Gauged permutation invariant matrix quantum mechanics: partition functions

A bstract The Hilbert spaces of matrix quantum mechanical systems with N × N matrix degrees of freedom X have been analysed recently in terms of S N symmetric group elements U acting as X → UXU T . Solvable models have been constructed uncovering partition algebras as hidden symmetries of these syst...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2024; no. 7; pp. 152 - 35
Main Authors O’Connor, Denjoe, Ramgoolam, Sanjaye
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 17.07.2024
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1029-8479
1029-8479
DOI10.1007/JHEP07(2024)152

Cover

Loading…
Abstract A bstract The Hilbert spaces of matrix quantum mechanical systems with N × N matrix degrees of freedom X have been analysed recently in terms of S N symmetric group elements U acting as X → UXU T . Solvable models have been constructed uncovering partition algebras as hidden symmetries of these systems. The solvable models include an 11-dimensional space of matrix harmonic oscillators, the simplest of which is the standard matrix harmonic oscillator with U( N ) symmetry. The permutation symmetry is realised as gauge symmetry in a path integral formulation in a companion paper. With the simplest matrix oscillator Hamiltonian subject to gauge permutation symmetry, we use the known result for the micro-canonical partition function to derive the canonical partition function. It is expressed as a sum over partitions of N of products of factors which depend on elementary number-theoretic properties of the partitions, notably the least common multiples and greatest common divisors of pairs of parts appearing in the partition. This formula is recovered using the Molien-Weyl formula, which we review for convenience. The Molien-Weyl formula is then used to generalise the formula for the canonical partition function to the 11-parameter permutation invariant matrix harmonic oscillator.
AbstractList The Hilbert spaces of matrix quantum mechanical systems with N × N matrix degrees of freedom X have been analysed recently in terms of SN symmetric group elements U acting as X → UXUT. Solvable models have been constructed uncovering partition algebras as hidden symmetries of these systems. The solvable models include an 11-dimensional space of matrix harmonic oscillators, the simplest of which is the standard matrix harmonic oscillator with U(N) symmetry. The permutation symmetry is realised as gauge symmetry in a path integral formulation in a companion paper. With the simplest matrix oscillator Hamiltonian subject to gauge permutation symmetry, we use the known result for the micro-canonical partition function to derive the canonical partition function. It is expressed as a sum over partitions of N of products of factors which depend on elementary number-theoretic properties of the partitions, notably the least common multiples and greatest common divisors of pairs of parts appearing in the partition. This formula is recovered using the Molien-Weyl formula, which we review for convenience. The Molien-Weyl formula is then used to generalise the formula for the canonical partition function to the 11-parameter permutation invariant matrix harmonic oscillator.
Abstract The Hilbert spaces of matrix quantum mechanical systems with N × N matrix degrees of freedom X have been analysed recently in terms of S N symmetric group elements U acting as X → UXU T . Solvable models have been constructed uncovering partition algebras as hidden symmetries of these systems. The solvable models include an 11-dimensional space of matrix harmonic oscillators, the simplest of which is the standard matrix harmonic oscillator with U(N) symmetry. The permutation symmetry is realised as gauge symmetry in a path integral formulation in a companion paper. With the simplest matrix oscillator Hamiltonian subject to gauge permutation symmetry, we use the known result for the micro-canonical partition function to derive the canonical partition function. It is expressed as a sum over partitions of N of products of factors which depend on elementary number-theoretic properties of the partitions, notably the least common multiples and greatest common divisors of pairs of parts appearing in the partition. This formula is recovered using the Molien-Weyl formula, which we review for convenience. The Molien-Weyl formula is then used to generalise the formula for the canonical partition function to the 11-parameter permutation invariant matrix harmonic oscillator.
The Hilbert spaces of matrix quantum mechanical systems with N × N matrix degrees of freedom X have been analysed recently in terms of S N symmetric group elements U acting as X → UXU T . Solvable models have been constructed uncovering partition algebras as hidden symmetries of these systems. The solvable models include an 11-dimensional space of matrix harmonic oscillators, the simplest of which is the standard matrix harmonic oscillator with U( N ) symmetry. The permutation symmetry is realised as gauge symmetry in a path integral formulation in a companion paper. With the simplest matrix oscillator Hamiltonian subject to gauge permutation symmetry, we use the known result for the micro-canonical partition function to derive the canonical partition function. It is expressed as a sum over partitions of N of products of factors which depend on elementary number-theoretic properties of the partitions, notably the least common multiples and greatest common divisors of pairs of parts appearing in the partition. This formula is recovered using the Molien-Weyl formula, which we review for convenience. The Molien-Weyl formula is then used to generalise the formula for the canonical partition function to the 11-parameter permutation invariant matrix harmonic oscillator.
A bstract The Hilbert spaces of matrix quantum mechanical systems with N × N matrix degrees of freedom X have been analysed recently in terms of S N symmetric group elements U acting as X → UXU T . Solvable models have been constructed uncovering partition algebras as hidden symmetries of these systems. The solvable models include an 11-dimensional space of matrix harmonic oscillators, the simplest of which is the standard matrix harmonic oscillator with U( N ) symmetry. The permutation symmetry is realised as gauge symmetry in a path integral formulation in a companion paper. With the simplest matrix oscillator Hamiltonian subject to gauge permutation symmetry, we use the known result for the micro-canonical partition function to derive the canonical partition function. It is expressed as a sum over partitions of N of products of factors which depend on elementary number-theoretic properties of the partitions, notably the least common multiples and greatest common divisors of pairs of parts appearing in the partition. This formula is recovered using the Molien-Weyl formula, which we review for convenience. The Molien-Weyl formula is then used to generalise the formula for the canonical partition function to the 11-parameter permutation invariant matrix harmonic oscillator.
ArticleNumber 152
Author O’Connor, Denjoe
Ramgoolam, Sanjaye
Author_xml – sequence: 1
  givenname: Denjoe
  orcidid: 0000-0003-2968-9297
  surname: O’Connor
  fullname: O’Connor, Denjoe
  organization: School of Theoretical Physics, Dublin Institute of Theoretical Physics
– sequence: 2
  givenname: Sanjaye
  orcidid: 0000-0002-1211-4780
  surname: Ramgoolam
  fullname: Ramgoolam, Sanjaye
  email: s.ramgoolam@qmul.ac.uk
  organization: School of Physics and Astronomy, Centre for Theoretical Physics, Queen Mary University of London, School of Physics and Mandelstam Institute for Theoretical Physics, University of Witwatersrand
BookMark eNp9kM1LxDAQxYMo-Hn2WvCih9VJmjaJN5H1C0EPeg7TNFmzbNM1aUX_e7tWVAQ9ZTK89-bx2ybroQ2WkH0KxxRAnNxcTe9BHDJg_IgWbI1sUWBqIrlQ6z_mTbKd0hyAFlTBFrm5xH5m62xpY9N32Pk2ZD68YPQYuqzBLvrX7LkfPn2TNdY8YfAmnWZLjJ3_ULs-mNWQdsmGw0Wye5_vDnm8mD6cX01u7y6vz89uJ4ZT0U0sKDTUSYoOhaMVUsO4yJ2QNVjHKqksOAsWoOS05FbUBRVVVULOlCi4y3fI9ZhbtzjXy-gbjG-6Ra8_Fm2c6VU5s7C6kKWRopZ1XiOvuJFMsbKSDiosZFWrIetgzFrG9rm3qdPzto9hqK9zkFQpxWk-qE5GlYltStG6r6sU9Aq-HuHrFXw9wB8cxS-H8SPdLqJf_OOD0ZeGC2Fm43efvyzvDJ-aEQ
CitedBy_id crossref_primary_10_1007_JHEP12_2024_161
crossref_primary_10_1142_S0217751X24300035
Cites_doi 10.1007/978-1-4614-5389-5_5
10.4310/ATMP.2001.v5.n4.a6
10.1103/PhysRevD.94.094501
10.1016/S0370-1573(97)00088-4
10.1088/1126-6708/2008/03/044
10.4171/aihpd/4
10.1103/PhysRevD.103.126028
10.1103/PhysRevD.55.5112
10.1088/1126-6708/2007/03/090
10.1007/JHEP12(2023)030
10.1088/1126-6708/2007/11/078
10.4310/ATMP.2004.v8.n4.a1
10.1016/S0550-3213(00)00696-9
10.1007/JHEP02(2017)012
10.1007/JHEP08(2022)178
10.1209/0295-5075/95/50004
10.1137/1009001
10.1007/JHEP10(2017)199
10.1088/1751-8121/ac4de1
10.1007/JHEP05(2017)053
10.1007/JHEP04(2024)080
10.1007/978-1-4684-8279-9_16
10.1088/1751-8121/ac9b3b
10.1088/1126-6708/2008/02/030
10.1088/1126-6708/2002/04/013
10.1103/PhysRevD.106.106020
10.1007/JHEP09(2010)088
10.4171/aihpd/112
10.1103/PhysRevD.24.3319
10.1007/JHEP08(2022)090
10.1088/1126-6708/2009/10/094
10.1103/PhysRevD.97.026016
10.1007/s00023-011-0101-8
10.1007/b138611
10.1016/j.nuclphysb.2019.114682
10.4171/aihpd/75
10.1016/j.nuclphysb.2009.09.016
10.1007/JHEP07(2018)152
10.1007/JHEP02(2023)176
10.1088/1126-6708/2007/11/050
10.1007/JHEP09(2018)054
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP07(2024)152
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (New) (NC LIVE)
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 35
ExternalDocumentID oai_doaj_org_article_586c87d8d3da4b4c82926b8f0ba58bd9
10_1007_JHEP07_2024_152
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AMVHM
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c417t-e09ac1f81afa7f1ba1c2473f78d0ef2b89e0fe0e0064164e7d517bb60329754f3
IEDL.DBID C24
ISSN 1029-8479
IngestDate Wed Aug 27 01:26:43 EDT 2025
Sat Jul 26 00:47:36 EDT 2025
Thu Apr 24 23:02:21 EDT 2025
Sun Jul 06 05:05:10 EDT 2025
Fri Feb 21 02:37:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Discrete Symmetries
Lattice Quantum Field Theory
Gauge Symmetry
Matrix Models
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-e09ac1f81afa7f1ba1c2473f78d0ef2b89e0fe0e0064164e7d517bb60329754f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1211-4780
0000-0003-2968-9297
OpenAccessLink https://link.springer.com/10.1007/JHEP07(2024)152
PQID 3081999413
PQPubID 2034718
PageCount 35
ParticipantIDs doaj_primary_oai_doaj_org_article_586c87d8d3da4b4c82926b8f0ba58bd9
proquest_journals_3081999413
crossref_primary_10_1007_JHEP07_2024_152
crossref_citationtrail_10_1007_JHEP07_2024_152
springer_journals_10_1007_JHEP07_2024_152
PublicationCentury 2000
PublicationDate 2024-07-17
PublicationDateYYYYMMDD 2024-07-17
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-17
  day: 17
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References KimuraYRamgoolamSBranes, anti-branes and brauer algebras in gauge-gravity dualityJHEP2007110782007JHEP...11..078K236207110.1088/1126-6708/2007/11/078[arXiv:0709.2158] [INSPIRE]
A. Edelman and Y. Wang, Random matrix theory and its innovative applications, in Fields institute communications, Springer, Boston, MA, U.S.A. (2013), p. 91 [https://doi.org/10.1007/978-1-4614-5389-5_5].
J. Ben Geloun and S. Ramgoolam, All-orders asymptotics of tensor model observables from symmetries of restricted partitions, J. Phys. A55 (2022) 435203 [arXiv:2106.01470] [INSPIRE].
G. Barnes, A. Padellaro and S. Ramgoolam, Permutation invariant Gaussian two-matrix models, J. Phys. A55 (2022) 145202 [arXiv:2104.03707] [INSPIRE].
S. Ramgoolam, Permutation invariant Gaussian matrix models, Nucl. Phys. B945 (2019) 114682 [arXiv:1809.07559] [INSPIRE].
AsanoYFilevVGKováčikSO’ConnorDThe non-perturbative phase diagram of the BMN matrix modelJHEP2018071522018JHEP...07..152A385857110.1007/JHEP07(2018)152[arXiv:1805.05314] [INSPIRE]
G. Barnes, A. Padellaro and S. Ramgoolam, Permutation symmetry in large-N matrix quantum mechanics and partition algebras, Phys. Rev. D106 (2022) 106020 [arXiv:2207.02166] [INSPIRE].
BrownTWHeslopPJRamgoolamSDiagonal multi-matrix correlators and BPS operators in N = 4 SYMJHEP2008020302008JHEP...02..030B238601510.1088/1126-6708/2008/02/030[arXiv:0711.0176] [INSPIRE]
D.A. Cox, J.B. Little and D. O’Shea, Using algebraic geometry, Springer (2005) [https://doi.org/10.1007/b138611].
BerensteinDYanKThe endpoint of partial deconfinementJHEP2023120302023JHEP...12..030B467523710.1007/JHEP12(2023)030[arXiv:2307.06122] [INSPIRE]
de Mello KochRRamgoolamSN=4 SYM, (super)-polynomial rings and emergent quantum mechanical symmetriesJHEP2023021762023JHEP...02..176D455529110.1007/JHEP02(2023)176[arXiv:2211.04271] [INSPIRE]
GurauRRivasseauVThe 1/N expansion of colored tensor models in arbitrary dimensionEPL201195500042011EL.....9550004G10.1209/0295-5075/95/50004[arXiv:1101.4182] [INSPIRE]
G. Barnes, A. Padellaro and S. Ramgoolam, Permutation invariant tensor models and partition algebras, arXiv:2312.09205 [INSPIRE].
J. Ben Geloun and S. Ramgoolam, Counting tensor model observables and branched covers of the 2-sphere, Ann. Inst. H. Poincaré D Comb. Phys. Interact.1 (2014) 77 [arXiv:1307.6490] [INSPIRE].
BerensteinDSubmatrix deconfinement and small black holes in AdSJHEP2018090542018JHEP...09..054B387124510.1007/JHEP09(2018)054[arXiv:1806.05729] [INSPIRE]
E. Berkowitz et al., Precision lattice test of the gauge/gravity duality at large-N, Phys. Rev. D94 (2016) 094501 [arXiv:1606.04951] [INSPIRE].
M.A. Huber, A. Correia, S. Ramgoolam and M. Sadrzadeh, Permutation invariant matrix statistics and computational language tasks, arXiv:2202.06829 [INSPIRE].
T. Guhr, A. Muller-Groeling and H.A. Weidenmuller, Random matrix theories in quantum physics: common concepts, Phys. Rept.299 (1998) 189 [cond-mat/9707301] [INSPIRE].
G. Barnes, S. Ramgoolam and M. Stephanou, Permutation invariant Gaussian matrix models for financial correlation matrices, arXiv:2306.04569 [INSPIRE].
BerensteinDEMaldacenaJMNastaseHSStrings in flat space and pp waves from N=4 superYang-MillsJHEP2002040132002JHEP...04..013B10.1088/1126-6708/2002/04/013[hep-th/0202021] [INSPIRE]
K. Bulycheva, I.R. Klebanov, A. Milekhin and G. Tarnopolsky, Spectra of operators in large N tensor models, Phys. Rev. D97 (2018) 026016 [arXiv:1707.09347] [INSPIRE].
O’ConnorDRamgoolamSGauged permutation invariant matrix quantum mechanics: path integralsJHEP2024040802024JHEP...04..080O473592710.1007/JHEP04(2024)080[arXiv:2312.12397] [INSPIRE]
FengBHananyAHeY-HCounting gauge invariants: the Plethystic programJHEP2007030902007JHEP...03..090F231395910.1088/1126-6708/2007/03/090[hep-th/0701063] [INSPIRE]
WignerERandom matrices in physicsSIAM Rev.1967911967SIAMR...9....1W10.1137/1009001
HanadaMMaltzJA proposal of the gauge theory description of the small Schwarzschild black hole in AdS5 × S5JHEP2017020122017JHEP...02..012H10.1007/JHEP02(2017)012[arXiv:1608.03276] [INSPIRE]
OEIS Foundation Inc., Row sums of triangle, On-Line Encyclopedia of Integer Sequences entry A110143, (2023).
BarnesGPadellaroARamgoolamSHidden symmetries and large N factorisation for permutation invariant matrix observablesJHEP2022080902022JHEP...08..090B446728110.1007/JHEP08(2022)090[arXiv:2112.00498] [INSPIRE]
BhanotGRebbiCMonte Carlo simulations of lattice models with finite subgroups of SU(3) as gauge groupsPhys. Rev. D19812433191981PhRvD..24.3319B10.1103/PhysRevD.24.3319[INSPIRE]
GurauRThe 1/N expansion of colored tensor modelsAnnales Henri Poincaré2011128292011AnHP...12..829G280238410.1007/s00023-011-0101-8[arXiv:1011.2726] [INSPIRE]
S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS operators in gauge theories: quivers, Syzygies and Plethystics, JHEP11 (2007) 050 [hep-th/0608050] [INSPIRE].
HananyAMekareeyaNTorriGThe Hilbert series of adjoint SQCDNucl. Phys. B2010825522010NuPhB.825...52H255238610.1016/j.nuclphysb.2009.09.016[arXiv:0812.2315] [INSPIRE]
CorleySJevickiARamgoolamSExact correlators of giant gravitons from dual N = 4 SYM theoryAdv. Theor. Math. Phys.20025809192629610.4310/ATMP.2001.v5.n4.a6[hep-th/0111222] [INSPIRE]
N. Brahma and C. Krishnan, Large-N phase transition in a finite lattice gauge theory, Phys. Rev. D103 (2021) 126028 [arXiv:2012.15857] [INSPIRE].
B. Henning, X. Lu, T. Melia and H. Murayama, Operator bases, S-matrices, and their partition functions, JHEP10 (2017) 199 [arXiv:1706.08520] [INSPIRE].
BhattacharyyaRCollinsSde Mello KochRExact multi-matrix correlatorsJHEP2008030442008JHEP...03..044B239107610.1088/1126-6708/2008/03/044[arXiv:0801.2061] [INSPIRE]
BeccariaMTseytlinAAPartition function of free conformal fields in 3-plet representationJHEP2017050532017JHEP...05..053B366287810.1007/JHEP05(2017)053[arXiv:1703.04460] [INSPIRE]
BanksTFischlerWShenkerSHSusskindLM theory as a matrix model: a conjecturePhys. Rev. D19975551121997PhRvD..55.5112B144961710.1103/PhysRevD.55.5112[hep-th/9610043] [INSPIRE]
OEIS Foundation Inc., Number of directed multi-graphs with loops on an infinite set of nodes containing a total of n arcs, On-Line Encyclopedia of Integer Sequences entry A052171, (2023).
KartsaklisDRamgoolamSSadrzadehMLinguistic matrix theoryAnn. Inst. H. Poincaré D Comb. Phys. Interact.20196385400267110.4171/aihpd/75[arXiv:1703.10252] [INSPIRE]
AharonyOThe hagedorn — deconfinement phase transition in weakly coupled large N gauge theoriesAdv. Theor. Math. Phys.20048603214149810.4310/ATMP.2004.v8.n4.a1[hep-th/0310285] [INSPIRE]
D. O’ Connor and S. Ramgoolam, Gauged permutation invariant matrix quantum mechanics: thermodynamics, in preparation.
S. Ramgoolam, M. Sadrzadeh and L. Sword, Gaussianity and typicality in matrix distributional semantics, Ann. Inst. H. Poincaré D Comb. Phys. Interact.9 (2022) 1 [arXiv:1912.10839] [INSPIRE].
JenkinsEEManoharAVAlgebraic structure of lepton and quark flavor invariants and CP violationJHEP2009100942009JHEP...10..094J10.1088/1126-6708/2009/10/094[arXiv:0907.4763] [INSPIRE]
C. Rebbi, Monte Carlo computations for lattice gauge theories with finite gauge groups, NATO Sci. Ser. B70 (1981) 241 [INSPIRE].
CatterallSvan AndersGFirst results from lattice simulation of the PWMMJHEP2010090882010JHEP...09..088C10.1007/JHEP09(2010)088[arXiv:1003.4952] [INSPIRE]
PateloudisSNonperturbative test of the Maldacena-Milekhin conjecture for the BMN matrix modelJHEP2022081782022JHEP...08..178P447305610.1007/JHEP08(2022)178[arXiv:2205.06098] [INSPIRE]
P. Hasenfratz and F. Niedermayer, Unexpected results in asymptotically free quantum field theories, Nucl. Phys. B596 (2001) 481 [hep-lat/0006021] [INSPIRE].
23989_CR25
23989_CR26
M Hanada (23989_CR30) 2017; 02
S Corley (23989_CR12) 2002; 5
23989_CR27
23989_CR28
O Aharony (23989_CR29) 2004; 8
DE Berenstein (23989_CR17) 2002; 04
23989_CR41
TW Brown (23989_CR14) 2008; 02
23989_CR20
D O’Connor (23989_CR18) 2024; 04
23989_CR22
23989_CR44
23989_CR23
D Berenstein (23989_CR32) 2023; 12
D Kartsaklis (23989_CR4) 2019; 6
E Wigner (23989_CR1) 1967; 9
M Beccaria (23989_CR24) 2017; 05
23989_CR8
Y Asano (23989_CR46) 2018; 07
Y Kimura (23989_CR13) 2007; 11
R de Mello Koch (23989_CR40) 2023; 02
23989_CR6
23989_CR5
T Banks (23989_CR16) 1997; 55
23989_CR9
23989_CR36
G Bhanot (23989_CR34) 1981; 24
B Feng (23989_CR21) 2007; 03
23989_CR39
23989_CR3
23989_CR19
23989_CR2
R Gurau (23989_CR42) 2011; 12
EE Jenkins (23989_CR37) 2009; 10
D Berenstein (23989_CR31) 2018; 09
G Barnes (23989_CR7) 2022; 08
23989_CR10
A Hanany (23989_CR38) 2010; 825
23989_CR11
23989_CR33
23989_CR35
R Gurau (23989_CR43) 2011; 95
S Catterall (23989_CR45) 2010; 09
S Pateloudis (23989_CR47) 2022; 08
R Bhattacharyya (23989_CR15) 2008; 03
References_xml – reference: A. Edelman and Y. Wang, Random matrix theory and its innovative applications, in Fields institute communications, Springer, Boston, MA, U.S.A. (2013), p. 91 [https://doi.org/10.1007/978-1-4614-5389-5_5].
– reference: BarnesGPadellaroARamgoolamSHidden symmetries and large N factorisation for permutation invariant matrix observablesJHEP2022080902022JHEP...08..090B446728110.1007/JHEP08(2022)090[arXiv:2112.00498] [INSPIRE]
– reference: S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS operators in gauge theories: quivers, Syzygies and Plethystics, JHEP11 (2007) 050 [hep-th/0608050] [INSPIRE].
– reference: G. Barnes, A. Padellaro and S. Ramgoolam, Permutation symmetry in large-N matrix quantum mechanics and partition algebras, Phys. Rev. D106 (2022) 106020 [arXiv:2207.02166] [INSPIRE].
– reference: O’ConnorDRamgoolamSGauged permutation invariant matrix quantum mechanics: path integralsJHEP2024040802024JHEP...04..080O473592710.1007/JHEP04(2024)080[arXiv:2312.12397] [INSPIRE]
– reference: HananyAMekareeyaNTorriGThe Hilbert series of adjoint SQCDNucl. Phys. B2010825522010NuPhB.825...52H255238610.1016/j.nuclphysb.2009.09.016[arXiv:0812.2315] [INSPIRE]
– reference: BeccariaMTseytlinAAPartition function of free conformal fields in 3-plet representationJHEP2017050532017JHEP...05..053B366287810.1007/JHEP05(2017)053[arXiv:1703.04460] [INSPIRE]
– reference: BerensteinDEMaldacenaJMNastaseHSStrings in flat space and pp waves from N=4 superYang-MillsJHEP2002040132002JHEP...04..013B10.1088/1126-6708/2002/04/013[hep-th/0202021] [INSPIRE]
– reference: CatterallSvan AndersGFirst results from lattice simulation of the PWMMJHEP2010090882010JHEP...09..088C10.1007/JHEP09(2010)088[arXiv:1003.4952] [INSPIRE]
– reference: BrownTWHeslopPJRamgoolamSDiagonal multi-matrix correlators and BPS operators in N = 4 SYMJHEP2008020302008JHEP...02..030B238601510.1088/1126-6708/2008/02/030[arXiv:0711.0176] [INSPIRE]
– reference: M.A. Huber, A. Correia, S. Ramgoolam and M. Sadrzadeh, Permutation invariant matrix statistics and computational language tasks, arXiv:2202.06829 [INSPIRE].
– reference: N. Brahma and C. Krishnan, Large-N phase transition in a finite lattice gauge theory, Phys. Rev. D103 (2021) 126028 [arXiv:2012.15857] [INSPIRE].
– reference: JenkinsEEManoharAVAlgebraic structure of lepton and quark flavor invariants and CP violationJHEP2009100942009JHEP...10..094J10.1088/1126-6708/2009/10/094[arXiv:0907.4763] [INSPIRE]
– reference: BanksTFischlerWShenkerSHSusskindLM theory as a matrix model: a conjecturePhys. Rev. D19975551121997PhRvD..55.5112B144961710.1103/PhysRevD.55.5112[hep-th/9610043] [INSPIRE]
– reference: KimuraYRamgoolamSBranes, anti-branes and brauer algebras in gauge-gravity dualityJHEP2007110782007JHEP...11..078K236207110.1088/1126-6708/2007/11/078[arXiv:0709.2158] [INSPIRE]
– reference: AharonyOThe hagedorn — deconfinement phase transition in weakly coupled large N gauge theoriesAdv. Theor. Math. Phys.20048603214149810.4310/ATMP.2004.v8.n4.a1[hep-th/0310285] [INSPIRE]
– reference: GurauRThe 1/N expansion of colored tensor modelsAnnales Henri Poincaré2011128292011AnHP...12..829G280238410.1007/s00023-011-0101-8[arXiv:1011.2726] [INSPIRE]
– reference: OEIS Foundation Inc., Row sums of triangle, On-Line Encyclopedia of Integer Sequences entry A110143, (2023).
– reference: BerensteinDSubmatrix deconfinement and small black holes in AdSJHEP2018090542018JHEP...09..054B387124510.1007/JHEP09(2018)054[arXiv:1806.05729] [INSPIRE]
– reference: P. Hasenfratz and F. Niedermayer, Unexpected results in asymptotically free quantum field theories, Nucl. Phys. B596 (2001) 481 [hep-lat/0006021] [INSPIRE].
– reference: CorleySJevickiARamgoolamSExact correlators of giant gravitons from dual N = 4 SYM theoryAdv. Theor. Math. Phys.20025809192629610.4310/ATMP.2001.v5.n4.a6[hep-th/0111222] [INSPIRE]
– reference: E. Berkowitz et al., Precision lattice test of the gauge/gravity duality at large-N, Phys. Rev. D94 (2016) 094501 [arXiv:1606.04951] [INSPIRE].
– reference: D. O’ Connor and S. Ramgoolam, Gauged permutation invariant matrix quantum mechanics: thermodynamics, in preparation.
– reference: HanadaMMaltzJA proposal of the gauge theory description of the small Schwarzschild black hole in AdS5 × S5JHEP2017020122017JHEP...02..012H10.1007/JHEP02(2017)012[arXiv:1608.03276] [INSPIRE]
– reference: de Mello KochRRamgoolamSN=4 SYM, (super)-polynomial rings and emergent quantum mechanical symmetriesJHEP2023021762023JHEP...02..176D455529110.1007/JHEP02(2023)176[arXiv:2211.04271] [INSPIRE]
– reference: GurauRRivasseauVThe 1/N expansion of colored tensor models in arbitrary dimensionEPL201195500042011EL.....9550004G10.1209/0295-5075/95/50004[arXiv:1101.4182] [INSPIRE]
– reference: WignerERandom matrices in physicsSIAM Rev.1967911967SIAMR...9....1W10.1137/1009001
– reference: C. Rebbi, Monte Carlo computations for lattice gauge theories with finite gauge groups, NATO Sci. Ser. B70 (1981) 241 [INSPIRE].
– reference: BhanotGRebbiCMonte Carlo simulations of lattice models with finite subgroups of SU(3) as gauge groupsPhys. Rev. D19812433191981PhRvD..24.3319B10.1103/PhysRevD.24.3319[INSPIRE]
– reference: KartsaklisDRamgoolamSSadrzadehMLinguistic matrix theoryAnn. Inst. H. Poincaré D Comb. Phys. Interact.20196385400267110.4171/aihpd/75[arXiv:1703.10252] [INSPIRE]
– reference: J. Ben Geloun and S. Ramgoolam, Counting tensor model observables and branched covers of the 2-sphere, Ann. Inst. H. Poincaré D Comb. Phys. Interact.1 (2014) 77 [arXiv:1307.6490] [INSPIRE].
– reference: G. Barnes, A. Padellaro and S. Ramgoolam, Permutation invariant tensor models and partition algebras, arXiv:2312.09205 [INSPIRE].
– reference: AsanoYFilevVGKováčikSO’ConnorDThe non-perturbative phase diagram of the BMN matrix modelJHEP2018071522018JHEP...07..152A385857110.1007/JHEP07(2018)152[arXiv:1805.05314] [INSPIRE]
– reference: K. Bulycheva, I.R. Klebanov, A. Milekhin and G. Tarnopolsky, Spectra of operators in large N tensor models, Phys. Rev. D97 (2018) 026016 [arXiv:1707.09347] [INSPIRE].
– reference: FengBHananyAHeY-HCounting gauge invariants: the Plethystic programJHEP2007030902007JHEP...03..090F231395910.1088/1126-6708/2007/03/090[hep-th/0701063] [INSPIRE]
– reference: J. Ben Geloun and S. Ramgoolam, All-orders asymptotics of tensor model observables from symmetries of restricted partitions, J. Phys. A55 (2022) 435203 [arXiv:2106.01470] [INSPIRE].
– reference: G. Barnes, S. Ramgoolam and M. Stephanou, Permutation invariant Gaussian matrix models for financial correlation matrices, arXiv:2306.04569 [INSPIRE].
– reference: T. Guhr, A. Muller-Groeling and H.A. Weidenmuller, Random matrix theories in quantum physics: common concepts, Phys. Rept.299 (1998) 189 [cond-mat/9707301] [INSPIRE].
– reference: BerensteinDYanKThe endpoint of partial deconfinementJHEP2023120302023JHEP...12..030B467523710.1007/JHEP12(2023)030[arXiv:2307.06122] [INSPIRE]
– reference: OEIS Foundation Inc., Number of directed multi-graphs with loops on an infinite set of nodes containing a total of n arcs, On-Line Encyclopedia of Integer Sequences entry A052171, (2023).
– reference: PateloudisSNonperturbative test of the Maldacena-Milekhin conjecture for the BMN matrix modelJHEP2022081782022JHEP...08..178P447305610.1007/JHEP08(2022)178[arXiv:2205.06098] [INSPIRE]
– reference: G. Barnes, A. Padellaro and S. Ramgoolam, Permutation invariant Gaussian two-matrix models, J. Phys. A55 (2022) 145202 [arXiv:2104.03707] [INSPIRE].
– reference: B. Henning, X. Lu, T. Melia and H. Murayama, Operator bases, S-matrices, and their partition functions, JHEP10 (2017) 199 [arXiv:1706.08520] [INSPIRE].
– reference: S. Ramgoolam, Permutation invariant Gaussian matrix models, Nucl. Phys. B945 (2019) 114682 [arXiv:1809.07559] [INSPIRE].
– reference: S. Ramgoolam, M. Sadrzadeh and L. Sword, Gaussianity and typicality in matrix distributional semantics, Ann. Inst. H. Poincaré D Comb. Phys. Interact.9 (2022) 1 [arXiv:1912.10839] [INSPIRE].
– reference: D.A. Cox, J.B. Little and D. O’Shea, Using algebraic geometry, Springer (2005) [https://doi.org/10.1007/b138611].
– reference: BhattacharyyaRCollinsSde Mello KochRExact multi-matrix correlatorsJHEP2008030442008JHEP...03..044B239107610.1088/1126-6708/2008/03/044[arXiv:0801.2061] [INSPIRE]
– ident: 23989_CR3
  doi: 10.1007/978-1-4614-5389-5_5
– volume: 5
  start-page: 809
  year: 2002
  ident: 23989_CR12
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.2001.v5.n4.a6
– ident: 23989_CR44
  doi: 10.1103/PhysRevD.94.094501
– ident: 23989_CR2
  doi: 10.1016/S0370-1573(97)00088-4
– volume: 03
  start-page: 044
  year: 2008
  ident: 23989_CR15
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/03/044
– ident: 23989_CR26
  doi: 10.4171/aihpd/4
– ident: 23989_CR36
  doi: 10.1103/PhysRevD.103.126028
– volume: 55
  start-page: 5112
  year: 1997
  ident: 23989_CR16
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.55.5112
– volume: 03
  start-page: 090
  year: 2007
  ident: 23989_CR21
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/03/090
– volume: 12
  start-page: 030
  year: 2023
  ident: 23989_CR32
  publication-title: JHEP
  doi: 10.1007/JHEP12(2023)030
– volume: 11
  start-page: 078
  year: 2007
  ident: 23989_CR13
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/11/078
– volume: 8
  start-page: 603
  year: 2004
  ident: 23989_CR29
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.2004.v8.n4.a1
– ident: 23989_CR22
– ident: 23989_CR35
  doi: 10.1016/S0550-3213(00)00696-9
– volume: 02
  start-page: 012
  year: 2017
  ident: 23989_CR30
  publication-title: JHEP
  doi: 10.1007/JHEP02(2017)012
– volume: 08
  start-page: 178
  year: 2022
  ident: 23989_CR47
  publication-title: JHEP
  doi: 10.1007/JHEP08(2022)178
– volume: 95
  start-page: 50004
  year: 2011
  ident: 23989_CR43
  publication-title: EPL
  doi: 10.1209/0295-5075/95/50004
– volume: 9
  start-page: 1
  year: 1967
  ident: 23989_CR1
  publication-title: SIAM Rev.
  doi: 10.1137/1009001
– ident: 23989_CR39
  doi: 10.1007/JHEP10(2017)199
– ident: 23989_CR28
– ident: 23989_CR6
  doi: 10.1088/1751-8121/ac4de1
– volume: 05
  start-page: 053
  year: 2017
  ident: 23989_CR24
  publication-title: JHEP
  doi: 10.1007/JHEP05(2017)053
– volume: 04
  start-page: 080
  year: 2024
  ident: 23989_CR18
  publication-title: JHEP
  doi: 10.1007/JHEP04(2024)080
– ident: 23989_CR33
  doi: 10.1007/978-1-4684-8279-9_16
– ident: 23989_CR27
  doi: 10.1088/1751-8121/ac9b3b
– ident: 23989_CR41
– ident: 23989_CR10
– volume: 02
  start-page: 030
  year: 2008
  ident: 23989_CR14
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/02/030
– volume: 04
  start-page: 013
  year: 2002
  ident: 23989_CR17
  publication-title: JHEP
  doi: 10.1088/1126-6708/2002/04/013
– ident: 23989_CR11
  doi: 10.1103/PhysRevD.106.106020
– volume: 09
  start-page: 088
  year: 2010
  ident: 23989_CR45
  publication-title: JHEP
  doi: 10.1007/JHEP09(2010)088
– ident: 23989_CR8
  doi: 10.4171/aihpd/112
– volume: 24
  start-page: 3319
  year: 1981
  ident: 23989_CR34
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.24.3319
– volume: 08
  start-page: 090
  year: 2022
  ident: 23989_CR7
  publication-title: JHEP
  doi: 10.1007/JHEP08(2022)090
– volume: 10
  start-page: 094
  year: 2009
  ident: 23989_CR37
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/10/094
– ident: 23989_CR25
  doi: 10.1103/PhysRevD.97.026016
– volume: 12
  start-page: 829
  year: 2011
  ident: 23989_CR42
  publication-title: Annales Henri Poincaré
  doi: 10.1007/s00023-011-0101-8
– ident: 23989_CR19
  doi: 10.1007/b138611
– ident: 23989_CR9
– ident: 23989_CR5
  doi: 10.1016/j.nuclphysb.2019.114682
– volume: 6
  start-page: 385
  year: 2019
  ident: 23989_CR4
  publication-title: Ann. Inst. H. Poincaré D Comb. Phys. Interact.
  doi: 10.4171/aihpd/75
– volume: 825
  start-page: 52
  year: 2010
  ident: 23989_CR38
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2009.09.016
– volume: 07
  start-page: 152
  year: 2018
  ident: 23989_CR46
  publication-title: JHEP
  doi: 10.1007/JHEP07(2018)152
– volume: 02
  start-page: 176
  year: 2023
  ident: 23989_CR40
  publication-title: JHEP
  doi: 10.1007/JHEP02(2023)176
– ident: 23989_CR20
  doi: 10.1088/1126-6708/2007/11/050
– volume: 09
  start-page: 054
  year: 2018
  ident: 23989_CR31
  publication-title: JHEP
  doi: 10.1007/JHEP09(2018)054
– ident: 23989_CR23
SSID ssj0015190
Score 2.4577692
Snippet A bstract The Hilbert spaces of matrix quantum mechanical systems with N × N matrix degrees of freedom X have been analysed recently in terms of S N symmetric...
The Hilbert spaces of matrix quantum mechanical systems with N × N matrix degrees of freedom X have been analysed recently in terms of S N symmetric group...
The Hilbert spaces of matrix quantum mechanical systems with N × N matrix degrees of freedom X have been analysed recently in terms of SN symmetric group...
Abstract The Hilbert spaces of matrix quantum mechanical systems with N × N matrix degrees of freedom X have been analysed recently in terms of S N symmetric...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 152
SubjectTerms Classical and Quantum Gravitation
Dimensional analysis
Discrete Symmetries
Elementary Particles
Gauge Symmetry
Hamiltonian functions
Harmonic functions
Harmonic oscillators
Hilbert space
Invariants
Lattice Quantum Field Theory
Matrices (mathematics)
Matrix Models
Mechanical systems
Partitions (mathematics)
Permutations
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum mechanics
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
String Theory
Symmetry
SummonAdditionalLinks – databaseName: Open Access: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yELyInzid0oOH7VCXtEmTeFPZHAPFg4PdSj5FcHO6VfzzTdJ2OmF48dj2JSS_l-a9x8v7BYBzqlPCtMU-w8hjrDiLpdsTY0kSpY1RSIcq_rv7bDDCwzEZ_7jqy58JK-mBS-C6hGWKUc10qgWWWLGEJ5lkFkpBmNShdM_ZvDqYqvIHzi-BNZEPpN3hoPcAadsF-riDSLJigwJV_4p_-SslGixNfwdsVy5idFUObRdsmOke2AxHNdV8HwxvRfFkdDRze2pRJtKj5-mHi3kdSNHEU-5_Rm-Feygm0cT4yl7X7jKa-bkGaW_LwnI7AKN-7_FmEFc3IsQKI7qIDeRCIcuQsIJaJAVSCaappUxDYxPJuIHWQOMdDRcHGaoJolJmMPUFtNimh6AxfZ2aIxBBZDNFPCKJwlykQqPAds89_Y0kogkuaoxyVdGF-1srXvKa6LgENfdd5A7UJmgvG8xKpoz1otce9KWYp7gOL5zi80rx-V-Kb4JWrbK8-u_meeo9HM6dZW6CTq3G789rxnP8H-M5AVu-vziQbrZAY_FemFPnsCzkWVibXxxa5p0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central (New) (NC LIVE)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEA_2jkJfSv0oPbWyDz6cD6vJbrJJfClVTo8DRUoF35Z8iuB9eHdb_PPN5LInFvRxdydhmUzmI5P5DUKH3JZMWE8hwyhzaqTIddCJuWaFsc4ZYmMV_9V1Nbylozt2lw7cFulaZasTo6K2UwNn5Ccl2C4pg879NXvKoWsUZFdTC41PqBtUsAjBV_dscH3zZ51HCP4JbgF9MD8ZDQc3mPdDwE-PCCve2KII2f_Gz_wvNRotzsU39DW5itnv1dpuog032UKf45VNs9hGo0vV3DubzYJubVYJ9exh8i_EvoFZ2Rig95-zpyY8NONs7KDCN4w7zWYgLJEabFoUux10ezH4ez7MU2eE3FDCl7nDUhniBVFecU-0IqagvPRcWOx8oYV02DvswOEI8ZDjlhGudYVLKKSlvvyOOpPpxP1AGSa-Mgw4UhgqVaksiaj3EmBwNFM9dNzyqDYJNhy6VzzWLeDxiqk1TFEHpvZQfz1gtkLMeJ_0DJi-JgOo6_hiOr-v086pmaiM4FbY0iqqqRGFLCotPNaKCW1lD-23S1an_beoX6Wlh47aZXz9_M7_7H481R76ApR5hNXcR53lvHE_g0uy1AdJ7l4AXdXe8A
  priority: 102
  providerName: ProQuest
Title Gauged permutation invariant matrix quantum mechanics: partition functions
URI https://link.springer.com/article/10.1007/JHEP07(2024)152
https://www.proquest.com/docview/3081999413
https://doaj.org/article/586c87d8d3da4b4c82926b8f0ba58bd9
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_SlkFfxrpuNGsX_LCH9sFDsmVL2lsbkobAQhkN9M3osxSaj7Zx6Z9fnWJndCMPfRGyfRLm7qS743Q_AfzgNi-E9QwzjDJlRopUhz0x1UVmrHOG2ljF_3tSjqZsfFPcdIC2tTDxtHubkow7dVvsNh4Nrgg_DcE6OwtGZwf2itBHpe5jgUOTOAgOCWkRfP4f9Mb4RIz-N47lP7nQaGKGn-Bj4xsm52thHkDHzT_Dh3hG0zwdwvhS1bfOJsuwmdbrDHpyN38OwW7gTjJDrP2X5KEOD_UsmTks6Q3jfiVL1I5IjUYs6tkXmA4H1_1R2lyFkBpG-Sp1RCpDvaDKK-6pVtRkjOeeC0ucz7SQjnhHHHoYIQBy3BaUa12SHCtnmc-_wu58MXdHkBDqS4OsY5lhUuXK0ghzLxH3RheqCz9bHlWmwQnH6yruqxbheM3UCqeoAlO7cLoZsFxDZGwnvUCmb8gQ2zq-WDzeVs1SqQpRGsGtsLlVTDMjMpmVWniiVSG0lV04aUVWNQvuqcrRtZEymOQunLVi_Pt5y_98ewftMexjN42gmiewu3qs3ffgkKx0D3bE8LIHexeDydWfXlRIbMt-L4b4oZ1m569L-d4o
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFNsKZADSO0h1HactY2EEI9ut9uHOLRSb8HPCqn7aHfD40_xG_E4yVZFKrcek9hWNPN5ZpzJfAPwWriilC5wzDCqnFslcxNtYm5KZp33lrpUxX9w2B8e89FJebICf7paGPytsrOJyVC7qcVv5FsF-i6los39MDvPsWsUZle7FhoNLPb875_xyDZ_v_sl6vcNY4Pto8_DvO0qkFtOxSL3RGlLg6Q6aBGo0dQyLoogpCM-MCOVJ8ETj846niW8cCUVxvRJgUWoPBRx3VtwmxeFwh0lBzvLrEWMhkhHH0TE1mi4_ZWIDRbd4CYt2RXPlxoEXIlq_0nEJv82eAD328A0-9gg6SGs-MkjuJN-ELXzxzDa0fWpd9ksWvK6Sd9n3yc_4kk7qiYbI9H_r-y8jhf1OBt7rCeO895lM4RmGo0eNIH8CRzfiMSewupkOvHPICM09G2JEmGWK11oRxPHvkLSHVPqHrztZFTZlqQce2WcVR29ciPUCpeoolB7sLGcMGv4Oa4f-gmFvhyGxNrpxvTitGr3aVXKvpXCSVc4zQ23kinWNzIQo0tpnOrBeqeyqt3t8-oSmz3Y7NR4-fia91n7_1Kv4O7w6GC_2t893HsO93BWngg912F1cVH7FzEYWpiXCYEZfLtpyP8FxysalQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE-xbYEcQGoPYW3nYRsJIUp32W5htUJU6s31s0JiH-1uePw1fh22k2xVpHLrMYltRTNfZsYZzzcAL6nJCmZcHjKMPM01Z6nyNjFVBdHGWo1NrOL_PC6Hx_nopDjZgD9tLUw4VtnaxGiozVyHf-S9LPguzr3N7bnmWMTkYPBucZ6GDlIh09q206ghcmR___Tbt-XbwwOv61eEDPpfPwzTpsNAqnNMV6lFXGrsGJZOUoeVxJrkNHOUGWQdUYxb5CyywXH7fYWlpsBUqRJloSA1d5lf9xZsUr8rQh3Y3O-PJ1_WOQwfG6GWTAjR3mjYnyC6S7xT3MMFueIHY7uAKzHuP2nZ6O0G9-FeE6Ym72tcPYANO3sIt-NxUb18BKOPsjqzJll4u17Vyfzk2-yH33d7RSXTQPv_Kzmv_EU1TaY2VBf7eW-SRQBqHB38aYT8Yzi-EZk9gc5sPrNPIUHYlboIEiE65zKTBkfGfR4oeFQhu_C6lZHQDWV56JzxXbRky7VQRVhCeKF2YXc9YVGzdVw_dD8IfT0s0GzHG_OLM9F8taJgpWbUMJMZmatcM8JJqZhDShZMGd6FnVZlovn2l-ISqV3Ya9V4-fia99n6_1Iv4I6Hu_h0OD7ahrthUhrZPXegs7qo7DMfGa3U8waCCZzeNOr_AqOZICc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gauged+permutation+invariant+matrix+quantum+mechanics%3A+partition+functions&rft.jtitle=The+journal+of+high+energy+physics&rft.au=O%E2%80%99Connor%2C+Denjoe&rft.au=Ramgoolam%2C+Sanjaye&rft.date=2024-07-17&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2024&rft.issue=7&rft_id=info:doi/10.1007%2FJHEP07%282024%29152&rft.externalDocID=10_1007_JHEP07_2024_152
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon