Deriving the PEE proposal from the locking bit thread configuration
A bstract In the holographic framework, we argue that the partial entanglement entropy (PEE) can be explicitly interpreted as the component flow flux in a locking bit thread configuration. By applying the locking theorem of bit threads, and constructing a concrete locking scheme, we obtain a set of...
Saved in:
Published in | The journal of high energy physics Vol. 2021; no. 10; pp. 1 - 30 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
20.10.2021
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
In the holographic framework, we argue that the partial entanglement entropy (PEE) can be explicitly interpreted as the component flow flux in a locking bit thread configuration. By applying the locking theorem of bit threads, and constructing a concrete locking scheme, we obtain a set of uniquely determined component flow fluxes from this viewpoint, and successfully derive the PEE proposal and its generalized version in the multipartite cases. Moreover, from this perspective of bit threads, we also present a coherent explanation for the coincidence between the BPE (balanced partial entanglement)/EWCS (entanglement wedge cross section) duality proposed recently and the EoP (entanglement of purification)/EWCS duality. We also discuss the issues implied by this coincident between the idea of the PEE and the picture of locking thread configuration. |
---|---|
AbstractList | A
bstract
In the holographic framework, we argue that the partial entanglement entropy (PEE) can be explicitly interpreted as the component flow flux in a locking bit thread configuration. By applying the locking theorem of bit threads, and constructing a concrete locking scheme, we obtain a set of uniquely determined component flow fluxes from this viewpoint, and successfully derive the PEE proposal and its generalized version in the multipartite cases. Moreover, from this perspective of bit threads, we also present a coherent explanation for the coincidence between the BPE (balanced partial entanglement)/EWCS (entanglement wedge cross section) duality proposed recently and the EoP (entanglement of purification)/EWCS duality. We also discuss the issues implied by this coincident between the idea of the PEE and the picture of locking thread configuration. In the holographic framework, we argue that the partial entanglement entropy (PEE) can be explicitly interpreted as the component flow flux in a locking bit thread configuration. By applying the locking theorem of bit threads, and constructing a concrete locking scheme, we obtain a set of uniquely determined component flow fluxes from this viewpoint, and successfully derive the PEE proposal and its generalized version in the multipartite cases. Moreover, from this perspective of bit threads, we also present a coherent explanation for the coincidence between the BPE (balanced partial entanglement)/EWCS (entanglement wedge cross section) duality proposed recently and the EoP (entanglement of purification)/EWCS duality. We also discuss the issues implied by this coincident between the idea of the PEE and the picture of locking thread configuration. Abstract In the holographic framework, we argue that the partial entanglement entropy (PEE) can be explicitly interpreted as the component flow flux in a locking bit thread configuration. By applying the locking theorem of bit threads, and constructing a concrete locking scheme, we obtain a set of uniquely determined component flow fluxes from this viewpoint, and successfully derive the PEE proposal and its generalized version in the multipartite cases. Moreover, from this perspective of bit threads, we also present a coherent explanation for the coincidence between the BPE (balanced partial entanglement)/EWCS (entanglement wedge cross section) duality proposed recently and the EoP (entanglement of purification)/EWCS duality. We also discuss the issues implied by this coincident between the idea of the PEE and the picture of locking thread configuration. |
ArticleNumber | 164 |
Author | Lin, Yi-Yu Zhang, Jun Sun, Jia-Rui |
Author_xml | – sequence: 1 givenname: Yi-Yu surname: Lin fullname: Lin, Yi-Yu email: linyy27@mail2.sysu.edu.cn organization: School of Physics and Astronomy, Sun Yat-Sen University – sequence: 2 givenname: Jia-Rui surname: Sun fullname: Sun, Jia-Rui organization: School of Physics and Astronomy, Sun Yat-Sen University – sequence: 3 givenname: Jun surname: Zhang fullname: Zhang, Jun organization: School of Physics and Astronomy, Sun Yat-Sen University |
BookMark | eNp1UD1PwzAUtFCRaAszayQWGELtxI7jEZVAi5DoALPlOE5wSeNiu0j8e5wGBELq9D50d-_eTcCoM50C4BzBawQhnT0sihWClwlM0BXK8BEYI5iwOMeUjf70J2Di3BpCRBCDYzC_VVZ_6K6J_KuKVkURba3ZGifaqLZms9-2Rr71iFL7MFslqkiartbNzgqvTXcKjmvROnX2Xafg5a54ni_ix6f75fzmMZYYUR9XVDBRshrBnCUKY5xlQimSipLmApZ1RTNIFQkQBmVWZpAwJGWO01BZiWQ6BctBtzJizbdWb4T95EZovl8Y23BhvZat4iGAUlZEqCqXmIoqnCWJxHWaokwy3GtdDFrh3fedcp6vzc52wT5PSI5RSjAmAUUGlLTGOatqLrXf_-yt0C1HkPfZ8yF73mffnw682T_ej9vDDDgwXEB2jbK_fg5RvgD9BZYj |
CitedBy_id | crossref_primary_10_1007_JHEP04_2024_113 crossref_primary_10_1007_JHEP07_2024_181 crossref_primary_10_1088_1674_1137_ac69ba crossref_primary_10_1007_JHEP07_2022_009 crossref_primary_10_21468_SciPostPhysCore_5_2_020 crossref_primary_10_1007_JHEP08_2024_016 crossref_primary_10_1007_JHEP02_2022_180 crossref_primary_10_1103_PhysRevD_111_046027 crossref_primary_10_1103_PhysRevD_108_106010 crossref_primary_10_1007_JHEP09_2023_091 crossref_primary_10_1007_JHEP07_2023_180 crossref_primary_10_21468_SciPostPhys_12_4_137 crossref_primary_10_1007_JHEP02_2023_245 crossref_primary_10_1103_PhysRevD_109_126012 |
Cites_doi | 10.1007/JHEP07(2017)117 10.1007/JHEP12(2019)063 10.1103/PhysRevResearch.2.023170 10.1088/1742-5468/ab4e8f 10.1088/1742-5468/aab67d 10.1007/JHEP03(2021)178 10.1103/PhysRevLett.96.181602 10.1088/1742-5468/2014/10/P10011 10.1007/JHEP06(2015)149 10.1103/PhysRevLett.115.171602 10.1088/1361-6382/ab377f 10.1007/JHEP01(2021)193 10.1007/JHEP05(2019)075 10.1103/PhysRevD.98.106004 10.1007/JHEP03(2020)149 10.1142/S0218271810018529 10.1038/s41567-018-0075-2 10.1007/JHEP11(2019)069 10.1088/1751-8121/aa7902 10.1088/1126-6708/2006/08/045 10.1140/epjc/s10052-018-6140-2 10.1093/ptep/ptv089 10.1007/JHEP03(2014)051 10.1103/PhysRevLett.122.141601 10.1137/S0895480195287723 10.1007/JHEP01(2018)098 10.1063/1.1498001 10.1088/1126-6708/2007/07/062 10.1007/JHEP12(2020)083 10.1063/1.59653 10.1007/JHEP08(2019)140 10.1007/JHEP05(2020)013 10.1007/JHEP08(2017)057 10.1007/JHEP08(2019)101 10.1007/s00220-016-2796-3 10.4310/ATMP.1998.v2.n2.a2 10.1007/JHEP09(2020)002 10.1088/1361-6382/aab83c 10.1007/JHEP05(2020)018 10.1007/s00220-019-03510-8 10.1103/PhysRevD.86.065007 10.1103/PhysRevD.99.106014 10.1088/1751-8121/ab2dae 10.1007/JHEP01(2019)220 10.1016/S0370-2693(98)00377-3 10.21468/SciPostPhys.8.4.063 10.1103/PhysRevLett.123.131603 10.1007/JHEP04(2021)301 10.1007/JHEP04(2014)195 10.1103/PhysRevD.103.126002 10.1007/JHEP12(2018)068 10.1007/JHEP11(2016)009 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/JHEP10(2021)164 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 30 |
ExternalDocumentID | oai_doaj_org_article_164bcd5aed8c47adb9f52c4f3316c94c 10_1007_JHEP10_2021_164 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX AMVHM CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c417t-d7a9ab9f10892e44466aee53ab78a0bfd7607e5ab990c6b60591cc8435919b1c3 |
IEDL.DBID | BENPR |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:21:25 EDT 2025 Fri Jul 25 23:02:23 EDT 2025 Tue Jul 01 00:59:36 EDT 2025 Thu Apr 24 23:02:29 EDT 2025 Fri Feb 21 02:46:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | AdS-CFT Correspondence Gauge-gravity correspondence Conformal Field Theory |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-d7a9ab9f10892e44466aee53ab78a0bfd7607e5ab990c6b60591cc8435919b1c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2584135445?pq-origsite=%requestingapplication% |
PQID | 2584135445 |
PQPubID | 2034718 |
PageCount | 30 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_164bcd5aed8c47adb9f52c4f3316c94c proquest_journals_2584135445 crossref_citationtrail_10_1007_JHEP10_2021_164 crossref_primary_10_1007_JHEP10_2021_164 springer_journals_10_1007_JHEP10_2021_164 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-20 |
PublicationDateYYYYMMDD | 2021-10-20 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | PeningtonGEntanglement Wedge Reconstruction and the Information ParadoxJHEP2020090022020JHEP...09..002P42032571454.81039[arXiv:1905.08255] [INSPIRE] A. Rolph, Quantum bit threads, arXiv:2105.08072 [INSPIRE]. RyuSTakayanagiTAspects of Holographic Entanglement EntropyJHEP2006080452006JHEP...08..045R22499251228.83110[hep-th/0605073] [INSPIRE] Y. Chen and G. Vidal, Entanglement contour, J. Stat. Mech.1410 (2014) P10011 [arXiv:1406.1471]. M. Headrick, J. Held and J. Herman, Crossing versus locking: Bit threads and continuum multiflows, arXiv:2008.03197 [INSPIRE]. BaoNCaoCFischettiSKeelerCTowards Bulk Metric Reconstruction from Extremal Area VariationsClass. Quant. Grav.2019361850022019CQGra..36r5002B399788307416115[arXiv:1904.04834] [INSPIRE] LinY-YSunJ-RSunYSurface growth scheme for bulk reconstruction and tensor networkJHEP2020120832020JHEP...12..083L42394561457.83059[arXiv:2010.03167] [INSPIRE] M. Van Raamsdonk, Building up spacetime with quantum entanglement, Int. J. Mod. Phys. D19 (2010) 2429 [Gen. Rel. Grav.42 (2010) 2323] [arXiv:1005.3035] [INSPIRE]. AlmheiriAMahajanRMaldacenaJMZhaoYThe Page curve of Hawking radiation from semiclassical geometryJHEP2020031492020JHEP...03..149A40899731435.83110[arXiv:1908.10996] [INSPIRE] Di GiulioGAriasRTonniEEntanglement Hamiltonians in 1D free lattice models after a global quantum quenchJ. Stat. Mech.2019191212310340635821459.81012[arXiv:1905.01144] [INSPIRE] CoserADe NobiliCTonniEA contour for the entanglement entropies in harmonic latticesJ. Phys. A20175031400136734731372.81135[arXiv:1701.08427] [INSPIRE] M. Miyaji and T. Takayanagi, Surface/State Correspondence as a Generalized Holography, Prog. Theor. Exp. Phys.2015 (2015) 073B03 [arXiv:1503.03542] [INSPIRE]. I. MacCormack, M.T. Tan, J. Kudler-Flam and S. Ryu, Operator and entanglement growth in non-thermalizing systems: many-body localization and the random singlet phase, arXiv:2001.08222 [INSPIRE]. LashkariNMcDermottMBVan RaamsdonkMGravitational dynamics from entanglement ‘thermodynamics’JHEP2014041952014JHEP...04..195L[arXiv:1308.3716] [INSPIRE] HeadrickMHubenyVERiemannian and Lorentzian flow-cut theoremsClass. Quant. Grav.2018351037967891391.83016[arXiv:1710.09516] [INSPIRE] HubenyVEBulk locality and cooperative flowsJHEP2018120682018JHEP...12..068H39006641405.81133[arXiv:1808.05313] [INSPIRE] BaoNPeningtonGSorceJWallACBeyond Toy Models: Distilling Tensor Networks in Full AdS/CFTJHEP2019110692019JHEP...11..069B40694941429.81063[arXiv:1812.01171] [INSPIRE] KusukiYKudler-FlamJRyuSDerivation of Holographic Negativity in AdS3/CFT2Phys. Rev. Lett.20191231316032019PhRvL.123m1603K4016265[arXiv:1907.07824] [INSPIRE] DuD-HChenC-BShuF-WBit threads and holographic entanglement of purificationJHEP2019081402019JHEP...08..140D40134121421.83099[arXiv:1904.06871] [INSPIRE] WenQBalanced Partial Entanglement and the Entanglement Wedge Cross SectionJHEP2021043012021JHEP...04..301W4276149[arXiv:2103.00415] [INSPIRE] EspíndolaRGuijosaAPedrazaJFEntanglement Wedge Reconstruction and Entanglement of PurificationEur. Phys. J. C2018786462018EPJC...78..646E[arXiv:1804.05855] [INSPIRE] X.-L. Qi, Exact holographic mapping and emergent space-time geometry, arXiv:1309.6282 [INSPIRE]. B. Swingle, Entanglement Renormalization and Holography, Phys. Rev. D86 (2012) 065007 [arXiv:0905.1317] [INSPIRE]. C.A. Agón and J.F. Pedraza, Quantum bit threads and holographic entanglement, arXiv:2105.08063 [INSPIRE]. WenQTowards the generalized gravitational entropy for spacetimes with non-Lorentz invariant dualsJHEP2019012202019JHEP...01..220W3919275[arXiv:1810.11756] [INSPIRE] FreedmanMHeadrickMBit threads and holographic entanglementCommun. Math. Phys.20173524072017CMaPh.352..407F36232631425.81014[arXiv:1604.00354] [INSPIRE] GubserSSKlebanovIRPolyakovAMGauge theory correlators from noncritical string theoryPhys. Lett. B19984281051998PhLB..428..105G16307661355.81126[hep-th/9802109] [INSPIRE] BakhmatovIDegerNSGutowskiJColgáinEÓYavartanooHCalibrated Entanglement EntropyJHEP2017071172017JHEP...07..117B36866811380.81287[arXiv:1705.08319] [INSPIRE] FrankAKarzanovASeboAOn integer multiflow maximizationSIAM J. Discrete Math.19971015814305530869.05038 FaulknerTGuicaMHartmanTMyersRCVan RaamsdonkMGravitation from Entanglement in Holographic CFTsJHEP2014030512014JHEP...03..051F31917421333.83141[arXiv:1312.7856] [INSPIRE] TakayanagiTUmemotoKEntanglement of purification through holographic dualityNature Phys.2018145732018NatPh..14..573U[arXiv:1708.09393] [INSPIRE] FaulknerTHaehlFMHijanoEParrikarORabideauCVan RaamsdonkMNonlinear Gravity from Entanglement in Conformal Field TheoriesJHEP2017080572017JHEP...08..057F36974251381.83099[arXiv:1705.03026] [INSPIRE] HarperJHeadrickMBit threads and holographic entanglement of purificationJHEP2019081012019JHEP...08..101H40133731421.83101[arXiv:1906.05970] [INSPIRE] AgónCACáceresEPedrazaJFBit threads, Einstein’s equations and bulk localityJHEP2021011932021JHEP...01..193A42576481459.83003[arXiv:2007.07907] [INSPIRE] A. Milsted and G. Vidal, Geometric interpretation of the multi-scale entanglement renormalization ansatz, arXiv:1812.00529 [INSPIRE]. AlmheiriAHartmanTMaldacenaJMShaghoulianETajdiniAReplica Wormholes and the Entropy of Hawking RadiationJHEP2020050132020JHEP...05..013A41124581437.83084[arXiv:1911.12333] [INSPIRE] BaoNChatwin-DaviesAPollackJRemmenGNTowards a Bit Threads Derivation of Holographic Entanglement of PurificationJHEP2019071522019JHEP...07..152B39905501418.83022[arXiv:1905.04317] [INSPIRE] RyuSTakayanagiTHolographic derivation of entanglement entropy from AdS/CFTPhys. Rev. Lett.2006961816022006PhRvL..96r1602R22210501228.83110[hep-th/0603001] [INSPIRE] M. Han and Q. Wen, Entanglement entropies from entanglement contour: annuli and spherical shells, arXiv:1905.05522 [INSPIRE]. AlmheiriAEngelhardtNMarolfDMaxfieldHThe entropy of bulk quantum fields and the entanglement wedge of an evaporating black holeJHEP2019120632019JHEP...12..063A40757121431.83123[arXiv:1905.08762] [INSPIRE] MiyajiMNumasawaTShibaNTakayanagiTWatanabeKContinuous Multiscale Entanglement Renormalization Ansatz as Holographic Surface-State CorrespondencePhys. Rev. Lett.20151151716022015PhRvL.115q1602M[arXiv:1506.01353] [INSPIRE] Y.Y. Lin, J.R. Sun and Y. Sun, Surface growth approach for bulk reconstruction, arXiv:2010.03167. B. Swingle, Constructing holographic spacetimes using entanglement renormalization, arXiv:1209.3304 [INSPIRE]. PastawskiFYoshidaBHarlowDPreskillJHolographic quantum error-correcting codes: Toy models for the bulk/boundary correspondenceJHEP2015061492015JHEP...06..149P33701861388.81094[arXiv:1503.06237] [INSPIRE] AgónCADe BoerJPedrazaJFGeometric Aspects of Holographic Bit ThreadsJHEP2019050752019JHEP...05..075A39768121416.83094[arXiv:1811.08879] [INSPIRE] NguyenPDevakulTHalbaschMGZaletelMPSwingleBEntanglement of purification: from spin chains to holographyJHEP2018010982018JHEP...01..098N37625481384.81117[arXiv:1709.07424] [INSPIRE] Q. Wen, Formulas for Partial Entanglement Entropy, Phys. Rev. Res.2 (2020) 023170 [arXiv:1910.10978] [INSPIRE]. A. Karzanov and M. Lomonosov, Flow systems in undirected networks (in Russian), in Mathematical Programming, O.I. Larichev ed., Institute for System Studies, Moscow Russia (1978), pp. 59–66. Kudler-FlamJRyuSEntanglement negativity and minimal entanglement wedge cross sections in holographic theoriesPhys. Rev. D2019991060142019PhRvD..99j6014K4010024[arXiv:1808.00446] [INSPIRE] WittenEAnti-de Sitter space and holographyAdv. Theor. Math. Phys.199822531998AdTMP...2..253W16330120914.53048[hep-th/9802150] [INSPIRE] Kudler-FlamJMacCormackIRyuSHolographic entanglement contour, bit threads, and the entanglement tsunamiJ. Phys. A2019523254014002469[arXiv:1902.04654] [INSPIRE] HaydenPNezamiSQiX-LThomasNWalterMYangZHolographic duality from random tensor networksJHEP2016110092016JHEP...11..009H35844421390.83344[arXiv:1601.01694] [INSPIRE] HubenyVERangamaniMTakayanagiTA Covariant holographic entanglement entropy proposalJHEP2007070622007JHEP...07..062H2326725[arXiv:0705.0016] [INSPIRE] J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [Adv. Theor. Math. Phys.2 (1998) 231] [hep-th/9711200] [INSPIRE]. DuttaSFaulknerTA canonical purification for the entanglement wedge cross-sectionJHEP2021031782021JHEP...03..178D42626371461.81104[arXiv:1905.00577] [INSPIRE] J.-R. Sun and Y. Sun, On the emergence of gravitational dynamics from tensor networks, arXiv:1912.02070 [INSPIRE]. Kudler-FlamJShapourianHRyuSThe negativity contour: a quasi-local measure of entanglement for mixed statesSciPost Phys.202080632020ScPP....8...63K4180616[arXiv:1908.07540] [INSPIRE] CuiSXHaydenPHeTHeadrickMStoicaBWalterMBit Threads and Holographic MonogamyCommun. Math. Phys.20193766092019CMaPh.376..609C409385607202528[arXiv:1808.05234] [INSPIRE] WenQFine structure in holographic entanglement and entanglement contourPhys. Rev. D2018981060042018PhRvD..98j6009W3954742[arXiv:1803.05552] [INSPIRE] WenQEntanglement contour and modular flow from subset entanglement entropiesJHEP2020050182020JHEP...05..018W41124531437.81014[arXiv:1902.06905] [INSPIRE] E. Tonni, J. Rodríguez-Laguna and G. Sierra, Entanglement Hamiltonian and entanglement contour in inhomogeneous 1D critical systems, J. Stat. Mech.1804 (2018) 043105 [arXiv:1712.03557] [INSPIRE]. B.M. Terhal, M. Horodecki, D.W. Leung and D.P. DiVincenzo, The entanglement of purification, J. Math. Phys.43 (2002) 4286 [quant-ph/0202044]. LinY-YSunJ-RSunYBit thread, entanglement distillation, and entanglement of purificationPhys. Rev. D20211031260022021PhRvD.103l6002L4290062[arXiv:2012.05737] [INSPIRE] TamaokaKEntanglement Wedge Cross Section from the Dual Density MatrixPhys. Rev. Lett.20191221416012019PhRvL.122n1601T[arXiv:1809.09109] [INSPIRE] A Coser (16958_CR32) 2017; 50 SS Gubser (16958_CR2) 1998; 428 T Faulkner (16958_CR10) 2017; 08 N Bao (16958_CR11) 2019; 36 16958_CR19 16958_CR18 16958_CR13 N Bao (16958_CR50) 2019; 07 16958_CR59 16958_CR14 Y Kusuki (16958_CR56) 2019; 123 E Witten (16958_CR3) 1998; 2 M Freedman (16958_CR39) 2017; 352 16958_CR42 I Bakhmatov (16958_CR43) 2017; 07 16958_CR44 CA Agón (16958_CR16) 2021; 01 F Pastawski (16958_CR21) 2015; 06 G Di Giulio (16958_CR30) 2019; 1912 A Frank (16958_CR60) 1997; 10 VE Hubeny (16958_CR6) 2007; 07 T Faulkner (16958_CR9) 2014; 03 16958_CR46 16958_CR45 J Kudler-Flam (16958_CR33) 2020; 8 16958_CR1 S Ryu (16958_CR4) 2006; 96 S Ryu (16958_CR5) 2006; 08 Q Wen (16958_CR36) 2021; 04 Q Wen (16958_CR29) 2019; 01 VE Hubeny (16958_CR53) 2018; 12 S Dutta (16958_CR54) 2021; 03 Q Wen (16958_CR27) 2020; 05 16958_CR31 Y-Y Lin (16958_CR12) 2020; 12 16958_CR35 G Penington (16958_CR61) 2020; 09 16958_CR34 16958_CR7 16958_CR37 A Almheiri (16958_CR64) 2020; 05 J Kudler-Flam (16958_CR55) 2019; 99 A Almheiri (16958_CR62) 2019; 12 Q Wen (16958_CR28) 2018; 98 N Bao (16958_CR15) 2019; 11 P Hayden (16958_CR22) 2016; 11 T Takayanagi (16958_CR47) 2018; 14 16958_CR20 M Miyaji (16958_CR38) 2015; 115 J Kudler-Flam (16958_CR25) 2019; 52 SX Cui (16958_CR40) 2019; 376 K Tamaoka (16958_CR57) 2019; 122 P Nguyen (16958_CR48) 2018; 01 N Lashkari (16958_CR8) 2014; 04 16958_CR24 16958_CR23 Y-Y Lin (16958_CR17) 2021; 103 16958_CR26 M Headrick (16958_CR41) 2018; 35 J Harper (16958_CR51) 2019; 08 A Almheiri (16958_CR63) 2020; 03 CA Agón (16958_CR52) 2019; 05 R Espíndola (16958_CR58) 2018; 78 D-H Du (16958_CR49) 2019; 08 |
References_xml | – reference: B. Swingle, Entanglement Renormalization and Holography, Phys. Rev. D86 (2012) 065007 [arXiv:0905.1317] [INSPIRE]. – reference: AlmheiriAHartmanTMaldacenaJMShaghoulianETajdiniAReplica Wormholes and the Entropy of Hawking RadiationJHEP2020050132020JHEP...05..013A41124581437.83084[arXiv:1911.12333] [INSPIRE] – reference: PeningtonGEntanglement Wedge Reconstruction and the Information ParadoxJHEP2020090022020JHEP...09..002P42032571454.81039[arXiv:1905.08255] [INSPIRE] – reference: WenQFine structure in holographic entanglement and entanglement contourPhys. Rev. D2018981060042018PhRvD..98j6009W3954742[arXiv:1803.05552] [INSPIRE] – reference: Kudler-FlamJShapourianHRyuSThe negativity contour: a quasi-local measure of entanglement for mixed statesSciPost Phys.202080632020ScPP....8...63K4180616[arXiv:1908.07540] [INSPIRE] – reference: A. Milsted and G. Vidal, Geometric interpretation of the multi-scale entanglement renormalization ansatz, arXiv:1812.00529 [INSPIRE]. – reference: Y. Chen and G. Vidal, Entanglement contour, J. Stat. Mech.1410 (2014) P10011 [arXiv:1406.1471]. – reference: M. Van Raamsdonk, Building up spacetime with quantum entanglement, Int. J. Mod. Phys. D19 (2010) 2429 [Gen. Rel. Grav.42 (2010) 2323] [arXiv:1005.3035] [INSPIRE]. – reference: GubserSSKlebanovIRPolyakovAMGauge theory correlators from noncritical string theoryPhys. Lett. B19984281051998PhLB..428..105G16307661355.81126[hep-th/9802109] [INSPIRE] – reference: LinY-YSunJ-RSunYSurface growth scheme for bulk reconstruction and tensor networkJHEP2020120832020JHEP...12..083L42394561457.83059[arXiv:2010.03167] [INSPIRE] – reference: Y.Y. Lin, J.R. Sun and Y. Sun, Surface growth approach for bulk reconstruction, arXiv:2010.03167. – reference: KusukiYKudler-FlamJRyuSDerivation of Holographic Negativity in AdS3/CFT2Phys. Rev. Lett.20191231316032019PhRvL.123m1603K4016265[arXiv:1907.07824] [INSPIRE] – reference: AlmheiriAMahajanRMaldacenaJMZhaoYThe Page curve of Hawking radiation from semiclassical geometryJHEP2020031492020JHEP...03..149A40899731435.83110[arXiv:1908.10996] [INSPIRE] – reference: FrankAKarzanovASeboAOn integer multiflow maximizationSIAM J. Discrete Math.19971015814305530869.05038 – reference: FreedmanMHeadrickMBit threads and holographic entanglementCommun. Math. Phys.20173524072017CMaPh.352..407F36232631425.81014[arXiv:1604.00354] [INSPIRE] – reference: B. Swingle, Constructing holographic spacetimes using entanglement renormalization, arXiv:1209.3304 [INSPIRE]. – reference: Kudler-FlamJMacCormackIRyuSHolographic entanglement contour, bit threads, and the entanglement tsunamiJ. Phys. A2019523254014002469[arXiv:1902.04654] [INSPIRE] – reference: MiyajiMNumasawaTShibaNTakayanagiTWatanabeKContinuous Multiscale Entanglement Renormalization Ansatz as Holographic Surface-State CorrespondencePhys. Rev. Lett.20151151716022015PhRvL.115q1602M[arXiv:1506.01353] [INSPIRE] – reference: BaoNChatwin-DaviesAPollackJRemmenGNTowards a Bit Threads Derivation of Holographic Entanglement of PurificationJHEP2019071522019JHEP...07..152B39905501418.83022[arXiv:1905.04317] [INSPIRE] – reference: HubenyVERangamaniMTakayanagiTA Covariant holographic entanglement entropy proposalJHEP2007070622007JHEP...07..062H2326725[arXiv:0705.0016] [INSPIRE] – reference: BakhmatovIDegerNSGutowskiJColgáinEÓYavartanooHCalibrated Entanglement EntropyJHEP2017071172017JHEP...07..117B36866811380.81287[arXiv:1705.08319] [INSPIRE] – reference: CoserADe NobiliCTonniEA contour for the entanglement entropies in harmonic latticesJ. Phys. A20175031400136734731372.81135[arXiv:1701.08427] [INSPIRE] – reference: DuttaSFaulknerTA canonical purification for the entanglement wedge cross-sectionJHEP2021031782021JHEP...03..178D42626371461.81104[arXiv:1905.00577] [INSPIRE] – reference: Di GiulioGAriasRTonniEEntanglement Hamiltonians in 1D free lattice models after a global quantum quenchJ. Stat. Mech.2019191212310340635821459.81012[arXiv:1905.01144] [INSPIRE] – reference: M. Headrick, J. Held and J. Herman, Crossing versus locking: Bit threads and continuum multiflows, arXiv:2008.03197 [INSPIRE]. – reference: M. Miyaji and T. Takayanagi, Surface/State Correspondence as a Generalized Holography, Prog. Theor. Exp. Phys.2015 (2015) 073B03 [arXiv:1503.03542] [INSPIRE]. – reference: A. Karzanov and M. Lomonosov, Flow systems in undirected networks (in Russian), in Mathematical Programming, O.I. Larichev ed., Institute for System Studies, Moscow Russia (1978), pp. 59–66. – reference: WenQBalanced Partial Entanglement and the Entanglement Wedge Cross SectionJHEP2021043012021JHEP...04..301W4276149[arXiv:2103.00415] [INSPIRE] – reference: HeadrickMHubenyVERiemannian and Lorentzian flow-cut theoremsClass. Quant. Grav.2018351037967891391.83016[arXiv:1710.09516] [INSPIRE] – reference: HubenyVEBulk locality and cooperative flowsJHEP2018120682018JHEP...12..068H39006641405.81133[arXiv:1808.05313] [INSPIRE] – reference: AgónCACáceresEPedrazaJFBit threads, Einstein’s equations and bulk localityJHEP2021011932021JHEP...01..193A42576481459.83003[arXiv:2007.07907] [INSPIRE] – reference: FaulknerTGuicaMHartmanTMyersRCVan RaamsdonkMGravitation from Entanglement in Holographic CFTsJHEP2014030512014JHEP...03..051F31917421333.83141[arXiv:1312.7856] [INSPIRE] – reference: HarperJHeadrickMBit threads and holographic entanglement of purificationJHEP2019081012019JHEP...08..101H40133731421.83101[arXiv:1906.05970] [INSPIRE] – reference: E. Tonni, J. Rodríguez-Laguna and G. Sierra, Entanglement Hamiltonian and entanglement contour in inhomogeneous 1D critical systems, J. Stat. Mech.1804 (2018) 043105 [arXiv:1712.03557] [INSPIRE]. – reference: PastawskiFYoshidaBHarlowDPreskillJHolographic quantum error-correcting codes: Toy models for the bulk/boundary correspondenceJHEP2015061492015JHEP...06..149P33701861388.81094[arXiv:1503.06237] [INSPIRE] – reference: J.-R. Sun and Y. Sun, On the emergence of gravitational dynamics from tensor networks, arXiv:1912.02070 [INSPIRE]. – reference: TamaokaKEntanglement Wedge Cross Section from the Dual Density MatrixPhys. Rev. Lett.20191221416012019PhRvL.122n1601T[arXiv:1809.09109] [INSPIRE] – reference: J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [Adv. Theor. Math. Phys.2 (1998) 231] [hep-th/9711200] [INSPIRE]. – reference: I. MacCormack, M.T. Tan, J. Kudler-Flam and S. Ryu, Operator and entanglement growth in non-thermalizing systems: many-body localization and the random singlet phase, arXiv:2001.08222 [INSPIRE]. – reference: Kudler-FlamJRyuSEntanglement negativity and minimal entanglement wedge cross sections in holographic theoriesPhys. Rev. D2019991060142019PhRvD..99j6014K4010024[arXiv:1808.00446] [INSPIRE] – reference: WittenEAnti-de Sitter space and holographyAdv. Theor. Math. Phys.199822531998AdTMP...2..253W16330120914.53048[hep-th/9802150] [INSPIRE] – reference: Q. Wen, Formulas for Partial Entanglement Entropy, Phys. Rev. Res.2 (2020) 023170 [arXiv:1910.10978] [INSPIRE]. – reference: A. Rolph, Quantum bit threads, arXiv:2105.08072 [INSPIRE]. – reference: RyuSTakayanagiTAspects of Holographic Entanglement EntropyJHEP2006080452006JHEP...08..045R22499251228.83110[hep-th/0605073] [INSPIRE] – reference: C.A. Agón and J.F. Pedraza, Quantum bit threads and holographic entanglement, arXiv:2105.08063 [INSPIRE]. – reference: TakayanagiTUmemotoKEntanglement of purification through holographic dualityNature Phys.2018145732018NatPh..14..573U[arXiv:1708.09393] [INSPIRE] – reference: DuD-HChenC-BShuF-WBit threads and holographic entanglement of purificationJHEP2019081402019JHEP...08..140D40134121421.83099[arXiv:1904.06871] [INSPIRE] – reference: M. Han and Q. Wen, Entanglement entropies from entanglement contour: annuli and spherical shells, arXiv:1905.05522 [INSPIRE]. – reference: WenQEntanglement contour and modular flow from subset entanglement entropiesJHEP2020050182020JHEP...05..018W41124531437.81014[arXiv:1902.06905] [INSPIRE] – reference: NguyenPDevakulTHalbaschMGZaletelMPSwingleBEntanglement of purification: from spin chains to holographyJHEP2018010982018JHEP...01..098N37625481384.81117[arXiv:1709.07424] [INSPIRE] – reference: B.M. Terhal, M. Horodecki, D.W. Leung and D.P. DiVincenzo, The entanglement of purification, J. Math. Phys.43 (2002) 4286 [quant-ph/0202044]. – reference: BaoNPeningtonGSorceJWallACBeyond Toy Models: Distilling Tensor Networks in Full AdS/CFTJHEP2019110692019JHEP...11..069B40694941429.81063[arXiv:1812.01171] [INSPIRE] – reference: LinY-YSunJ-RSunYBit thread, entanglement distillation, and entanglement of purificationPhys. Rev. D20211031260022021PhRvD.103l6002L4290062[arXiv:2012.05737] [INSPIRE] – reference: LashkariNMcDermottMBVan RaamsdonkMGravitational dynamics from entanglement ‘thermodynamics’JHEP2014041952014JHEP...04..195L[arXiv:1308.3716] [INSPIRE] – reference: RyuSTakayanagiTHolographic derivation of entanglement entropy from AdS/CFTPhys. Rev. Lett.2006961816022006PhRvL..96r1602R22210501228.83110[hep-th/0603001] [INSPIRE] – reference: AlmheiriAEngelhardtNMarolfDMaxfieldHThe entropy of bulk quantum fields and the entanglement wedge of an evaporating black holeJHEP2019120632019JHEP...12..063A40757121431.83123[arXiv:1905.08762] [INSPIRE] – reference: CuiSXHaydenPHeTHeadrickMStoicaBWalterMBit Threads and Holographic MonogamyCommun. Math. Phys.20193766092019CMaPh.376..609C409385607202528[arXiv:1808.05234] [INSPIRE] – reference: WenQTowards the generalized gravitational entropy for spacetimes with non-Lorentz invariant dualsJHEP2019012202019JHEP...01..220W3919275[arXiv:1810.11756] [INSPIRE] – reference: BaoNCaoCFischettiSKeelerCTowards Bulk Metric Reconstruction from Extremal Area VariationsClass. Quant. Grav.2019361850022019CQGra..36r5002B399788307416115[arXiv:1904.04834] [INSPIRE] – reference: FaulknerTHaehlFMHijanoEParrikarORabideauCVan RaamsdonkMNonlinear Gravity from Entanglement in Conformal Field TheoriesJHEP2017080572017JHEP...08..057F36974251381.83099[arXiv:1705.03026] [INSPIRE] – reference: AgónCADe BoerJPedrazaJFGeometric Aspects of Holographic Bit ThreadsJHEP2019050752019JHEP...05..075A39768121416.83094[arXiv:1811.08879] [INSPIRE] – reference: HaydenPNezamiSQiX-LThomasNWalterMYangZHolographic duality from random tensor networksJHEP2016110092016JHEP...11..009H35844421390.83344[arXiv:1601.01694] [INSPIRE] – reference: X.-L. Qi, Exact holographic mapping and emergent space-time geometry, arXiv:1309.6282 [INSPIRE]. – reference: EspíndolaRGuijosaAPedrazaJFEntanglement Wedge Reconstruction and Entanglement of PurificationEur. Phys. J. C2018786462018EPJC...78..646E[arXiv:1804.05855] [INSPIRE] – volume: 07 start-page: 117 year: 2017 ident: 16958_CR43 publication-title: JHEP doi: 10.1007/JHEP07(2017)117 – volume: 12 start-page: 063 year: 2019 ident: 16958_CR62 publication-title: JHEP doi: 10.1007/JHEP12(2019)063 – ident: 16958_CR26 doi: 10.1103/PhysRevResearch.2.023170 – volume: 1912 start-page: 123103 year: 2019 ident: 16958_CR30 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/ab4e8f – ident: 16958_CR34 doi: 10.1088/1742-5468/aab67d – ident: 16958_CR42 – ident: 16958_CR23 – volume: 03 start-page: 178 year: 2021 ident: 16958_CR54 publication-title: JHEP doi: 10.1007/JHEP03(2021)178 – volume: 96 start-page: 181602 year: 2006 ident: 16958_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.181602 – ident: 16958_CR59 – ident: 16958_CR13 – ident: 16958_CR24 doi: 10.1088/1742-5468/2014/10/P10011 – volume: 06 start-page: 149 year: 2015 ident: 16958_CR21 publication-title: JHEP doi: 10.1007/JHEP06(2015)149 – volume: 115 start-page: 171602 year: 2015 ident: 16958_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.171602 – volume: 36 start-page: 185002 year: 2019 ident: 16958_CR11 publication-title: Class. Quant. Grav. doi: 10.1088/1361-6382/ab377f – volume: 01 start-page: 193 year: 2021 ident: 16958_CR16 publication-title: JHEP doi: 10.1007/JHEP01(2021)193 – volume: 05 start-page: 075 year: 2019 ident: 16958_CR52 publication-title: JHEP doi: 10.1007/JHEP05(2019)075 – volume: 98 start-page: 106004 year: 2018 ident: 16958_CR28 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.98.106004 – volume: 03 start-page: 149 year: 2020 ident: 16958_CR63 publication-title: JHEP doi: 10.1007/JHEP03(2020)149 – ident: 16958_CR7 doi: 10.1142/S0218271810018529 – volume: 14 start-page: 573 year: 2018 ident: 16958_CR47 publication-title: Nature Phys. doi: 10.1038/s41567-018-0075-2 – volume: 11 start-page: 069 year: 2019 ident: 16958_CR15 publication-title: JHEP doi: 10.1007/JHEP11(2019)069 – volume: 50 start-page: 314001 year: 2017 ident: 16958_CR32 publication-title: J. Phys. A doi: 10.1088/1751-8121/aa7902 – volume: 08 start-page: 045 year: 2006 ident: 16958_CR5 publication-title: JHEP doi: 10.1088/1126-6708/2006/08/045 – volume: 78 start-page: 646 year: 2018 ident: 16958_CR58 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-018-6140-2 – ident: 16958_CR37 doi: 10.1093/ptep/ptv089 – volume: 03 start-page: 051 year: 2014 ident: 16958_CR9 publication-title: JHEP doi: 10.1007/JHEP03(2014)051 – volume: 122 start-page: 141601 year: 2019 ident: 16958_CR57 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.141601 – volume: 10 start-page: 158 year: 1997 ident: 16958_CR60 publication-title: SIAM J. Discrete Math. doi: 10.1137/S0895480195287723 – volume: 07 start-page: 152 year: 2019 ident: 16958_CR50 publication-title: JHEP – volume: 01 start-page: 098 year: 2018 ident: 16958_CR48 publication-title: JHEP doi: 10.1007/JHEP01(2018)098 – ident: 16958_CR46 doi: 10.1063/1.1498001 – volume: 07 start-page: 062 year: 2007 ident: 16958_CR6 publication-title: JHEP doi: 10.1088/1126-6708/2007/07/062 – volume: 12 start-page: 083 year: 2020 ident: 16958_CR12 publication-title: JHEP doi: 10.1007/JHEP12(2020)083 – ident: 16958_CR19 – ident: 16958_CR44 – ident: 16958_CR1 doi: 10.1063/1.59653 – volume: 08 start-page: 140 year: 2019 ident: 16958_CR49 publication-title: JHEP doi: 10.1007/JHEP08(2019)140 – volume: 05 start-page: 013 year: 2020 ident: 16958_CR64 publication-title: JHEP doi: 10.1007/JHEP05(2020)013 – volume: 08 start-page: 057 year: 2017 ident: 16958_CR10 publication-title: JHEP doi: 10.1007/JHEP08(2017)057 – volume: 08 start-page: 101 year: 2019 ident: 16958_CR51 publication-title: JHEP doi: 10.1007/JHEP08(2019)101 – volume: 352 start-page: 407 year: 2017 ident: 16958_CR39 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-016-2796-3 – volume: 2 start-page: 253 year: 1998 ident: 16958_CR3 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.1998.v2.n2.a2 – volume: 09 start-page: 002 year: 2020 ident: 16958_CR61 publication-title: JHEP doi: 10.1007/JHEP09(2020)002 – volume: 35 start-page: 10 year: 2018 ident: 16958_CR41 publication-title: Class. Quant. Grav. doi: 10.1088/1361-6382/aab83c – ident: 16958_CR20 – volume: 05 start-page: 018 year: 2020 ident: 16958_CR27 publication-title: JHEP doi: 10.1007/JHEP05(2020)018 – ident: 16958_CR45 – volume: 376 start-page: 609 year: 2019 ident: 16958_CR40 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-019-03510-8 – ident: 16958_CR18 doi: 10.1103/PhysRevD.86.065007 – volume: 99 start-page: 106014 year: 2019 ident: 16958_CR55 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.99.106014 – volume: 52 start-page: 325401 year: 2019 ident: 16958_CR25 publication-title: J. Phys. A doi: 10.1088/1751-8121/ab2dae – volume: 01 start-page: 220 year: 2019 ident: 16958_CR29 publication-title: JHEP doi: 10.1007/JHEP01(2019)220 – volume: 428 start-page: 105 year: 1998 ident: 16958_CR2 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(98)00377-3 – volume: 8 start-page: 063 year: 2020 ident: 16958_CR33 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.8.4.063 – volume: 123 start-page: 131603 year: 2019 ident: 16958_CR56 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.131603 – volume: 04 start-page: 301 year: 2021 ident: 16958_CR36 publication-title: JHEP doi: 10.1007/JHEP04(2021)301 – volume: 04 start-page: 195 year: 2014 ident: 16958_CR8 publication-title: JHEP doi: 10.1007/JHEP04(2014)195 – volume: 103 start-page: 126002 year: 2021 ident: 16958_CR17 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.103.126002 – ident: 16958_CR35 – volume: 12 start-page: 068 year: 2018 ident: 16958_CR53 publication-title: JHEP doi: 10.1007/JHEP12(2018)068 – ident: 16958_CR14 – volume: 11 start-page: 009 year: 2016 ident: 16958_CR22 publication-title: JHEP doi: 10.1007/JHEP11(2016)009 – ident: 16958_CR31 |
SSID | ssj0015190 |
Score | 2.4711814 |
Snippet | A
bstract
In the holographic framework, we argue that the partial entanglement entropy (PEE) can be explicitly interpreted as the component flow flux in a... In the holographic framework, we argue that the partial entanglement entropy (PEE) can be explicitly interpreted as the component flow flux in a locking bit... Abstract In the holographic framework, we argue that the partial entanglement entropy (PEE) can be explicitly interpreted as the component flow flux in a... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | AdS-CFT Correspondence Classical and Quantum Gravitation Concrete construction Configurations Conformal Field Theory Elementary Particles Entanglement Entropy Gauge-gravity correspondence High energy physics Locking Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory Spacetime String Theory Symmetry |
SummonAdditionalLinks | – databaseName: DOAJ - Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8iCF7ET6xO6cHDdqhL2qRpjjo7xkDZwcFuIV-Vgczhuv_fl35MJwwvHpu-F9L30r7fS9LfQ-iOFiwWXKSR0qyIIF6bSNhCRxAciLCZSVjFU_D8ko6mdDxjsx-lvvyZsJoeuDZcH-C8NpYpB4qUK6sF9G5okSQkNYIa__WFmNcmU83-AeAS3BL5YN4fj_IJwV1I9EmPpHQrBlVU_Vv48teWaBVphsfoqIGI4UM9tBO05xan6KA6qmlWZ2jwBJPGLwOEgN3CSZ6HS1_pYAUq_l-RqhUilF8CD_W8hGvAhTaEvLeYv61rh5-j6TB_HYyiphRCZCjhZWS5EgoeneBMxI76TVjlHEuU5pnCurA8xdwxEBHYpBpyFEGMyQALCSI0MckF2l98LNwlCjNuXcxtYVMmwDegXghnDYdslWtqdIDuW-NI0_CE-3IV77JlOK6tKb01JVgzQN2NwrKmyNgt-uitvRHz3NZVA3hcNh6Xf3k8QJ3WV7J54VYyBiBFEs8sFKBe67_v2zvGc_Uf47lGh74_H9Bi3EH75efa3QBSKfVtNSm_AEek4-0 priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60IngRnxitkoOH9hDNJrvZ7FFjSikoPVjoLexTClKLTf-_s3lUWunBW7KZgWRml_lmJ_sNQvfE0ogzngRCUhtAvFYB11YGEBww16mKacVT8PqWDCdkNKXThiTJnYXZqt8_job5GIc9SNFxH5D9PjqgOGauR0OWZOtyAcCQsOXt-au0EXIqZv4NOLlVAa0Cy-AEHTeI0H-qXXiK9sz8DB1Wf2aq5TnKXmCOuKzfB6jmj_PcX7jGBktQcUdDqlEISG7H25ezEu4BBmof0lw7-1jV_r1Ak0H-ng2DpvNBoAhmZaCZ4EJyi8OUR4a4mqswhsZCslSE0mqWhMxQEOGhSiSkJBwrlQL04ZhLrOJL1Jl_zc0V8lOmTcS01Qnl4ApQt9xoxSA5ZZIo6aGH1jiFamjBXXeKz6IlNK6tWThrFmBND_XWCouaEWO36LOz9lrMUVlXA-DholkZTk4qTYWBmUGY0PDZNFLExjFOFCfKQ93WV0WzvpZFBLgJx45IyEP91n-_j3e8z_U_ZG_Qkbt0YSoKu6hTfq_MLeCPUt5Vc-8HLzXRrw priority: 102 providerName: Springer Nature |
Title | Deriving the PEE proposal from the locking bit thread configuration |
URI | https://link.springer.com/article/10.1007/JHEP10(2021)164 https://www.proquest.com/docview/2584135445 https://doaj.org/article/164bcd5aed8c47adb9f52c4f3316c94c |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED-NVkh7QWMbWqGr8rAHeMiIEzuOn1Bb0lVIQxWiEm9R_IWQUFto-f-5S50iJrGXSHbOUXJn-76c3wH84l6kSqo8rrXwMeprEyvrdYzKgSlbmEw0OAV_r_PpnF_dibsQcFuHY5Xtnths1HZpKEZ-nqKmZBlBx1ysnmKqGkXZ1VBCYw-6uAUXRQe6o_J6drPLI6B9krSAPok8v5qWM5acosPPzljO3-miBrL_nZ35T2q00TiTL3AQTMVouJXtIXxyi6-w3xzZNOtvML7EyUPhgAhtuGhWltGKKh6scQj9M9L0oqaiUHikHzbYRvvQRuj_-of7l63gv8N8Ut6Op3EoiRAbzuQmtrJWtVaeJYVKHadkbO2cyGotizrR3so8kU4giUpMrtFXUcyYAm0ixZRmJjuCzmK5cD8gKqR1qbTe5kKhjHC4V84aiV6r1NzoHvxumVOZgBdOZSseqxbpeMvNirhZITd7cLobsNpCZXxMOiJu78gI47rpWD7fV2HJEJ02VtQOpwyXtcXPFqnhPstYbhQ3Pei3sqrCwltXb9OkB2et_N5uf_A-x_9_1Al8JkpSWWnSh87m-cX9RFtkowewV0z-DMK0w9Y45XTNx4PGu8frPB2-AtMU4AI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7Boopeqr4Q21KaA5XgkBI7dhwfqqqFXZanOIDELcSvFVK1u2V3VfVP9Td2Jo9FIMGNY5yxlYw_-xt77BmALREk10pncWlkiJGvbaxdMDGSA9Mut6ms4hScnmWDS3F0Ja-W4F97F4aOVbZzYjVRu7GlPfJdjkzJUgod833yO6asUeRdbVNo1LA49n__4JJt-u1wH_v3C-f93sXeIG6yCsRWMDWLnSp1aXRgSa65F-TPLL2XaWlUXiYmOJUlyksU0YnNDJr7mlmbo1mhmTbMptjuMqyIFJmcbqb3DxZeC7SGkjZ8UKJ2jwa9c5Zsc6TRHZaJe8xXJQi4Z9U-cMRW_NZ_Da8awzT6USPpDSz50Vt4UR0QtdN3sLePUKXNhwgtxui814smlF9hilXohkpVirxIG--RuZnhM1qjLsLVdrgZzmuYvYfLZ1HVGnRG45FfhyhXznPlgsukRkRg9aC9swrXyMoIa7rwtVVOYZvo5JQk41fRxlWutVmQNgvUZhe2FxUmdWCOx0V_krYXYhRRuyoY3w6LZoCSnLFOlh4BKlTp8LcltyKkKcusFrYLG21fFc0wnxZ3oOzCTtt_d68f-Z4PTzf1GVYHF6cnxcnh2fFHeEm1iCx5sgGd2e3cf0IraGY2K-hFcP3cWP8PWQ8XAg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEJ-iY0AeQNoeQmPHjuMHhNiaqtugqhCT9hbir2nS1Ja1E9q_tr-Ou3x0GtJ422OcOys5_-y789l3AB9EkFwrncWVkSFGfW1j7YKJUTkw7XKbyjpPwfdJNj4WhyfyZAOuu7swdKyyWxPrhdrNLe2RDzhqSpZS6phBaI9FTIejL4vfMVWQokhrV06jgciRv_qD7tvy88EQx_oj56Pi5_44bisMxFYwtYqdqnRldGBJrrkXFNusvJdpZVReJSY4lSXKSyTRic0Mmv6aWZujiaGZNsym2O8D2FTkFfVgc6-YTH-sYxhoGyVdMqFEDQ7HxZQlOxyV6i7LxC09WJcLuGXj_hOWrbXd6Ck8ac3U6GuDq2ew4WfP4WF9XNQuX8D-EIFLWxER2o_RtCiiBVVbWCIL3VepW1FL0jZ8ZM5W-Iy2qYvQ9w5np5cN6F7C8b0I6xX0ZvOZfw1RrpznygWXSY34QPagvbMKPWZlhDV9-NQJp7RtrnIqmXFedlmWG2mWJM0SpdmHnTXDoknTcTfpHkl7TUb5teuG-cVp2U5XojPWycojXIWqHP625FaENGWZ1cL2Ybsbq7Kd9MvyBqJ92O3G7-b1Hd-z9f-u3sMjxHn57WBy9AYeExNpTp5sQ291cenfokm0Mu9a7EXw677h_hcHlhyU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deriving+the+PEE+proposal+from+the+locking+bit+thread+configuration&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Lin%2C+Yi-Yu&rft.au=Sun%2C+Jia-Rui&rft.au=Zhang%2C+Jun&rft.date=2021-10-20&rft.issn=1029-8479&rft.eissn=1029-8479&rft.volume=2021&rft.issue=10&rft_id=info:doi/10.1007%2FJHEP10%282021%29164&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_JHEP10_2021_164 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |