An Ultrasonic Motor Using a Titanium Transducer for a Cryogenic Environment
We have fabricated an ultrasonic motor using a titanium transducer. This motor is for driving in the cryogenic temperature condition with a highly intense magnetic field. Titanium has low magnetic permeability and a thermal expansion coefficient close to that of lead zirconate titanate (PZT). These...
Saved in:
Published in | Japanese Journal of Applied Physics Vol. 52; no. 7; pp. 07HE13 - 07HE13-6 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
The Japan Society of Applied Physics
01.07.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We have fabricated an ultrasonic motor using a titanium transducer. This motor is for driving in the cryogenic temperature condition with a highly intense magnetic field. Titanium has low magnetic permeability and a thermal expansion coefficient close to that of lead zirconate titanate (PZT). These features mean that a transducer made of titanium has good properties for use in such an environment. We have fabricated and evaluated the ultrasonic motor in a cryogenic environment and an intense magnetic field. We have simulated the thermal stress applied to PZT in consideration of nonlinear material properties in the cryogenic environment. The thermal stress of the titanium transducer is smaller than that of the SUS304 transducer. Moreover, we have achieved driving of the ultrasonic motor at 4.5 K. Additionally, we have confirmed that there is little effect of the intense magnetic field on the driving of the motor. |
---|---|
AbstractList | We have fabricated an ultrasonic motor using a titanium transducer. This motor is for driving in the cryogenic temperature condition with a highly intense magnetic field. Titanium has low magnetic permeability and a thermal expansion coefficient close to that of lead zirconate titanate (PZT). These features mean that a transducer made of titanium has good properties for use in such an environment. We have fabricated and evaluated the ultrasonic motor in a cryogenic environment and an intense magnetic field. We have simulated the thermal stress applied to PZT in consideration of nonlinear material properties in the cryogenic environment. The thermal stress of the titanium transducer is smaller than that of the SUS304 transducer. Moreover, we have achieved driving of the ultrasonic motor at 4.5 K. Additionally, we have confirmed that there is little effect of the intense magnetic field on the driving of the motor. |
Author | Yamaguchi, Daisuke Takeda, Dai Suzumori, Koichi Noguchi, Yuya Kanda, Takefumi |
Author_xml | – sequence: 1 givenname: Dai surname: Takeda fullname: Takeda, Dai organization: Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan – sequence: 2 givenname: Daisuke surname: Yamaguchi fullname: Yamaguchi, Daisuke organization: Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan – sequence: 3 givenname: Takefumi surname: Kanda fullname: Kanda, Takefumi organization: Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan – sequence: 4 givenname: Koichi surname: Suzumori fullname: Suzumori, Koichi organization: Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan – sequence: 5 givenname: Yuya surname: Noguchi fullname: Noguchi, Yuya organization: Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan |
BookMark | eNqFkM9LwzAYhoNMcJtePecoQmt-tWmOY0znnOihO4e0S0akTWrSCvvv7ah3Tx8v3_N8fLwLMHPeaQDuMUp5lvOn3W71mWYkRXy7wfQKzDFlPGEoz2ZgjhDBCROE3IBFjF9jzDOG5-Bt5eCh6YOK3tkavvveB3iI1p2ggqXtlbNDC8ugXDwOtQ7QjHsF1-HsT_pibNyPDd612vW34NqoJuq7v7kEh-dNud4m-4-X1_Vqn9QM8z7RqFKFqVhR4wJzUdVYZYoKTMZ3SV6QgnCODcOmIkxoLvKjMsIcqaGUIKoNXYKH6W4X_PegYy9bG2vdNMppP0SJc84FwyLLRzSd0Dr4GIM2sgu2VeEsMZKX1uSlNZkRObU2Co-TYDvV_Qf_AnQKbig |
CitedBy_id | crossref_primary_10_35848_1347_4065_ad1e9b crossref_primary_10_1016_j_sna_2020_111971 crossref_primary_10_7567_JJAP_55_018001 crossref_primary_10_7210_jrsj_36_195 |
Cites_doi | 10.1016/0040-6031(93)80437-F 10.1109/TUFFC.2003.1214498 10.1006/jmre.1999.1790 10.1016/j.sna.2012.06.024 10.1088/0960-1317/19/2/022001 10.1016/j.cryogenics.2006.02.007 10.1063/1.2912946 10.2472/jsms.28.852 10.1063/1.1855424 10.1143/JJAP.51.07GE10 10.1002/polb.1991.090290806 10.1063/1.3523427 10.1299/jamdsm.6.104 10.1063/1.2192352 10.1143/JJAP.51.07GE09 10.1016/j.sna.2005.10.056 10.1016/j.jmr.2004.07.014 10.1143/JJAP.50.07HE28 10.1016/S0042-207X(02)00704-2 10.1103/PhysRev.135.A482 10.1016/j.ultras.2008.10.015 10.1109/58.84293 10.1016/S0042-207X(01)00411-0 10.1143/JJAP.45.4764 10.1016/S0032-3861(01)00711-X 10.1143/JJAP.47.4015 10.1016/j.mri.2007.07.005 10.1063/1.2908963 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7U5 8FD H8D L7M |
DOI | 10.7567/JJAP.52.07HE13 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1347-4065 |
EndPage | 07HE13-6 |
ExternalDocumentID | 10_7567_JJAP_52_07HE13 |
GroupedDBID | 4.4 AALHV ACGFS ACNCT AEFHF ALMA_UNASSIGNED_HOLDINGS ATQHT CEBXE F5P IOP MC8 N5L QTG RNS ROL RW3 SJN AAYXX CITATION IZVLO KOT 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c417t-e0ba8fb48c18179bc1a5a3912347268282771f41fb249e796daf9fd3f33203ef3 |
ISSN | 0021-4922 |
IngestDate | Fri Jun 28 01:46:18 EDT 2024 Fri Aug 23 02:32:25 EDT 2024 Mon Jan 18 10:57:17 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c417t-e0ba8fb48c18179bc1a5a3912347268282771f41fb249e796daf9fd3f33203ef3 |
Notes | (Color online) Structure of the ultrasonic motor. (Color online) Parts of the ultrasonic motor. (Color online) Structure of the transducer. (Color online) Parts of the transducer. (Color online) Simulation result by modal analysis. (Color online) Relationship between temperature and Young's modulus. (Color online) Relationship between temperature and the thermal expansion coefficients of PZT, SUS304, and titanium. (Color online) (a) Simulation result of the transducer with changing temperature from 300 to 4.5 K. (b) Cross-sectional view of PZT and simulation result of the thermal stress. (Color online) Relationship between temperature and thermal stress obtained by FEM. (Color online) Relationship between frequency and admittance at 4.5 K. (Color online) Relationship between clamping torque and admittance at each temperature. (Color online) Comparison of calculated and experimental values of optimum clamping torque of titanium and SUS304 transducers. (Color online) Evaluation system of the cryogenic ultrasonic motor: (a) rotation speed measurement system and (b) experimental setup for cryogenic environment. (Color online) Relationship between temperature, rotation speed, and starting torque in a cryogenic environment when the voltage and clamping torque are 100 V and 0.5 N m, respectively. (Color online) Relationship between magnetic flux density and amount of change relative to admittance of 0 T. Relationship between magnetic flux density and rotation speed when the voltage is 100 V at 300 K. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1677941956 |
PQPubID | 23500 |
ParticipantIDs | proquest_miscellaneous_1677941956 crossref_primary_10_7567_JJAP_52_07HE13 ipap_primary_10_7567_JJAP_52_07HE13 |
PublicationCentury | 2000 |
PublicationDate | 2013-07-01 |
PublicationDateYYYYMMDD | 2013-07-01 |
PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Japanese Journal of Applied Physics |
PublicationYear | 2013 |
Publisher | The Japan Society of Applied Physics |
Publisher_xml | – name: The Japan Society of Applied Physics |
References | W. S. Kim, D. Jin, and S. K. Lee: Rev. Sci. Instrum. 82 (2011) 015112. S. Dong, L. Yan, D. Viegland, X. Jiang, and W. S. Hackenberger: Appl. Phys. Lett. 92 (2008) 153504. Y. Doshida, H. Shimizu, Y. Mizuno, and H. Tamura: Jpn. J. Appl. Phys. 51 (2012) 07GE10. S. G. Turowski, M. Sedhadri, M. Loecher, E. Podniesinski, J. A. Spernyak, and R. V. Mazurchuk: Magn. Resonance Imaging 26 (2008) 426. S. Cagatay, B. Koc, and K. Uchino: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50 (2003) 782. B. Sanguinetti and B. T. H. Varcoe: Cryogenics 46 (2006) 694. R. H. Bogaard, P. D. Desai, H. H. Li, and C. Y. Ho: Thermochim. Acta 218 (1993) 373. T. Mizuno, K. Takegoshi, and T. Terao: J. Magn. Resonance 171 (2004) 15. H. Tamura, K. Shibata, M. Aoyagi, T. Takano, Y. Tomikawa, and S. Hirose: Jpn. J. Appl. Phys. 47 (2008) 4015. R. P. Taylor, G. F. Nellis, S. A. Klein, D. W. Hoch, J. Fellers, P. Roach, J. M. Park, and Y. Gianchandani: AIP Conf. Proc. 824 (2006) 200. T. Mizuno, K. Hioka, K. Fujioka, and T. Takegoshi: Rev. Sci. Instrum. 79 (2008) 044706. H. Maeda, A. Kobayashi, T. Kanda, K. Suzumori, K. Takegoshi, and T. Mizuno: Ultrasonics Symp. (IUS), 2009, p. 1070. T. Kanda, H. Maeda, K. Suzumori, and K. Fujisawa: Proc. IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics (AIM2011), 2011, p. 736. D. Reichert, T. Mizuno, K. Takegoshi, and T. Terao: J. Magn. Resonance 139 (1999) 308. Y. Takeuchi, N. Noda, S. Komori, and T. Yamato: Zairyo 28 (1979) 852 [in Japanese]. T. W. Reynolds: Aircraft-Fuel-Tank Design for Liquid Hydrogen (National Advisory Committee for Aeronautics, Washington, D.C., 1995) p. 20. D. Yamaguchi, T. Kanda, and K. Suzumori: Sens. Actuators A 184 (2012) 134. B. Watson, J. Friend, and L. Yeo: J. Micromech. Microeng. 19 (2009) 022001. J. Qu, N. Zhou, X. Tian, L. Jin, and Z. Xu: Ultrasonics 49 (2009) 338. T. Yamazaki, N. Takeshita, K. Kondo, R. Kobayashi, Y. Yamada, H. Fukazawa, Y. Kohori, P. M. Shirage, K. Kihou, H. Kito, H. Eisaki, and A. Iyo: J. Phys.: Conf. Ser. 215 (2010) 012041. D. Yamaguchi, T. Kanda, K. Suzumori, M. Kuroda, and D. Takeda: Jpn. J. Appl. Phys. 51 (2012) 07GE09. H. Ohta, I. Ando, S. Fujishige, and K. Kubota: J. Polym. Sci., Part B 29 (1991) 963. D. Yamaguchi, T. Kanda, and K. Suzumori: J. Adv. Mech. Des. Syst. Manuf. 6 (2012) 104. T. Kanda, A. Makino, T. Ono, K. Suzumori, T. Morita, and M. K. Kurosawa: Sens. Actuators A 127 (2006) 131. T. Morita, T. Niino, and H. Asama: Vacuum 65 (2002) 85. S. Dong, L. Yan, N. Wang, D. Viehland, X. Jiang, P. Rehrig, and W. Hackenberger: Appl. Phys. Lett. 86 (2005) 053501. K. Nakamura, M. Kurosawa, H. Kurebayashi, and S. Ueha: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38 (1991) 481. Y. Yoshimoto: Neji Teiketsutai Sekkei no Pointo JIS Tukaikata Sirîzu Kaiteiban (Design point of bolted joints, How to JIS series revised version) (Japanese Standards Association, Tokyo, 2002) p. 184 [in Japanese]. M. Kuroda, D. Yamaguchi, D. Takeda, Y. Noguchi, T. Kanda, and K. Suzumori: 30th Annu. Conf. Robotics Society of Japan, 2012, [in Japanese]. T. Kanda, A. Makino, Y. Oomori, and K. Suzumori: Jpn. J. Appl. Phys. 45 (2006) 4764. T. Morita, S. Takahashi, H. Asama, and T. Niino: Vacuum 70 (2003) 53. E. S. Fisher and C. J. Renken: Phys. Rev. 135 (1964) A482. Y. Yamayoshi and S. Hirose: Jpn. J. Appl. Phys. 50 (2011) 07HE28. D. J. T. Hill, C. M. L. Preston, and A. K. Whittaker: Polymer 43 (2002) 1051. (crKey-10.7567/JJAP.52.07HE13-BIB25) 2012; 51 (crKey-10.7567/JJAP.52.07HE13-BIB12) 2012; 51 (crKey-10.7567/JJAP.52.07HE13-BIB6) 2010; 215 (crKey-10.7567/JJAP.52.07HE13-BIB9) 2008; 47 (crKey-10.7567/JJAP.52.07HE13-BIB10) 2006; 127 (crKey-10.7567/JJAP.52.07HE13-BIB17) 2011; 82 (crKey-10.7567/JJAP.52.07HE13-BIB26) 2012; 184 (crKey-10.7567/JJAP.52.07HE13-BIB3) 2008; 79 (crKey-10.7567/JJAP.52.07HE13-BIB22) 2008; 92 (crKey-10.7567/JJAP.52.07HE13-BIB18) 2003; 70 crKey-10.7567/JJAP.52.07HE13-BIB14 crKey-10.7567/JJAP.52.07HE13-BIB15 (crKey-10.7567/JJAP.52.07HE13-BIB4) 1991; 29 (crKey-10.7567/JJAP.52.07HE13-BIB19) 2002; 65 (crKey-10.7567/JJAP.52.07HE13-BIB13) 2011; 50 (crKey-10.7567/JJAP.52.07HE13-BIB33) 2002 (crKey-10.7567/JJAP.52.07HE13-BIB11) 2006; 45 (crKey-10.7567/JJAP.52.07HE13-BIB7) 2003; 50 (crKey-10.7567/JJAP.52.07HE13-BIB34) 1991; 38 (crKey-10.7567/JJAP.52.07HE13-BIB1) 2004; 171 (crKey-10.7567/JJAP.52.07HE13-BIB20) 2009; 49 (crKey-10.7567/JJAP.52.07HE13-BIB16) 2008; 26 (crKey-10.7567/JJAP.52.07HE13-BIB2) 1999; 139 (crKey-10.7567/JJAP.52.07HE13-BIB29) 1979; 28 (crKey-10.7567/JJAP.52.07HE13-BIB5) 2002; 43 (crKey-10.7567/JJAP.52.07HE13-BIB30) 1995 (crKey-10.7567/JJAP.52.07HE13-BIB8) 2009; 19 (crKey-10.7567/JJAP.52.07HE13-BIB31) 1993; 218 (crKey-10.7567/JJAP.52.07HE13-BIB32) 2006; 824 (crKey-10.7567/JJAP.52.07HE13-BIB23) 2005; 86 crKey-10.7567/JJAP.52.07HE13-BIB27 (crKey-10.7567/JJAP.52.07HE13-BIB24) 2012; 6 (crKey-10.7567/JJAP.52.07HE13-BIB21) 2006; 46 (crKey-10.7567/JJAP.52.07HE13-BIB28) 1964; 135 |
References_xml | – volume: 218 start-page: 373 year: 1993 ident: crKey-10.7567/JJAP.52.07HE13-BIB31 publication-title: Thermochim. Acta doi: 10.1016/0040-6031(93)80437-F – ident: crKey-10.7567/JJAP.52.07HE13-BIB15 – volume: 50 start-page: 782 year: 2003 ident: crKey-10.7567/JJAP.52.07HE13-BIB7 publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2003.1214498 – volume: 139 start-page: 308 year: 1999 ident: crKey-10.7567/JJAP.52.07HE13-BIB2 publication-title: J. Magn. Resonance doi: 10.1006/jmre.1999.1790 – volume: 184 start-page: 134 year: 2012 ident: crKey-10.7567/JJAP.52.07HE13-BIB26 publication-title: Sens. Actuators A doi: 10.1016/j.sna.2012.06.024 – volume: 19 start-page: 022001 year: 2009 ident: crKey-10.7567/JJAP.52.07HE13-BIB8 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/19/2/022001 – volume: 46 start-page: 694 year: 2006 ident: crKey-10.7567/JJAP.52.07HE13-BIB21 publication-title: Cryogenics doi: 10.1016/j.cryogenics.2006.02.007 – volume: 79 start-page: 044706 year: 2008 ident: crKey-10.7567/JJAP.52.07HE13-BIB3 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2912946 – volume: 28 start-page: 852 year: 1979 ident: crKey-10.7567/JJAP.52.07HE13-BIB29 publication-title: Zairyo doi: 10.2472/jsms.28.852 – ident: crKey-10.7567/JJAP.52.07HE13-BIB27 – volume: 86 start-page: 053501 year: 2005 ident: crKey-10.7567/JJAP.52.07HE13-BIB23 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1855424 – volume: 51 start-page: 07GE10 year: 2012 ident: crKey-10.7567/JJAP.52.07HE13-BIB12 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.51.07GE10 – year: 2002 ident: crKey-10.7567/JJAP.52.07HE13-BIB33 – volume: 29 start-page: 963 year: 1991 ident: crKey-10.7567/JJAP.52.07HE13-BIB4 publication-title: J. Polym. Sci., Part B doi: 10.1002/polb.1991.090290806 – volume: 82 start-page: 015112 year: 2011 ident: crKey-10.7567/JJAP.52.07HE13-BIB17 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.3523427 – volume: 6 start-page: 104 year: 2012 ident: crKey-10.7567/JJAP.52.07HE13-BIB24 publication-title: J. Adv. Mech. Des. Syst. Manuf. doi: 10.1299/jamdsm.6.104 – volume: 824 start-page: 200 year: 2006 ident: crKey-10.7567/JJAP.52.07HE13-BIB32 publication-title: AIP Conf. Proc. doi: 10.1063/1.2192352 – volume: 51 start-page: 07GE09 year: 2012 ident: crKey-10.7567/JJAP.52.07HE13-BIB25 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.51.07GE09 – volume: 127 start-page: 131 year: 2006 ident: crKey-10.7567/JJAP.52.07HE13-BIB10 publication-title: Sens. Actuators A doi: 10.1016/j.sna.2005.10.056 – ident: crKey-10.7567/JJAP.52.07HE13-BIB14 – volume: 171 start-page: 15 year: 2004 ident: crKey-10.7567/JJAP.52.07HE13-BIB1 publication-title: J. Magn. Resonance doi: 10.1016/j.jmr.2004.07.014 – volume: 50 start-page: 07HE28 year: 2011 ident: crKey-10.7567/JJAP.52.07HE13-BIB13 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.50.07HE28 – volume: 70 start-page: 53 year: 2003 ident: crKey-10.7567/JJAP.52.07HE13-BIB18 publication-title: Vacuum doi: 10.1016/S0042-207X(02)00704-2 – volume: 135 start-page: A482 year: 1964 ident: crKey-10.7567/JJAP.52.07HE13-BIB28 publication-title: Phys. Rev. doi: 10.1103/PhysRev.135.A482 – volume: 49 start-page: 338 year: 2009 ident: crKey-10.7567/JJAP.52.07HE13-BIB20 publication-title: Ultrasonics doi: 10.1016/j.ultras.2008.10.015 – volume: 38 start-page: 481 year: 1991 ident: crKey-10.7567/JJAP.52.07HE13-BIB34 publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/58.84293 – volume: 65 start-page: 85 year: 2002 ident: crKey-10.7567/JJAP.52.07HE13-BIB19 publication-title: Vacuum doi: 10.1016/S0042-207X(01)00411-0 – volume: 45 start-page: 4764 year: 2006 ident: crKey-10.7567/JJAP.52.07HE13-BIB11 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.45.4764 – year: 1995 ident: crKey-10.7567/JJAP.52.07HE13-BIB30 – volume: 43 start-page: 1051 year: 2002 ident: crKey-10.7567/JJAP.52.07HE13-BIB5 publication-title: Polymer doi: 10.1016/S0032-3861(01)00711-X – volume: 215 start-page: 012041 year: 2010 ident: crKey-10.7567/JJAP.52.07HE13-BIB6 publication-title: J. Phys.: Conf. Ser. – volume: 47 start-page: 4015 year: 2008 ident: crKey-10.7567/JJAP.52.07HE13-BIB9 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.47.4015 – volume: 26 start-page: 426 year: 2008 ident: crKey-10.7567/JJAP.52.07HE13-BIB16 publication-title: Magn. Resonance Imaging doi: 10.1016/j.mri.2007.07.005 – volume: 92 start-page: 153504 year: 2008 ident: crKey-10.7567/JJAP.52.07HE13-BIB22 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2908963 |
SSID | ssj0026541 ssj0026590 ssj0026540 ssj0064762 |
Score | 2.0862877 |
Snippet | We have fabricated an ultrasonic motor using a titanium transducer. This motor is for driving in the cryogenic temperature condition with a highly intense... |
SourceID | proquest crossref ipap |
SourceType | Aggregation Database Publisher |
StartPage | 07HE13 |
SubjectTerms | Driving conditions Lead zirconate titanates Magnetic fields Motors Thermal expansion Thermal stresses Titanium Transducers |
Title | An Ultrasonic Motor Using a Titanium Transducer for a Cryogenic Environment |
URI | https://search.proquest.com/docview/1677941956 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegCAkeEAwQY4CMQOKhSkni2E4eq6lTafclLZX6FjmJPVWjSdUmD9tfzznOV2ESg5eocXJRcvfrfdi-O4S-JlxJCpbOorYrIUAhqeULW6_Bk9gVitGkap1wds6mC2-2pMtuW1GVXVLEo-Tu3ryS_5EqjIFcdZbsP0i2fSgMwG-QLxxBwnB8kIzH2XDxs9iKXdXG5iyH-Hlo9gAIEAK4fatybcqXpyDBrdkxOTze3ubwSKCYdFlue04qGFDdmHJ4j7da7RjtNsiH4kamZslIrFoNItbiWjdZqcd35U0Ln7meuahAApSqXLdEV-Vduc5N3vs8XwF1f0JCN4fgzYREkyAAYWlg0o1H0uhV4nFAgmkL0She6vYAxq96atTm04lJUa2Ncjfwu8rnlOlF59lsfDmi7qhP2a-tfX4RnSxOT6NwsgwfoycuqCWtD39cXLbhOaO67E134vROgvYK8zirS9CbrzSVQPVrfN9_iT1PZ7DaiM0f9r5yYsKX6EUtTzw2UHqFHsnsAD3v1aQ8QE9rCb9G83GGO3jhCl64ghcWuIEX7uCFAV5wpYUX7sHrDVqcTMLjqVX33rASz-GFJe1Y-Cr2_ARcQB7EiSOoIAH4OR53GYTpLueO8hwVQ_wuecBSoQKVEkWIaxOpyFs0yPJMvkNYUDsNpC0hEgFXiPkxYT4EJeAfxUQA2SH61vAp2pgSKxGEppqjkeZoRN3IcPQQfdFs_OtdnxsuR6Ar9QIY_Gnychc5jIP50Rmy7x9wzxF61sH7AxoU21J-BA-0iD9VwPkF9cR_jw |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Ultrasonic+Motor+Using+a+Titanium+Transducer+for+a+Cryogenic+Environment&rft.jtitle=Japanese+Journal+of+Applied+Physics&rft.au=Takeda%2C+Dai&rft.au=Yamaguchi%2C+Daisuke&rft.au=Kanda%2C+Takefumi&rft.au=Suzumori%2C+Koichi&rft.date=2013-07-01&rft.issn=0021-4922&rft.eissn=1347-4065&rft.volume=52&rft.issue=7S&rft.spage=07HE13&rft.epage=07HE13&rft_id=info:doi/10.7567%2FJJAP.52.07HE13&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-4922&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-4922&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-4922&client=summon |