An investigation by electron microscopy of chylomicron remnant uptake by human monocyte-derived macrophages

Human monocyte-derived macrophages (HMM) internalise proatherogenic chylomicron remnants via several high affinity receptor pathways. However, the endocytic ultrastructures responsible for the uptake of chylomicron remnants by macrophages have not previously been described. In this study, we have ut...

Full description

Saved in:
Bibliographic Details
Published inAtherosclerosis Vol. 188; no. 2; pp. 251 - 259
Main Authors Elsegood, Caryn L., Mamo, John C.L.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ireland Ltd 01.10.2006
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Human monocyte-derived macrophages (HMM) internalise proatherogenic chylomicron remnants via several high affinity receptor pathways. However, the endocytic ultrastructures responsible for the uptake of chylomicron remnants by macrophages have not previously been described. In this study, we have utilised transmission electron microscopy together with colloidal gold-labelling of chylomicron remnants to investigate the pathways involved in macrophage uptake of chylomicron remnants. We found that macrophages internalise chylomicron remnants via surface-connected compartments of up to 600 nm as well as non-clathrin coated pits. Chylomicron remnants were found to be distributed internally in a number of endocytic vesicles including early cysternal endosomes, spherical late endosomes and tubular vesicular compartments. Uptake of chylomicron remnants by HMM via phagocytosis or macropinocytosis was excluded based on the observations that lipoproteins were not found in phagolysosomes nor modified by inhibitors of these two processes, respectively. The latter observation contrasts with previous reports of chylomicron remnant internalisation by macrophages of other species.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9150
1879-1484
DOI:10.1016/j.atherosclerosis.2005.10.043