128/JVI.76.22.11425-11433.2002 – ident: e_1_3_2_14_2 doi: 10.1086/517426 – ident: e_1_3_2_22_2 doi: 10.1086/605611 – ident: e_1_3_2_75_2 doi: 10.3109/08830189809042997 – ident: e_1_3_2_17_2 doi: 10.1093/infdis/165.1.119 – ident: e_1_3_2_73_2 doi: 10.1002/jmv.1890140403 – ident: e_1_3_2_79_2 doi: 10.1016/j.vaccine.2012.04.059 – volume: 161 start-page: 690 year: 1972 ident: e_1_3_2_54_2 article-title: Chickenpox in young anthropoid apes: clinical and laboratory findings publication-title: J Am Vet Med Assoc contributor: fullname: White RJ – ident: e_1_3_2_55_2 doi: 10.1002/jmv.1890230403 – ident: e_1_3_2_29_2 doi: 10.1086/340868 – ident: e_1_3_2_58_2 doi: 10.1099/0022-1317-42-1-171 – ident: e_1_3_2_38_2 doi: 10.1097/INF.0b013e318259fc8a – ident: e_1_3_2_4_2 doi: 10.1086/382029 – ident: e_1_3_2_32_2 doi: 10.1542/peds.2010-3385 – ident: e_1_3_2_16_2 doi: 10.1086/514077 – ident: e_1_3_2_3_2 doi: 10.1093/infdis/169.1.91 – ident: e_1_3_2_52_2 doi: 10.1038/nrmicro3215 – ident: e_1_3_2_89_2 doi: 10.1016/j.vaccine.2014.03.057 – ident: e_1_3_2_43_2 doi: 10.1093/infdis/163.4.746 – ident: e_1_3_2_41_2 doi: 10.1128/iai.37.2.407-412.1982 – ident: e_1_3_2_78_2 doi: 10.1128/JVI.74.18.8413-8424.2000 – ident: e_1_3_2_57_2 doi: 10.1128/jvi.61.10.2951-2955.1987 – ident: e_1_3_2_15_2 doi: 10.1093/infdis/171.1.13 – ident: e_1_3_2_85_2 doi: 10.1186/1743-422X-10-278 – ident: e_1_3_2_33_2 doi: 10.1056/NEJMoa051016 – ident: e_1_3_2_51_2 doi: 10.1084/jem.20040634 – ident: e_1_3_2_40_2 doi: 10.1016/S0264-410X(02)00245-1 – ident: e_1_3_2_24_2 doi: 10.1086/651199 – ident: e_1_3_2_63_2 doi: 10.1006/viro.2001.0912 – ident: e_1_3_2_18_2 doi: 10.1056/NEJM196905292802201 – ident: e_1_3_2_31_2 doi: 10.1097/00008480-200402000-00015 – ident: e_1_3_2_74_2 doi: 10.1099/0022-1317-55-1-207 – ident: e_1_3_2_36_2 doi: 10.1093/cid/cis638 – ident: e_1_3_2_48_2 doi: 10.1128/JVI.72.2.965-974.1998 – ident: e_1_3_2_42_2 doi: 10.1093/infdis/142.3.414 – ident: e_1_3_2_56_2 doi: 10.1002/(SICI)1096-9071(199612)50:4<289::AID-JMV2>3.0.CO;2-4 – ident: e_1_3_2_62_2 doi: 10.1016/0168-1702(92)90017-4 – ident: e_1_3_2_19_2 doi: 10.1016/S0022-3476(81)80697-X – ident: e_1_3_2_65_2 doi: 10.1093/infdis/127.6.617 – ident: e_1_3_2_87_2 doi: 10.1007/82_2010_27 – ident: e_1_3_2_45_2 doi: 10.1007/s13365-011-0069-7 – ident: e_1_3_2_68_2 doi: 10.1128/JVI.00407-13 – ident: e_1_3_2_86_2 doi: 10.1002/jmv.1890220403 – ident: e_1_3_2_34_2 doi: 10.1086/522159 – ident: e_1_3_2_13_2 doi: 10.1093/infdis/137.5.531 – ident: e_1_3_2_81_2 doi: 10.1002/jnr.490260110 – ident: e_1_3_2_47_2 doi: 10.1128/jvi.69.9.5236-5242.1995 – ident: e_1_3_2_61_2 doi: 10.1016/0042-6822(92)90022-H – volume: 136 start-page: 256 year: 1960 ident: e_1_3_2_53_2 article-title: Varicella (chicken pox) in three young anthropoid apes publication-title: J Am Vet Med Assoc contributor: fullname: Heuschele WP – ident: e_1_3_2_71_2 doi: 10.1128/JVI.01148-07 – ident: e_1_3_2_27_2 doi: 10.1002/rmv.1789 – ident: e_1_3_2_44_2 doi: 10.1093/infdis/149.4.501 – ident: e_1_3_2_39_2 doi: 10.1016/j.vaccine.2009.10.086 – ident: e_1_3_2_46_2 doi: 10.1016/j.brainresrev.2004.07.008 |
SSID | ssj0014464 |
Score | 2.2572486 |
Snippet | Varicella-zoster virus (VZV) is a human neurotropic alphaherpesvirus and the etiological agent of varicella (chickenpox) and herpes zoster (HZ, shingles).... ABSTRACT Varicella-zoster virus (VZV) is a human neurotropic alphaherpesvirus and the etiological agent of varicella (chickenpox) and herpes zoster (HZ,... UNLABELLEDVaricella-zoster virus (VZV) is a human neurotropic alphaherpesvirus and the etiological agent of varicella (chickenpox) and herpes zoster (HZ,... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 1781 |
SubjectTerms | Alphaherpesvirus Animals Antibodies, Viral - blood Chickenpox - immunology Chickenpox - pathology Chickenpox - prevention & control Chickenpox - veterinary Cross Protection DNA, Viral - genetics DNA, Viral - isolation & purification Ganglia - virology Herpesvirus 3, Human - immunology Macaca mulatta Male Pathogenesis and Immunity Primate Diseases - immunology Primate Diseases - prevention & control T-Lymphocytes - immunology Varicella-zoster virus |
Title | Abortive intrabronchial infection of rhesus macaques with varicella-zoster virus provides partial protection against simian varicella virus challenge |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25410871 https://search.proquest.com/docview/1652384147 https://search.proquest.com/docview/1660434555 https://pubmed.ncbi.nlm.nih.gov/PMC4300754 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLYKEhIv0zYu6wbISPCYtnZsxzyiagiQiio2qoqX6NhxIBJNUS8P-yH8X46TuFAm7WFviXxLfL7Y53POhZCTTPQMcCcjUMxFuPp5Z2XkPGBEnCWcg60O9Ac36vJOXI_luEVk8IWpjPatKTrl06RTFo-VbeXzxHaDnVh3OOiL2O90ortBNhCggaI3vw6Q34gQIhy_5nGwdue6ez266iCIuYiYz8eD3Ij1dMLWt6S_9MyP5pLv9p-Lz-RTozjS8_oBv5CWK7-SrTqV5J8d8uJzXPmli1755mY2Lb0V8xPe1tZWJZ3m9PbRzZdzOgALfnTqT2HpCHxgIYRDdO89PmZ0VMyw0rD20cMLPynY07AO6eC7ggcoUK-kv4oJwuuth6ZpP2Ro2SV3Fz9_9y-jJuVCZAVLFpGzCeoomZXaItHg2sWJVgxyg4qXNTi1iT4TJo4BHFMcFDBuJJdwlrnc5rmN98hmOS3dN0JZJpxC8m1QAxVYqo3JdK6A57GCXMk2OQ2znj7XkTXSipFwnaKg0kpQyEza5DiIJEXoV29TuulynjKFLFoLJpJ_1VE9EQspcbz9Woyr0YL82yRZE_Cqgg-9vV6CiKxCcDcI_P7fLX-QbVS9ZG3_fUA2F7OlO0T1ZmGOKji_Aoao_ZY |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFD5iTNN4mWAXVm7zpO0xbe3YjnlEFahlFFUbVNVeIttxRiSaol4e9kP2f3ecxIyCxMPeEvmW-JzY3-ecC8CXjHeNZk5EWlIX4ernnZWR82jD4yxhTNvqQH94KfvX_HwiJhsggi9MZbRvTdEub6ftsripbCvvprYT7MQ6o2GPx36n450X8BK_1y4PJL35eYAMh4cg4Vg-CfbuTHXOx4M2qjHjEfUZeZAd0a5K6Pqm9ARpPjaYfLADnW3DmwY6kpP6EXdgw5Vv4VWdTPL3O_jjs1z5xYsMfHMzn5XejvkWb2t7q5LMcvL9xi1WCzLUVvvRiT-HJWPtQwuhQkQ_vc_HnIyLOVYa1V56eOGnBXsa1UEdfFf6ly4QWZIfxRQV7F8PTdNeyNHyHq7PTq96_ahJuhBZTpNl5GyCKCWzQlmkGky5OFGS6twg9LIGpzZRx9zEsdaOSqalpswIJvRx5nKb5zb-AJvlrHQfgdCMO4n02yAG5ViqjMlULjXLY6lzKVrwNcx6elfH1kgrTsJUioJKK0EhN2nB5yCSFJW_epvSzVaLlErk0YpTnjxXR3Z5zIXA8XZrMd6PFuTfgmRNwPcVfPDt9RLUySoId6ODe__d8hO87l8NL9KLweW3fdhCICZqa_AD2FzOV-4Qwc7SHFWq_RcAGAD7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgE2gvE-O2DgZGgsc0tWM73iMqq9ZBpwpYVfESHTs2i7SmVS8P-yH7vxznMlaQeOAtkW-Jz0n8fcnncwh5n4ueAe5kBIq5CN9-YbMych4wIslTzsFWH_RHF-rsUpxP5fReqq9KtG9N0S2vZ92yuKq0lYuZjVudWDwe9UUSVjoRL3IfPyS7-Mz2VEvUmx8IyHJEGygcy6et5p3r-Hwy7KIrcxGxkJUHGRLr6ZRtL0x_oc0_RZP3VqHBE7LfwEf6sb7MA_LAlU_Jozqh5M0zchsyXYUXGB2G5mY5L4OW-RpPa81VSeeefr1yq82KjsBCGJ2Gb7F0AiG8EDpF9CPs-1jSSbHESuN6px4ehKnBnsZ1YIfQFfyEAtEl_VbM0Ml-99A07bd5Wp6Ty8Hp9_5Z1CReiKxg6TpyNkWkklupLdINrl2SasXAG4Rf1uDUpvpEmCQBcExxUMC4kVzCSe689d4mL8hOOS_dIaEsF04hBTeIQwWWamNy7RVwnyjwSnbIh3bWs0UdXyOreAnXGRoqqwyF_KRD3rUmyfABqO6mdPPNKmMKubQWTKT_qqN6IhFS4ngvazPejdbav0PSLQPfVQgBuLdL0C-rQNyNHx79d8u35PH40yD7Mrz4_IrsIRaTtSD8NdlZLzfuGPHO2rypPPsXomkCDg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abortive+Intrabronchial+Infection+of+Rhesus+Macaques+with+Varicella-Zoster+Virus+Provides+Partial+Protection+against+Simian+Varicella+Virus+Challenge&rft.jtitle=Journal+of+virology&rft.au=Meyer%2C+Christine&rft.au=Engelmann%2C+Flora&rft.au=Arnold%2C+Nicole&rft.au=Krah%2C+David+L.&rft.date=2015-02-01&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=89&rft.issue=3&rft.spage=1781&rft.epage=1793&rft_id=info:doi/10.1128%2FJVI.03124-14&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_JVI_03124_14 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |