Semantic similarity and machine learning with ontologies
Abstract Ontologies have long been employed in the life sciences to formally represent and reason over domain knowledge and they are employed in almost every major biological database. Recently, ontologies are increasingly being used to provide background knowledge in similarity-based analysis and m...
Saved in:
Published in | Briefings in bioinformatics Vol. 22; no. 4 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.07.2021
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Ontologies have long been employed in the life sciences to formally represent and reason over domain knowledge and they are employed in almost every major biological database. Recently, ontologies are increasingly being used to provide background knowledge in similarity-based analysis and machine learning models. The methods employed to combine ontologies and machine learning are still novel and actively being developed. We provide an overview over the methods that use ontologies to compute similarity and incorporate them in machine learning methods; in particular, we outline how semantic similarity measures and ontology embeddings can exploit the background knowledge in ontologies and how ontologies can provide constraints that improve machine learning models. The methods and experiments we describe are available as a set of executable notebooks, and we also provide a set of slides and additional resources at https://github.com/bio-ontology-research-group/machine-learning-with-ontologies. |
---|---|
AbstractList | Ontologies have long been employed in the life sciences to formally represent and reason over domain knowledge and they are employed in almost every major biological database. Recently, ontologies are increasingly being used to provide background knowledge in similarity-based analysis and machine learning models. The methods employed to combine ontologies and machine learning are still novel and actively being developed. We provide an overview over the methods that use ontologies to compute similarity and incorporate them in machine learning methods; in particular, we outline how semantic similarity measures and ontology embeddings can exploit the background knowledge in ontologies and how ontologies can provide constraints that improve machine learning models. The methods and experiments we describe are available as a set of executable notebooks, and we also provide a set of slides and additional resources at https://github.com/bio-ontology-research-group/machine-learning-with-ontologies.Ontologies have long been employed in the life sciences to formally represent and reason over domain knowledge and they are employed in almost every major biological database. Recently, ontologies are increasingly being used to provide background knowledge in similarity-based analysis and machine learning models. The methods employed to combine ontologies and machine learning are still novel and actively being developed. We provide an overview over the methods that use ontologies to compute similarity and incorporate them in machine learning methods; in particular, we outline how semantic similarity measures and ontology embeddings can exploit the background knowledge in ontologies and how ontologies can provide constraints that improve machine learning models. The methods and experiments we describe are available as a set of executable notebooks, and we also provide a set of slides and additional resources at https://github.com/bio-ontology-research-group/machine-learning-with-ontologies. Ontologies have long been employed in the life sciences to formally represent and reason over domain knowledge and they are employed in almost every major biological database. Recently, ontologies are increasingly being used to provide background knowledge in similarity-based analysis and machine learning models. The methods employed to combine ontologies and machine learning are still novel and actively being developed. We provide an overview over the methods that use ontologies to compute similarity and incorporate them in machine learning methods; in particular, we outline how semantic similarity measures and ontology embeddings can exploit the background knowledge in ontologies and how ontologies can provide constraints that improve machine learning models. The methods and experiments we describe are available as a set of executable notebooks, and we also provide a set of slides and additional resources at https://github.com/bio-ontology-research-group/machine-learning-with-ontologies . Ontologies have long been employed in the life sciences to formally represent and reason over domain knowledge and they are employed in almost every major biological database. Recently, ontologies are increasingly being used to provide background knowledge in similarity-based analysis and machine learning models. The methods employed to combine ontologies and machine learning are still novel and actively being developed. We provide an overview over the methods that use ontologies to compute similarity and incorporate them in machine learning methods; in particular, we outline how semantic similarity measures and ontology embeddings can exploit the background knowledge in ontologies and how ontologies can provide constraints that improve machine learning models. The methods and experiments we describe are available as a set of executable notebooks, and we also provide a set of slides and additional resources at https://github.com/bio-ontology-research-group/machine-learning-with-ontologies. Abstract Ontologies have long been employed in the life sciences to formally represent and reason over domain knowledge and they are employed in almost every major biological database. Recently, ontologies are increasingly being used to provide background knowledge in similarity-based analysis and machine learning models. The methods employed to combine ontologies and machine learning are still novel and actively being developed. We provide an overview over the methods that use ontologies to compute similarity and incorporate them in machine learning methods; in particular, we outline how semantic similarity measures and ontology embeddings can exploit the background knowledge in ontologies and how ontologies can provide constraints that improve machine learning models. The methods and experiments we describe are available as a set of executable notebooks, and we also provide a set of slides and additional resources at https://github.com/bio-ontology-research-group/machine-learning-with-ontologies. |
Author | Kulmanov, Maxat Gao, Xin Smaili, Fatima Zohra Hoehndorf, Robert |
Author_xml | – sequence: 1 givenname: Maxat surname: Kulmanov fullname: Kulmanov, Maxat – sequence: 2 givenname: Fatima Zohra surname: Smaili fullname: Smaili, Fatima Zohra – sequence: 3 givenname: Xin surname: Gao fullname: Gao, Xin – sequence: 4 givenname: Robert surname: Hoehndorf fullname: Hoehndorf, Robert email: robert.hoehndorf@kaust.edu.sa |
BookMark | eNp9kdtKAzEQhoNU7EGvfIEFQQRZm9MeciNI8QQFL9TrkGSzbcpuUpOs0rd3S-uFRWQGZmC--YfhH4OBdVYDcI7gDYKMTKWRUymFQIwdgRGiRZFSmNHBts-LNKM5GYJxCCsIMSxKdAKGhEDKIKUjUL7qVthoVBJMaxrhTdwkwlZJK9TSWJ00Wnhr7CL5MnGZOBtd4xZGh1NwXIsm6LN9nYD3h_u32VM6f3l8nt3NU0VREVONSZ0TCctakkyKipJaFayQFBYYS6VzCCWrcFXqsk8kqxqLnNGyJoRShGoyAbc73XUnW10pbaMXDV970wq_4U4Y_ntizZIv3CcvMSNlHxNwtRfw7qPTIfLWBKWbRljtusAxzRAihOW0Ry8O0JXrvO3f4zhjENKM9egEoB2lvAvB65orE0U0bnvfNBxBvvWF977wvS_9zvXBzs8Df9OXO9p163_Bb1Bunjg |
CitedBy_id | crossref_primary_10_1093_bioinformatics_btac811 crossref_primary_10_3390_make4040056 crossref_primary_10_3390_s22020700 crossref_primary_10_1016_j_infsof_2024_107503 crossref_primary_10_1093_bioinformatics_btad662 crossref_primary_10_1093_bioinformatics_btac256 crossref_primary_10_1007_s00500_022_07173_x crossref_primary_10_3233_JCM_226638 crossref_primary_10_1108_LHT_10_2022_0488 crossref_primary_10_1109_ACCESS_2023_3285406 crossref_primary_10_1093_bib_bbac216 crossref_primary_10_1186_s12864_024_10960_5 crossref_primary_10_1186_s12911_022_02070_7 crossref_primary_10_1007_s00500_023_09409_w crossref_primary_10_4000_revuehn_3836 crossref_primary_10_1109_OJIES_2025_3545811 crossref_primary_10_1007_s00607_021_01021_w crossref_primary_10_3897_biss_7_111979 crossref_primary_10_1093_bioinformatics_btab859 crossref_primary_10_1186_s13326_023_00291_x crossref_primary_10_1016_j_websem_2024_100851 crossref_primary_10_1016_j_compbiomed_2024_108955 crossref_primary_10_1016_j_neucom_2023_01_007 crossref_primary_10_3233_SW_233511 crossref_primary_10_1093_bioinformatics_btac104 crossref_primary_10_1016_j_jrras_2024_101141 crossref_primary_10_32604_cmc_2022_027236 crossref_primary_10_1186_s40246_022_00376_1 crossref_primary_10_1145_3626960 crossref_primary_10_3389_fdgth_2021_781227 crossref_primary_10_1093_jamia_ocad202 crossref_primary_10_1186_s13040_022_00293_y crossref_primary_10_1016_j_jksuci_2024_102263 crossref_primary_10_15407_jai2020_02_022 crossref_primary_10_1007_s10994_021_05997_6 crossref_primary_10_3390_buildings12122072 crossref_primary_10_3233_JIFS_220110 crossref_primary_10_1093_bib_bbac003 crossref_primary_10_3389_fsufs_2024_1363744 crossref_primary_10_1242_dmm_049441 crossref_primary_10_1007_s10845_023_02213_1 crossref_primary_10_1016_j_cose_2024_104213 crossref_primary_10_1093_nargab_lqae049 crossref_primary_10_1016_j_eswa_2021_116466 crossref_primary_10_1186_s13326_025_00325_6 crossref_primary_10_3389_fninf_2024_1378281 crossref_primary_10_1016_j_jii_2025_100835 crossref_primary_10_1038_s41597_022_01429_9 crossref_primary_10_1371_journal_pone_0312049 crossref_primary_10_1080_09553002_2023_2173823 crossref_primary_10_1109_TNNLS_2023_3338619 crossref_primary_10_1186_s12911_024_02615_y crossref_primary_10_3390_app131910587 crossref_primary_10_1371_journal_pcbi_1012330 crossref_primary_10_3389_fcdhc_2022_980856 crossref_primary_10_1039_D2FD00085G crossref_primary_10_1177_26339137231207634 crossref_primary_10_1016_j_procs_2024_09_560 crossref_primary_10_1109_ACCESS_2021_3073730 crossref_primary_10_1038_s42256_024_00795_w |
Cites_doi | 10.1093/bioinformatics/btx624 10.1093/nar/gkz375 10.1038/srep31865 10.1093/bioinformatics/btu508 10.1186/gb-2004-6-1-r8 10.1038/75556 10.18653/v1/D18-1222 10.1186/1471-2105-11-441 10.1186/s12918-018-0539-0 10.24963/ijcai.2019/845 10.1007/978-3-030-30796-7_1 10.1038/nmeth.2340 10.1007/978-3-030-30952-7_45 10.3390/pharmaceutics11080377 10.1093/bioinformatics/btt581 10.1093/bib/bbx035 10.1093/bioinformatics/btg153 10.21236/ADA046289 10.1101/2020.03.30.015594 10.1093/bioinformatics/btz117 10.1007/s10817-013-9296-3 10.1016/j.ymeth.2019.04.008 10.1017/CBO9780511605826 10.1093/bioinformatics/btx275 10.1007/s10618-010-0175-9 10.1093/nar/gkr538 10.1186/s13326-017-0127-z 10.1038/s41598-019-53454-1 10.1007/s10994-009-5108-8 10.1093/nar/gky1131 10.1186/2041-1480-2-S1-S3 10.1007/978-3-319-60131-1_14 10.1186/s12859-017-1854-y 10.1017/S0269888920000132 10.1016/j.ajhg.2009.09.003 10.1016/j.jbi.2010.02.002 10.1109/21.24528 10.1038/nmeth.4627 10.1186/1471-2105-12-32 10.1038/nature14539 10.1093/bioinformatics/bty268 10.1016/j.inffus.2018.09.012 10.1007/978-3-030-31723-2 10.1007/s10994-006-5833-1 10.1186/s12859-019-3296-1 10.18653/v1/S18-2027 10.1093/nar/gky1055 10.1142/S0219720010004744 10.1109/TKDE.2017.2754499 10.1016/B978-0-12-809633-8.20401-9 10.1007/978-3-030-21348-0_10 10.1186/s13326-017-0119-z 10.1007/BF01700692 10.1007/978-3-319-46523-4_30 10.1101/463778 10.1613/jair.2811 10.25368/2022.144 10.1080/13102818.2018.1521302 10.1101/gr.160325.113 10.12688/f1000research.6670.1 10.1093/bioinformatics/bty933 10.1093/bioinformatics/btv590 10.1093/bib/bbv083 10.1038/s41598-018-33219-y 10.1093/nar/gkr469 10.1093/nar/gkp979 10.1038/s41436-018-0381-1 10.1038/nbt1346 10.1145/3292500.3330838 10.1016/j.websem.2008.05.001 10.1093/database/bay026 10.1093/bioinformatics/bty259 10.1016/j.ajhg.2008.09.017 10.1016/j.jtbi.2016.04.020 10.1126/science.1158140 10.1093/bioinformatics/bty130 10.1145/2939672.2939754 10.1186/s12859-017-1999-8 10.1371/journal.pcbi.1000443 10.1016/j.cels.2016.02.003 10.3390/ijms20236046 10.2200/S00639ED1V01Y201504HLT027 10.1371/journal.pbio.1002033 10.1093/bioinformatics/bty028 10.1093/nar/gky1049 10.1017/CBO9780511804076 10.1016/j.ajhg.2008.02.013 10.1146/annurev-biodatasci-010820-091627 10.1007/978-3-642-01907-4 10.1038/msb.2011.26 10.1109/JPROC.2015.2483592 10.1145/2623330.2623732 10.1109/TKDE.2016.2610428 10.1186/gb-2010-11-1-r2 10.1145/1592761.1592783 10.1093/database/bat025 10.1186/1471-2105-9-S5-S4 10.1093/nar/gky1105 10.1093/bioinformatics/btt228 10.1109/5254.920601 |
ContentType | Journal Article |
Copyright | The Author(s) 2020. Published by Oxford University Press. 2020 The Author(s) 2020. Published by Oxford University Press. |
Copyright_xml | – notice: The Author(s) 2020. Published by Oxford University Press. 2020 – notice: The Author(s) 2020. Published by Oxford University Press. |
DBID | TOX AAYXX CITATION 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
DOI | 10.1093/bib/bbaa199 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Genetics Abstracts |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
ExternalDocumentID | PMC8293838 10_1093_bib_bbaa199 10.1093/bib/bbaa199 |
GrantInformation_xml | – fundername: ; grantid: URF/1/3454-01-01; URF/1/3790-01-01; FCC/1/1976-04; FCC/1/1976-06; FCC/1/1976-17; FCC/1/1976-18; FCC/1/1976-23; FCC/1/1976-25; FCC/1/1976-26; URF/1/3450-01 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP AAVLN ABDBF ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX ABEJV ABGNP ABPQP ABXZS ACUHS ACUXJ AHGBF AHQJS ALXQX AMNDL ANAKG CITATION JXSIZ 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c417t-e23f63b08fb35bad43fc797b40722bce600b9d2d8e88e81bdf2a6948f334411f3 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Thu Aug 21 14:10:19 EDT 2025 Fri Jul 11 05:03:25 EDT 2025 Mon Jun 30 08:42:30 EDT 2025 Thu Apr 24 23:08:55 EDT 2025 Tue Jul 01 03:39:30 EDT 2025 Wed Aug 28 03:20:05 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | semantic similarity machine learning knowledge representation ontology neuro-symbolic integration |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-e23f63b08fb35bad43fc797b40722bce600b9d2d8e88e81bdf2a6948f334411f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://dx.doi.org/10.1093/bib/bbaa199 |
PMID | 33049044 |
PQID | 2590045911 |
PQPubID | 26846 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8293838 proquest_miscellaneous_2451133964 proquest_journals_2590045911 crossref_citationtrail_10_1093_bib_bbaa199 crossref_primary_10_1093_bib_bbaa199 oup_primary_10_1093_bib_bbaa199 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationYear | 2021 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | LeCun (2021072112100169800_ref31) 2015; 521 Zhu (2021072112100169800_ref111) 2017; 29 Lord (2021072112100169800_ref48) 2003; 19 The Gene Ontology Consortium (2021072112100169800_ref123) 2018; 47 Gonçalves (2021072112100169800_ref139) 2019 Saxton (2021072112100169800_ref135) 2019 Steinberg (2021072112100169800_ref99) 2019 Gottlieb (2021072112100169800_ref119) 2011; 7 Resnik (2021072112100169800_ref53) 1995 Gödel (2021072112100169800_ref59) 1931; 38-38 Koehler (2021072112100169800_ref67) 2008; 82 You (2021072112100169800_ref89) 2018; 34 Cozzetto (2021072112100169800_ref91) 2016; 6 Kulmanov (2021072112100169800_ref98) 2020 Feng (2021072112100169800_ref100) 2018; 32 Ferré (2021072112100169800_ref141) 2019 Besold (2021072112100169800_ref128) 2017 Smedley (2021072112100169800_ref43) 2013; 2013 Gkoutos (2021072112100169800_ref4) 2004; 6 Santana da Silva (2021072112100169800_ref25) 2017; 8 Radivojac (2021072112100169800_ref87) 2013; 29 Evans (2021072112100169800_ref137) 2017 Beckett (2021072112100169800_ref27) 2004 Levy (2021072112100169800_ref65) 2014 Deans (2021072112100169800_ref6) 2015; 13 Mungall (2021072112100169800_ref13) 2011; 44 Ali (2021072112100169800_ref114) 2019; 35 Lin (2021072112100169800_ref129) 2019 Ma (2021072112100169800_ref103) 2018; 15 Notaro (2021072112100169800_ref92) 2017; 18 Pesquita (2021072112100169800_ref55) 2008; 9 Baader (2021072112100169800_ref20) 2003 Peng (2021072112100169800_ref40) 2018; 12 Duong (2021072112100169800_ref126) 2020 Kazakov (2021072112100169800_ref107) 2014; 53 Cornish (2021072112100169800_ref44) 2018; 34 Hoehndorf (2021072112100169800_ref121) 2011; 39 Bordes (2021072112100169800_ref70) 2013 Joachims (2021072112100169800_ref93) 2009; 52 Baader (2021072112100169800_ref79) 2005 Nickel (2021072112100169800_ref34) 2016; 104 Ehrlinger (2021072112100169800_ref28) 2016 Sirin (2021072112100169800_ref109) 2004 Robinson (2021072112100169800_ref8) 2008; 83 Ashburner (2021072112100169800_ref15) 2000; 25 Zhang (2021072112100169800_ref38) 2016; 401 Hoehndorf (2021072112100169800_ref30) Yu (2021072112100169800_ref75) 2019 Rodriguez-Garcia (2021072112100169800_ref110) 2018; 19 Gkoutos (2021072112100169800_ref10) 2018; 19 Smith (2021072112100169800_ref3) 2007; 25 Karam (2021072112100169800_ref140) 2020; 35 Smaili (2021072112100169800_ref77) 2019; 35 Lee (2021072112100169800_ref85) 2019; 11 Kulmanov (2021072112100169800_ref97) 2018; 34 Peng (2021072112100169800_ref88) 2018; 34 Gruber (2021072112100169800_ref18) 1993 Radivojac (2021072112100169800_ref49) 2013; 10 Ristoski (2021072112100169800_ref62) 2016 Wang (2021072112100169800_ref142) 2017 Mazandu (2021072112100169800_ref56) 2016; 18 Smith (2021072112100169800_ref14) 2005 Levine (2021072112100169800_ref134) 2018 Feigenbaum (2021072112100169800_ref2) 1977 Kulmanov (2021072112100169800_ref78) 2019 Oellrich (2021072112100169800_ref7) 2016; 17 Smedley (2021072112100169800_ref68) 2014; 30 Rifaioglu (2021072112100169800_ref116) 2019; 9 Evans (2021072112100169800_ref136) 2018 Lord (2021072112100169800_ref82) 2003; 19 Deisseroth (2021072112100169800_ref118) 2018; 21 Kulmanov (2021072112100169800_ref144) 2018 The UniProt Consortium (2021072112100169800_ref29) 2018; 47 Smaili (2021072112100169800_ref76) 2018; 34 Seonwoo (2021072112100169800_ref1) 2016; 18 Richardson (2021072112100169800_ref132) 2006; 62 van der Maaten (2021072112100169800_ref81) 2008; 9 Harispe (2021072112100169800_ref57) 2014; 30 Chen (2021072112100169800_ref72) 2018 Fey (2021072112100169800_ref115) Lin (2021072112100169800_ref50) 1998 Zhou (2021072112100169800_ref138) 2018 Yu (2021072112100169800_ref104) 2016; 2 Ali (2021072112100169800_ref113) 2019 Sousa (2021072112100169800_ref36) 2020; 21 Zhao (2021072112100169800_ref41) 2018; 8 Pesquita (2021072112100169800_ref37) 2009; 5 Robinson (2021072112100169800_ref46) 2014; 24 Irving (2021072112100169800_ref143) 2016 da Silva (2021072112100169800_ref124) 2017; 8 Stuckenschmidt (2021072112100169800_ref83) 2009 Hao (2021072112100169800_ref73) 2019 Sokolov (2021072112100169800_ref95) 2010; 8 Noy (2021072112100169800_ref106) 2001; 16 Couto (2021072112100169800_ref112) 2019 Mikolov (2021072112100169800_ref32) 2013 Wang (2021072112100169800_ref101) 2016 d’Avila Garcez (2021072112100169800_ref127) 2015 Piovesan (2021072112100169800_ref90) 2019; 47 Wang (2021072112100169800_ref33) 2017; 29 Horridge (2021072112100169800_ref105) 2007 Motik (2021072112100169800_ref108) 2009; 36 Joachims (2021072112100169800_ref94) 2009; 77 Holter (2021072112100169800_ref26) 2019 CN (2021072112100169800_ref86) 2011; 22 Jiang (2021072112100169800_ref54) Zitnik (2021072112100169800_ref17) 2019; 50 Callahan (2021072112100169800_ref22) 2018; 2018 Goertzel (2021072112100169800_ref133) 2008 Ren (2021072112100169800_ref80) 2020 Hoehndorf (2021072112100169800_ref23) 2010; 11 Pottorff (2021072112100169800_ref130) 2019 Schlicker (2021072112100169800_ref42) 2010; 38 Mazandu (2021072112100169800_ref39) 2015; 32 Yu (2021072112100169800_ref16) 2019; 166 Morales (2021072112100169800_ref35) 2017 Koehler (2021072112100169800_ref9) 2019; 47 Lv (2021072112100169800_ref74) 2018 Avraham (2021072112100169800_ref69) 2000 Mousselly-Sergieh (2021072112100169800_ref125) 2018 Kulmanov (2021072112100169800_ref58) 2017; 8 Wang (2021072112100169800_ref102) 2019; 20 Kahanda (2021072112100169800_ref96) 2015; 4 Schindelman (2021072112100169800_ref5) 2011; 12 Perozzi (2021072112100169800_ref61) 2014 Tirmizi (2021072112100169800_ref21) 2011; 2 Boolos (2021072112100169800_ref60) 2007 Harispe (2021072112100169800_ref52) 2015; 8 Chen (2021072112100169800_ref63) 2020 Grau (2021072112100169800_ref12) 2008; 6 Mungall (2021072112100169800_ref11) 2010; 11 Althubaiti (2021072112100169800_ref84) 2019; 9 Szklarczyk (2021072112100169800_ref122) 2018; 47 Berners-Lee (2021072112100169800_ref19) 2001; 284 Köhler (2021072112100169800_ref45) 2009; 85 Rada (2021072112100169800_ref51) 1989; 19 Grover (2021072112100169800_ref66) 2016 Campillos (2021072112100169800_ref120) 2008; 321 Callahan (2021072112100169800_ref24) 2020; 3 Whetzel (2021072112100169800_ref117) 2011; 39 Mao (2021072112100169800_ref131) 2019 Köhler (2021072112100169800_ref47) 2018 Alshahrani (2021072112100169800_ref64) 2017; 33 Wang (2021072112100169800_ref71) 2014 |
References_xml | – volume: 34 start-page: 660 year: 2018 ident: 2021072112100169800_ref97 article-title: Deepgo: predicting protein functions from sequence and interactions using a deep ontology-aware classifier publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx624 – volume: 47 start-page: W373 year: 2019 ident: 2021072112100169800_ref90 article-title: Inga 2.0: improving protein function prediction for the dark proteome publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz375 – volume: 6 start-page: 31865 year: 2016 ident: 2021072112100169800_ref91 article-title: Ffpred 3: feature-based function prediction for all gene ontology domains publication-title: Sci Rep doi: 10.1038/srep31865 – year: 2019 ident: 2021072112100169800_ref99 article-title: Using ontologies to improve performance in massively multi-label prediction models publication-title: CoRR – year: 2020 ident: 2021072112100169800_ref98 article-title: Deeppheno: Predicting single gene loss-of-function phenotypes using an ontology-aware hierarchical classifier publication-title: bioRxiv – year: 2020 ident: 2021072112100169800_ref126 article-title: Evaluating representations for gene ontology terms – year: 2019 ident: 2021072112100169800_ref135 article-title: Analysing mathematical reasoning abilities of neural models publication-title: CoRR – volume: 30 start-page: 3215 issue: 22 year: 2014 ident: 2021072112100169800_ref68 article-title: Walking the interactome for candidate prioritization in exome sequencing studies of Mendelian diseases publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu508 – volume: 6 year: 2004 ident: 2021072112100169800_ref4 article-title: Using ontologies to describe mouse phenotypes publication-title: Genome Biol doi: 10.1186/gb-2004-6-1-r8 – volume: 25 start-page: 25 issue: 1 year: 2000 ident: 2021072112100169800_ref15 article-title: Gene ontology: tool for the unification of biology publication-title: Nat Genet doi: 10.1038/75556 – start-page: 1971 volume-title: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing year: 2018 ident: 2021072112100169800_ref74 article-title: Differentiating concepts and instances for knowledge graph embedding doi: 10.18653/v1/D18-1222 – volume-title: Proceedings of the OWLED 2007 Workshop on OWL: Experiences and Directions year: 2007 ident: 2021072112100169800_ref105 article-title: Igniting the OWL 1.1 touch paper: The OWL API – volume-title: Proceedings of the 2004 International Workshop on Description Logics, DL2004, Whistler, British Columbia, Canada, Jun 6-8, volume 104 of CEUR Workshop Proceedings year: 2004 ident: 2021072112100169800_ref109 article-title: Pellet: An OWL DL reasoner – year: 2018 ident: 2021072112100169800_ref134 article-title: Reinforcement learning and control as probabilistic inference: Tutorial and review publication-title: CoRR – year: 2018 ident: 2021072112100169800_ref138 article-title: Graph neural networks: A review of methods and applications – volume: 11 start-page: 441 year: 2010 ident: 2021072112100169800_ref23 article-title: Relations as patterns: Bridging the gap between OBO and OWL publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-441 – volume: 12 year: 2018 ident: 2021072112100169800_ref40 article-title: Improving the measurement of semantic similarity by combining gene ontology and co-functional network: a random walk based approach publication-title: BMC Syst Biol doi: 10.1186/s12918-018-0539-0 – volume-title: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence year: 2019 ident: 2021072112100169800_ref78 article-title: EL. Embeddings: Geometric construction of models for the description logic EL doi: 10.24963/ijcai.2019/845 – start-page: 3 volume-title: Proceedings of the International Semantic Web Conference (ISWC) 2019 year: 2019 ident: 2021072112100169800_ref113 article-title: The KEEN universe: An ecosystem for knowledge graph embeddings with a focus on reproducibility and transferability doi: 10.1007/978-3-030-30796-7_1 – volume: 10 start-page: 221 year: 2013 ident: 2021072112100169800_ref49 article-title: A large-scale evaluation of computational protein function prediction publication-title: Nat Meth doi: 10.1038/nmeth.2340 – volume: 9 year: 2019 ident: 2021072112100169800_ref116 article-title: Deepred: Automated protein function prediction with multi-task feed-forward deep neural networks publication-title: Sci Rep – ident: 2021072112100169800_ref30 publication-title: IOS Press. – start-page: 455 volume-title: Web Information Systems and Applications year: 2019 ident: 2021072112100169800_ref75 article-title: Transfg: A fine-grained model for knowledge graph embedding doi: 10.1007/978-3-030-30952-7_45 – volume: 11 start-page: 377 year: 2019 ident: 2021072112100169800_ref85 article-title: Comparison of target features for predicting drug-target interactions by deep neural network based on large-scale drug-induced transcriptome data publication-title: Pharmaceutics doi: 10.3390/pharmaceutics11080377 – volume: 30 start-page: 740 year: 2014 ident: 2021072112100169800_ref57 article-title: The semantic measures library and toolkit: fast computation of semantic similarity and relatedness using biomedical ontologies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt581 – volume: 19 start-page: 1008 issue: 5 year: 2018 ident: 2021072112100169800_ref10 article-title: The anatomy of phenotype ontologies: principles, properties and applications publication-title: Brief Bioinform doi: 10.1093/bib/bbx035 – volume: 19 start-page: 1275 issue: 10 year: 2003 ident: 2021072112100169800_ref48 article-title: Investigating semantic similarity measures across the Gene Ontology: the relationship between sequence and annotation publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg153 – year: 2018 ident: 2021072112100169800_ref136 article-title: Can neural networks understand logical entailment publication-title: CoRR – volume-title: Proceedings of the Fifth International Joint Conference on Artificial Intelligence year: 1977 ident: 2021072112100169800_ref2 article-title: The art of artificial intelligence – themes and case studies of knowledge engineering doi: 10.21236/ADA046289 – start-page: 448 volume-title: Proceedings of the 14th International Joint Conference on Artificial Intelligence, Volume 1 year: 1995 ident: 2021072112100169800_ref53 article-title: Using information content to evaluate semantic similarity in a taxonomy – year: 2020 ident: 2021072112100169800_ref63 article-title: Predicting candidate genes from phenotypes, functions, and anatomical site of expression doi: 10.1101/2020.03.30.015594 – volume: 35 start-page: 3538 issue: 18 year: 2019 ident: 2021072112100169800_ref114 article-title: BioKEEN: a library for learning and evaluating biological knowledge graph embeddings publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz117 – year: 2005 ident: 2021072112100169800_ref14 article-title: Relations in biomedical ontologies – start-page: 33 volume-title: Proceedings of the ISWC 2019 Satellite Tracks year: 2019 ident: 2021072112100169800_ref26 article-title: Embedding owl ontologies with owl2vec – volume: 53 start-page: 1 issue: 1 year: 2014 ident: 2021072112100169800_ref107 article-title: The incredible elk publication-title: J Autom Reasoning doi: 10.1007/s10817-013-9296-3 – volume: 166 start-page: 4 year: 2019 ident: 2021072112100169800_ref16 article-title: Deep learning in bioinformatics: Introduction, application, and perspective in the big data era publication-title: Methods doi: 10.1016/j.ymeth.2019.04.008 – volume-title: Joint Proceedings of the Posters and Demos Track of the 12th International Conference on Semantic Systems - SEMANTiCS2016 and the 1st International Workshop on Semantic Change & Evolving Semantics (SuCCESS’16) co-located with the 12th International Conference on Semantic Systems (SEMANTiCS 2016), Leipzig, Germany, September 12–15, 2016 year: 2016 ident: 2021072112100169800_ref28 article-title: Towards a definition of knowledge graphs – volume-title: 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia year: 2020 ident: 2021072112100169800_ref80 article-title: Query2box: Reasoning over knowledge graphs in vector space using box embeddings – volume-title: Diffusion and Reaction in Fractals and Disordered Systems year: 2000 ident: 2021072112100169800_ref69 doi: 10.1017/CBO9780511605826 – volume: 8 year: 2017 ident: 2021072112100169800_ref124 article-title: Ontological interpretation of biomedical database content publication-title: J Biomed Semant – volume: 33 start-page: 2723 issue: 17 year: 2017 ident: 2021072112100169800_ref64 article-title: Neuro-symbolic representation learning on biological knowledge graphs publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx275 – volume-title: The Description Logic Handbook: Theory, Implementation and Applications year: 2003 ident: 2021072112100169800_ref20 – volume: 22 start-page: 31 year: 2011 ident: 2021072112100169800_ref86 article-title: A survey of hierarchical classification across different application domains publication-title: Data Min Knowl Discov doi: 10.1007/s10618-010-0175-9 – volume: 9 start-page: 2579 year: 2008 ident: 2021072112100169800_ref81 article-title: Visualizing high-dimensional data using t-sne publication-title: J Mach Learn Res – volume: 39 year: 2011 ident: 2021072112100169800_ref121 article-title: Phenomenet: a whole-phenome approach to disease gene discovery publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr538 – volume: 8 year: 2017 ident: 2021072112100169800_ref25 article-title: Ontological interpretation of biomedical database content publication-title: J Biomed Semant doi: 10.1186/s13326-017-0127-z – volume: 9 year: 2019 ident: 2021072112100169800_ref84 article-title: Ontology-based prediction of cancer driver genes publication-title: Sci Rep doi: 10.1038/s41598-019-53454-1 – volume: 284 start-page: 28 issue: 5 year: 2001 ident: 2021072112100169800_ref19 article-title: The Semantic Web – volume: 77 start-page: 27 year: 2009 ident: 2021072112100169800_ref94 article-title: Cutting-plane training of structural SVMs publication-title: Mach Learn doi: 10.1007/s10994-009-5108-8 – volume: 47 start-page: D607 year: 2018 ident: 2021072112100169800_ref122 article-title: STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1131 – volume: 18 start-page: 851 year: 2016 ident: 2021072112100169800_ref1 article-title: Deep learning in bioinformatics publication-title: Brief Bioinform – volume-title: Advances in Neural Information Processing Systems 27, pp. 2177–2185 year: 2014 ident: 2021072112100169800_ref65 article-title: Neural word embedding as implicit matrix factorization – volume: 2 year: 2011 ident: 2021072112100169800_ref21 article-title: Mapping between the OBO and OWL ontology languages publication-title: J Biomed Semant doi: 10.1186/2041-1480-2-S1-S3 – start-page: 246 volume-title: Web Engineering year: 2017 ident: 2021072112100169800_ref35 article-title: Matetee: A semantic similarity metric based on translation embeddings for knowledge graphs doi: 10.1007/978-3-319-60131-1_14 – volume: 18 year: 2017 ident: 2021072112100169800_ref92 article-title: Prediction of human phenotype ontology terms by means of hierarchical ensemble methods publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1854-y – volume: 35 year: 2020 ident: 2021072112100169800_ref140 article-title: Matching biodiversity and ecology ontologies: challenges and evaluation results publication-title: Knowl Eng Rev doi: 10.1017/S0269888920000132 – volume: 85 start-page: 457 year: 2009 ident: 2021072112100169800_ref45 article-title: Clinical diagnostics in human genetics with semantic similarity searches in ontologies publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2009.09.003 – volume: 44 start-page: 80 issue: 1 year: 2011 ident: 2021072112100169800_ref13 article-title: Cross-product extensions of the gene ontology publication-title: J Biomed Inform doi: 10.1016/j.jbi.2010.02.002 – volume: 19 start-page: 17 issue: 1 year: 1989 ident: 2021072112100169800_ref51 article-title: Development and application of a metric on semantic nets publication-title: IEEE Trans Syst Man Cybernet doi: 10.1109/21.24528 – year: 2017 ident: 2021072112100169800_ref128 article-title: Neural-symbolic learning and reasoning: A survey and interpretation – volume: 15 start-page: 290 year: 2018 ident: 2021072112100169800_ref103 article-title: Using deep learning to model the hierarchical structure and function of a cell publication-title: Nat Methods doi: 10.1038/nmeth.4627 – volume-title: Advances in Neural Information Processing Systems 30 year: 2017 ident: 2021072112100169800_ref142 article-title: Premise selection for theorem proving by deep graph embedding – volume: 12 year: 2011 ident: 2021072112100169800_ref5 article-title: Worm phenotype ontology: integrating phenotype data within and beyond the C. elegans community publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-32 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 2021072112100169800_ref31 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 34 start-page: i313 year: 2018 ident: 2021072112100169800_ref88 article-title: Enumerating consistent sub-graphs of directed acyclic graphs: an insight into biomedical ontologies publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty268 – volume: 50 start-page: 71 year: 2019 ident: 2021072112100169800_ref17 article-title: Machine learning for integrating data in biology and medicine: Principles, practice, and opportunities publication-title: Inform Fusion doi: 10.1016/j.inffus.2018.09.012 – year: 2019 ident: 2021072112100169800_ref129 article-title: Learning semantically meaningful embeddings using linear constraints publication-title: In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops doi: 10.1007/978-3-030-31723-2 – volume: 62 start-page: 107 year: 2006 ident: 2021072112100169800_ref132 article-title: Markov logic networks publication-title: Mach Learn doi: 10.1007/s10994-006-5833-1 – volume: 21 start-page: 6 issue: 1 year: 2020 ident: 2021072112100169800_ref36 article-title: Evolving knowledge graph similarity for supervised learning in complex biomedical domains publication-title: BMC Bioinformatics doi: 10.1186/s12859-019-3296-1 – start-page: 225 volume-title: Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics year: 2018 ident: 2021072112100169800_ref125 article-title: A multimodal translation-based approach for knowledge graph representation learning doi: 10.18653/v1/S18-2027 – start-page: 315 volume-title: Proceedings of the 2018 SIAM International Conference on Data Mining year: 2018 ident: 2021072112100169800_ref72 article-title: On2vec: Embedding-based relation prediction for ontology population – volume: 47 start-page: D330 year: 2018 ident: 2021072112100169800_ref123 article-title: The Gene Ontology Resource: 20 years and still GOing strong publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1055 – volume: 8 start-page: 357 year: 2010 ident: 2021072112100169800_ref95 article-title: Hierarchical classification of gene ontology terms using the gostruct method publication-title: J. Bioinform Comput Biol doi: 10.1142/S0219720010004744 – volume: 29 start-page: 2724 issue: 12 year: 2017 ident: 2021072112100169800_ref33 article-title: Knowledge graph embedding: A survey of approaches and applications publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2017.2754499 – start-page: 870 volume-title: Encyclopedia of Bioinformatics and Computational Biology year: 2019 ident: 2021072112100169800_ref112 article-title: Lamurias AA. Semantic similarity definition doi: 10.1016/B978-0-12-809633-8.20401-9 – start-page: 146 volume-title: The Semantic Web year: 2019 ident: 2021072112100169800_ref139 article-title: Aligning biomedical metadata with ontologies using clustering and embeddings doi: 10.1007/978-3-030-21348-0_10 – volume: 8 year: 2017 ident: 2021072112100169800_ref58 article-title: Evaluating the effect of annotation size on measures of semantic similarity publication-title: J Biomed Semant doi: 10.1186/s13326-017-0119-z – volume: 38-38 start-page: 173 issue: 1 year: 1931 ident: 2021072112100169800_ref59 article-title: Über formal unentscheidbare sätze der principia mathematica und verwandter systeme i publication-title: Monatshefte für Mathematik und Physik doi: 10.1007/BF01700692 – start-page: 498 volume-title: The Semantic Web – ISWC 2016 year: 2016 ident: 2021072112100169800_ref62 article-title: Rdf2vec: Rdf graph embeddings for data mining doi: 10.1007/978-3-319-46523-4_30 – volume-title: Proceedings of the 11th International Conference Semantic Web Applications and Tools for Life Sciences (SWAT4HCLS 2018) year: 2018 ident: 2021072112100169800_ref144 article-title: Vec2sparql: integrating SPARQL queries and knowledge graph embeddings doi: 10.1101/463778 – volume-title: International Conference on Learning Representations year: 2019 ident: 2021072112100169800_ref131 article-title: The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural Supervision – volume: 36 start-page: 165 year: 2009 ident: 2021072112100169800_ref108 article-title: Hypertableau Reasoning for Description Logics publication-title: J Artif Intell Res doi: 10.1613/jair.2811 – volume-title: Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence IJCAI-05 year: 2005 ident: 2021072112100169800_ref79 article-title: Pushing the EL envelope doi: 10.25368/2022.144 – volume-title: Advances in Neural Information Processing Systems 26, pp. 2787–2795 year: 2013 ident: 2021072112100169800_ref70 article-title: Translating embeddings for modeling multi-relational data – volume: 32 start-page: 1613 issue: 6 year: 2018 ident: 2021072112100169800_ref100 article-title: A hierarchical multi-label classification method based on neural networks for gene function prediction publication-title: Biotechnol Biotechnol Equip doi: 10.1080/13102818.2018.1521302 – volume: 24 start-page: 340 issue: 2 year: 2014 ident: 2021072112100169800_ref46 article-title: Improved exome prioritization of disease genes through cross-species phenotype comparison publication-title: Genome Res doi: 10.1101/gr.160325.113 – volume: 19 start-page: 1275 issue: 10 year: 2003 ident: 2021072112100169800_ref82 article-title: Investigating semantic similarity measures across the gene ontology: the relationship between sequence and annotation publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg153 – volume: 4 start-page: 259 year: 2015 ident: 2021072112100169800_ref96 article-title: Phenostruct: Prediction of human phenotype ontology terms using heterogeneous data sources publication-title: F1000Research doi: 10.12688/f1000research.6670.1 – volume: 35 start-page: 2133 year: 2019 ident: 2021072112100169800_ref77 article-title: Opa2vec: combining formal and informal content of biomedical ontologies to improve similarity-based prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty933 – start-page: 431 volume-title: Proceedings, Part I, 27th International Conference on Database and Expert Systems Applications - Volume 9827 year: 2016 ident: 2021072112100169800_ref101 article-title: Ontology-based deep restricted boltzmann machine – volume: 32 start-page: 477 year: 2015 ident: 2021072112100169800_ref39 article-title: A-DaGO-Fun: an adaptable Gene Ontology semantic similarity-based functional analysis tool publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv590 – volume: 18 start-page: 886 year: 2016 ident: 2021072112100169800_ref56 article-title: Gene Ontology semantic similarity tools: survey on features and challenges for biological knowledge discovery publication-title: Brief Bioinform – volume: 17 start-page: 819 year: 2016 ident: 2021072112100169800_ref7 article-title: The digital revolution in phenotyping publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbv083 – volume: 8 year: 2018 ident: 2021072112100169800_ref41 article-title: GOGO: An improved algorithm to measure the semantic similarity between gene ontology terms publication-title: Sci Rep doi: 10.1038/s41598-018-33219-y – start-page: 2235 volume-title: Advances in Neural Information Processing Systems year: 2016 ident: 2021072112100169800_ref143 article-title: Deepmath - deep sequence models for premise selection – volume: 39 start-page: W541 year: 2011 ident: 2021072112100169800_ref117 article-title: BioPortal: enhanced functionality via new Web services from the National Center for Biomedical Ontology to access and use ontologies in software applications publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr469 – year: 2017 ident: 2021072112100169800_ref137 article-title: Learning explanatory rules from noisy data publication-title: CoRR – volume: 38 start-page: D244 issue: Database issue year: 2010 ident: 2021072112100169800_ref42 article-title: Funsimmat update: new features for exploring functional similarity publication-title: Nucleic Acids Research doi: 10.1093/nar/gkp979 – volume: 21 start-page: 1585 year: 2018 ident: 2021072112100169800_ref118 article-title: ClinPhen extracts and prioritizes patient phenotypes directly from medical records to expedite genetic disease diagnosis publication-title: Genet Med doi: 10.1038/s41436-018-0381-1 – volume: 25 start-page: 1251 issue: 11 year: 2007 ident: 2021072112100169800_ref3 article-title: The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration publication-title: Nat Biotech doi: 10.1038/nbt1346 – start-page: 1709 volume-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining year: 2019 ident: 2021072112100169800_ref73 article-title: Universal representation learning of knowledge bases by jointly embedding instances and ontological concepts doi: 10.1145/3292500.3330838 – start-page: 296 volume-title: In Proceedings of the 15th International Conference on Machine Learning year: 1998 ident: 2021072112100169800_ref50 article-title: An information-theoretic definition of similarity – volume: 6 start-page: 309 issue: 4 year: 2008 ident: 2021072112100169800_ref12 article-title: OWL 2: The next step for OWL publication-title: Web Semantics: Science, Services and Agents on the World Wide Web doi: 10.1016/j.websem.2008.05.001 – year: 2018 ident: 2021072112100169800_ref47 article-title: Improved ontology-based similarity calculations using a study-wise annotation model publication-title: Database doi: 10.1093/database/bay026 – volume: 34 start-page: i52 year: 2018 ident: 2021072112100169800_ref76 article-title: Onto2vec: joint vector-based representation of biological entities and their ontology-based annotations publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty259 – start-page: 3111 volume-title: Proceedings of the 26th International Conference on Neural Information Processing Systems, Volume 2 year: 2013 ident: 2021072112100169800_ref32 article-title: Distributed representations of words and phrases and their compositionality – volume-title: Probabilistic Logic Networks: A Comprehensive Conceptual, Mathematical and Computational Framework for Uncertain Inference year: 2008 ident: 2021072112100169800_ref133 – volume: 83 start-page: 610 issue: 5 year: 2008 ident: 2021072112100169800_ref8 article-title: The human phenotype ontology: a tool for annotating and analyzing human hereditary disease publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2008.09.017 – volume: 401 start-page: 30 year: 2016 ident: 2021072112100169800_ref38 article-title: Protein–protein interaction inference based on semantic similarity of gene ontology terms publication-title: J Theor Biol doi: 10.1016/j.jtbi.2016.04.020 – volume: 321 start-page: 263 year: 2008 ident: 2021072112100169800_ref120 article-title: Drug target identification using side-effect similarity publication-title: Science doi: 10.1126/science.1158140 – volume: 34 start-page: 2465 year: 2018 ident: 2021072112100169800_ref89 article-title: Golabeler: improving sequence-based large-scale protein function prediction by learning to rank publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty130 – start-page: 19 volume-title: Proceedings of the 10th Research on Computational Linguistics International Conference ident: 2021072112100169800_ref54 article-title: Semantic similarity based on corpus statistics and lexical taxonomy – start-page: 855 volume-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining year: 2016 ident: 2021072112100169800_ref66 article-title: Node2vec: Scalable feature learning for networks doi: 10.1145/2939672.2939754 – volume: 19 year: 2018 ident: 2021072112100169800_ref110 article-title: Inferring ontology graph structures using OWL reasoning publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1999-8 – volume-title: CoRR year: 2019 ident: 2021072112100169800_ref130 article-title: Video extrapolation with an invertible linear embedding – volume: 5 year: 2009 ident: 2021072112100169800_ref37 article-title: Semantic similarity in biomedical ontologies publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000443 – volume: 2 start-page: 77 year: 2016 ident: 2021072112100169800_ref104 article-title: Translation of genotype to phenotype by a hierarchy of cell subsystems publication-title: Cell Syst doi: 10.1016/j.cels.2016.02.003 – volume-title: AAAI Spring Symposium Series year: 2015 ident: 2021072112100169800_ref127 article-title: Neural-symbolic learning and reasoning: Contributions and challenges – volume: 20 year: 2019 ident: 2021072112100169800_ref102 article-title: Deepmir2go: Inferring functions of human micrornas using a deep multi-label classification model publication-title: Int J Mol Sci doi: 10.3390/ijms20236046 – volume-title: W3C recommendation year: 2004 ident: 2021072112100169800_ref27 article-title: RDF/XML syntax specification (revised) – volume: 8 start-page: 1 year: 2015 ident: 2021072112100169800_ref52 article-title: Semantic similarity from natural language and ontology analysis publication-title: Synth Lect Hum Lang Technol doi: 10.2200/S00639ED1V01Y201504HLT027 – volume: 13 year: 2015 ident: 2021072112100169800_ref6 article-title: Finding our way through phenotypes publication-title: PLoS Biol doi: 10.1371/journal.pbio.1002033 – start-page: 1112 volume-title: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence year: 2014 ident: 2021072112100169800_ref71 article-title: Knowledge graph embedding by translating on hyperplanes – volume: 34 start-page: 2087 year: 2018 ident: 2021072112100169800_ref44 article-title: PhenoRank: reducing study bias in gene prioritization through simulation publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty028 – volume: 2018 start-page: 133 issue: 23 year: 2018 ident: 2021072112100169800_ref22 article-title: OWL-NETS: Transforming OWL representations for improved network inference publication-title: Pacific Symposium on Biocomputing – volume: 47 start-page: D506 year: 2018 ident: 2021072112100169800_ref29 article-title: UniProt: a worldwide hub of protein knowledge publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1049 – volume-title: Computability and Logic year: 2007 ident: 2021072112100169800_ref60 doi: 10.1017/CBO9780511804076 – volume: 82 start-page: 949 issue: 4 year: 2008 ident: 2021072112100169800_ref67 article-title: Walking the interactome for prioritization of candidate disease genes publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2008.02.013 – volume: 3 start-page: 23 year: 2020 ident: 2021072112100169800_ref24 article-title: Knowledge-based biomedical data science publication-title: Annu Rev Biomed Data Sci doi: 10.1146/annurev-biodatasci-010820-091627 – volume-title: Formal Ontology in Conceptual Analysis and Knowledge Representation year: 1993 ident: 2021072112100169800_ref18 article-title: Towards Principles for the Design of Ontologies Used for Knowledge Sharing – volume-title: Modular Ontologies year: 2009 ident: 2021072112100169800_ref83 doi: 10.1007/978-3-642-01907-4 – volume: 7 start-page: 496 year: 2011 ident: 2021072112100169800_ref119 article-title: PREDICT: a method for inferring novel drug indications with application to personalized medicine publication-title: Mol Syst Biol doi: 10.1038/msb.2011.26 – ident: 2021072112100169800_ref115 article-title: Fast graph representation learning with pytorch geometric publication-title: CoRR – volume: 104 start-page: 11 year: 2016 ident: 2021072112100169800_ref34 article-title: A review of relational machine learning for knowledge graphs publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2015.2483592 – start-page: 701 volume-title: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining year: 2014 ident: 2021072112100169800_ref61 article-title: Deepwalk: Online learning of social representations doi: 10.1145/2623330.2623732 – volume-title: Phd thesis year: 2019 ident: 2021072112100169800_ref141 article-title: Vector representations and machine learning for alignment of text entities with ontology concepts: application to biology – volume: 29 start-page: 72 issue: 1 year: 2017 ident: 2021072112100169800_ref111 article-title: Computing semantic similarity of concepts in knowledge graphs publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2016.2610428 – volume: 11 year: 2010 ident: 2021072112100169800_ref11 article-title: Integrating phenotype ontologies across multiple species publication-title: Genome Biol doi: 10.1186/gb-2010-11-1-r2 – volume: 52 start-page: 97 year: 2009 ident: 2021072112100169800_ref93 article-title: Predicting structured objects with support vector machines publication-title: Commun ACM, Research Highlight doi: 10.1145/1592761.1592783 – volume: 2013 year: 2013 ident: 2021072112100169800_ref43 article-title: Phenodigm: analyzing curated annotations to associate animal models with human diseases publication-title: Database doi: 10.1093/database/bat025 – volume: 9 year: 2008 ident: 2021072112100169800_ref55 article-title: Metrics for GO based protein semantic similarity: a systematic evaluation publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-S5-S4 – volume: 47 start-page: D1018 year: 2019 ident: 2021072112100169800_ref9 article-title: Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1105 – volume: 29 start-page: i53 year: 2013 ident: 2021072112100169800_ref87 article-title: Information-theoretic evaluation of predicted ontological annotations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt228 – volume: 16 start-page: 60 year: 2001 ident: 2021072112100169800_ref106 article-title: Creating semantic web contents with Protege-2000 publication-title: IEEE Intell Syst doi: 10.1109/5254.920601 |
SSID | ssj0020781 |
Score | 2.6102595 |
SecondaryResourceType | review_article |
Snippet | Abstract
Ontologies have long been employed in the life sciences to formally represent and reason over domain knowledge and they are employed in almost every... Ontologies have long been employed in the life sciences to formally represent and reason over domain knowledge and they are employed in almost every major... |
SourceID | pubmedcentral proquest crossref oup |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Constraint modelling Knowledge representation Learning algorithms Machine learning Method Review Ontology Semantics Similarity |
Title | Semantic similarity and machine learning with ontologies |
URI | https://www.proquest.com/docview/2590045911 https://www.proquest.com/docview/2451133964 https://pubmed.ncbi.nlm.nih.gov/PMC8293838 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS8MwEA4yEHwRf-J0aoQ9CWVtk7TJo4hjCOqDG-ytJG2iBVfFbg_-9961XbEyFPqWKy1f0tx3zd13hAz9yEjOhfDAnWqPY42u9EPrAbNV0k_BB0VY7_zwGE1m_H4u5k2CbLnhCF-xkcnNyBitA4V1euB-USJ_-jRv4yrUq6mLiGIP1d2bMrxf93YcT6eYDTllNyPyh4sZ75HdhhvSm3oy98mWLQ7Idt0t8uuQyGe7ABzylJb5IoeIFAg01UVGF1VCpKVNB4gXij9XKQoT4MZmyyMyG99Nbyde0_jAS3kQLz0bMhcx40tnmDA648ylsYoNipmFJrVAUozKwkxaCVdgMhfqSHHpGAN2Ezh2THrFe2FPCFWCKck0BLoi4hBdySwWseVOOs1SY2yfXK9RSdJGFRybU7wl9ek0SwDCpIGwT4at8UcthrHZ7BLg_dtisIY-ab6ZMgmxgSkXsPv2yVU7DKsdjzB0Yd9XYINyaoypiPdJ3Jmy9nGol90dKfLXSjdbArWRTJ7--3pnZCfE1JUqK3dAesvPlT0H7rE0F9XK-wYqRder |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantic+similarity+and+machine+learning+with+ontologies&rft.jtitle=Briefings+in+bioinformatics&rft.au=Kulmanov%2C+Maxat&rft.au=Smaili%2C+Fatima+Zohra&rft.au=Gao%2C+Xin&rft.au=Hoehndorf%2C+Robert&rft.date=2021-07-01&rft.pub=Oxford+University+Press&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=22&rft.issue=4&rft_id=info:doi/10.1093%2Fbib%2Fbbaa199&rft.externalDocID=10.1093%2Fbib%2Fbbaa199 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |