Semantic similarity and machine learning with ontologies

Abstract Ontologies have long been employed in the life sciences to formally represent and reason over domain knowledge and they are employed in almost every major biological database. Recently, ontologies are increasingly being used to provide background knowledge in similarity-based analysis and m...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 22; no. 4
Main Authors Kulmanov, Maxat, Smaili, Fatima Zohra, Gao, Xin, Hoehndorf, Robert
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.07.2021
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Ontologies have long been employed in the life sciences to formally represent and reason over domain knowledge and they are employed in almost every major biological database. Recently, ontologies are increasingly being used to provide background knowledge in similarity-based analysis and machine learning models. The methods employed to combine ontologies and machine learning are still novel and actively being developed. We provide an overview over the methods that use ontologies to compute similarity and incorporate them in machine learning methods; in particular, we outline how semantic similarity measures and ontology embeddings can exploit the background knowledge in ontologies and how ontologies can provide constraints that improve machine learning models. The methods and experiments we describe are available as a set of executable notebooks, and we also provide a set of slides and additional resources at https://github.com/bio-ontology-research-group/machine-learning-with-ontologies.
AbstractList Ontologies have long been employed in the life sciences to formally represent and reason over domain knowledge and they are employed in almost every major biological database. Recently, ontologies are increasingly being used to provide background knowledge in similarity-based analysis and machine learning models. The methods employed to combine ontologies and machine learning are still novel and actively being developed. We provide an overview over the methods that use ontologies to compute similarity and incorporate them in machine learning methods; in particular, we outline how semantic similarity measures and ontology embeddings can exploit the background knowledge in ontologies and how ontologies can provide constraints that improve machine learning models. The methods and experiments we describe are available as a set of executable notebooks, and we also provide a set of slides and additional resources at https://github.com/bio-ontology-research-group/machine-learning-with-ontologies.Ontologies have long been employed in the life sciences to formally represent and reason over domain knowledge and they are employed in almost every major biological database. Recently, ontologies are increasingly being used to provide background knowledge in similarity-based analysis and machine learning models. The methods employed to combine ontologies and machine learning are still novel and actively being developed. We provide an overview over the methods that use ontologies to compute similarity and incorporate them in machine learning methods; in particular, we outline how semantic similarity measures and ontology embeddings can exploit the background knowledge in ontologies and how ontologies can provide constraints that improve machine learning models. The methods and experiments we describe are available as a set of executable notebooks, and we also provide a set of slides and additional resources at https://github.com/bio-ontology-research-group/machine-learning-with-ontologies.
Ontologies have long been employed in the life sciences to formally represent and reason over domain knowledge and they are employed in almost every major biological database. Recently, ontologies are increasingly being used to provide background knowledge in similarity-based analysis and machine learning models. The methods employed to combine ontologies and machine learning are still novel and actively being developed. We provide an overview over the methods that use ontologies to compute similarity and incorporate them in machine learning methods; in particular, we outline how semantic similarity measures and ontology embeddings can exploit the background knowledge in ontologies and how ontologies can provide constraints that improve machine learning models. The methods and experiments we describe are available as a set of executable notebooks, and we also provide a set of slides and additional resources at https://github.com/bio-ontology-research-group/machine-learning-with-ontologies .
Ontologies have long been employed in the life sciences to formally represent and reason over domain knowledge and they are employed in almost every major biological database. Recently, ontologies are increasingly being used to provide background knowledge in similarity-based analysis and machine learning models. The methods employed to combine ontologies and machine learning are still novel and actively being developed. We provide an overview over the methods that use ontologies to compute similarity and incorporate them in machine learning methods; in particular, we outline how semantic similarity measures and ontology embeddings can exploit the background knowledge in ontologies and how ontologies can provide constraints that improve machine learning models. The methods and experiments we describe are available as a set of executable notebooks, and we also provide a set of slides and additional resources at https://github.com/bio-ontology-research-group/machine-learning-with-ontologies.
Abstract Ontologies have long been employed in the life sciences to formally represent and reason over domain knowledge and they are employed in almost every major biological database. Recently, ontologies are increasingly being used to provide background knowledge in similarity-based analysis and machine learning models. The methods employed to combine ontologies and machine learning are still novel and actively being developed. We provide an overview over the methods that use ontologies to compute similarity and incorporate them in machine learning methods; in particular, we outline how semantic similarity measures and ontology embeddings can exploit the background knowledge in ontologies and how ontologies can provide constraints that improve machine learning models. The methods and experiments we describe are available as a set of executable notebooks, and we also provide a set of slides and additional resources at https://github.com/bio-ontology-research-group/machine-learning-with-ontologies.
Author Kulmanov, Maxat
Gao, Xin
Smaili, Fatima Zohra
Hoehndorf, Robert
Author_xml – sequence: 1
  givenname: Maxat
  surname: Kulmanov
  fullname: Kulmanov, Maxat
– sequence: 2
  givenname: Fatima Zohra
  surname: Smaili
  fullname: Smaili, Fatima Zohra
– sequence: 3
  givenname: Xin
  surname: Gao
  fullname: Gao, Xin
– sequence: 4
  givenname: Robert
  surname: Hoehndorf
  fullname: Hoehndorf, Robert
  email: robert.hoehndorf@kaust.edu.sa
BookMark eNp9kdtKAzEQhoNU7EGvfIEFQQRZm9MeciNI8QQFL9TrkGSzbcpuUpOs0rd3S-uFRWQGZmC--YfhH4OBdVYDcI7gDYKMTKWRUymFQIwdgRGiRZFSmNHBts-LNKM5GYJxCCsIMSxKdAKGhEDKIKUjUL7qVthoVBJMaxrhTdwkwlZJK9TSWJ00Wnhr7CL5MnGZOBtd4xZGh1NwXIsm6LN9nYD3h_u32VM6f3l8nt3NU0VREVONSZ0TCctakkyKipJaFayQFBYYS6VzCCWrcFXqsk8kqxqLnNGyJoRShGoyAbc73XUnW10pbaMXDV970wq_4U4Y_ntizZIv3CcvMSNlHxNwtRfw7qPTIfLWBKWbRljtusAxzRAihOW0Ry8O0JXrvO3f4zhjENKM9egEoB2lvAvB65orE0U0bnvfNBxBvvWF977wvS_9zvXBzs8Df9OXO9p163_Bb1Bunjg
CitedBy_id crossref_primary_10_1093_bioinformatics_btac811
crossref_primary_10_3390_make4040056
crossref_primary_10_3390_s22020700
crossref_primary_10_1016_j_infsof_2024_107503
crossref_primary_10_1093_bioinformatics_btad662
crossref_primary_10_1093_bioinformatics_btac256
crossref_primary_10_1007_s00500_022_07173_x
crossref_primary_10_3233_JCM_226638
crossref_primary_10_1108_LHT_10_2022_0488
crossref_primary_10_1109_ACCESS_2023_3285406
crossref_primary_10_1093_bib_bbac216
crossref_primary_10_1186_s12864_024_10960_5
crossref_primary_10_1186_s12911_022_02070_7
crossref_primary_10_1007_s00500_023_09409_w
crossref_primary_10_4000_revuehn_3836
crossref_primary_10_1109_OJIES_2025_3545811
crossref_primary_10_1007_s00607_021_01021_w
crossref_primary_10_3897_biss_7_111979
crossref_primary_10_1093_bioinformatics_btab859
crossref_primary_10_1186_s13326_023_00291_x
crossref_primary_10_1016_j_websem_2024_100851
crossref_primary_10_1016_j_compbiomed_2024_108955
crossref_primary_10_1016_j_neucom_2023_01_007
crossref_primary_10_3233_SW_233511
crossref_primary_10_1093_bioinformatics_btac104
crossref_primary_10_1016_j_jrras_2024_101141
crossref_primary_10_32604_cmc_2022_027236
crossref_primary_10_1186_s40246_022_00376_1
crossref_primary_10_1145_3626960
crossref_primary_10_3389_fdgth_2021_781227
crossref_primary_10_1093_jamia_ocad202
crossref_primary_10_1186_s13040_022_00293_y
crossref_primary_10_1016_j_jksuci_2024_102263
crossref_primary_10_15407_jai2020_02_022
crossref_primary_10_1007_s10994_021_05997_6
crossref_primary_10_3390_buildings12122072
crossref_primary_10_3233_JIFS_220110
crossref_primary_10_1093_bib_bbac003
crossref_primary_10_3389_fsufs_2024_1363744
crossref_primary_10_1242_dmm_049441
crossref_primary_10_1007_s10845_023_02213_1
crossref_primary_10_1016_j_cose_2024_104213
crossref_primary_10_1093_nargab_lqae049
crossref_primary_10_1016_j_eswa_2021_116466
crossref_primary_10_1186_s13326_025_00325_6
crossref_primary_10_3389_fninf_2024_1378281
crossref_primary_10_1016_j_jii_2025_100835
crossref_primary_10_1038_s41597_022_01429_9
crossref_primary_10_1371_journal_pone_0312049
crossref_primary_10_1080_09553002_2023_2173823
crossref_primary_10_1109_TNNLS_2023_3338619
crossref_primary_10_1186_s12911_024_02615_y
crossref_primary_10_3390_app131910587
crossref_primary_10_1371_journal_pcbi_1012330
crossref_primary_10_3389_fcdhc_2022_980856
crossref_primary_10_1039_D2FD00085G
crossref_primary_10_1177_26339137231207634
crossref_primary_10_1016_j_procs_2024_09_560
crossref_primary_10_1109_ACCESS_2021_3073730
crossref_primary_10_1038_s42256_024_00795_w
Cites_doi 10.1093/bioinformatics/btx624
10.1093/nar/gkz375
10.1038/srep31865
10.1093/bioinformatics/btu508
10.1186/gb-2004-6-1-r8
10.1038/75556
10.18653/v1/D18-1222
10.1186/1471-2105-11-441
10.1186/s12918-018-0539-0
10.24963/ijcai.2019/845
10.1007/978-3-030-30796-7_1
10.1038/nmeth.2340
10.1007/978-3-030-30952-7_45
10.3390/pharmaceutics11080377
10.1093/bioinformatics/btt581
10.1093/bib/bbx035
10.1093/bioinformatics/btg153
10.21236/ADA046289
10.1101/2020.03.30.015594
10.1093/bioinformatics/btz117
10.1007/s10817-013-9296-3
10.1016/j.ymeth.2019.04.008
10.1017/CBO9780511605826
10.1093/bioinformatics/btx275
10.1007/s10618-010-0175-9
10.1093/nar/gkr538
10.1186/s13326-017-0127-z
10.1038/s41598-019-53454-1
10.1007/s10994-009-5108-8
10.1093/nar/gky1131
10.1186/2041-1480-2-S1-S3
10.1007/978-3-319-60131-1_14
10.1186/s12859-017-1854-y
10.1017/S0269888920000132
10.1016/j.ajhg.2009.09.003
10.1016/j.jbi.2010.02.002
10.1109/21.24528
10.1038/nmeth.4627
10.1186/1471-2105-12-32
10.1038/nature14539
10.1093/bioinformatics/bty268
10.1016/j.inffus.2018.09.012
10.1007/978-3-030-31723-2
10.1007/s10994-006-5833-1
10.1186/s12859-019-3296-1
10.18653/v1/S18-2027
10.1093/nar/gky1055
10.1142/S0219720010004744
10.1109/TKDE.2017.2754499
10.1016/B978-0-12-809633-8.20401-9
10.1007/978-3-030-21348-0_10
10.1186/s13326-017-0119-z
10.1007/BF01700692
10.1007/978-3-319-46523-4_30
10.1101/463778
10.1613/jair.2811
10.25368/2022.144
10.1080/13102818.2018.1521302
10.1101/gr.160325.113
10.12688/f1000research.6670.1
10.1093/bioinformatics/bty933
10.1093/bioinformatics/btv590
10.1093/bib/bbv083
10.1038/s41598-018-33219-y
10.1093/nar/gkr469
10.1093/nar/gkp979
10.1038/s41436-018-0381-1
10.1038/nbt1346
10.1145/3292500.3330838
10.1016/j.websem.2008.05.001
10.1093/database/bay026
10.1093/bioinformatics/bty259
10.1016/j.ajhg.2008.09.017
10.1016/j.jtbi.2016.04.020
10.1126/science.1158140
10.1093/bioinformatics/bty130
10.1145/2939672.2939754
10.1186/s12859-017-1999-8
10.1371/journal.pcbi.1000443
10.1016/j.cels.2016.02.003
10.3390/ijms20236046
10.2200/S00639ED1V01Y201504HLT027
10.1371/journal.pbio.1002033
10.1093/bioinformatics/bty028
10.1093/nar/gky1049
10.1017/CBO9780511804076
10.1016/j.ajhg.2008.02.013
10.1146/annurev-biodatasci-010820-091627
10.1007/978-3-642-01907-4
10.1038/msb.2011.26
10.1109/JPROC.2015.2483592
10.1145/2623330.2623732
10.1109/TKDE.2016.2610428
10.1186/gb-2010-11-1-r2
10.1145/1592761.1592783
10.1093/database/bat025
10.1186/1471-2105-9-S5-S4
10.1093/nar/gky1105
10.1093/bioinformatics/btt228
10.1109/5254.920601
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press. 2020
The Author(s) 2020. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press. 2020
– notice: The Author(s) 2020. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
DOI 10.1093/bib/bbaa199
DatabaseName Oxford Journals Open Access Collection
CrossRef
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Genetics Abstracts

Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID PMC8293838
10_1093_bib_bbaa199
10.1093/bib/bbaa199
GrantInformation_xml – fundername: ;
  grantid: URF/1/3454-01-01; URF/1/3790-01-01; FCC/1/1976-04; FCC/1/1976-06; FCC/1/1976-17; FCC/1/1976-18; FCC/1/1976-23; FCC/1/1976-25; FCC/1/1976-26; URF/1/3450-01
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
AAVLN
ABDBF
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
ABEJV
ABGNP
ABPQP
ABXZS
ACUHS
ACUXJ
AHGBF
AHQJS
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c417t-e23f63b08fb35bad43fc797b40722bce600b9d2d8e88e81bdf2a6948f334411f3
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Thu Aug 21 14:10:19 EDT 2025
Fri Jul 11 05:03:25 EDT 2025
Mon Jun 30 08:42:30 EDT 2025
Thu Apr 24 23:08:55 EDT 2025
Tue Jul 01 03:39:30 EDT 2025
Wed Aug 28 03:20:05 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords semantic similarity
machine learning
knowledge representation
ontology
neuro-symbolic integration
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-e23f63b08fb35bad43fc797b40722bce600b9d2d8e88e81bdf2a6948f334411f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://dx.doi.org/10.1093/bib/bbaa199
PMID 33049044
PQID 2590045911
PQPubID 26846
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8293838
proquest_miscellaneous_2451133964
proquest_journals_2590045911
crossref_citationtrail_10_1093_bib_bbaa199
crossref_primary_10_1093_bib_bbaa199
oup_primary_10_1093_bib_bbaa199
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationYear 2021
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References LeCun (2021072112100169800_ref31) 2015; 521
Zhu (2021072112100169800_ref111) 2017; 29
Lord (2021072112100169800_ref48) 2003; 19
The Gene Ontology Consortium (2021072112100169800_ref123) 2018; 47
Gonçalves (2021072112100169800_ref139) 2019
Saxton (2021072112100169800_ref135) 2019
Steinberg (2021072112100169800_ref99) 2019
Gottlieb (2021072112100169800_ref119) 2011; 7
Resnik (2021072112100169800_ref53) 1995
Gödel (2021072112100169800_ref59) 1931; 38-38
Koehler (2021072112100169800_ref67) 2008; 82
You (2021072112100169800_ref89) 2018; 34
Cozzetto (2021072112100169800_ref91) 2016; 6
Kulmanov (2021072112100169800_ref98) 2020
Feng (2021072112100169800_ref100) 2018; 32
Ferré (2021072112100169800_ref141) 2019
Besold (2021072112100169800_ref128) 2017
Smedley (2021072112100169800_ref43) 2013; 2013
Gkoutos (2021072112100169800_ref4) 2004; 6
Santana da Silva (2021072112100169800_ref25) 2017; 8
Radivojac (2021072112100169800_ref87) 2013; 29
Evans (2021072112100169800_ref137) 2017
Beckett (2021072112100169800_ref27) 2004
Levy (2021072112100169800_ref65) 2014
Deans (2021072112100169800_ref6) 2015; 13
Mungall (2021072112100169800_ref13) 2011; 44
Ali (2021072112100169800_ref114) 2019; 35
Lin (2021072112100169800_ref129) 2019
Ma (2021072112100169800_ref103) 2018; 15
Notaro (2021072112100169800_ref92) 2017; 18
Pesquita (2021072112100169800_ref55) 2008; 9
Baader (2021072112100169800_ref20) 2003
Peng (2021072112100169800_ref40) 2018; 12
Duong (2021072112100169800_ref126) 2020
Kazakov (2021072112100169800_ref107) 2014; 53
Cornish (2021072112100169800_ref44) 2018; 34
Hoehndorf (2021072112100169800_ref121) 2011; 39
Bordes (2021072112100169800_ref70) 2013
Joachims (2021072112100169800_ref93) 2009; 52
Baader (2021072112100169800_ref79) 2005
Nickel (2021072112100169800_ref34) 2016; 104
Ehrlinger (2021072112100169800_ref28) 2016
Sirin (2021072112100169800_ref109) 2004
Robinson (2021072112100169800_ref8) 2008; 83
Ashburner (2021072112100169800_ref15) 2000; 25
Zhang (2021072112100169800_ref38) 2016; 401
Hoehndorf (2021072112100169800_ref30)
Yu (2021072112100169800_ref75) 2019
Rodriguez-Garcia (2021072112100169800_ref110) 2018; 19
Gkoutos (2021072112100169800_ref10) 2018; 19
Smith (2021072112100169800_ref3) 2007; 25
Karam (2021072112100169800_ref140) 2020; 35
Smaili (2021072112100169800_ref77) 2019; 35
Lee (2021072112100169800_ref85) 2019; 11
Kulmanov (2021072112100169800_ref97) 2018; 34
Peng (2021072112100169800_ref88) 2018; 34
Gruber (2021072112100169800_ref18) 1993
Radivojac (2021072112100169800_ref49) 2013; 10
Ristoski (2021072112100169800_ref62) 2016
Wang (2021072112100169800_ref142) 2017
Mazandu (2021072112100169800_ref56) 2016; 18
Smith (2021072112100169800_ref14) 2005
Levine (2021072112100169800_ref134) 2018
Feigenbaum (2021072112100169800_ref2) 1977
Kulmanov (2021072112100169800_ref78) 2019
Oellrich (2021072112100169800_ref7) 2016; 17
Smedley (2021072112100169800_ref68) 2014; 30
Rifaioglu (2021072112100169800_ref116) 2019; 9
Evans (2021072112100169800_ref136) 2018
Lord (2021072112100169800_ref82) 2003; 19
Deisseroth (2021072112100169800_ref118) 2018; 21
Kulmanov (2021072112100169800_ref144) 2018
The UniProt Consortium (2021072112100169800_ref29) 2018; 47
Smaili (2021072112100169800_ref76) 2018; 34
Seonwoo (2021072112100169800_ref1) 2016; 18
Richardson (2021072112100169800_ref132) 2006; 62
van der Maaten (2021072112100169800_ref81) 2008; 9
Harispe (2021072112100169800_ref57) 2014; 30
Chen (2021072112100169800_ref72) 2018
Fey (2021072112100169800_ref115)
Lin (2021072112100169800_ref50) 1998
Zhou (2021072112100169800_ref138) 2018
Yu (2021072112100169800_ref104) 2016; 2
Ali (2021072112100169800_ref113) 2019
Sousa (2021072112100169800_ref36) 2020; 21
Zhao (2021072112100169800_ref41) 2018; 8
Pesquita (2021072112100169800_ref37) 2009; 5
Robinson (2021072112100169800_ref46) 2014; 24
Irving (2021072112100169800_ref143) 2016
da Silva (2021072112100169800_ref124) 2017; 8
Stuckenschmidt (2021072112100169800_ref83) 2009
Hao (2021072112100169800_ref73) 2019
Sokolov (2021072112100169800_ref95) 2010; 8
Noy (2021072112100169800_ref106) 2001; 16
Couto (2021072112100169800_ref112) 2019
Mikolov (2021072112100169800_ref32) 2013
Wang (2021072112100169800_ref101) 2016
d’Avila Garcez (2021072112100169800_ref127) 2015
Piovesan (2021072112100169800_ref90) 2019; 47
Wang (2021072112100169800_ref33) 2017; 29
Horridge (2021072112100169800_ref105) 2007
Motik (2021072112100169800_ref108) 2009; 36
Joachims (2021072112100169800_ref94) 2009; 77
Holter (2021072112100169800_ref26) 2019
CN (2021072112100169800_ref86) 2011; 22
Jiang (2021072112100169800_ref54)
Zitnik (2021072112100169800_ref17) 2019; 50
Callahan (2021072112100169800_ref22) 2018; 2018
Goertzel (2021072112100169800_ref133) 2008
Ren (2021072112100169800_ref80) 2020
Hoehndorf (2021072112100169800_ref23) 2010; 11
Pottorff (2021072112100169800_ref130) 2019
Schlicker (2021072112100169800_ref42) 2010; 38
Mazandu (2021072112100169800_ref39) 2015; 32
Yu (2021072112100169800_ref16) 2019; 166
Morales (2021072112100169800_ref35) 2017
Koehler (2021072112100169800_ref9) 2019; 47
Lv (2021072112100169800_ref74) 2018
Avraham (2021072112100169800_ref69) 2000
Mousselly-Sergieh (2021072112100169800_ref125) 2018
Kulmanov (2021072112100169800_ref58) 2017; 8
Wang (2021072112100169800_ref102) 2019; 20
Kahanda (2021072112100169800_ref96) 2015; 4
Schindelman (2021072112100169800_ref5) 2011; 12
Perozzi (2021072112100169800_ref61) 2014
Tirmizi (2021072112100169800_ref21) 2011; 2
Boolos (2021072112100169800_ref60) 2007
Harispe (2021072112100169800_ref52) 2015; 8
Chen (2021072112100169800_ref63) 2020
Grau (2021072112100169800_ref12) 2008; 6
Mungall (2021072112100169800_ref11) 2010; 11
Althubaiti (2021072112100169800_ref84) 2019; 9
Szklarczyk (2021072112100169800_ref122) 2018; 47
Berners-Lee (2021072112100169800_ref19) 2001; 284
Köhler (2021072112100169800_ref45) 2009; 85
Rada (2021072112100169800_ref51) 1989; 19
Grover (2021072112100169800_ref66) 2016
Campillos (2021072112100169800_ref120) 2008; 321
Callahan (2021072112100169800_ref24) 2020; 3
Whetzel (2021072112100169800_ref117) 2011; 39
Mao (2021072112100169800_ref131) 2019
Köhler (2021072112100169800_ref47) 2018
Alshahrani (2021072112100169800_ref64) 2017; 33
Wang (2021072112100169800_ref71) 2014
References_xml – volume: 34
  start-page: 660
  year: 2018
  ident: 2021072112100169800_ref97
  article-title: Deepgo: predicting protein functions from sequence and interactions using a deep ontology-aware classifier
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx624
– volume: 47
  start-page: W373
  year: 2019
  ident: 2021072112100169800_ref90
  article-title: Inga 2.0: improving protein function prediction for the dark proteome
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz375
– volume: 6
  start-page: 31865
  year: 2016
  ident: 2021072112100169800_ref91
  article-title: Ffpred 3: feature-based function prediction for all gene ontology domains
  publication-title: Sci Rep
  doi: 10.1038/srep31865
– year: 2019
  ident: 2021072112100169800_ref99
  article-title: Using ontologies to improve performance in massively multi-label prediction models
  publication-title: CoRR
– year: 2020
  ident: 2021072112100169800_ref98
  article-title: Deeppheno: Predicting single gene loss-of-function phenotypes using an ontology-aware hierarchical classifier
  publication-title: bioRxiv
– year: 2020
  ident: 2021072112100169800_ref126
  article-title: Evaluating representations for gene ontology terms
– year: 2019
  ident: 2021072112100169800_ref135
  article-title: Analysing mathematical reasoning abilities of neural models
  publication-title: CoRR
– volume: 30
  start-page: 3215
  issue: 22
  year: 2014
  ident: 2021072112100169800_ref68
  article-title: Walking the interactome for candidate prioritization in exome sequencing studies of Mendelian diseases
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu508
– volume: 6
  year: 2004
  ident: 2021072112100169800_ref4
  article-title: Using ontologies to describe mouse phenotypes
  publication-title: Genome Biol
  doi: 10.1186/gb-2004-6-1-r8
– volume: 25
  start-page: 25
  issue: 1
  year: 2000
  ident: 2021072112100169800_ref15
  article-title: Gene ontology: tool for the unification of biology
  publication-title: Nat Genet
  doi: 10.1038/75556
– start-page: 1971
  volume-title: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
  year: 2018
  ident: 2021072112100169800_ref74
  article-title: Differentiating concepts and instances for knowledge graph embedding
  doi: 10.18653/v1/D18-1222
– volume-title: Proceedings of the OWLED 2007 Workshop on OWL: Experiences and Directions
  year: 2007
  ident: 2021072112100169800_ref105
  article-title: Igniting the OWL 1.1 touch paper: The OWL API
– volume-title: Proceedings of the 2004 International Workshop on Description Logics, DL2004, Whistler, British Columbia, Canada, Jun 6-8, volume 104 of CEUR Workshop Proceedings
  year: 2004
  ident: 2021072112100169800_ref109
  article-title: Pellet: An OWL DL reasoner
– year: 2018
  ident: 2021072112100169800_ref134
  article-title: Reinforcement learning and control as probabilistic inference: Tutorial and review
  publication-title: CoRR
– year: 2018
  ident: 2021072112100169800_ref138
  article-title: Graph neural networks: A review of methods and applications
– volume: 11
  start-page: 441
  year: 2010
  ident: 2021072112100169800_ref23
  article-title: Relations as patterns: Bridging the gap between OBO and OWL
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-441
– volume: 12
  year: 2018
  ident: 2021072112100169800_ref40
  article-title: Improving the measurement of semantic similarity by combining gene ontology and co-functional network: a random walk based approach
  publication-title: BMC Syst Biol
  doi: 10.1186/s12918-018-0539-0
– volume-title: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence
  year: 2019
  ident: 2021072112100169800_ref78
  article-title: EL. Embeddings: Geometric construction of models for the description logic EL
  doi: 10.24963/ijcai.2019/845
– start-page: 3
  volume-title: Proceedings of the International Semantic Web Conference (ISWC) 2019
  year: 2019
  ident: 2021072112100169800_ref113
  article-title: The KEEN universe: An ecosystem for knowledge graph embeddings with a focus on reproducibility and transferability
  doi: 10.1007/978-3-030-30796-7_1
– volume: 10
  start-page: 221
  year: 2013
  ident: 2021072112100169800_ref49
  article-title: A large-scale evaluation of computational protein function prediction
  publication-title: Nat Meth
  doi: 10.1038/nmeth.2340
– volume: 9
  year: 2019
  ident: 2021072112100169800_ref116
  article-title: Deepred: Automated protein function prediction with multi-task feed-forward deep neural networks
  publication-title: Sci Rep
– ident: 2021072112100169800_ref30
  publication-title: IOS Press.
– start-page: 455
  volume-title: Web Information Systems and Applications
  year: 2019
  ident: 2021072112100169800_ref75
  article-title: Transfg: A fine-grained model for knowledge graph embedding
  doi: 10.1007/978-3-030-30952-7_45
– volume: 11
  start-page: 377
  year: 2019
  ident: 2021072112100169800_ref85
  article-title: Comparison of target features for predicting drug-target interactions by deep neural network based on large-scale drug-induced transcriptome data
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics11080377
– volume: 30
  start-page: 740
  year: 2014
  ident: 2021072112100169800_ref57
  article-title: The semantic measures library and toolkit: fast computation of semantic similarity and relatedness using biomedical ontologies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt581
– volume: 19
  start-page: 1008
  issue: 5
  year: 2018
  ident: 2021072112100169800_ref10
  article-title: The anatomy of phenotype ontologies: principles, properties and applications
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbx035
– volume: 19
  start-page: 1275
  issue: 10
  year: 2003
  ident: 2021072112100169800_ref48
  article-title: Investigating semantic similarity measures across the Gene Ontology: the relationship between sequence and annotation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg153
– year: 2018
  ident: 2021072112100169800_ref136
  article-title: Can neural networks understand logical entailment
  publication-title: CoRR
– volume-title: Proceedings of the Fifth International Joint Conference on Artificial Intelligence
  year: 1977
  ident: 2021072112100169800_ref2
  article-title: The art of artificial intelligence – themes and case studies of knowledge engineering
  doi: 10.21236/ADA046289
– start-page: 448
  volume-title: Proceedings of the 14th International Joint Conference on Artificial Intelligence, Volume 1
  year: 1995
  ident: 2021072112100169800_ref53
  article-title: Using information content to evaluate semantic similarity in a taxonomy
– year: 2020
  ident: 2021072112100169800_ref63
  article-title: Predicting candidate genes from phenotypes, functions, and anatomical site of expression
  doi: 10.1101/2020.03.30.015594
– volume: 35
  start-page: 3538
  issue: 18
  year: 2019
  ident: 2021072112100169800_ref114
  article-title: BioKEEN: a library for learning and evaluating biological knowledge graph embeddings
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz117
– year: 2005
  ident: 2021072112100169800_ref14
  article-title: Relations in biomedical ontologies
– start-page: 33
  volume-title: Proceedings of the ISWC 2019 Satellite Tracks
  year: 2019
  ident: 2021072112100169800_ref26
  article-title: Embedding owl ontologies with owl2vec
– volume: 53
  start-page: 1
  issue: 1
  year: 2014
  ident: 2021072112100169800_ref107
  article-title: The incredible elk
  publication-title: J Autom Reasoning
  doi: 10.1007/s10817-013-9296-3
– volume: 166
  start-page: 4
  year: 2019
  ident: 2021072112100169800_ref16
  article-title: Deep learning in bioinformatics: Introduction, application, and perspective in the big data era
  publication-title: Methods
  doi: 10.1016/j.ymeth.2019.04.008
– volume-title: Joint Proceedings of the Posters and Demos Track of the 12th International Conference on Semantic Systems - SEMANTiCS2016 and the 1st International Workshop on Semantic Change & Evolving Semantics (SuCCESS’16) co-located with the 12th International Conference on Semantic Systems (SEMANTiCS 2016), Leipzig, Germany, September 12–15, 2016
  year: 2016
  ident: 2021072112100169800_ref28
  article-title: Towards a definition of knowledge graphs
– volume-title: 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia
  year: 2020
  ident: 2021072112100169800_ref80
  article-title: Query2box: Reasoning over knowledge graphs in vector space using box embeddings
– volume-title: Diffusion and Reaction in Fractals and Disordered Systems
  year: 2000
  ident: 2021072112100169800_ref69
  doi: 10.1017/CBO9780511605826
– volume: 8
  year: 2017
  ident: 2021072112100169800_ref124
  article-title: Ontological interpretation of biomedical database content
  publication-title: J Biomed Semant
– volume: 33
  start-page: 2723
  issue: 17
  year: 2017
  ident: 2021072112100169800_ref64
  article-title: Neuro-symbolic representation learning on biological knowledge graphs
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx275
– volume-title: The Description Logic Handbook: Theory, Implementation and Applications
  year: 2003
  ident: 2021072112100169800_ref20
– volume: 22
  start-page: 31
  year: 2011
  ident: 2021072112100169800_ref86
  article-title: A survey of hierarchical classification across different application domains
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-010-0175-9
– volume: 9
  start-page: 2579
  year: 2008
  ident: 2021072112100169800_ref81
  article-title: Visualizing high-dimensional data using t-sne
  publication-title: J Mach Learn Res
– volume: 39
  year: 2011
  ident: 2021072112100169800_ref121
  article-title: Phenomenet: a whole-phenome approach to disease gene discovery
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr538
– volume: 8
  year: 2017
  ident: 2021072112100169800_ref25
  article-title: Ontological interpretation of biomedical database content
  publication-title: J Biomed Semant
  doi: 10.1186/s13326-017-0127-z
– volume: 9
  year: 2019
  ident: 2021072112100169800_ref84
  article-title: Ontology-based prediction of cancer driver genes
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-53454-1
– volume: 284
  start-page: 28
  issue: 5
  year: 2001
  ident: 2021072112100169800_ref19
  article-title: The Semantic Web
– volume: 77
  start-page: 27
  year: 2009
  ident: 2021072112100169800_ref94
  article-title: Cutting-plane training of structural SVMs
  publication-title: Mach Learn
  doi: 10.1007/s10994-009-5108-8
– volume: 47
  start-page: D607
  year: 2018
  ident: 2021072112100169800_ref122
  article-title: STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1131
– volume: 18
  start-page: 851
  year: 2016
  ident: 2021072112100169800_ref1
  article-title: Deep learning in bioinformatics
  publication-title: Brief Bioinform
– volume-title: Advances in Neural Information Processing Systems 27, pp. 2177–2185
  year: 2014
  ident: 2021072112100169800_ref65
  article-title: Neural word embedding as implicit matrix factorization
– volume: 2
  year: 2011
  ident: 2021072112100169800_ref21
  article-title: Mapping between the OBO and OWL ontology languages
  publication-title: J Biomed Semant
  doi: 10.1186/2041-1480-2-S1-S3
– start-page: 246
  volume-title: Web Engineering
  year: 2017
  ident: 2021072112100169800_ref35
  article-title: Matetee: A semantic similarity metric based on translation embeddings for knowledge graphs
  doi: 10.1007/978-3-319-60131-1_14
– volume: 18
  year: 2017
  ident: 2021072112100169800_ref92
  article-title: Prediction of human phenotype ontology terms by means of hierarchical ensemble methods
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1854-y
– volume: 35
  year: 2020
  ident: 2021072112100169800_ref140
  article-title: Matching biodiversity and ecology ontologies: challenges and evaluation results
  publication-title: Knowl Eng Rev
  doi: 10.1017/S0269888920000132
– volume: 85
  start-page: 457
  year: 2009
  ident: 2021072112100169800_ref45
  article-title: Clinical diagnostics in human genetics with semantic similarity searches in ontologies
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2009.09.003
– volume: 44
  start-page: 80
  issue: 1
  year: 2011
  ident: 2021072112100169800_ref13
  article-title: Cross-product extensions of the gene ontology
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2010.02.002
– volume: 19
  start-page: 17
  issue: 1
  year: 1989
  ident: 2021072112100169800_ref51
  article-title: Development and application of a metric on semantic nets
  publication-title: IEEE Trans Syst Man Cybernet
  doi: 10.1109/21.24528
– year: 2017
  ident: 2021072112100169800_ref128
  article-title: Neural-symbolic learning and reasoning: A survey and interpretation
– volume: 15
  start-page: 290
  year: 2018
  ident: 2021072112100169800_ref103
  article-title: Using deep learning to model the hierarchical structure and function of a cell
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4627
– volume-title: Advances in Neural Information Processing Systems 30
  year: 2017
  ident: 2021072112100169800_ref142
  article-title: Premise selection for theorem proving by deep graph embedding
– volume: 12
  year: 2011
  ident: 2021072112100169800_ref5
  article-title: Worm phenotype ontology: integrating phenotype data within and beyond the C. elegans community
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-32
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 2021072112100169800_ref31
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 34
  start-page: i313
  year: 2018
  ident: 2021072112100169800_ref88
  article-title: Enumerating consistent sub-graphs of directed acyclic graphs: an insight into biomedical ontologies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty268
– volume: 50
  start-page: 71
  year: 2019
  ident: 2021072112100169800_ref17
  article-title: Machine learning for integrating data in biology and medicine: Principles, practice, and opportunities
  publication-title: Inform Fusion
  doi: 10.1016/j.inffus.2018.09.012
– year: 2019
  ident: 2021072112100169800_ref129
  article-title: Learning semantically meaningful embeddings using linear constraints
  publication-title: In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
  doi: 10.1007/978-3-030-31723-2
– volume: 62
  start-page: 107
  year: 2006
  ident: 2021072112100169800_ref132
  article-title: Markov logic networks
  publication-title: Mach Learn
  doi: 10.1007/s10994-006-5833-1
– volume: 21
  start-page: 6
  issue: 1
  year: 2020
  ident: 2021072112100169800_ref36
  article-title: Evolving knowledge graph similarity for supervised learning in complex biomedical domains
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-3296-1
– start-page: 225
  volume-title: Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics
  year: 2018
  ident: 2021072112100169800_ref125
  article-title: A multimodal translation-based approach for knowledge graph representation learning
  doi: 10.18653/v1/S18-2027
– start-page: 315
  volume-title: Proceedings of the 2018 SIAM International Conference on Data Mining
  year: 2018
  ident: 2021072112100169800_ref72
  article-title: On2vec: Embedding-based relation prediction for ontology population
– volume: 47
  start-page: D330
  year: 2018
  ident: 2021072112100169800_ref123
  article-title: The Gene Ontology Resource: 20 years and still GOing strong
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1055
– volume: 8
  start-page: 357
  year: 2010
  ident: 2021072112100169800_ref95
  article-title: Hierarchical classification of gene ontology terms using the gostruct method
  publication-title: J. Bioinform Comput Biol
  doi: 10.1142/S0219720010004744
– volume: 29
  start-page: 2724
  issue: 12
  year: 2017
  ident: 2021072112100169800_ref33
  article-title: Knowledge graph embedding: A survey of approaches and applications
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2017.2754499
– start-page: 870
  volume-title: Encyclopedia of Bioinformatics and Computational Biology
  year: 2019
  ident: 2021072112100169800_ref112
  article-title: Lamurias AA. Semantic similarity definition
  doi: 10.1016/B978-0-12-809633-8.20401-9
– start-page: 146
  volume-title: The Semantic Web
  year: 2019
  ident: 2021072112100169800_ref139
  article-title: Aligning biomedical metadata with ontologies using clustering and embeddings
  doi: 10.1007/978-3-030-21348-0_10
– volume: 8
  year: 2017
  ident: 2021072112100169800_ref58
  article-title: Evaluating the effect of annotation size on measures of semantic similarity
  publication-title: J Biomed Semant
  doi: 10.1186/s13326-017-0119-z
– volume: 38-38
  start-page: 173
  issue: 1
  year: 1931
  ident: 2021072112100169800_ref59
  article-title: Über formal unentscheidbare sätze der principia mathematica und verwandter systeme i
  publication-title: Monatshefte für Mathematik und Physik
  doi: 10.1007/BF01700692
– start-page: 498
  volume-title: The Semantic Web – ISWC 2016
  year: 2016
  ident: 2021072112100169800_ref62
  article-title: Rdf2vec: Rdf graph embeddings for data mining
  doi: 10.1007/978-3-319-46523-4_30
– volume-title: Proceedings of the 11th International Conference Semantic Web Applications and Tools for Life Sciences (SWAT4HCLS 2018)
  year: 2018
  ident: 2021072112100169800_ref144
  article-title: Vec2sparql: integrating SPARQL queries and knowledge graph embeddings
  doi: 10.1101/463778
– volume-title: International Conference on Learning Representations
  year: 2019
  ident: 2021072112100169800_ref131
  article-title: The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural Supervision
– volume: 36
  start-page: 165
  year: 2009
  ident: 2021072112100169800_ref108
  article-title: Hypertableau Reasoning for Description Logics
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.2811
– volume-title: Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence IJCAI-05
  year: 2005
  ident: 2021072112100169800_ref79
  article-title: Pushing the EL envelope
  doi: 10.25368/2022.144
– volume-title: Advances in Neural Information Processing Systems 26, pp. 2787–2795
  year: 2013
  ident: 2021072112100169800_ref70
  article-title: Translating embeddings for modeling multi-relational data
– volume: 32
  start-page: 1613
  issue: 6
  year: 2018
  ident: 2021072112100169800_ref100
  article-title: A hierarchical multi-label classification method based on neural networks for gene function prediction
  publication-title: Biotechnol Biotechnol Equip
  doi: 10.1080/13102818.2018.1521302
– volume: 24
  start-page: 340
  issue: 2
  year: 2014
  ident: 2021072112100169800_ref46
  article-title: Improved exome prioritization of disease genes through cross-species phenotype comparison
  publication-title: Genome Res
  doi: 10.1101/gr.160325.113
– volume: 19
  start-page: 1275
  issue: 10
  year: 2003
  ident: 2021072112100169800_ref82
  article-title: Investigating semantic similarity measures across the gene ontology: the relationship between sequence and annotation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg153
– volume: 4
  start-page: 259
  year: 2015
  ident: 2021072112100169800_ref96
  article-title: Phenostruct: Prediction of human phenotype ontology terms using heterogeneous data sources
  publication-title: F1000Research
  doi: 10.12688/f1000research.6670.1
– volume: 35
  start-page: 2133
  year: 2019
  ident: 2021072112100169800_ref77
  article-title: Opa2vec: combining formal and informal content of biomedical ontologies to improve similarity-based prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty933
– start-page: 431
  volume-title: Proceedings, Part I, 27th International Conference on Database and Expert Systems Applications - Volume 9827
  year: 2016
  ident: 2021072112100169800_ref101
  article-title: Ontology-based deep restricted boltzmann machine
– volume: 32
  start-page: 477
  year: 2015
  ident: 2021072112100169800_ref39
  article-title: A-DaGO-Fun: an adaptable Gene Ontology semantic similarity-based functional analysis tool
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv590
– volume: 18
  start-page: 886
  year: 2016
  ident: 2021072112100169800_ref56
  article-title: Gene Ontology semantic similarity tools: survey on features and challenges for biological knowledge discovery
  publication-title: Brief Bioinform
– volume: 17
  start-page: 819
  year: 2016
  ident: 2021072112100169800_ref7
  article-title: The digital revolution in phenotyping
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbv083
– volume: 8
  year: 2018
  ident: 2021072112100169800_ref41
  article-title: GOGO: An improved algorithm to measure the semantic similarity between gene ontology terms
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-33219-y
– start-page: 2235
  volume-title: Advances in Neural Information Processing Systems
  year: 2016
  ident: 2021072112100169800_ref143
  article-title: Deepmath - deep sequence models for premise selection
– volume: 39
  start-page: W541
  year: 2011
  ident: 2021072112100169800_ref117
  article-title: BioPortal: enhanced functionality via new Web services from the National Center for Biomedical Ontology to access and use ontologies in software applications
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr469
– year: 2017
  ident: 2021072112100169800_ref137
  article-title: Learning explanatory rules from noisy data
  publication-title: CoRR
– volume: 38
  start-page: D244
  issue: Database issue
  year: 2010
  ident: 2021072112100169800_ref42
  article-title: Funsimmat update: new features for exploring functional similarity
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkp979
– volume: 21
  start-page: 1585
  year: 2018
  ident: 2021072112100169800_ref118
  article-title: ClinPhen extracts and prioritizes patient phenotypes directly from medical records to expedite genetic disease diagnosis
  publication-title: Genet Med
  doi: 10.1038/s41436-018-0381-1
– volume: 25
  start-page: 1251
  issue: 11
  year: 2007
  ident: 2021072112100169800_ref3
  article-title: The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration
  publication-title: Nat Biotech
  doi: 10.1038/nbt1346
– start-page: 1709
  volume-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
  year: 2019
  ident: 2021072112100169800_ref73
  article-title: Universal representation learning of knowledge bases by jointly embedding instances and ontological concepts
  doi: 10.1145/3292500.3330838
– start-page: 296
  volume-title: In Proceedings of the 15th International Conference on Machine Learning
  year: 1998
  ident: 2021072112100169800_ref50
  article-title: An information-theoretic definition of similarity
– volume: 6
  start-page: 309
  issue: 4
  year: 2008
  ident: 2021072112100169800_ref12
  article-title: OWL 2: The next step for OWL
  publication-title: Web Semantics: Science, Services and Agents on the World Wide Web
  doi: 10.1016/j.websem.2008.05.001
– year: 2018
  ident: 2021072112100169800_ref47
  article-title: Improved ontology-based similarity calculations using a study-wise annotation model
  publication-title: Database
  doi: 10.1093/database/bay026
– volume: 34
  start-page: i52
  year: 2018
  ident: 2021072112100169800_ref76
  article-title: Onto2vec: joint vector-based representation of biological entities and their ontology-based annotations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty259
– start-page: 3111
  volume-title: Proceedings of the 26th International Conference on Neural Information Processing Systems, Volume 2
  year: 2013
  ident: 2021072112100169800_ref32
  article-title: Distributed representations of words and phrases and their compositionality
– volume-title: Probabilistic Logic Networks: A Comprehensive Conceptual, Mathematical and Computational Framework for Uncertain Inference
  year: 2008
  ident: 2021072112100169800_ref133
– volume: 83
  start-page: 610
  issue: 5
  year: 2008
  ident: 2021072112100169800_ref8
  article-title: The human phenotype ontology: a tool for annotating and analyzing human hereditary disease
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2008.09.017
– volume: 401
  start-page: 30
  year: 2016
  ident: 2021072112100169800_ref38
  article-title: Protein–protein interaction inference based on semantic similarity of gene ontology terms
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2016.04.020
– volume: 321
  start-page: 263
  year: 2008
  ident: 2021072112100169800_ref120
  article-title: Drug target identification using side-effect similarity
  publication-title: Science
  doi: 10.1126/science.1158140
– volume: 34
  start-page: 2465
  year: 2018
  ident: 2021072112100169800_ref89
  article-title: Golabeler: improving sequence-based large-scale protein function prediction by learning to rank
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty130
– start-page: 19
  volume-title: Proceedings of the 10th Research on Computational Linguistics International Conference
  ident: 2021072112100169800_ref54
  article-title: Semantic similarity based on corpus statistics and lexical taxonomy
– start-page: 855
  volume-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2016
  ident: 2021072112100169800_ref66
  article-title: Node2vec: Scalable feature learning for networks
  doi: 10.1145/2939672.2939754
– volume: 19
  year: 2018
  ident: 2021072112100169800_ref110
  article-title: Inferring ontology graph structures using OWL reasoning
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1999-8
– volume-title: CoRR
  year: 2019
  ident: 2021072112100169800_ref130
  article-title: Video extrapolation with an invertible linear embedding
– volume: 5
  year: 2009
  ident: 2021072112100169800_ref37
  article-title: Semantic similarity in biomedical ontologies
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000443
– volume: 2
  start-page: 77
  year: 2016
  ident: 2021072112100169800_ref104
  article-title: Translation of genotype to phenotype by a hierarchy of cell subsystems
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2016.02.003
– volume-title: AAAI Spring Symposium Series
  year: 2015
  ident: 2021072112100169800_ref127
  article-title: Neural-symbolic learning and reasoning: Contributions and challenges
– volume: 20
  year: 2019
  ident: 2021072112100169800_ref102
  article-title: Deepmir2go: Inferring functions of human micrornas using a deep multi-label classification model
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20236046
– volume-title: W3C recommendation
  year: 2004
  ident: 2021072112100169800_ref27
  article-title: RDF/XML syntax specification (revised)
– volume: 8
  start-page: 1
  year: 2015
  ident: 2021072112100169800_ref52
  article-title: Semantic similarity from natural language and ontology analysis
  publication-title: Synth Lect Hum Lang Technol
  doi: 10.2200/S00639ED1V01Y201504HLT027
– volume: 13
  year: 2015
  ident: 2021072112100169800_ref6
  article-title: Finding our way through phenotypes
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1002033
– start-page: 1112
  volume-title: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence
  year: 2014
  ident: 2021072112100169800_ref71
  article-title: Knowledge graph embedding by translating on hyperplanes
– volume: 34
  start-page: 2087
  year: 2018
  ident: 2021072112100169800_ref44
  article-title: PhenoRank: reducing study bias in gene prioritization through simulation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty028
– volume: 2018
  start-page: 133
  issue: 23
  year: 2018
  ident: 2021072112100169800_ref22
  article-title: OWL-NETS: Transforming OWL representations for improved network inference
  publication-title: Pacific Symposium on Biocomputing
– volume: 47
  start-page: D506
  year: 2018
  ident: 2021072112100169800_ref29
  article-title: UniProt: a worldwide hub of protein knowledge
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1049
– volume-title: Computability and Logic
  year: 2007
  ident: 2021072112100169800_ref60
  doi: 10.1017/CBO9780511804076
– volume: 82
  start-page: 949
  issue: 4
  year: 2008
  ident: 2021072112100169800_ref67
  article-title: Walking the interactome for prioritization of candidate disease genes
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2008.02.013
– volume: 3
  start-page: 23
  year: 2020
  ident: 2021072112100169800_ref24
  article-title: Knowledge-based biomedical data science
  publication-title: Annu Rev Biomed Data Sci
  doi: 10.1146/annurev-biodatasci-010820-091627
– volume-title: Formal Ontology in Conceptual Analysis and Knowledge Representation
  year: 1993
  ident: 2021072112100169800_ref18
  article-title: Towards Principles for the Design of Ontologies Used for Knowledge Sharing
– volume-title: Modular Ontologies
  year: 2009
  ident: 2021072112100169800_ref83
  doi: 10.1007/978-3-642-01907-4
– volume: 7
  start-page: 496
  year: 2011
  ident: 2021072112100169800_ref119
  article-title: PREDICT: a method for inferring novel drug indications with application to personalized medicine
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2011.26
– ident: 2021072112100169800_ref115
  article-title: Fast graph representation learning with pytorch geometric
  publication-title: CoRR
– volume: 104
  start-page: 11
  year: 2016
  ident: 2021072112100169800_ref34
  article-title: A review of relational machine learning for knowledge graphs
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2015.2483592
– start-page: 701
  volume-title: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2014
  ident: 2021072112100169800_ref61
  article-title: Deepwalk: Online learning of social representations
  doi: 10.1145/2623330.2623732
– volume-title: Phd thesis
  year: 2019
  ident: 2021072112100169800_ref141
  article-title: Vector representations and machine learning for alignment of text entities with ontology concepts: application to biology
– volume: 29
  start-page: 72
  issue: 1
  year: 2017
  ident: 2021072112100169800_ref111
  article-title: Computing semantic similarity of concepts in knowledge graphs
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2016.2610428
– volume: 11
  year: 2010
  ident: 2021072112100169800_ref11
  article-title: Integrating phenotype ontologies across multiple species
  publication-title: Genome Biol
  doi: 10.1186/gb-2010-11-1-r2
– volume: 52
  start-page: 97
  year: 2009
  ident: 2021072112100169800_ref93
  article-title: Predicting structured objects with support vector machines
  publication-title: Commun ACM, Research Highlight
  doi: 10.1145/1592761.1592783
– volume: 2013
  year: 2013
  ident: 2021072112100169800_ref43
  article-title: Phenodigm: analyzing curated annotations to associate animal models with human diseases
  publication-title: Database
  doi: 10.1093/database/bat025
– volume: 9
  year: 2008
  ident: 2021072112100169800_ref55
  article-title: Metrics for GO based protein semantic similarity: a systematic evaluation
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-S5-S4
– volume: 47
  start-page: D1018
  year: 2019
  ident: 2021072112100169800_ref9
  article-title: Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1105
– volume: 29
  start-page: i53
  year: 2013
  ident: 2021072112100169800_ref87
  article-title: Information-theoretic evaluation of predicted ontological annotations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt228
– volume: 16
  start-page: 60
  year: 2001
  ident: 2021072112100169800_ref106
  article-title: Creating semantic web contents with Protege-2000
  publication-title: IEEE Intell Syst
  doi: 10.1109/5254.920601
SSID ssj0020781
Score 2.6102595
SecondaryResourceType review_article
Snippet Abstract Ontologies have long been employed in the life sciences to formally represent and reason over domain knowledge and they are employed in almost every...
Ontologies have long been employed in the life sciences to formally represent and reason over domain knowledge and they are employed in almost every major...
SourceID pubmedcentral
proquest
crossref
oup
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Constraint modelling
Knowledge representation
Learning algorithms
Machine learning
Method Review
Ontology
Semantics
Similarity
Title Semantic similarity and machine learning with ontologies
URI https://www.proquest.com/docview/2590045911
https://www.proquest.com/docview/2451133964
https://pubmed.ncbi.nlm.nih.gov/PMC8293838
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS8MwEA4yEHwRf-J0aoQ9CWVtk7TJo4hjCOqDG-ytJG2iBVfFbg_-9961XbEyFPqWKy1f0tx3zd13hAz9yEjOhfDAnWqPY42u9EPrAbNV0k_BB0VY7_zwGE1m_H4u5k2CbLnhCF-xkcnNyBitA4V1euB-USJ_-jRv4yrUq6mLiGIP1d2bMrxf93YcT6eYDTllNyPyh4sZ75HdhhvSm3oy98mWLQ7Idt0t8uuQyGe7ABzylJb5IoeIFAg01UVGF1VCpKVNB4gXij9XKQoT4MZmyyMyG99Nbyde0_jAS3kQLz0bMhcx40tnmDA648ylsYoNipmFJrVAUozKwkxaCVdgMhfqSHHpGAN2Ezh2THrFe2FPCFWCKck0BLoi4hBdySwWseVOOs1SY2yfXK9RSdJGFRybU7wl9ek0SwDCpIGwT4at8UcthrHZ7BLg_dtisIY-ab6ZMgmxgSkXsPv2yVU7DKsdjzB0Yd9XYINyaoypiPdJ3Jmy9nGol90dKfLXSjdbArWRTJ7--3pnZCfE1JUqK3dAesvPlT0H7rE0F9XK-wYqRder
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantic+similarity+and+machine+learning+with+ontologies&rft.jtitle=Briefings+in+bioinformatics&rft.au=Kulmanov%2C+Maxat&rft.au=Smaili%2C+Fatima+Zohra&rft.au=Gao%2C+Xin&rft.au=Hoehndorf%2C+Robert&rft.date=2021-07-01&rft.pub=Oxford+University+Press&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=22&rft.issue=4&rft_id=info:doi/10.1093%2Fbib%2Fbbaa199&rft.externalDocID=10.1093%2Fbib%2Fbbaa199
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon