Gauged permutation invariant matrix quantum mechanics: partition functions
A bstract The Hilbert spaces of matrix quantum mechanical systems with N × N matrix degrees of freedom X have been analysed recently in terms of S N symmetric group elements U acting as X → UXU T . Solvable models have been constructed uncovering partition algebras as hidden symmetries of these syst...
Saved in:
Published in | The journal of high energy physics Vol. 2024; no. 7; pp. 152 - 35 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
17.07.2024
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 1029-8479 1029-8479 |
DOI | 10.1007/JHEP07(2024)152 |
Cover
Loading…
Abstract | A
bstract
The Hilbert spaces of matrix quantum mechanical systems with
N
×
N
matrix degrees of freedom
X
have been analysed recently in terms of
S
N
symmetric group elements
U
acting as
X
→
UXU
T
. Solvable models have been constructed uncovering partition algebras as hidden symmetries of these systems. The solvable models include an 11-dimensional space of matrix harmonic oscillators, the simplest of which is the standard matrix harmonic oscillator with U(
N
) symmetry. The permutation symmetry is realised as gauge symmetry in a path integral formulation in a companion paper. With the simplest matrix oscillator Hamiltonian subject to gauge permutation symmetry, we use the known result for the micro-canonical partition function to derive the canonical partition function. It is expressed as a sum over partitions of
N
of products of factors which depend on elementary number-theoretic properties of the partitions, notably the least common multiples and greatest common divisors of pairs of parts appearing in the partition. This formula is recovered using the Molien-Weyl formula, which we review for convenience. The Molien-Weyl formula is then used to generalise the formula for the canonical partition function to the 11-parameter permutation invariant matrix harmonic oscillator. |
---|---|
AbstractList | The Hilbert spaces of matrix quantum mechanical systems with N × N matrix degrees of freedom X have been analysed recently in terms of SN symmetric group elements U acting as X → UXUT. Solvable models have been constructed uncovering partition algebras as hidden symmetries of these systems. The solvable models include an 11-dimensional space of matrix harmonic oscillators, the simplest of which is the standard matrix harmonic oscillator with U(N) symmetry. The permutation symmetry is realised as gauge symmetry in a path integral formulation in a companion paper. With the simplest matrix oscillator Hamiltonian subject to gauge permutation symmetry, we use the known result for the micro-canonical partition function to derive the canonical partition function. It is expressed as a sum over partitions of N of products of factors which depend on elementary number-theoretic properties of the partitions, notably the least common multiples and greatest common divisors of pairs of parts appearing in the partition. This formula is recovered using the Molien-Weyl formula, which we review for convenience. The Molien-Weyl formula is then used to generalise the formula for the canonical partition function to the 11-parameter permutation invariant matrix harmonic oscillator. Abstract The Hilbert spaces of matrix quantum mechanical systems with N × N matrix degrees of freedom X have been analysed recently in terms of S N symmetric group elements U acting as X → UXU T . Solvable models have been constructed uncovering partition algebras as hidden symmetries of these systems. The solvable models include an 11-dimensional space of matrix harmonic oscillators, the simplest of which is the standard matrix harmonic oscillator with U(N) symmetry. The permutation symmetry is realised as gauge symmetry in a path integral formulation in a companion paper. With the simplest matrix oscillator Hamiltonian subject to gauge permutation symmetry, we use the known result for the micro-canonical partition function to derive the canonical partition function. It is expressed as a sum over partitions of N of products of factors which depend on elementary number-theoretic properties of the partitions, notably the least common multiples and greatest common divisors of pairs of parts appearing in the partition. This formula is recovered using the Molien-Weyl formula, which we review for convenience. The Molien-Weyl formula is then used to generalise the formula for the canonical partition function to the 11-parameter permutation invariant matrix harmonic oscillator. The Hilbert spaces of matrix quantum mechanical systems with N × N matrix degrees of freedom X have been analysed recently in terms of S N symmetric group elements U acting as X → UXU T . Solvable models have been constructed uncovering partition algebras as hidden symmetries of these systems. The solvable models include an 11-dimensional space of matrix harmonic oscillators, the simplest of which is the standard matrix harmonic oscillator with U( N ) symmetry. The permutation symmetry is realised as gauge symmetry in a path integral formulation in a companion paper. With the simplest matrix oscillator Hamiltonian subject to gauge permutation symmetry, we use the known result for the micro-canonical partition function to derive the canonical partition function. It is expressed as a sum over partitions of N of products of factors which depend on elementary number-theoretic properties of the partitions, notably the least common multiples and greatest common divisors of pairs of parts appearing in the partition. This formula is recovered using the Molien-Weyl formula, which we review for convenience. The Molien-Weyl formula is then used to generalise the formula for the canonical partition function to the 11-parameter permutation invariant matrix harmonic oscillator. A bstract The Hilbert spaces of matrix quantum mechanical systems with N × N matrix degrees of freedom X have been analysed recently in terms of S N symmetric group elements U acting as X → UXU T . Solvable models have been constructed uncovering partition algebras as hidden symmetries of these systems. The solvable models include an 11-dimensional space of matrix harmonic oscillators, the simplest of which is the standard matrix harmonic oscillator with U( N ) symmetry. The permutation symmetry is realised as gauge symmetry in a path integral formulation in a companion paper. With the simplest matrix oscillator Hamiltonian subject to gauge permutation symmetry, we use the known result for the micro-canonical partition function to derive the canonical partition function. It is expressed as a sum over partitions of N of products of factors which depend on elementary number-theoretic properties of the partitions, notably the least common multiples and greatest common divisors of pairs of parts appearing in the partition. This formula is recovered using the Molien-Weyl formula, which we review for convenience. The Molien-Weyl formula is then used to generalise the formula for the canonical partition function to the 11-parameter permutation invariant matrix harmonic oscillator. |
ArticleNumber | 152 |
Author | O’Connor, Denjoe Ramgoolam, Sanjaye |
Author_xml | – sequence: 1 givenname: Denjoe orcidid: 0000-0003-2968-9297 surname: O’Connor fullname: O’Connor, Denjoe organization: School of Theoretical Physics, Dublin Institute of Theoretical Physics – sequence: 2 givenname: Sanjaye orcidid: 0000-0002-1211-4780 surname: Ramgoolam fullname: Ramgoolam, Sanjaye email: s.ramgoolam@qmul.ac.uk organization: School of Physics and Astronomy, Centre for Theoretical Physics, Queen Mary University of London, School of Physics and Mandelstam Institute for Theoretical Physics, University of Witwatersrand |
BookMark | eNp9kM1LxDAQxYMo-Hn2WvCih9VJmjaJN5H1C0EPeg7TNFmzbNM1aUX_e7tWVAQ9ZTK89-bx2ybroQ2WkH0KxxRAnNxcTe9BHDJg_IgWbI1sUWBqIrlQ6z_mTbKd0hyAFlTBFrm5xH5m62xpY9N32Pk2ZD68YPQYuqzBLvrX7LkfPn2TNdY8YfAmnWZLjJ3_ULs-mNWQdsmGw0Wye5_vDnm8mD6cX01u7y6vz89uJ4ZT0U0sKDTUSYoOhaMVUsO4yJ2QNVjHKqksOAsWoOS05FbUBRVVVULOlCi4y3fI9ZhbtzjXy-gbjG-6Ra8_Fm2c6VU5s7C6kKWRopZ1XiOvuJFMsbKSDiosZFWrIetgzFrG9rm3qdPzto9hqK9zkFQpxWk-qE5GlYltStG6r6sU9Aq-HuHrFXw9wB8cxS-H8SPdLqJf_OOD0ZeGC2Fm43efvyzvDJ-aEQ |
CitedBy_id | crossref_primary_10_1007_JHEP12_2024_161 crossref_primary_10_1142_S0217751X24300035 |
Cites_doi | 10.1007/978-1-4614-5389-5_5 10.4310/ATMP.2001.v5.n4.a6 10.1103/PhysRevD.94.094501 10.1016/S0370-1573(97)00088-4 10.1088/1126-6708/2008/03/044 10.4171/aihpd/4 10.1103/PhysRevD.103.126028 10.1103/PhysRevD.55.5112 10.1088/1126-6708/2007/03/090 10.1007/JHEP12(2023)030 10.1088/1126-6708/2007/11/078 10.4310/ATMP.2004.v8.n4.a1 10.1016/S0550-3213(00)00696-9 10.1007/JHEP02(2017)012 10.1007/JHEP08(2022)178 10.1209/0295-5075/95/50004 10.1137/1009001 10.1007/JHEP10(2017)199 10.1088/1751-8121/ac4de1 10.1007/JHEP05(2017)053 10.1007/JHEP04(2024)080 10.1007/978-1-4684-8279-9_16 10.1088/1751-8121/ac9b3b 10.1088/1126-6708/2008/02/030 10.1088/1126-6708/2002/04/013 10.1103/PhysRevD.106.106020 10.1007/JHEP09(2010)088 10.4171/aihpd/112 10.1103/PhysRevD.24.3319 10.1007/JHEP08(2022)090 10.1088/1126-6708/2009/10/094 10.1103/PhysRevD.97.026016 10.1007/s00023-011-0101-8 10.1007/b138611 10.1016/j.nuclphysb.2019.114682 10.4171/aihpd/75 10.1016/j.nuclphysb.2009.09.016 10.1007/JHEP07(2018)152 10.1007/JHEP02(2023)176 10.1088/1126-6708/2007/11/050 10.1007/JHEP09(2018)054 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/JHEP07(2024)152 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (New) (NC LIVE) Technology collection ProQuest One Community College ProQuest Central ProQuest SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Open Access: DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 35 |
ExternalDocumentID | oai_doaj_org_article_586c87d8d3da4b4c82926b8f0ba58bd9 10_1007_JHEP07_2024_152 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX AMVHM CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c417t-e09ac1f81afa7f1ba1c2473f78d0ef2b89e0fe0e0064164e7d517bb60329754f3 |
IEDL.DBID | C24 |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:26:43 EDT 2025 Sat Jul 26 00:47:36 EDT 2025 Thu Apr 24 23:02:21 EDT 2025 Sun Jul 06 05:05:10 EDT 2025 Fri Feb 21 02:37:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Discrete Symmetries Lattice Quantum Field Theory Gauge Symmetry Matrix Models |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-e09ac1f81afa7f1ba1c2473f78d0ef2b89e0fe0e0064164e7d517bb60329754f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1211-4780 0000-0003-2968-9297 |
OpenAccessLink | https://link.springer.com/10.1007/JHEP07(2024)152 |
PQID | 3081999413 |
PQPubID | 2034718 |
PageCount | 35 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_586c87d8d3da4b4c82926b8f0ba58bd9 proquest_journals_3081999413 crossref_primary_10_1007_JHEP07_2024_152 crossref_citationtrail_10_1007_JHEP07_2024_152 springer_journals_10_1007_JHEP07_2024_152 |
PublicationCentury | 2000 |
PublicationDate | 2024-07-17 |
PublicationDateYYYYMMDD | 2024-07-17 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | KimuraYRamgoolamSBranes, anti-branes and brauer algebras in gauge-gravity dualityJHEP2007110782007JHEP...11..078K236207110.1088/1126-6708/2007/11/078[arXiv:0709.2158] [INSPIRE] A. Edelman and Y. Wang, Random matrix theory and its innovative applications, in Fields institute communications, Springer, Boston, MA, U.S.A. (2013), p. 91 [https://doi.org/10.1007/978-1-4614-5389-5_5]. J. Ben Geloun and S. Ramgoolam, All-orders asymptotics of tensor model observables from symmetries of restricted partitions, J. Phys. A55 (2022) 435203 [arXiv:2106.01470] [INSPIRE]. G. Barnes, A. Padellaro and S. Ramgoolam, Permutation invariant Gaussian two-matrix models, J. Phys. A55 (2022) 145202 [arXiv:2104.03707] [INSPIRE]. S. Ramgoolam, Permutation invariant Gaussian matrix models, Nucl. Phys. B945 (2019) 114682 [arXiv:1809.07559] [INSPIRE]. AsanoYFilevVGKováčikSO’ConnorDThe non-perturbative phase diagram of the BMN matrix modelJHEP2018071522018JHEP...07..152A385857110.1007/JHEP07(2018)152[arXiv:1805.05314] [INSPIRE] G. Barnes, A. Padellaro and S. Ramgoolam, Permutation symmetry in large-N matrix quantum mechanics and partition algebras, Phys. Rev. D106 (2022) 106020 [arXiv:2207.02166] [INSPIRE]. BrownTWHeslopPJRamgoolamSDiagonal multi-matrix correlators and BPS operators in N = 4 SYMJHEP2008020302008JHEP...02..030B238601510.1088/1126-6708/2008/02/030[arXiv:0711.0176] [INSPIRE] D.A. Cox, J.B. Little and D. O’Shea, Using algebraic geometry, Springer (2005) [https://doi.org/10.1007/b138611]. BerensteinDYanKThe endpoint of partial deconfinementJHEP2023120302023JHEP...12..030B467523710.1007/JHEP12(2023)030[arXiv:2307.06122] [INSPIRE] de Mello KochRRamgoolamSN=4 SYM, (super)-polynomial rings and emergent quantum mechanical symmetriesJHEP2023021762023JHEP...02..176D455529110.1007/JHEP02(2023)176[arXiv:2211.04271] [INSPIRE] GurauRRivasseauVThe 1/N expansion of colored tensor models in arbitrary dimensionEPL201195500042011EL.....9550004G10.1209/0295-5075/95/50004[arXiv:1101.4182] [INSPIRE] G. Barnes, A. Padellaro and S. Ramgoolam, Permutation invariant tensor models and partition algebras, arXiv:2312.09205 [INSPIRE]. J. Ben Geloun and S. Ramgoolam, Counting tensor model observables and branched covers of the 2-sphere, Ann. Inst. H. Poincaré D Comb. Phys. Interact.1 (2014) 77 [arXiv:1307.6490] [INSPIRE]. BerensteinDSubmatrix deconfinement and small black holes in AdSJHEP2018090542018JHEP...09..054B387124510.1007/JHEP09(2018)054[arXiv:1806.05729] [INSPIRE] E. Berkowitz et al., Precision lattice test of the gauge/gravity duality at large-N, Phys. Rev. D94 (2016) 094501 [arXiv:1606.04951] [INSPIRE]. M.A. Huber, A. Correia, S. Ramgoolam and M. Sadrzadeh, Permutation invariant matrix statistics and computational language tasks, arXiv:2202.06829 [INSPIRE]. T. Guhr, A. Muller-Groeling and H.A. Weidenmuller, Random matrix theories in quantum physics: common concepts, Phys. Rept.299 (1998) 189 [cond-mat/9707301] [INSPIRE]. G. Barnes, S. Ramgoolam and M. Stephanou, Permutation invariant Gaussian matrix models for financial correlation matrices, arXiv:2306.04569 [INSPIRE]. BerensteinDEMaldacenaJMNastaseHSStrings in flat space and pp waves from N=4 superYang-MillsJHEP2002040132002JHEP...04..013B10.1088/1126-6708/2002/04/013[hep-th/0202021] [INSPIRE] K. Bulycheva, I.R. Klebanov, A. Milekhin and G. Tarnopolsky, Spectra of operators in large N tensor models, Phys. Rev. D97 (2018) 026016 [arXiv:1707.09347] [INSPIRE]. O’ConnorDRamgoolamSGauged permutation invariant matrix quantum mechanics: path integralsJHEP2024040802024JHEP...04..080O473592710.1007/JHEP04(2024)080[arXiv:2312.12397] [INSPIRE] FengBHananyAHeY-HCounting gauge invariants: the Plethystic programJHEP2007030902007JHEP...03..090F231395910.1088/1126-6708/2007/03/090[hep-th/0701063] [INSPIRE] WignerERandom matrices in physicsSIAM Rev.1967911967SIAMR...9....1W10.1137/1009001 HanadaMMaltzJA proposal of the gauge theory description of the small Schwarzschild black hole in AdS5 × S5JHEP2017020122017JHEP...02..012H10.1007/JHEP02(2017)012[arXiv:1608.03276] [INSPIRE] OEIS Foundation Inc., Row sums of triangle, On-Line Encyclopedia of Integer Sequences entry A110143, (2023). BarnesGPadellaroARamgoolamSHidden symmetries and large N factorisation for permutation invariant matrix observablesJHEP2022080902022JHEP...08..090B446728110.1007/JHEP08(2022)090[arXiv:2112.00498] [INSPIRE] BhanotGRebbiCMonte Carlo simulations of lattice models with finite subgroups of SU(3) as gauge groupsPhys. Rev. D19812433191981PhRvD..24.3319B10.1103/PhysRevD.24.3319[INSPIRE] GurauRThe 1/N expansion of colored tensor modelsAnnales Henri Poincaré2011128292011AnHP...12..829G280238410.1007/s00023-011-0101-8[arXiv:1011.2726] [INSPIRE] S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS operators in gauge theories: quivers, Syzygies and Plethystics, JHEP11 (2007) 050 [hep-th/0608050] [INSPIRE]. HananyAMekareeyaNTorriGThe Hilbert series of adjoint SQCDNucl. Phys. B2010825522010NuPhB.825...52H255238610.1016/j.nuclphysb.2009.09.016[arXiv:0812.2315] [INSPIRE] CorleySJevickiARamgoolamSExact correlators of giant gravitons from dual N = 4 SYM theoryAdv. Theor. Math. Phys.20025809192629610.4310/ATMP.2001.v5.n4.a6[hep-th/0111222] [INSPIRE] N. Brahma and C. Krishnan, Large-N phase transition in a finite lattice gauge theory, Phys. Rev. D103 (2021) 126028 [arXiv:2012.15857] [INSPIRE]. B. Henning, X. Lu, T. Melia and H. Murayama, Operator bases, S-matrices, and their partition functions, JHEP10 (2017) 199 [arXiv:1706.08520] [INSPIRE]. BhattacharyyaRCollinsSde Mello KochRExact multi-matrix correlatorsJHEP2008030442008JHEP...03..044B239107610.1088/1126-6708/2008/03/044[arXiv:0801.2061] [INSPIRE] BeccariaMTseytlinAAPartition function of free conformal fields in 3-plet representationJHEP2017050532017JHEP...05..053B366287810.1007/JHEP05(2017)053[arXiv:1703.04460] [INSPIRE] BanksTFischlerWShenkerSHSusskindLM theory as a matrix model: a conjecturePhys. Rev. D19975551121997PhRvD..55.5112B144961710.1103/PhysRevD.55.5112[hep-th/9610043] [INSPIRE] OEIS Foundation Inc., Number of directed multi-graphs with loops on an infinite set of nodes containing a total of n arcs, On-Line Encyclopedia of Integer Sequences entry A052171, (2023). KartsaklisDRamgoolamSSadrzadehMLinguistic matrix theoryAnn. Inst. H. Poincaré D Comb. Phys. Interact.20196385400267110.4171/aihpd/75[arXiv:1703.10252] [INSPIRE] AharonyOThe hagedorn — deconfinement phase transition in weakly coupled large N gauge theoriesAdv. Theor. Math. Phys.20048603214149810.4310/ATMP.2004.v8.n4.a1[hep-th/0310285] [INSPIRE] D. O’ Connor and S. Ramgoolam, Gauged permutation invariant matrix quantum mechanics: thermodynamics, in preparation. S. Ramgoolam, M. Sadrzadeh and L. Sword, Gaussianity and typicality in matrix distributional semantics, Ann. Inst. H. Poincaré D Comb. Phys. Interact.9 (2022) 1 [arXiv:1912.10839] [INSPIRE]. JenkinsEEManoharAVAlgebraic structure of lepton and quark flavor invariants and CP violationJHEP2009100942009JHEP...10..094J10.1088/1126-6708/2009/10/094[arXiv:0907.4763] [INSPIRE] C. Rebbi, Monte Carlo computations for lattice gauge theories with finite gauge groups, NATO Sci. Ser. B70 (1981) 241 [INSPIRE]. CatterallSvan AndersGFirst results from lattice simulation of the PWMMJHEP2010090882010JHEP...09..088C10.1007/JHEP09(2010)088[arXiv:1003.4952] [INSPIRE] PateloudisSNonperturbative test of the Maldacena-Milekhin conjecture for the BMN matrix modelJHEP2022081782022JHEP...08..178P447305610.1007/JHEP08(2022)178[arXiv:2205.06098] [INSPIRE] P. Hasenfratz and F. Niedermayer, Unexpected results in asymptotically free quantum field theories, Nucl. Phys. B596 (2001) 481 [hep-lat/0006021] [INSPIRE]. 23989_CR25 23989_CR26 M Hanada (23989_CR30) 2017; 02 S Corley (23989_CR12) 2002; 5 23989_CR27 23989_CR28 O Aharony (23989_CR29) 2004; 8 DE Berenstein (23989_CR17) 2002; 04 23989_CR41 TW Brown (23989_CR14) 2008; 02 23989_CR20 D O’Connor (23989_CR18) 2024; 04 23989_CR22 23989_CR44 23989_CR23 D Berenstein (23989_CR32) 2023; 12 D Kartsaklis (23989_CR4) 2019; 6 E Wigner (23989_CR1) 1967; 9 M Beccaria (23989_CR24) 2017; 05 23989_CR8 Y Asano (23989_CR46) 2018; 07 Y Kimura (23989_CR13) 2007; 11 R de Mello Koch (23989_CR40) 2023; 02 23989_CR6 23989_CR5 T Banks (23989_CR16) 1997; 55 23989_CR9 23989_CR36 G Bhanot (23989_CR34) 1981; 24 B Feng (23989_CR21) 2007; 03 23989_CR39 23989_CR3 23989_CR19 23989_CR2 R Gurau (23989_CR42) 2011; 12 EE Jenkins (23989_CR37) 2009; 10 D Berenstein (23989_CR31) 2018; 09 G Barnes (23989_CR7) 2022; 08 23989_CR10 A Hanany (23989_CR38) 2010; 825 23989_CR11 23989_CR33 23989_CR35 R Gurau (23989_CR43) 2011; 95 S Catterall (23989_CR45) 2010; 09 S Pateloudis (23989_CR47) 2022; 08 R Bhattacharyya (23989_CR15) 2008; 03 |
References_xml | – reference: A. Edelman and Y. Wang, Random matrix theory and its innovative applications, in Fields institute communications, Springer, Boston, MA, U.S.A. (2013), p. 91 [https://doi.org/10.1007/978-1-4614-5389-5_5]. – reference: BarnesGPadellaroARamgoolamSHidden symmetries and large N factorisation for permutation invariant matrix observablesJHEP2022080902022JHEP...08..090B446728110.1007/JHEP08(2022)090[arXiv:2112.00498] [INSPIRE] – reference: S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS operators in gauge theories: quivers, Syzygies and Plethystics, JHEP11 (2007) 050 [hep-th/0608050] [INSPIRE]. – reference: G. Barnes, A. Padellaro and S. Ramgoolam, Permutation symmetry in large-N matrix quantum mechanics and partition algebras, Phys. Rev. D106 (2022) 106020 [arXiv:2207.02166] [INSPIRE]. – reference: O’ConnorDRamgoolamSGauged permutation invariant matrix quantum mechanics: path integralsJHEP2024040802024JHEP...04..080O473592710.1007/JHEP04(2024)080[arXiv:2312.12397] [INSPIRE] – reference: HananyAMekareeyaNTorriGThe Hilbert series of adjoint SQCDNucl. Phys. B2010825522010NuPhB.825...52H255238610.1016/j.nuclphysb.2009.09.016[arXiv:0812.2315] [INSPIRE] – reference: BeccariaMTseytlinAAPartition function of free conformal fields in 3-plet representationJHEP2017050532017JHEP...05..053B366287810.1007/JHEP05(2017)053[arXiv:1703.04460] [INSPIRE] – reference: BerensteinDEMaldacenaJMNastaseHSStrings in flat space and pp waves from N=4 superYang-MillsJHEP2002040132002JHEP...04..013B10.1088/1126-6708/2002/04/013[hep-th/0202021] [INSPIRE] – reference: CatterallSvan AndersGFirst results from lattice simulation of the PWMMJHEP2010090882010JHEP...09..088C10.1007/JHEP09(2010)088[arXiv:1003.4952] [INSPIRE] – reference: BrownTWHeslopPJRamgoolamSDiagonal multi-matrix correlators and BPS operators in N = 4 SYMJHEP2008020302008JHEP...02..030B238601510.1088/1126-6708/2008/02/030[arXiv:0711.0176] [INSPIRE] – reference: M.A. Huber, A. Correia, S. Ramgoolam and M. Sadrzadeh, Permutation invariant matrix statistics and computational language tasks, arXiv:2202.06829 [INSPIRE]. – reference: N. Brahma and C. Krishnan, Large-N phase transition in a finite lattice gauge theory, Phys. Rev. D103 (2021) 126028 [arXiv:2012.15857] [INSPIRE]. – reference: JenkinsEEManoharAVAlgebraic structure of lepton and quark flavor invariants and CP violationJHEP2009100942009JHEP...10..094J10.1088/1126-6708/2009/10/094[arXiv:0907.4763] [INSPIRE] – reference: BanksTFischlerWShenkerSHSusskindLM theory as a matrix model: a conjecturePhys. Rev. D19975551121997PhRvD..55.5112B144961710.1103/PhysRevD.55.5112[hep-th/9610043] [INSPIRE] – reference: KimuraYRamgoolamSBranes, anti-branes and brauer algebras in gauge-gravity dualityJHEP2007110782007JHEP...11..078K236207110.1088/1126-6708/2007/11/078[arXiv:0709.2158] [INSPIRE] – reference: AharonyOThe hagedorn — deconfinement phase transition in weakly coupled large N gauge theoriesAdv. Theor. Math. Phys.20048603214149810.4310/ATMP.2004.v8.n4.a1[hep-th/0310285] [INSPIRE] – reference: GurauRThe 1/N expansion of colored tensor modelsAnnales Henri Poincaré2011128292011AnHP...12..829G280238410.1007/s00023-011-0101-8[arXiv:1011.2726] [INSPIRE] – reference: OEIS Foundation Inc., Row sums of triangle, On-Line Encyclopedia of Integer Sequences entry A110143, (2023). – reference: BerensteinDSubmatrix deconfinement and small black holes in AdSJHEP2018090542018JHEP...09..054B387124510.1007/JHEP09(2018)054[arXiv:1806.05729] [INSPIRE] – reference: P. Hasenfratz and F. Niedermayer, Unexpected results in asymptotically free quantum field theories, Nucl. Phys. B596 (2001) 481 [hep-lat/0006021] [INSPIRE]. – reference: CorleySJevickiARamgoolamSExact correlators of giant gravitons from dual N = 4 SYM theoryAdv. Theor. Math. Phys.20025809192629610.4310/ATMP.2001.v5.n4.a6[hep-th/0111222] [INSPIRE] – reference: E. Berkowitz et al., Precision lattice test of the gauge/gravity duality at large-N, Phys. Rev. D94 (2016) 094501 [arXiv:1606.04951] [INSPIRE]. – reference: D. O’ Connor and S. Ramgoolam, Gauged permutation invariant matrix quantum mechanics: thermodynamics, in preparation. – reference: HanadaMMaltzJA proposal of the gauge theory description of the small Schwarzschild black hole in AdS5 × S5JHEP2017020122017JHEP...02..012H10.1007/JHEP02(2017)012[arXiv:1608.03276] [INSPIRE] – reference: de Mello KochRRamgoolamSN=4 SYM, (super)-polynomial rings and emergent quantum mechanical symmetriesJHEP2023021762023JHEP...02..176D455529110.1007/JHEP02(2023)176[arXiv:2211.04271] [INSPIRE] – reference: GurauRRivasseauVThe 1/N expansion of colored tensor models in arbitrary dimensionEPL201195500042011EL.....9550004G10.1209/0295-5075/95/50004[arXiv:1101.4182] [INSPIRE] – reference: WignerERandom matrices in physicsSIAM Rev.1967911967SIAMR...9....1W10.1137/1009001 – reference: C. Rebbi, Monte Carlo computations for lattice gauge theories with finite gauge groups, NATO Sci. Ser. B70 (1981) 241 [INSPIRE]. – reference: BhanotGRebbiCMonte Carlo simulations of lattice models with finite subgroups of SU(3) as gauge groupsPhys. Rev. D19812433191981PhRvD..24.3319B10.1103/PhysRevD.24.3319[INSPIRE] – reference: KartsaklisDRamgoolamSSadrzadehMLinguistic matrix theoryAnn. Inst. H. Poincaré D Comb. Phys. Interact.20196385400267110.4171/aihpd/75[arXiv:1703.10252] [INSPIRE] – reference: J. Ben Geloun and S. Ramgoolam, Counting tensor model observables and branched covers of the 2-sphere, Ann. Inst. H. Poincaré D Comb. Phys. Interact.1 (2014) 77 [arXiv:1307.6490] [INSPIRE]. – reference: G. Barnes, A. Padellaro and S. Ramgoolam, Permutation invariant tensor models and partition algebras, arXiv:2312.09205 [INSPIRE]. – reference: AsanoYFilevVGKováčikSO’ConnorDThe non-perturbative phase diagram of the BMN matrix modelJHEP2018071522018JHEP...07..152A385857110.1007/JHEP07(2018)152[arXiv:1805.05314] [INSPIRE] – reference: K. Bulycheva, I.R. Klebanov, A. Milekhin and G. Tarnopolsky, Spectra of operators in large N tensor models, Phys. Rev. D97 (2018) 026016 [arXiv:1707.09347] [INSPIRE]. – reference: FengBHananyAHeY-HCounting gauge invariants: the Plethystic programJHEP2007030902007JHEP...03..090F231395910.1088/1126-6708/2007/03/090[hep-th/0701063] [INSPIRE] – reference: J. Ben Geloun and S. Ramgoolam, All-orders asymptotics of tensor model observables from symmetries of restricted partitions, J. Phys. A55 (2022) 435203 [arXiv:2106.01470] [INSPIRE]. – reference: G. Barnes, S. Ramgoolam and M. Stephanou, Permutation invariant Gaussian matrix models for financial correlation matrices, arXiv:2306.04569 [INSPIRE]. – reference: T. Guhr, A. Muller-Groeling and H.A. Weidenmuller, Random matrix theories in quantum physics: common concepts, Phys. Rept.299 (1998) 189 [cond-mat/9707301] [INSPIRE]. – reference: BerensteinDYanKThe endpoint of partial deconfinementJHEP2023120302023JHEP...12..030B467523710.1007/JHEP12(2023)030[arXiv:2307.06122] [INSPIRE] – reference: OEIS Foundation Inc., Number of directed multi-graphs with loops on an infinite set of nodes containing a total of n arcs, On-Line Encyclopedia of Integer Sequences entry A052171, (2023). – reference: PateloudisSNonperturbative test of the Maldacena-Milekhin conjecture for the BMN matrix modelJHEP2022081782022JHEP...08..178P447305610.1007/JHEP08(2022)178[arXiv:2205.06098] [INSPIRE] – reference: G. Barnes, A. Padellaro and S. Ramgoolam, Permutation invariant Gaussian two-matrix models, J. Phys. A55 (2022) 145202 [arXiv:2104.03707] [INSPIRE]. – reference: B. Henning, X. Lu, T. Melia and H. Murayama, Operator bases, S-matrices, and their partition functions, JHEP10 (2017) 199 [arXiv:1706.08520] [INSPIRE]. – reference: S. Ramgoolam, Permutation invariant Gaussian matrix models, Nucl. Phys. B945 (2019) 114682 [arXiv:1809.07559] [INSPIRE]. – reference: S. Ramgoolam, M. Sadrzadeh and L. Sword, Gaussianity and typicality in matrix distributional semantics, Ann. Inst. H. Poincaré D Comb. Phys. Interact.9 (2022) 1 [arXiv:1912.10839] [INSPIRE]. – reference: D.A. Cox, J.B. Little and D. O’Shea, Using algebraic geometry, Springer (2005) [https://doi.org/10.1007/b138611]. – reference: BhattacharyyaRCollinsSde Mello KochRExact multi-matrix correlatorsJHEP2008030442008JHEP...03..044B239107610.1088/1126-6708/2008/03/044[arXiv:0801.2061] [INSPIRE] – ident: 23989_CR3 doi: 10.1007/978-1-4614-5389-5_5 – volume: 5 start-page: 809 year: 2002 ident: 23989_CR12 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.2001.v5.n4.a6 – ident: 23989_CR44 doi: 10.1103/PhysRevD.94.094501 – ident: 23989_CR2 doi: 10.1016/S0370-1573(97)00088-4 – volume: 03 start-page: 044 year: 2008 ident: 23989_CR15 publication-title: JHEP doi: 10.1088/1126-6708/2008/03/044 – ident: 23989_CR26 doi: 10.4171/aihpd/4 – ident: 23989_CR36 doi: 10.1103/PhysRevD.103.126028 – volume: 55 start-page: 5112 year: 1997 ident: 23989_CR16 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.55.5112 – volume: 03 start-page: 090 year: 2007 ident: 23989_CR21 publication-title: JHEP doi: 10.1088/1126-6708/2007/03/090 – volume: 12 start-page: 030 year: 2023 ident: 23989_CR32 publication-title: JHEP doi: 10.1007/JHEP12(2023)030 – volume: 11 start-page: 078 year: 2007 ident: 23989_CR13 publication-title: JHEP doi: 10.1088/1126-6708/2007/11/078 – volume: 8 start-page: 603 year: 2004 ident: 23989_CR29 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.2004.v8.n4.a1 – ident: 23989_CR22 – ident: 23989_CR35 doi: 10.1016/S0550-3213(00)00696-9 – volume: 02 start-page: 012 year: 2017 ident: 23989_CR30 publication-title: JHEP doi: 10.1007/JHEP02(2017)012 – volume: 08 start-page: 178 year: 2022 ident: 23989_CR47 publication-title: JHEP doi: 10.1007/JHEP08(2022)178 – volume: 95 start-page: 50004 year: 2011 ident: 23989_CR43 publication-title: EPL doi: 10.1209/0295-5075/95/50004 – volume: 9 start-page: 1 year: 1967 ident: 23989_CR1 publication-title: SIAM Rev. doi: 10.1137/1009001 – ident: 23989_CR39 doi: 10.1007/JHEP10(2017)199 – ident: 23989_CR28 – ident: 23989_CR6 doi: 10.1088/1751-8121/ac4de1 – volume: 05 start-page: 053 year: 2017 ident: 23989_CR24 publication-title: JHEP doi: 10.1007/JHEP05(2017)053 – volume: 04 start-page: 080 year: 2024 ident: 23989_CR18 publication-title: JHEP doi: 10.1007/JHEP04(2024)080 – ident: 23989_CR33 doi: 10.1007/978-1-4684-8279-9_16 – ident: 23989_CR27 doi: 10.1088/1751-8121/ac9b3b – ident: 23989_CR41 – ident: 23989_CR10 – volume: 02 start-page: 030 year: 2008 ident: 23989_CR14 publication-title: JHEP doi: 10.1088/1126-6708/2008/02/030 – volume: 04 start-page: 013 year: 2002 ident: 23989_CR17 publication-title: JHEP doi: 10.1088/1126-6708/2002/04/013 – ident: 23989_CR11 doi: 10.1103/PhysRevD.106.106020 – volume: 09 start-page: 088 year: 2010 ident: 23989_CR45 publication-title: JHEP doi: 10.1007/JHEP09(2010)088 – ident: 23989_CR8 doi: 10.4171/aihpd/112 – volume: 24 start-page: 3319 year: 1981 ident: 23989_CR34 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.24.3319 – volume: 08 start-page: 090 year: 2022 ident: 23989_CR7 publication-title: JHEP doi: 10.1007/JHEP08(2022)090 – volume: 10 start-page: 094 year: 2009 ident: 23989_CR37 publication-title: JHEP doi: 10.1088/1126-6708/2009/10/094 – ident: 23989_CR25 doi: 10.1103/PhysRevD.97.026016 – volume: 12 start-page: 829 year: 2011 ident: 23989_CR42 publication-title: Annales Henri Poincaré doi: 10.1007/s00023-011-0101-8 – ident: 23989_CR19 doi: 10.1007/b138611 – ident: 23989_CR9 – ident: 23989_CR5 doi: 10.1016/j.nuclphysb.2019.114682 – volume: 6 start-page: 385 year: 2019 ident: 23989_CR4 publication-title: Ann. Inst. H. Poincaré D Comb. Phys. Interact. doi: 10.4171/aihpd/75 – volume: 825 start-page: 52 year: 2010 ident: 23989_CR38 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2009.09.016 – volume: 07 start-page: 152 year: 2018 ident: 23989_CR46 publication-title: JHEP doi: 10.1007/JHEP07(2018)152 – volume: 02 start-page: 176 year: 2023 ident: 23989_CR40 publication-title: JHEP doi: 10.1007/JHEP02(2023)176 – ident: 23989_CR20 doi: 10.1088/1126-6708/2007/11/050 – volume: 09 start-page: 054 year: 2018 ident: 23989_CR31 publication-title: JHEP doi: 10.1007/JHEP09(2018)054 – ident: 23989_CR23 |
SSID | ssj0015190 |
Score | 2.4577692 |
Snippet | A
bstract
The Hilbert spaces of matrix quantum mechanical systems with
N
×
N
matrix degrees of freedom
X
have been analysed recently in terms of
S
N
symmetric... The Hilbert spaces of matrix quantum mechanical systems with N × N matrix degrees of freedom X have been analysed recently in terms of S N symmetric group... The Hilbert spaces of matrix quantum mechanical systems with N × N matrix degrees of freedom X have been analysed recently in terms of SN symmetric group... Abstract The Hilbert spaces of matrix quantum mechanical systems with N × N matrix degrees of freedom X have been analysed recently in terms of S N symmetric... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 152 |
SubjectTerms | Classical and Quantum Gravitation Dimensional analysis Discrete Symmetries Elementary Particles Gauge Symmetry Hamiltonian functions Harmonic functions Harmonic oscillators Hilbert space Invariants Lattice Quantum Field Theory Matrices (mathematics) Matrix Models Mechanical systems Partitions (mathematics) Permutations Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum mechanics Quantum Physics Regular Article - Theoretical Physics Relativity Theory String Theory Symmetry |
SummonAdditionalLinks | – databaseName: Open Access: DOAJ - Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yELyInzid0oOH7VCXtEmTeFPZHAPFg4PdSj5FcHO6VfzzTdJ2OmF48dj2JSS_l-a9x8v7BYBzqlPCtMU-w8hjrDiLpdsTY0kSpY1RSIcq_rv7bDDCwzEZ_7jqy58JK-mBS-C6hGWKUc10qgWWWLGEJ5lkFkpBmNShdM_ZvDqYqvIHzi-BNZEPpN3hoPcAadsF-riDSLJigwJV_4p_-SslGixNfwdsVy5idFUObRdsmOke2AxHNdV8HwxvRfFkdDRze2pRJtKj5-mHi3kdSNHEU-5_Rm-Feygm0cT4yl7X7jKa-bkGaW_LwnI7AKN-7_FmEFc3IsQKI7qIDeRCIcuQsIJaJAVSCaappUxDYxPJuIHWQOMdDRcHGaoJolJmMPUFtNimh6AxfZ2aIxBBZDNFPCKJwlykQqPAds89_Y0kogkuaoxyVdGF-1srXvKa6LgENfdd5A7UJmgvG8xKpoz1otce9KWYp7gOL5zi80rx-V-Kb4JWrbK8-u_meeo9HM6dZW6CTq3G789rxnP8H-M5AVu-vziQbrZAY_FemFPnsCzkWVibXxxa5p0 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central (New) (NC LIVE) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEA_2jkJfSv0oPbWyDz6cD6vJbrJJfClVTo8DRUoF35Z8iuB9eHdb_PPN5LInFvRxdydhmUzmI5P5DUKH3JZMWE8hwyhzaqTIddCJuWaFsc4ZYmMV_9V1Nbylozt2lw7cFulaZasTo6K2UwNn5Ccl2C4pg879NXvKoWsUZFdTC41PqBtUsAjBV_dscH3zZ51HCP4JbgF9MD8ZDQc3mPdDwE-PCCve2KII2f_Gz_wvNRotzsU39DW5itnv1dpuog032UKf45VNs9hGo0vV3DubzYJubVYJ9exh8i_EvoFZ2Rig95-zpyY8NONs7KDCN4w7zWYgLJEabFoUux10ezH4ez7MU2eE3FDCl7nDUhniBVFecU-0IqagvPRcWOx8oYV02DvswOEI8ZDjlhGudYVLKKSlvvyOOpPpxP1AGSa-Mgw4UhgqVaksiaj3EmBwNFM9dNzyqDYJNhy6VzzWLeDxiqk1TFEHpvZQfz1gtkLMeJ_0DJi-JgOo6_hiOr-v086pmaiM4FbY0iqqqRGFLCotPNaKCW1lD-23S1an_beoX6Wlh47aZXz9_M7_7H481R76ApR5hNXcR53lvHE_g0uy1AdJ7l4AXdXe8A priority: 102 providerName: ProQuest |
Title | Gauged permutation invariant matrix quantum mechanics: partition functions |
URI | https://link.springer.com/article/10.1007/JHEP07(2024)152 https://www.proquest.com/docview/3081999413 https://doaj.org/article/586c87d8d3da4b4c82926b8f0ba58bd9 |
Volume | 2024 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_SlkFfxrpuNGsX_LCH9sFDsmVL2lsbkobAQhkN9M3osxSaj7Zx6Z9fnWJndCMPfRGyfRLm7qS743Q_AfzgNi-E9QwzjDJlRopUhz0x1UVmrHOG2ljF_3tSjqZsfFPcdIC2tTDxtHubkow7dVvsNh4Nrgg_DcE6OwtGZwf2itBHpe5jgUOTOAgOCWkRfP4f9Mb4RIz-N47lP7nQaGKGn-Bj4xsm52thHkDHzT_Dh3hG0zwdwvhS1bfOJsuwmdbrDHpyN38OwW7gTjJDrP2X5KEOD_UsmTks6Q3jfiVL1I5IjUYs6tkXmA4H1_1R2lyFkBpG-Sp1RCpDvaDKK-6pVtRkjOeeC0ucz7SQjnhHHHoYIQBy3BaUa12SHCtnmc-_wu58MXdHkBDqS4OsY5lhUuXK0ghzLxH3RheqCz9bHlWmwQnH6yruqxbheM3UCqeoAlO7cLoZsFxDZGwnvUCmb8gQ2zq-WDzeVs1SqQpRGsGtsLlVTDMjMpmVWniiVSG0lV04aUVWNQvuqcrRtZEymOQunLVi_Pt5y_98ewftMexjN42gmiewu3qs3ffgkKx0D3bE8LIHexeDydWfXlRIbMt-L4b4oZ1m569L-d4o |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFNsKZADSO0h1HactY2EEI9ut9uHOLRSb8HPCqn7aHfD40_xG_E4yVZFKrcek9hWNPN5ZpzJfAPwWriilC5wzDCqnFslcxNtYm5KZp33lrpUxX9w2B8e89FJebICf7paGPytsrOJyVC7qcVv5FsF-i6los39MDvPsWsUZle7FhoNLPb875_xyDZ_v_sl6vcNY4Pto8_DvO0qkFtOxSL3RGlLg6Q6aBGo0dQyLoogpCM-MCOVJ8ETj846niW8cCUVxvRJgUWoPBRx3VtwmxeFwh0lBzvLrEWMhkhHH0TE1mi4_ZWIDRbd4CYt2RXPlxoEXIlq_0nEJv82eAD328A0-9gg6SGs-MkjuJN-ELXzxzDa0fWpd9ksWvK6Sd9n3yc_4kk7qiYbI9H_r-y8jhf1OBt7rCeO895lM4RmGo0eNIH8CRzfiMSewupkOvHPICM09G2JEmGWK11oRxPHvkLSHVPqHrztZFTZlqQce2WcVR29ciPUCpeoolB7sLGcMGv4Oa4f-gmFvhyGxNrpxvTitGr3aVXKvpXCSVc4zQ23kinWNzIQo0tpnOrBeqeyqt3t8-oSmz3Y7NR4-fia91n7_1Kv4O7w6GC_2t893HsO93BWngg912F1cVH7FzEYWpiXCYEZfLtpyP8FxysalQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE-xbYEcQGoPYW3nYRsJIUp32W5htUJU6s31s0JiH-1uePw1fh22k2xVpHLrMYltRTNfZsYZzzcAL6nJCmZcHjKMPM01Z6nyNjFVBdHGWo1NrOL_PC6Hx_nopDjZgD9tLUw4VtnaxGiozVyHf-S9LPguzr3N7bnmWMTkYPBucZ6GDlIh09q206ghcmR___Tbt-XbwwOv61eEDPpfPwzTpsNAqnNMV6lFXGrsGJZOUoeVxJrkNHOUGWQdUYxb5CyywXH7fYWlpsBUqRJloSA1d5lf9xZsUr8rQh3Y3O-PJ1_WOQwfG6GWTAjR3mjYnyC6S7xT3MMFueIHY7uAKzHuP2nZ6O0G9-FeE6Ym72tcPYANO3sIt-NxUb18BKOPsjqzJll4u17Vyfzk2-yH33d7RSXTQPv_Kzmv_EU1TaY2VBf7eW-SRQBqHB38aYT8Yzi-EZk9gc5sPrNPIUHYlboIEiE65zKTBkfGfR4oeFQhu_C6lZHQDWV56JzxXbRky7VQRVhCeKF2YXc9YVGzdVw_dD8IfT0s0GzHG_OLM9F8taJgpWbUMJMZmatcM8JJqZhDShZMGd6FnVZlovn2l-ISqV3Ya9V4-fia99n6_1Iv4I6Hu_h0OD7ahrthUhrZPXegs7qo7DMfGa3U8waCCZzeNOr_AqOZICc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gauged+permutation+invariant+matrix+quantum+mechanics%3A+partition+functions&rft.jtitle=The+journal+of+high+energy+physics&rft.au=O%E2%80%99Connor%2C+Denjoe&rft.au=Ramgoolam%2C+Sanjaye&rft.date=2024-07-17&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2024&rft.issue=7&rft_id=info:doi/10.1007%2FJHEP07%282024%29152&rft.externalDocID=10_1007_JHEP07_2024_152 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |