Low cost, facile, environmentally friendly all biomass-based squid ink-starch hydrogel for efficient solar-steam generation

The emerging solar-steam generation is recognized as one of the promising pathways to mitigate the global water crisis, but has a major obstacle: the development of sustainable solar-driven water evaporators with favorable evaporation performance. In this work, an all biomass-based hydrogel evaporat...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 8; no. 45; pp. 2418 - 24116
Main Authors Xu, Yuanlu, Xiao, Xin, Fan, Xinfei, Yang, Yi, Song, Chengwen, Fan, Yaofang, Liu, Yanming
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 24.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The emerging solar-steam generation is recognized as one of the promising pathways to mitigate the global water crisis, but has a major obstacle: the development of sustainable solar-driven water evaporators with favorable evaporation performance. In this work, an all biomass-based hydrogel evaporator was fabricated for efficient solar steam generation, in which squid ink was employed as the photothermal material and starch as the hydrogel matrix. It was found that the hydrogel evaporator achieved a high water evaporation rate of approximately 2.07 kg m −2 h −1 under 1.0 sun with a corresponding energy efficiency of about 93.7%, arising from its excellent light absorption, light-to-heat conversion, energy confinement, wettability and water replenishment. Additionally, the evaporation performance can be further improved to evaporation rate of 2.62 kg m −2 h −1 and energy efficiency of 108.1% by capturing the environmental energy through simply increasing the evaporator height from 5 to 50 mm. For seawater desalination, the prepared evaporator exhibited both high salt resistance and good self-regeneration ability that ensure its promise for long-term practical application. The Na + concentration in the collected water was less than 1.0 mg L −1 . Thus, this work opens up a fascinating avenue for developing a novel hydrogel evaporator to providing potable and clean water. An all biomass-based hydrogel evaporator was fabricated for efficient solar steam generation, in which squid ink was employed as the photothermal material and starch as the hydrogel matrix.
AbstractList The emerging solar-steam generation is recognized as one of the promising pathways to mitigate the global water crisis, but has a major obstacle: the development of sustainable solar-driven water evaporators with favorable evaporation performance. In this work, an all biomass-based hydrogel evaporator was fabricated for efficient solar steam generation, in which squid ink was employed as the photothermal material and starch as the hydrogel matrix. It was found that the hydrogel evaporator achieved a high water evaporation rate of approximately 2.07 kg m −2 h −1 under 1.0 sun with a corresponding energy efficiency of about 93.7%, arising from its excellent light absorption, light-to-heat conversion, energy confinement, wettability and water replenishment. Additionally, the evaporation performance can be further improved to evaporation rate of 2.62 kg m −2 h −1 and energy efficiency of 108.1% by capturing the environmental energy through simply increasing the evaporator height from 5 to 50 mm. For seawater desalination, the prepared evaporator exhibited both high salt resistance and good self-regeneration ability that ensure its promise for long-term practical application. The Na + concentration in the collected water was less than 1.0 mg L −1 . Thus, this work opens up a fascinating avenue for developing a novel hydrogel evaporator to providing potable and clean water.
The emerging solar-steam generation is recognized as one of the promising pathways to mitigate the global water crisis, but has a major obstacle: the development of sustainable solar-driven water evaporators with favorable evaporation performance. In this work, an all biomass-based hydrogel evaporator was fabricated for efficient solar steam generation, in which squid ink was employed as the photothermal material and starch as the hydrogel matrix. It was found that the hydrogel evaporator achieved a high water evaporation rate of approximately 2.07 kg m⁻² h⁻¹ under 1.0 sun with a corresponding energy efficiency of about 93.7%, arising from its excellent light absorption, light-to-heat conversion, energy confinement, wettability and water replenishment. Additionally, the evaporation performance can be further improved to evaporation rate of 2.62 kg m⁻² h⁻¹ and energy efficiency of 108.1% by capturing the environmental energy through simply increasing the evaporator height from 5 to 50 mm. For seawater desalination, the prepared evaporator exhibited both high salt resistance and good self-regeneration ability that ensure its promise for long-term practical application. The Na⁺ concentration in the collected water was less than 1.0 mg L⁻¹. Thus, this work opens up a fascinating avenue for developing a novel hydrogel evaporator to providing potable and clean water.
The emerging solar-steam generation is recognized as one of the promising pathways to mitigate the global water crisis, but has a major obstacle: the development of sustainable solar-driven water evaporators with favorable evaporation performance. In this work, an all biomass-based hydrogel evaporator was fabricated for efficient solar steam generation, in which squid ink was employed as the photothermal material and starch as the hydrogel matrix. It was found that the hydrogel evaporator achieved a high water evaporation rate of approximately 2.07 kg m −2 h −1 under 1.0 sun with a corresponding energy efficiency of about 93.7%, arising from its excellent light absorption, light-to-heat conversion, energy confinement, wettability and water replenishment. Additionally, the evaporation performance can be further improved to evaporation rate of 2.62 kg m −2 h −1 and energy efficiency of 108.1% by capturing the environmental energy through simply increasing the evaporator height from 5 to 50 mm. For seawater desalination, the prepared evaporator exhibited both high salt resistance and good self-regeneration ability that ensure its promise for long-term practical application. The Na + concentration in the collected water was less than 1.0 mg L −1 . Thus, this work opens up a fascinating avenue for developing a novel hydrogel evaporator to providing potable and clean water. An all biomass-based hydrogel evaporator was fabricated for efficient solar steam generation, in which squid ink was employed as the photothermal material and starch as the hydrogel matrix.
The emerging solar-steam generation is recognized as one of the promising pathways to mitigate the global water crisis, but has a major obstacle: the development of sustainable solar-driven water evaporators with favorable evaporation performance. In this work, an all biomass-based hydrogel evaporator was fabricated for efficient solar steam generation, in which squid ink was employed as the photothermal material and starch as the hydrogel matrix. It was found that the hydrogel evaporator achieved a high water evaporation rate of approximately 2.07 kg m−2 h−1 under 1.0 sun with a corresponding energy efficiency of about 93.7%, arising from its excellent light absorption, light-to-heat conversion, energy confinement, wettability and water replenishment. Additionally, the evaporation performance can be further improved to evaporation rate of 2.62 kg m−2 h−1 and energy efficiency of 108.1% by capturing the environmental energy through simply increasing the evaporator height from 5 to 50 mm. For seawater desalination, the prepared evaporator exhibited both high salt resistance and good self-regeneration ability that ensure its promise for long-term practical application. The Na+ concentration in the collected water was less than 1.0 mg L−1. Thus, this work opens up a fascinating avenue for developing a novel hydrogel evaporator to providing potable and clean water.
Author Fan, Xinfei
Xiao, Xin
Fan, Yaofang
Liu, Yanming
Xu, Yuanlu
Song, Chengwen
Yang, Yi
AuthorAffiliation School of Environmental Science and Technology
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China)
Dalian University of Technology
Dalian Maritime University
College of Environmental Science and Engineering
AuthorAffiliation_xml – name: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China)
– name: School of Environmental Science and Technology
– name: Dalian Maritime University
– name: Dalian University of Technology
– name: College of Environmental Science and Engineering
Author_xml – sequence: 1
  givenname: Yuanlu
  surname: Xu
  fullname: Xu, Yuanlu
– sequence: 2
  givenname: Xin
  surname: Xiao
  fullname: Xiao, Xin
– sequence: 3
  givenname: Xinfei
  surname: Fan
  fullname: Fan, Xinfei
– sequence: 4
  givenname: Yi
  surname: Yang
  fullname: Yang, Yi
– sequence: 5
  givenname: Chengwen
  surname: Song
  fullname: Song, Chengwen
– sequence: 6
  givenname: Yaofang
  surname: Fan
  fullname: Fan, Yaofang
– sequence: 7
  givenname: Yanming
  surname: Liu
  fullname: Liu, Yanming
BookMark eNptkcFLXDEQxkOxULVeehcCXqT42kn2vWxyFNvawkIv9vzISyZrNC_RJKss_eebukVBOpeZYX7fMMN3QPZiikjIBwafGCzUZwtVgxQc1m_IPocBumWvxN5zLeU7clTKDbSQAEKpffJ7lR6pSaWeUaeND3hGMT74nOKMseoQttRlj9G2onV08mnWpXSTLmhpud94S3287UrV2VzT663NaY2BupQpOudN01ZaUtC5MahnusaIWVef4nvy1ulQ8OhfPiS_vn29uvjerX5e_rg4X3WmZ8vaWQUowTGruOWy1xM3EzjJjcAe0A1qYoJx28ZTg4xRggsn7CS5QsdRLQ7J6W7vXU73Gyx1nH0xGIKOmDZl5MPAAZayXzT05BV6kzY5tutG3ou-FwOTrFEfd5TJqZSMbrzLftZ5OzIY_1oxfoGr8ycrLhsMr2Dj69P_NWsf_i853klyMc-rX9xd_AHVU5kW
CitedBy_id crossref_primary_10_1007_s11356_021_17659_0
crossref_primary_10_1016_j_cej_2023_143440
crossref_primary_10_1016_j_rser_2021_111894
crossref_primary_10_1021_acsapm_0c01422
crossref_primary_10_1016_j_applthermaleng_2024_124639
crossref_primary_10_1088_1748_605X_ac2595
crossref_primary_10_1002_er_7195
crossref_primary_10_1002_adma_202212100
crossref_primary_10_1016_j_cej_2023_146784
crossref_primary_10_1016_j_applthermaleng_2022_119835
crossref_primary_10_1016_j_polymer_2021_124075
crossref_primary_10_1080_01932691_2025_2461112
crossref_primary_10_1016_j_jcis_2021_08_043
crossref_primary_10_1038_s41578_024_00721_x
crossref_primary_10_1039_D2TA02302D
crossref_primary_10_1016_j_greenca_2025_01_001
crossref_primary_10_3390_gels8110754
crossref_primary_10_1021_acsomega_1c04851
crossref_primary_10_1016_j_scitotenv_2022_160003
crossref_primary_10_1039_D2TA09778H
crossref_primary_10_1016_j_jclepro_2022_131172
crossref_primary_10_1016_j_seppur_2023_124513
crossref_primary_10_1039_D2NR04857D
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124605
crossref_primary_10_1021_acs_langmuir_4c04296
crossref_primary_10_1016_j_desal_2021_115093
crossref_primary_10_1016_j_nanoen_2024_110458
crossref_primary_10_1515_ntrev_2024_0100
crossref_primary_10_2139_ssrn_3962782
crossref_primary_10_1016_j_jcis_2023_11_052
crossref_primary_10_1016_j_cej_2023_146899
crossref_primary_10_1016_j_cej_2024_150157
crossref_primary_10_1039_D1AY01496J
crossref_primary_10_1016_j_carbpol_2023_121695
crossref_primary_10_1016_j_jcis_2023_04_182
crossref_primary_10_1016_j_desal_2021_115449
crossref_primary_10_1002_er_7051
crossref_primary_10_1016_j_cej_2024_156826
crossref_primary_10_1039_D1TA05068K
crossref_primary_10_1016_j_surfin_2024_104191
crossref_primary_10_1016_j_desal_2023_117102
crossref_primary_10_1016_j_nanoen_2022_107441
crossref_primary_10_1016_j_cej_2023_148475
crossref_primary_10_1016_j_jmst_2021_07_032
crossref_primary_10_1016_j_cej_2023_146566
crossref_primary_10_1016_j_cej_2023_141430
crossref_primary_10_1016_j_gerr_2023_100011
crossref_primary_10_1039_D1MA00894C
crossref_primary_10_1039_D1TA04325K
crossref_primary_10_1002_eem2_12353
crossref_primary_10_1039_D3TA06114K
crossref_primary_10_1007_s10098_023_02574_4
crossref_primary_10_1021_acs_chemrev_3c00858
crossref_primary_10_1016_j_energy_2022_123146
crossref_primary_10_1002_smll_202201949
crossref_primary_10_1016_j_solmat_2022_111742
crossref_primary_10_1016_j_mtnano_2023_100352
crossref_primary_10_1016_j_desal_2023_116442
crossref_primary_10_1016_j_chemosphere_2023_139310
crossref_primary_10_1039_D2TA03452B
crossref_primary_10_1016_j_desal_2022_115576
Cites_doi 10.1021/acssuschemeng.0c01499
10.1038/nature06599
10.1063/1.4862996
10.1039/C9TA12211G
10.1002/adma.201907061
10.1021/acssuschemeng.0c02077
10.1021/acsami.0c01261
10.1021/acsami.8b01629
10.1002/adma.202000922
10.1002/adma.201808249
10.1021/acsnano.7b01965
10.1039/C9TA06034K
10.1021/acsami.0c11332
10.1039/C8TA01469H
10.1002/adma.201807716
10.1002/aenm.201900552
10.1039/D0TA04986G
10.1002/adfm.201803266
10.1021/acs.est.9b05759
10.1039/C8EE01146J
10.1002/adma.201900498
10.1038/s41565-018-0097-z
10.1021/acs.accounts.9b00455
10.1039/C6TA06733F
10.1039/C9EE00945K
10.1039/C8EE00567B
10.1021/acssuschemeng.5b01274
10.1039/D0TA03799K
10.1002/advs.201903478
10.1039/C8TA10057H
10.1016/j.memsci.2014.09.016
10.1021/acsnano.9b02301
10.1016/j.watres.2020.116064
10.1021/acsami.0c05806
10.1021/acs.est.9b06072
10.1039/C9TA00843H
10.1021/acs.est.8b02852
10.1039/C7TA08972D
10.1039/D0TA01980A
10.1039/D0TA03872E
10.1039/C8TA12243A
10.1016/j.memsci.2020.118498
10.1021/acsami.7b18071
10.1039/D0TA01439G
10.1021/acsnano.6b08415
10.1039/C9TA04914B
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/d0ta08620g
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 24116
ExternalDocumentID 10_1039_D0TA08620G
d0ta08620g
GroupedDBID 0-7
0R
705
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
O-G
O9-
R7C
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
0R~
AAJAE
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c417t-d90e80f1d92d284ab2cb0f82c6e40ef59b1612dd92bf1dcc9626f6db829ef2e93
ISSN 2050-7488
2050-7496
IngestDate Thu Jul 10 20:28:04 EDT 2025
Mon Jun 30 11:59:02 EDT 2025
Tue Jul 01 01:13:00 EDT 2025
Thu Apr 24 23:06:59 EDT 2025
Sat Jan 08 03:48:13 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c417t-d90e80f1d92d284ab2cb0f82c6e40ef59b1612dd92bf1dcc9626f6db829ef2e93
Notes 10.1039/d0ta08620g
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4494-5351
0000-0002-3498-367X
0000-0002-3354-9898
PQID 2464465181
PQPubID 2047523
PageCount 9
ParticipantIDs crossref_citationtrail_10_1039_D0TA08620G
proquest_journals_2464465181
rsc_primary_d0ta08620g
crossref_primary_10_1039_D0TA08620G
proquest_miscellaneous_2552007843
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201124
PublicationDateYYYYMMDD 2020-11-24
PublicationDate_xml – month: 11
  year: 2020
  text: 20201124
  day: 24
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Xu (D0TA08620G-(cit37)/*[position()=1]) 2020; 54
Shao (D0TA08620G-(cit30)/*[position()=1]) 2020; 8
He (D0TA08620G-(cit40)/*[position()=1]) 2019; 12
Zhao (D0TA08620G-(cit19)/*[position()=1]) 2018; 13
Zhou (D0TA08620G-(cit16)/*[position()=1]) 2019; 52
Wang (D0TA08620G-(cit33)/*[position()=1]) 2018; 6
Wang (D0TA08620G-(cit28)/*[position()=1]) 2019; 7
Kudo (D0TA08620G-(cit17)/*[position()=1]) 2014; 140
Wang (D0TA08620G-(cit2)/*[position()=1]) 2015; 474
Pan (D0TA08620G-(cit6)/*[position()=1]) 2020; 183
Meng (D0TA08620G-(cit25)/*[position()=1]) 2020; 8
Tang (D0TA08620G-(cit38)/*[position()=1]) 2020; 12
Ma (D0TA08620G-(cit43)/*[position()=1]) 2019; 31
Fang (D0TA08620G-(cit22)/*[position()=1]) 2020; 8
Liu (D0TA08620G-(cit45)/*[position()=1]) 2018; 28
Huang (D0TA08620G-(cit27)/*[position()=1]) 2020; 8
Peng (D0TA08620G-(cit42)/*[position()=1]) 2019; 7
Zheng-Hong (D0TA08620G-(cit3)/*[position()=1]) 2017; 5
Zhou (D0TA08620G-(cit20)/*[position()=1]) 2018; 11
Gao (D0TA08620G-(cit7)/*[position()=1]) 2019; 12
Cao (D0TA08620G-(cit39)/*[position()=1]) 2020
Wang (D0TA08620G-(cit11)/*[position()=1]) 2019; 0
Shen (D0TA08620G-(cit26)/*[position()=1]) 2020; 12
Liu (D0TA08620G-(cit35)/*[position()=1]) 2020; 8
Kuang (D0TA08620G-(cit10)/*[position()=1]) 2019
Guo (D0TA08620G-(cit21)/*[position()=1]) 2019; 13
JoWang (D0TA08620G-(cit34)/*[position()=1]) 2018; 6
Liu (D0TA08620G-(cit44)/*[position()=1]) 2019; 7
Zhang (D0TA08620G-(cit12)/*[position()=1]) 2020; 7
Zhang (D0TA08620G-(cit31)/*[position()=1]) 2017; 11
Shannon (D0TA08620G-(cit1)/*[position()=1]) 2008; 452
Li (D0TA08620G-(cit9)/*[position()=1]) 2017; 11
Guo (D0TA08620G-(cit23)/*[position()=1]) 2020; 32
Li (D0TA08620G-(cit15)/*[position()=1]) 2018; 52
Zeng (D0TA08620G-(cit18)/*[position()=1]) 2019; 9
Yin (D0TA08620G-(cit32)/*[position()=1]) 2018; 10
Shen (D0TA08620G-(cit5)/*[position()=1]) 2020; 54
Zhang (D0TA08620G-(cit36)/*[position()=1]) 2020; 12
Li (D0TA08620G-(cit24)/*[position()=1]) 2018; 10
Wang (D0TA08620G-(cit29)/*[position()=1]) 2016; 4
Li (D0TA08620G-(cit4)/*[position()=1]) 2020; 614
Wang (D0TA08620G-(cit46)/*[position()=1]) 2020; 8
Cao (D0TA08620G-(cit13)/*[position()=1]) 2019; 7
Chen (D0TA08620G-(cit41)/*[position()=1]) 2020; 8
Tan (D0TA08620G-(cit14)/*[position()=1]) 2019; 7
Liu (D0TA08620G-(cit8)/*[position()=1]) 2020; 8
References_xml – volume: 8
  start-page: 7139
  year: 2020
  ident: D0TA08620G-(cit22)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.0c01499
– volume: 452
  start-page: 301
  year: 2008
  ident: D0TA08620G-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature06599
– volume: 140
  start-page: 044909
  year: 2014
  ident: D0TA08620G-(cit17)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4862996
– volume: 8
  start-page: 513
  year: 2020
  ident: D0TA08620G-(cit8)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA12211G
– volume: 32
  start-page: 1907061
  year: 2020
  ident: D0TA08620G-(cit23)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907061
– volume: 8
  start-page: 10423
  year: 2020
  ident: D0TA08620G-(cit41)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.0c02077
– volume: 12
  start-page: 18504
  year: 2020
  ident: D0TA08620G-(cit38)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c01261
– volume: 10
  start-page: 10998
  year: 2018
  ident: D0TA08620G-(cit32)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b01629
– start-page: 2000922
  year: 2020
  ident: D0TA08620G-(cit39)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000922
– volume: 31
  start-page: 1808249
  year: 2019
  ident: D0TA08620G-(cit43)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201808249
– volume: 11
  start-page: 5087
  year: 2017
  ident: D0TA08620G-(cit31)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01965
– volume: 7
  start-page: 24092
  year: 2019
  ident: D0TA08620G-(cit13)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA06034K
– volume: 12
  start-page: 35142
  year: 2020
  ident: D0TA08620G-(cit26)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c11332
– volume: 6
  start-page: 9874
  year: 2018
  ident: D0TA08620G-(cit34)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01469H
– volume: 0
  start-page: 1807716
  year: 2019
  ident: D0TA08620G-(cit11)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807716
– volume: 9
  start-page: 1900552
  year: 2019
  ident: D0TA08620G-(cit18)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900552
– volume: 8
  start-page: 16570
  year: 2020
  ident: D0TA08620G-(cit25)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA04986G
– volume: 28
  start-page: 1803266
  year: 2018
  ident: D0TA08620G-(cit45)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201803266
– volume: 54
  start-page: 4554
  year: 2020
  ident: D0TA08620G-(cit5)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b05759
– volume: 12
  start-page: 841
  year: 2019
  ident: D0TA08620G-(cit7)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01146J
– start-page: 1900498
  year: 2019
  ident: D0TA08620G-(cit10)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900498
– volume: 13
  start-page: 489
  year: 2018
  ident: D0TA08620G-(cit19)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0097-z
– volume: 52
  start-page: 3244
  year: 2019
  ident: D0TA08620G-(cit16)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00455
– volume: 5
  start-page: 470
  year: 2017
  ident: D0TA08620G-(cit3)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA06733F
– volume: 12
  start-page: 1558
  year: 2019
  ident: D0TA08620G-(cit40)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00945K
– volume: 11
  start-page: 1985
  year: 2018
  ident: D0TA08620G-(cit20)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00567B
– volume: 4
  start-page: 1223
  year: 2016
  ident: D0TA08620G-(cit29)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.5b01274
– volume: 8
  start-page: 11665
  year: 2020
  ident: D0TA08620G-(cit30)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA03799K
– volume: 7
  start-page: 1903478
  year: 2020
  ident: D0TA08620G-(cit12)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201903478
– volume: 7
  start-page: 1244
  year: 2019
  ident: D0TA08620G-(cit14)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA10057H
– volume: 474
  start-page: 39
  year: 2015
  ident: D0TA08620G-(cit2)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.09.016
– volume: 13
  start-page: 7913
  year: 2019
  ident: D0TA08620G-(cit21)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b02301
– volume: 183
  start-page: 116064
  year: 2020
  ident: D0TA08620G-(cit6)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116064
– volume: 12
  start-page: 28179
  year: 2020
  ident: D0TA08620G-(cit36)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c05806
– volume: 54
  start-page: 5150
  year: 2020
  ident: D0TA08620G-(cit37)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b06072
– volume: 7
  start-page: 9034
  year: 2019
  ident: D0TA08620G-(cit44)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00843H
– volume: 52
  start-page: 11367
  year: 2018
  ident: D0TA08620G-(cit15)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b02852
– volume: 6
  start-page: 963
  year: 2018
  ident: D0TA08620G-(cit33)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA08972D
– volume: 8
  start-page: 10742
  year: 2020
  ident: D0TA08620G-(cit27)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA01980A
– volume: 8
  start-page: 12323
  year: 2020
  ident: D0TA08620G-(cit35)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA03872E
– volume: 7
  start-page: 9673
  year: 2019
  ident: D0TA08620G-(cit42)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA12243A
– volume: 614
  start-page: 118498
  year: 2020
  ident: D0TA08620G-(cit4)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.118498
– volume: 10
  start-page: 9362
  year: 2018
  ident: D0TA08620G-(cit24)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b18071
– volume: 8
  start-page: 9528
  year: 2020
  ident: D0TA08620G-(cit46)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA01439G
– volume: 11
  start-page: 3752
  year: 2017
  ident: D0TA08620G-(cit9)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b08415
– volume: 7
  start-page: 20706
  year: 2019
  ident: D0TA08620G-(cit28)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA04914B
SSID ssj0000800699
Score 2.5425704
Snippet The emerging solar-steam generation is recognized as one of the promising pathways to mitigate the global water crisis, but has a major obstacle: the...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2418
SubjectTerms absorption
Biomass
Desalination
Drinking water
Electromagnetic absorption
Energy conversion efficiency
Energy efficiency
Evaporation
Evaporation rate
Evaporators
Hydrogels
Photothermal conversion
Regeneration
Replenishment
Seawater
Squid
Starch
steam
Steam generation
Sustainable development
Water crises
Wettability
Title Low cost, facile, environmentally friendly all biomass-based squid ink-starch hydrogel for efficient solar-steam generation
URI https://www.proquest.com/docview/2464465181
https://www.proquest.com/docview/2552007843
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGLe67gIHxGuiMJARXFDm4rh5HitoGaiMSyqVUxQ79ogo7WgbocH_w9_J5zhxUrbD4BK5tuu0-X7298j3QOglD7mgTEWEK5kRj2eUxMrnJA99Kbws8kVVJeLjWXA69z4s_EWv97vjtVTu-FD8vDau5H-oCn1AVx0l-w-UtYtCB7SBvnAFCsP1RjSerX84oo7aUJkojGtwJ3YtWy4vHaVTGefQ0G-hdbg9yMtEc6_c2X4vC5186SsBIVFbP75c5pv1uVyaTOBVegntLLDVCjDRgPimay7LTUvPq4ItyMDmzzuiqSY3dMYmMKgZqZY3YYeV5b4J49KeutbIvygrBlFmq2Vp-4qsMu4uCovqqbHhLrRfWWFPsdoO_rno2jVAiXVdYsKpzfHHqE9J6Jl6t81ZHXUg6fnOxRAEEAqg8Fx37xjWvR2ebsevMAw60vlWc7rLtG5Hz1u22LgCnH1Kp_PZLE0mi-QAHTJQR1gfHY4nyfuZteZpuTuoipXan93kwh3Fr9vl96WfVqU52DT1Ziq5JrmL7tR0w2ODrnuoJ1f30e1OmsoH6BfgDGucnWCDshP8F8ZwgzEMn_AexnCFMdxiDDcYwwACbDGGOxjDLcYeovl0krw5JXXRDiI8N9yRPKYyosrNY5aD6JNxJjhVEROB9KhUfsxBx2A5DHOYJEQMGrUKch6xWCom49ER6q_WK_kIYZGr0BeR68qAezlnGXdd4MYSGgoUl2yAXjUPMxV1RntdWGWZVp4Vozh9S5Nx9eDfDdALO_fC5HG5dtZxQ5O03ufblHmBzioIovAAPbfDsH30q7VsJdclzPF1-rIw8kYDdAS0tPdoSf_4Bl9-gm61W-EY9XebUj4FoXfHn9WI-wNeh7UG
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+cost%2C+facile%2C+environmentally+friendly+all+biomass-based+squid+ink-starch+hydrogel+for+efficient+solar-steam+generation&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Xu%2C+Yuanlu&rft.au=Xiao%2C+Xin&rft.au=Fan%2C+Xinfei&rft.au=Yang%2C+Yi&rft.date=2020-11-24&rft.issn=2050-7496&rft.volume=8&rft.issue=45+p.24108-24116&rft.spage=24108&rft.epage=24116&rft_id=info:doi/10.1039%2Fd0ta08620g&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon