An Ultrasonic Motor Using a Titanium Transducer for a Cryogenic Environment

We have fabricated an ultrasonic motor using a titanium transducer. This motor is for driving in the cryogenic temperature condition with a highly intense magnetic field. Titanium has low magnetic permeability and a thermal expansion coefficient close to that of lead zirconate titanate (PZT). These...

Full description

Saved in:
Bibliographic Details
Published inJapanese Journal of Applied Physics Vol. 52; no. 7; pp. 07HE13 - 07HE13-6
Main Authors Takeda, Dai, Yamaguchi, Daisuke, Kanda, Takefumi, Suzumori, Koichi, Noguchi, Yuya
Format Journal Article
LanguageEnglish
Published The Japan Society of Applied Physics 01.07.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We have fabricated an ultrasonic motor using a titanium transducer. This motor is for driving in the cryogenic temperature condition with a highly intense magnetic field. Titanium has low magnetic permeability and a thermal expansion coefficient close to that of lead zirconate titanate (PZT). These features mean that a transducer made of titanium has good properties for use in such an environment. We have fabricated and evaluated the ultrasonic motor in a cryogenic environment and an intense magnetic field. We have simulated the thermal stress applied to PZT in consideration of nonlinear material properties in the cryogenic environment. The thermal stress of the titanium transducer is smaller than that of the SUS304 transducer. Moreover, we have achieved driving of the ultrasonic motor at 4.5 K. Additionally, we have confirmed that there is little effect of the intense magnetic field on the driving of the motor.
AbstractList We have fabricated an ultrasonic motor using a titanium transducer. This motor is for driving in the cryogenic temperature condition with a highly intense magnetic field. Titanium has low magnetic permeability and a thermal expansion coefficient close to that of lead zirconate titanate (PZT). These features mean that a transducer made of titanium has good properties for use in such an environment. We have fabricated and evaluated the ultrasonic motor in a cryogenic environment and an intense magnetic field. We have simulated the thermal stress applied to PZT in consideration of nonlinear material properties in the cryogenic environment. The thermal stress of the titanium transducer is smaller than that of the SUS304 transducer. Moreover, we have achieved driving of the ultrasonic motor at 4.5 K. Additionally, we have confirmed that there is little effect of the intense magnetic field on the driving of the motor.
Author Yamaguchi, Daisuke
Takeda, Dai
Suzumori, Koichi
Noguchi, Yuya
Kanda, Takefumi
Author_xml – sequence: 1
  givenname: Dai
  surname: Takeda
  fullname: Takeda, Dai
  organization: Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
– sequence: 2
  givenname: Daisuke
  surname: Yamaguchi
  fullname: Yamaguchi, Daisuke
  organization: Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
– sequence: 3
  givenname: Takefumi
  surname: Kanda
  fullname: Kanda, Takefumi
  organization: Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
– sequence: 4
  givenname: Koichi
  surname: Suzumori
  fullname: Suzumori, Koichi
  organization: Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
– sequence: 5
  givenname: Yuya
  surname: Noguchi
  fullname: Noguchi, Yuya
  organization: Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
BookMark eNqFkM9LwzAYhoNMcJtePecoQmt-tWmOY0znnOihO4e0S0akTWrSCvvv7ah3Tx8v3_N8fLwLMHPeaQDuMUp5lvOn3W71mWYkRXy7wfQKzDFlPGEoz2ZgjhDBCROE3IBFjF9jzDOG5-Bt5eCh6YOK3tkavvveB3iI1p2ggqXtlbNDC8ugXDwOtQ7QjHsF1-HsT_pibNyPDd612vW34NqoJuq7v7kEh-dNud4m-4-X1_Vqn9QM8z7RqFKFqVhR4wJzUdVYZYoKTMZ3SV6QgnCODcOmIkxoLvKjMsIcqaGUIKoNXYKH6W4X_PegYy9bG2vdNMppP0SJc84FwyLLRzSd0Dr4GIM2sgu2VeEsMZKX1uSlNZkRObU2Co-TYDvV_Qf_AnQKbig
CitedBy_id crossref_primary_10_35848_1347_4065_ad1e9b
crossref_primary_10_1016_j_sna_2020_111971
crossref_primary_10_7567_JJAP_55_018001
crossref_primary_10_7210_jrsj_36_195
Cites_doi 10.1016/0040-6031(93)80437-F
10.1109/TUFFC.2003.1214498
10.1006/jmre.1999.1790
10.1016/j.sna.2012.06.024
10.1088/0960-1317/19/2/022001
10.1016/j.cryogenics.2006.02.007
10.1063/1.2912946
10.2472/jsms.28.852
10.1063/1.1855424
10.1143/JJAP.51.07GE10
10.1002/polb.1991.090290806
10.1063/1.3523427
10.1299/jamdsm.6.104
10.1063/1.2192352
10.1143/JJAP.51.07GE09
10.1016/j.sna.2005.10.056
10.1016/j.jmr.2004.07.014
10.1143/JJAP.50.07HE28
10.1016/S0042-207X(02)00704-2
10.1103/PhysRev.135.A482
10.1016/j.ultras.2008.10.015
10.1109/58.84293
10.1016/S0042-207X(01)00411-0
10.1143/JJAP.45.4764
10.1016/S0032-3861(01)00711-X
10.1143/JJAP.47.4015
10.1016/j.mri.2007.07.005
10.1063/1.2908963
ContentType Journal Article
DBID AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.7567/JJAP.52.07HE13
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1347-4065
EndPage 07HE13-6
ExternalDocumentID 10_7567_JJAP_52_07HE13
GroupedDBID 4.4
AALHV
ACGFS
ACNCT
AEFHF
ALMA_UNASSIGNED_HOLDINGS
ATQHT
CEBXE
F5P
IOP
MC8
N5L
QTG
RNS
ROL
RW3
SJN
AAYXX
CITATION
IZVLO
KOT
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c417t-e0ba8fb48c18179bc1a5a3912347268282771f41fb249e796daf9fd3f33203ef3
ISSN 0021-4922
IngestDate Fri Jun 28 01:46:18 EDT 2024
Fri Aug 23 02:32:25 EDT 2024
Mon Jan 18 10:57:17 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c417t-e0ba8fb48c18179bc1a5a3912347268282771f41fb249e796daf9fd3f33203ef3
Notes (Color online) Structure of the ultrasonic motor. (Color online) Parts of the ultrasonic motor. (Color online) Structure of the transducer. (Color online) Parts of the transducer. (Color online) Simulation result by modal analysis. (Color online) Relationship between temperature and Young's modulus. (Color online) Relationship between temperature and the thermal expansion coefficients of PZT, SUS304, and titanium. (Color online) (a) Simulation result of the transducer with changing temperature from 300 to 4.5 K. (b) Cross-sectional view of PZT and simulation result of the thermal stress. (Color online) Relationship between temperature and thermal stress obtained by FEM. (Color online) Relationship between frequency and admittance at 4.5 K. (Color online) Relationship between clamping torque and admittance at each temperature. (Color online) Comparison of calculated and experimental values of optimum clamping torque of titanium and SUS304 transducers. (Color online) Evaluation system of the cryogenic ultrasonic motor: (a) rotation speed measurement system and (b) experimental setup for cryogenic environment. (Color online) Relationship between temperature, rotation speed, and starting torque in a cryogenic environment when the voltage and clamping torque are 100 V and 0.5 N m, respectively. (Color online) Relationship between magnetic flux density and amount of change relative to admittance of 0 T. Relationship between magnetic flux density and rotation speed when the voltage is 100 V at 300 K.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1677941956
PQPubID 23500
ParticipantIDs proquest_miscellaneous_1677941956
crossref_primary_10_7567_JJAP_52_07HE13
ipap_primary_10_7567_JJAP_52_07HE13
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Japanese Journal of Applied Physics
PublicationYear 2013
Publisher The Japan Society of Applied Physics
Publisher_xml – name: The Japan Society of Applied Physics
References W. S. Kim, D. Jin, and S. K. Lee: Rev. Sci. Instrum. 82 (2011) 015112.
S. Dong, L. Yan, D. Viegland, X. Jiang, and W. S. Hackenberger: Appl. Phys. Lett. 92 (2008) 153504.
Y. Doshida, H. Shimizu, Y. Mizuno, and H. Tamura: Jpn. J. Appl. Phys. 51 (2012) 07GE10.
S. G. Turowski, M. Sedhadri, M. Loecher, E. Podniesinski, J. A. Spernyak, and R. V. Mazurchuk: Magn. Resonance Imaging 26 (2008) 426.
S. Cagatay, B. Koc, and K. Uchino: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50 (2003) 782.
B. Sanguinetti and B. T. H. Varcoe: Cryogenics 46 (2006) 694.
R. H. Bogaard, P. D. Desai, H. H. Li, and C. Y. Ho: Thermochim. Acta 218 (1993) 373.
T. Mizuno, K. Takegoshi, and T. Terao: J. Magn. Resonance 171 (2004) 15.
H. Tamura, K. Shibata, M. Aoyagi, T. Takano, Y. Tomikawa, and S. Hirose: Jpn. J. Appl. Phys. 47 (2008) 4015.
R. P. Taylor, G. F. Nellis, S. A. Klein, D. W. Hoch, J. Fellers, P. Roach, J. M. Park, and Y. Gianchandani: AIP Conf. Proc. 824 (2006) 200.
T. Mizuno, K. Hioka, K. Fujioka, and T. Takegoshi: Rev. Sci. Instrum. 79 (2008) 044706.
H. Maeda, A. Kobayashi, T. Kanda, K. Suzumori, K. Takegoshi, and T. Mizuno: Ultrasonics Symp. (IUS), 2009, p. 1070.
T. Kanda, H. Maeda, K. Suzumori, and K. Fujisawa: Proc. IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics (AIM2011), 2011, p. 736.
D. Reichert, T. Mizuno, K. Takegoshi, and T. Terao: J. Magn. Resonance 139 (1999) 308.
Y. Takeuchi, N. Noda, S. Komori, and T. Yamato: Zairyo 28 (1979) 852 [in Japanese].
T. W. Reynolds: Aircraft-Fuel-Tank Design for Liquid Hydrogen (National Advisory Committee for Aeronautics, Washington, D.C., 1995) p. 20.
D. Yamaguchi, T. Kanda, and K. Suzumori: Sens. Actuators A 184 (2012) 134.
B. Watson, J. Friend, and L. Yeo: J. Micromech. Microeng. 19 (2009) 022001.
J. Qu, N. Zhou, X. Tian, L. Jin, and Z. Xu: Ultrasonics 49 (2009) 338.
T. Yamazaki, N. Takeshita, K. Kondo, R. Kobayashi, Y. Yamada, H. Fukazawa, Y. Kohori, P. M. Shirage, K. Kihou, H. Kito, H. Eisaki, and A. Iyo: J. Phys.: Conf. Ser. 215 (2010) 012041.
D. Yamaguchi, T. Kanda, K. Suzumori, M. Kuroda, and D. Takeda: Jpn. J. Appl. Phys. 51 (2012) 07GE09.
H. Ohta, I. Ando, S. Fujishige, and K. Kubota: J. Polym. Sci., Part B 29 (1991) 963.
D. Yamaguchi, T. Kanda, and K. Suzumori: J. Adv. Mech. Des. Syst. Manuf. 6 (2012) 104.
T. Kanda, A. Makino, T. Ono, K. Suzumori, T. Morita, and M. K. Kurosawa: Sens. Actuators A 127 (2006) 131.
T. Morita, T. Niino, and H. Asama: Vacuum 65 (2002) 85.
S. Dong, L. Yan, N. Wang, D. Viehland, X. Jiang, P. Rehrig, and W. Hackenberger: Appl. Phys. Lett. 86 (2005) 053501.
K. Nakamura, M. Kurosawa, H. Kurebayashi, and S. Ueha: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38 (1991) 481.
Y. Yoshimoto: Neji Teiketsutai Sekkei no Pointo JIS Tukaikata Sirîzu Kaiteiban (Design point of bolted joints, How to JIS series revised version) (Japanese Standards Association, Tokyo, 2002) p. 184 [in Japanese].
M. Kuroda, D. Yamaguchi, D. Takeda, Y. Noguchi, T. Kanda, and K. Suzumori: 30th Annu. Conf. Robotics Society of Japan, 2012, [in Japanese].
T. Kanda, A. Makino, Y. Oomori, and K. Suzumori: Jpn. J. Appl. Phys. 45 (2006) 4764.
T. Morita, S. Takahashi, H. Asama, and T. Niino: Vacuum 70 (2003) 53.
E. S. Fisher and C. J. Renken: Phys. Rev. 135 (1964) A482.
Y. Yamayoshi and S. Hirose: Jpn. J. Appl. Phys. 50 (2011) 07HE28.
D. J. T. Hill, C. M. L. Preston, and A. K. Whittaker: Polymer 43 (2002) 1051.
(crKey-10.7567/JJAP.52.07HE13-BIB25) 2012; 51
(crKey-10.7567/JJAP.52.07HE13-BIB12) 2012; 51
(crKey-10.7567/JJAP.52.07HE13-BIB6) 2010; 215
(crKey-10.7567/JJAP.52.07HE13-BIB9) 2008; 47
(crKey-10.7567/JJAP.52.07HE13-BIB10) 2006; 127
(crKey-10.7567/JJAP.52.07HE13-BIB17) 2011; 82
(crKey-10.7567/JJAP.52.07HE13-BIB26) 2012; 184
(crKey-10.7567/JJAP.52.07HE13-BIB3) 2008; 79
(crKey-10.7567/JJAP.52.07HE13-BIB22) 2008; 92
(crKey-10.7567/JJAP.52.07HE13-BIB18) 2003; 70
crKey-10.7567/JJAP.52.07HE13-BIB14
crKey-10.7567/JJAP.52.07HE13-BIB15
(crKey-10.7567/JJAP.52.07HE13-BIB4) 1991; 29
(crKey-10.7567/JJAP.52.07HE13-BIB19) 2002; 65
(crKey-10.7567/JJAP.52.07HE13-BIB13) 2011; 50
(crKey-10.7567/JJAP.52.07HE13-BIB33) 2002
(crKey-10.7567/JJAP.52.07HE13-BIB11) 2006; 45
(crKey-10.7567/JJAP.52.07HE13-BIB7) 2003; 50
(crKey-10.7567/JJAP.52.07HE13-BIB34) 1991; 38
(crKey-10.7567/JJAP.52.07HE13-BIB1) 2004; 171
(crKey-10.7567/JJAP.52.07HE13-BIB20) 2009; 49
(crKey-10.7567/JJAP.52.07HE13-BIB16) 2008; 26
(crKey-10.7567/JJAP.52.07HE13-BIB2) 1999; 139
(crKey-10.7567/JJAP.52.07HE13-BIB29) 1979; 28
(crKey-10.7567/JJAP.52.07HE13-BIB5) 2002; 43
(crKey-10.7567/JJAP.52.07HE13-BIB30) 1995
(crKey-10.7567/JJAP.52.07HE13-BIB8) 2009; 19
(crKey-10.7567/JJAP.52.07HE13-BIB31) 1993; 218
(crKey-10.7567/JJAP.52.07HE13-BIB32) 2006; 824
(crKey-10.7567/JJAP.52.07HE13-BIB23) 2005; 86
crKey-10.7567/JJAP.52.07HE13-BIB27
(crKey-10.7567/JJAP.52.07HE13-BIB24) 2012; 6
(crKey-10.7567/JJAP.52.07HE13-BIB21) 2006; 46
(crKey-10.7567/JJAP.52.07HE13-BIB28) 1964; 135
References_xml – volume: 218
  start-page: 373
  year: 1993
  ident: crKey-10.7567/JJAP.52.07HE13-BIB31
  publication-title: Thermochim. Acta
  doi: 10.1016/0040-6031(93)80437-F
– ident: crKey-10.7567/JJAP.52.07HE13-BIB15
– volume: 50
  start-page: 782
  year: 2003
  ident: crKey-10.7567/JJAP.52.07HE13-BIB7
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2003.1214498
– volume: 139
  start-page: 308
  year: 1999
  ident: crKey-10.7567/JJAP.52.07HE13-BIB2
  publication-title: J. Magn. Resonance
  doi: 10.1006/jmre.1999.1790
– volume: 184
  start-page: 134
  year: 2012
  ident: crKey-10.7567/JJAP.52.07HE13-BIB26
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2012.06.024
– volume: 19
  start-page: 022001
  year: 2009
  ident: crKey-10.7567/JJAP.52.07HE13-BIB8
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/19/2/022001
– volume: 46
  start-page: 694
  year: 2006
  ident: crKey-10.7567/JJAP.52.07HE13-BIB21
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2006.02.007
– volume: 79
  start-page: 044706
  year: 2008
  ident: crKey-10.7567/JJAP.52.07HE13-BIB3
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2912946
– volume: 28
  start-page: 852
  year: 1979
  ident: crKey-10.7567/JJAP.52.07HE13-BIB29
  publication-title: Zairyo
  doi: 10.2472/jsms.28.852
– ident: crKey-10.7567/JJAP.52.07HE13-BIB27
– volume: 86
  start-page: 053501
  year: 2005
  ident: crKey-10.7567/JJAP.52.07HE13-BIB23
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1855424
– volume: 51
  start-page: 07GE10
  year: 2012
  ident: crKey-10.7567/JJAP.52.07HE13-BIB12
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.51.07GE10
– year: 2002
  ident: crKey-10.7567/JJAP.52.07HE13-BIB33
– volume: 29
  start-page: 963
  year: 1991
  ident: crKey-10.7567/JJAP.52.07HE13-BIB4
  publication-title: J. Polym. Sci., Part B
  doi: 10.1002/polb.1991.090290806
– volume: 82
  start-page: 015112
  year: 2011
  ident: crKey-10.7567/JJAP.52.07HE13-BIB17
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.3523427
– volume: 6
  start-page: 104
  year: 2012
  ident: crKey-10.7567/JJAP.52.07HE13-BIB24
  publication-title: J. Adv. Mech. Des. Syst. Manuf.
  doi: 10.1299/jamdsm.6.104
– volume: 824
  start-page: 200
  year: 2006
  ident: crKey-10.7567/JJAP.52.07HE13-BIB32
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.2192352
– volume: 51
  start-page: 07GE09
  year: 2012
  ident: crKey-10.7567/JJAP.52.07HE13-BIB25
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.51.07GE09
– volume: 127
  start-page: 131
  year: 2006
  ident: crKey-10.7567/JJAP.52.07HE13-BIB10
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2005.10.056
– ident: crKey-10.7567/JJAP.52.07HE13-BIB14
– volume: 171
  start-page: 15
  year: 2004
  ident: crKey-10.7567/JJAP.52.07HE13-BIB1
  publication-title: J. Magn. Resonance
  doi: 10.1016/j.jmr.2004.07.014
– volume: 50
  start-page: 07HE28
  year: 2011
  ident: crKey-10.7567/JJAP.52.07HE13-BIB13
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.50.07HE28
– volume: 70
  start-page: 53
  year: 2003
  ident: crKey-10.7567/JJAP.52.07HE13-BIB18
  publication-title: Vacuum
  doi: 10.1016/S0042-207X(02)00704-2
– volume: 135
  start-page: A482
  year: 1964
  ident: crKey-10.7567/JJAP.52.07HE13-BIB28
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.135.A482
– volume: 49
  start-page: 338
  year: 2009
  ident: crKey-10.7567/JJAP.52.07HE13-BIB20
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2008.10.015
– volume: 38
  start-page: 481
  year: 1991
  ident: crKey-10.7567/JJAP.52.07HE13-BIB34
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.84293
– volume: 65
  start-page: 85
  year: 2002
  ident: crKey-10.7567/JJAP.52.07HE13-BIB19
  publication-title: Vacuum
  doi: 10.1016/S0042-207X(01)00411-0
– volume: 45
  start-page: 4764
  year: 2006
  ident: crKey-10.7567/JJAP.52.07HE13-BIB11
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.45.4764
– year: 1995
  ident: crKey-10.7567/JJAP.52.07HE13-BIB30
– volume: 43
  start-page: 1051
  year: 2002
  ident: crKey-10.7567/JJAP.52.07HE13-BIB5
  publication-title: Polymer
  doi: 10.1016/S0032-3861(01)00711-X
– volume: 215
  start-page: 012041
  year: 2010
  ident: crKey-10.7567/JJAP.52.07HE13-BIB6
  publication-title: J. Phys.: Conf. Ser.
– volume: 47
  start-page: 4015
  year: 2008
  ident: crKey-10.7567/JJAP.52.07HE13-BIB9
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.47.4015
– volume: 26
  start-page: 426
  year: 2008
  ident: crKey-10.7567/JJAP.52.07HE13-BIB16
  publication-title: Magn. Resonance Imaging
  doi: 10.1016/j.mri.2007.07.005
– volume: 92
  start-page: 153504
  year: 2008
  ident: crKey-10.7567/JJAP.52.07HE13-BIB22
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2908963
SSID ssj0026541
ssj0026590
ssj0026540
ssj0064762
Score 2.0862877
Snippet We have fabricated an ultrasonic motor using a titanium transducer. This motor is for driving in the cryogenic temperature condition with a highly intense...
SourceID proquest
crossref
ipap
SourceType Aggregation Database
Publisher
StartPage 07HE13
SubjectTerms Driving conditions
Lead zirconate titanates
Magnetic fields
Motors
Thermal expansion
Thermal stresses
Titanium
Transducers
Title An Ultrasonic Motor Using a Titanium Transducer for a Cryogenic Environment
URI https://search.proquest.com/docview/1677941956
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegCAkeEAwQY4CMQOKhSkni2E4eq6lTafclLZX6FjmJPVWjSdUmD9tfzznOV2ESg5eocXJRcvfrfdi-O4S-JlxJCpbOorYrIUAhqeULW6_Bk9gVitGkap1wds6mC2-2pMtuW1GVXVLEo-Tu3ryS_5EqjIFcdZbsP0i2fSgMwG-QLxxBwnB8kIzH2XDxs9iKXdXG5iyH-Hlo9gAIEAK4fatybcqXpyDBrdkxOTze3ubwSKCYdFlue04qGFDdmHJ4j7da7RjtNsiH4kamZslIrFoNItbiWjdZqcd35U0Ln7meuahAApSqXLdEV-Vduc5N3vs8XwF1f0JCN4fgzYREkyAAYWlg0o1H0uhV4nFAgmkL0She6vYAxq96atTm04lJUa2Ncjfwu8rnlOlF59lsfDmi7qhP2a-tfX4RnSxOT6NwsgwfoycuqCWtD39cXLbhOaO67E134vROgvYK8zirS9CbrzSVQPVrfN9_iT1PZ7DaiM0f9r5yYsKX6EUtTzw2UHqFHsnsAD3v1aQ8QE9rCb9G83GGO3jhCl64ghcWuIEX7uCFAV5wpYUX7sHrDVqcTMLjqVX33rASz-GFJe1Y-Cr2_ARcQB7EiSOoIAH4OR53GYTpLueO8hwVQ_wuecBSoQKVEkWIaxOpyFs0yPJMvkNYUDsNpC0hEgFXiPkxYT4EJeAfxUQA2SH61vAp2pgSKxGEppqjkeZoRN3IcPQQfdFs_OtdnxsuR6Ar9QIY_Gnychc5jIP50Rmy7x9wzxF61sH7AxoU21J-BA-0iD9VwPkF9cR_jw
link.rule.ids 315,783,787,27936,27937
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Ultrasonic+Motor+Using+a+Titanium+Transducer+for+a+Cryogenic+Environment&rft.jtitle=Japanese+Journal+of+Applied+Physics&rft.au=Takeda%2C+Dai&rft.au=Yamaguchi%2C+Daisuke&rft.au=Kanda%2C+Takefumi&rft.au=Suzumori%2C+Koichi&rft.date=2013-07-01&rft.issn=0021-4922&rft.eissn=1347-4065&rft.volume=52&rft.issue=7S&rft.spage=07HE13&rft.epage=07HE13&rft_id=info:doi/10.7567%2FJJAP.52.07HE13&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-4922&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-4922&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-4922&client=summon