Deriving the PEE proposal from the locking bit thread configuration

A bstract In the holographic framework, we argue that the partial entanglement entropy (PEE) can be explicitly interpreted as the component flow flux in a locking bit thread configuration. By applying the locking theorem of bit threads, and constructing a concrete locking scheme, we obtain a set of...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2021; no. 10; pp. 1 - 30
Main Authors Lin, Yi-Yu, Sun, Jia-Rui, Zhang, Jun
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 20.10.2021
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract In the holographic framework, we argue that the partial entanglement entropy (PEE) can be explicitly interpreted as the component flow flux in a locking bit thread configuration. By applying the locking theorem of bit threads, and constructing a concrete locking scheme, we obtain a set of uniquely determined component flow fluxes from this viewpoint, and successfully derive the PEE proposal and its generalized version in the multipartite cases. Moreover, from this perspective of bit threads, we also present a coherent explanation for the coincidence between the BPE (balanced partial entanglement)/EWCS (entanglement wedge cross section) duality proposed recently and the EoP (entanglement of purification)/EWCS duality. We also discuss the issues implied by this coincident between the idea of the PEE and the picture of locking thread configuration.
AbstractList A bstract In the holographic framework, we argue that the partial entanglement entropy (PEE) can be explicitly interpreted as the component flow flux in a locking bit thread configuration. By applying the locking theorem of bit threads, and constructing a concrete locking scheme, we obtain a set of uniquely determined component flow fluxes from this viewpoint, and successfully derive the PEE proposal and its generalized version in the multipartite cases. Moreover, from this perspective of bit threads, we also present a coherent explanation for the coincidence between the BPE (balanced partial entanglement)/EWCS (entanglement wedge cross section) duality proposed recently and the EoP (entanglement of purification)/EWCS duality. We also discuss the issues implied by this coincident between the idea of the PEE and the picture of locking thread configuration.
In the holographic framework, we argue that the partial entanglement entropy (PEE) can be explicitly interpreted as the component flow flux in a locking bit thread configuration. By applying the locking theorem of bit threads, and constructing a concrete locking scheme, we obtain a set of uniquely determined component flow fluxes from this viewpoint, and successfully derive the PEE proposal and its generalized version in the multipartite cases. Moreover, from this perspective of bit threads, we also present a coherent explanation for the coincidence between the BPE (balanced partial entanglement)/EWCS (entanglement wedge cross section) duality proposed recently and the EoP (entanglement of purification)/EWCS duality. We also discuss the issues implied by this coincident between the idea of the PEE and the picture of locking thread configuration.
Abstract In the holographic framework, we argue that the partial entanglement entropy (PEE) can be explicitly interpreted as the component flow flux in a locking bit thread configuration. By applying the locking theorem of bit threads, and constructing a concrete locking scheme, we obtain a set of uniquely determined component flow fluxes from this viewpoint, and successfully derive the PEE proposal and its generalized version in the multipartite cases. Moreover, from this perspective of bit threads, we also present a coherent explanation for the coincidence between the BPE (balanced partial entanglement)/EWCS (entanglement wedge cross section) duality proposed recently and the EoP (entanglement of purification)/EWCS duality. We also discuss the issues implied by this coincident between the idea of the PEE and the picture of locking thread configuration.
ArticleNumber 164
Author Lin, Yi-Yu
Zhang, Jun
Sun, Jia-Rui
Author_xml – sequence: 1
  givenname: Yi-Yu
  surname: Lin
  fullname: Lin, Yi-Yu
  email: linyy27@mail2.sysu.edu.cn
  organization: School of Physics and Astronomy, Sun Yat-Sen University
– sequence: 2
  givenname: Jia-Rui
  surname: Sun
  fullname: Sun, Jia-Rui
  organization: School of Physics and Astronomy, Sun Yat-Sen University
– sequence: 3
  givenname: Jun
  surname: Zhang
  fullname: Zhang, Jun
  organization: School of Physics and Astronomy, Sun Yat-Sen University
BookMark eNp1UD1PwzAUtFCRaAszayQWGELtxI7jEZVAi5DoALPlOE5wSeNiu0j8e5wGBELq9D50d-_eTcCoM50C4BzBawQhnT0sihWClwlM0BXK8BEYI5iwOMeUjf70J2Di3BpCRBCDYzC_VVZ_6K6J_KuKVkURba3ZGifaqLZms9-2Rr71iFL7MFslqkiartbNzgqvTXcKjmvROnX2Xafg5a54ni_ix6f75fzmMZYYUR9XVDBRshrBnCUKY5xlQimSipLmApZ1RTNIFQkQBmVWZpAwJGWO01BZiWQ6BctBtzJizbdWb4T95EZovl8Y23BhvZat4iGAUlZEqCqXmIoqnCWJxHWaokwy3GtdDFrh3fedcp6vzc52wT5PSI5RSjAmAUUGlLTGOatqLrXf_-yt0C1HkPfZ8yF73mffnw682T_ej9vDDDgwXEB2jbK_fg5RvgD9BZYj
CitedBy_id crossref_primary_10_1007_JHEP04_2024_113
crossref_primary_10_1007_JHEP07_2024_181
crossref_primary_10_1088_1674_1137_ac69ba
crossref_primary_10_1007_JHEP07_2022_009
crossref_primary_10_21468_SciPostPhysCore_5_2_020
crossref_primary_10_1007_JHEP08_2024_016
crossref_primary_10_1007_JHEP02_2022_180
crossref_primary_10_1103_PhysRevD_111_046027
crossref_primary_10_1103_PhysRevD_108_106010
crossref_primary_10_1007_JHEP09_2023_091
crossref_primary_10_1007_JHEP07_2023_180
crossref_primary_10_21468_SciPostPhys_12_4_137
crossref_primary_10_1007_JHEP02_2023_245
crossref_primary_10_1103_PhysRevD_109_126012
Cites_doi 10.1007/JHEP07(2017)117
10.1007/JHEP12(2019)063
10.1103/PhysRevResearch.2.023170
10.1088/1742-5468/ab4e8f
10.1088/1742-5468/aab67d
10.1007/JHEP03(2021)178
10.1103/PhysRevLett.96.181602
10.1088/1742-5468/2014/10/P10011
10.1007/JHEP06(2015)149
10.1103/PhysRevLett.115.171602
10.1088/1361-6382/ab377f
10.1007/JHEP01(2021)193
10.1007/JHEP05(2019)075
10.1103/PhysRevD.98.106004
10.1007/JHEP03(2020)149
10.1142/S0218271810018529
10.1038/s41567-018-0075-2
10.1007/JHEP11(2019)069
10.1088/1751-8121/aa7902
10.1088/1126-6708/2006/08/045
10.1140/epjc/s10052-018-6140-2
10.1093/ptep/ptv089
10.1007/JHEP03(2014)051
10.1103/PhysRevLett.122.141601
10.1137/S0895480195287723
10.1007/JHEP01(2018)098
10.1063/1.1498001
10.1088/1126-6708/2007/07/062
10.1007/JHEP12(2020)083
10.1063/1.59653
10.1007/JHEP08(2019)140
10.1007/JHEP05(2020)013
10.1007/JHEP08(2017)057
10.1007/JHEP08(2019)101
10.1007/s00220-016-2796-3
10.4310/ATMP.1998.v2.n2.a2
10.1007/JHEP09(2020)002
10.1088/1361-6382/aab83c
10.1007/JHEP05(2020)018
10.1007/s00220-019-03510-8
10.1103/PhysRevD.86.065007
10.1103/PhysRevD.99.106014
10.1088/1751-8121/ab2dae
10.1007/JHEP01(2019)220
10.1016/S0370-2693(98)00377-3
10.21468/SciPostPhys.8.4.063
10.1103/PhysRevLett.123.131603
10.1007/JHEP04(2021)301
10.1007/JHEP04(2014)195
10.1103/PhysRevD.103.126002
10.1007/JHEP12(2018)068
10.1007/JHEP11(2016)009
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP10(2021)164
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 30
ExternalDocumentID oai_doaj_org_article_164bcd5aed8c47adb9f52c4f3316c94c
10_1007_JHEP10_2021_164
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AMVHM
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c417t-d7a9ab9f10892e44466aee53ab78a0bfd7607e5ab990c6b60591cc8435919b1c3
IEDL.DBID BENPR
ISSN 1029-8479
IngestDate Wed Aug 27 01:21:25 EDT 2025
Fri Jul 25 23:02:23 EDT 2025
Tue Jul 01 00:59:36 EDT 2025
Thu Apr 24 23:02:29 EDT 2025
Fri Feb 21 02:46:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords AdS-CFT Correspondence
Gauge-gravity correspondence
Conformal Field Theory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-d7a9ab9f10892e44466aee53ab78a0bfd7607e5ab990c6b60591cc8435919b1c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2584135445?pq-origsite=%requestingapplication%
PQID 2584135445
PQPubID 2034718
PageCount 30
ParticipantIDs doaj_primary_oai_doaj_org_article_164bcd5aed8c47adb9f52c4f3316c94c
proquest_journals_2584135445
crossref_citationtrail_10_1007_JHEP10_2021_164
crossref_primary_10_1007_JHEP10_2021_164
springer_journals_10_1007_JHEP10_2021_164
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-20
PublicationDateYYYYMMDD 2021-10-20
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-20
  day: 20
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References PeningtonGEntanglement Wedge Reconstruction and the Information ParadoxJHEP2020090022020JHEP...09..002P42032571454.81039[arXiv:1905.08255] [INSPIRE]
A. Rolph, Quantum bit threads, arXiv:2105.08072 [INSPIRE].
RyuSTakayanagiTAspects of Holographic Entanglement EntropyJHEP2006080452006JHEP...08..045R22499251228.83110[hep-th/0605073] [INSPIRE]
Y. Chen and G. Vidal, Entanglement contour, J. Stat. Mech.1410 (2014) P10011 [arXiv:1406.1471].
M. Headrick, J. Held and J. Herman, Crossing versus locking: Bit threads and continuum multiflows, arXiv:2008.03197 [INSPIRE].
BaoNCaoCFischettiSKeelerCTowards Bulk Metric Reconstruction from Extremal Area VariationsClass. Quant. Grav.2019361850022019CQGra..36r5002B399788307416115[arXiv:1904.04834] [INSPIRE]
LinY-YSunJ-RSunYSurface growth scheme for bulk reconstruction and tensor networkJHEP2020120832020JHEP...12..083L42394561457.83059[arXiv:2010.03167] [INSPIRE]
M. Van Raamsdonk, Building up spacetime with quantum entanglement, Int. J. Mod. Phys. D19 (2010) 2429 [Gen. Rel. Grav.42 (2010) 2323] [arXiv:1005.3035] [INSPIRE].
AlmheiriAMahajanRMaldacenaJMZhaoYThe Page curve of Hawking radiation from semiclassical geometryJHEP2020031492020JHEP...03..149A40899731435.83110[arXiv:1908.10996] [INSPIRE]
Di GiulioGAriasRTonniEEntanglement Hamiltonians in 1D free lattice models after a global quantum quenchJ. Stat. Mech.2019191212310340635821459.81012[arXiv:1905.01144] [INSPIRE]
CoserADe NobiliCTonniEA contour for the entanglement entropies in harmonic latticesJ. Phys. A20175031400136734731372.81135[arXiv:1701.08427] [INSPIRE]
M. Miyaji and T. Takayanagi, Surface/State Correspondence as a Generalized Holography, Prog. Theor. Exp. Phys.2015 (2015) 073B03 [arXiv:1503.03542] [INSPIRE].
I. MacCormack, M.T. Tan, J. Kudler-Flam and S. Ryu, Operator and entanglement growth in non-thermalizing systems: many-body localization and the random singlet phase, arXiv:2001.08222 [INSPIRE].
LashkariNMcDermottMBVan RaamsdonkMGravitational dynamics from entanglement ‘thermodynamics’JHEP2014041952014JHEP...04..195L[arXiv:1308.3716] [INSPIRE]
HeadrickMHubenyVERiemannian and Lorentzian flow-cut theoremsClass. Quant. Grav.2018351037967891391.83016[arXiv:1710.09516] [INSPIRE]
HubenyVEBulk locality and cooperative flowsJHEP2018120682018JHEP...12..068H39006641405.81133[arXiv:1808.05313] [INSPIRE]
BaoNPeningtonGSorceJWallACBeyond Toy Models: Distilling Tensor Networks in Full AdS/CFTJHEP2019110692019JHEP...11..069B40694941429.81063[arXiv:1812.01171] [INSPIRE]
KusukiYKudler-FlamJRyuSDerivation of Holographic Negativity in AdS3/CFT2Phys. Rev. Lett.20191231316032019PhRvL.123m1603K4016265[arXiv:1907.07824] [INSPIRE]
DuD-HChenC-BShuF-WBit threads and holographic entanglement of purificationJHEP2019081402019JHEP...08..140D40134121421.83099[arXiv:1904.06871] [INSPIRE]
WenQBalanced Partial Entanglement and the Entanglement Wedge Cross SectionJHEP2021043012021JHEP...04..301W4276149[arXiv:2103.00415] [INSPIRE]
EspíndolaRGuijosaAPedrazaJFEntanglement Wedge Reconstruction and Entanglement of PurificationEur. Phys. J. C2018786462018EPJC...78..646E[arXiv:1804.05855] [INSPIRE]
X.-L. Qi, Exact holographic mapping and emergent space-time geometry, arXiv:1309.6282 [INSPIRE].
B. Swingle, Entanglement Renormalization and Holography, Phys. Rev. D86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].
C.A. Agón and J.F. Pedraza, Quantum bit threads and holographic entanglement, arXiv:2105.08063 [INSPIRE].
WenQTowards the generalized gravitational entropy for spacetimes with non-Lorentz invariant dualsJHEP2019012202019JHEP...01..220W3919275[arXiv:1810.11756] [INSPIRE]
FreedmanMHeadrickMBit threads and holographic entanglementCommun. Math. Phys.20173524072017CMaPh.352..407F36232631425.81014[arXiv:1604.00354] [INSPIRE]
GubserSSKlebanovIRPolyakovAMGauge theory correlators from noncritical string theoryPhys. Lett. B19984281051998PhLB..428..105G16307661355.81126[hep-th/9802109] [INSPIRE]
BakhmatovIDegerNSGutowskiJColgáinEÓYavartanooHCalibrated Entanglement EntropyJHEP2017071172017JHEP...07..117B36866811380.81287[arXiv:1705.08319] [INSPIRE]
FrankAKarzanovASeboAOn integer multiflow maximizationSIAM J. Discrete Math.19971015814305530869.05038
FaulknerTGuicaMHartmanTMyersRCVan RaamsdonkMGravitation from Entanglement in Holographic CFTsJHEP2014030512014JHEP...03..051F31917421333.83141[arXiv:1312.7856] [INSPIRE]
TakayanagiTUmemotoKEntanglement of purification through holographic dualityNature Phys.2018145732018NatPh..14..573U[arXiv:1708.09393] [INSPIRE]
FaulknerTHaehlFMHijanoEParrikarORabideauCVan RaamsdonkMNonlinear Gravity from Entanglement in Conformal Field TheoriesJHEP2017080572017JHEP...08..057F36974251381.83099[arXiv:1705.03026] [INSPIRE]
HarperJHeadrickMBit threads and holographic entanglement of purificationJHEP2019081012019JHEP...08..101H40133731421.83101[arXiv:1906.05970] [INSPIRE]
AgónCACáceresEPedrazaJFBit threads, Einstein’s equations and bulk localityJHEP2021011932021JHEP...01..193A42576481459.83003[arXiv:2007.07907] [INSPIRE]
A. Milsted and G. Vidal, Geometric interpretation of the multi-scale entanglement renormalization ansatz, arXiv:1812.00529 [INSPIRE].
AlmheiriAHartmanTMaldacenaJMShaghoulianETajdiniAReplica Wormholes and the Entropy of Hawking RadiationJHEP2020050132020JHEP...05..013A41124581437.83084[arXiv:1911.12333] [INSPIRE]
BaoNChatwin-DaviesAPollackJRemmenGNTowards a Bit Threads Derivation of Holographic Entanglement of PurificationJHEP2019071522019JHEP...07..152B39905501418.83022[arXiv:1905.04317] [INSPIRE]
RyuSTakayanagiTHolographic derivation of entanglement entropy from AdS/CFTPhys. Rev. Lett.2006961816022006PhRvL..96r1602R22210501228.83110[hep-th/0603001] [INSPIRE]
M. Han and Q. Wen, Entanglement entropies from entanglement contour: annuli and spherical shells, arXiv:1905.05522 [INSPIRE].
AlmheiriAEngelhardtNMarolfDMaxfieldHThe entropy of bulk quantum fields and the entanglement wedge of an evaporating black holeJHEP2019120632019JHEP...12..063A40757121431.83123[arXiv:1905.08762] [INSPIRE]
MiyajiMNumasawaTShibaNTakayanagiTWatanabeKContinuous Multiscale Entanglement Renormalization Ansatz as Holographic Surface-State CorrespondencePhys. Rev. Lett.20151151716022015PhRvL.115q1602M[arXiv:1506.01353] [INSPIRE]
Y.Y. Lin, J.R. Sun and Y. Sun, Surface growth approach for bulk reconstruction, arXiv:2010.03167.
B. Swingle, Constructing holographic spacetimes using entanglement renormalization, arXiv:1209.3304 [INSPIRE].
PastawskiFYoshidaBHarlowDPreskillJHolographic quantum error-correcting codes: Toy models for the bulk/boundary correspondenceJHEP2015061492015JHEP...06..149P33701861388.81094[arXiv:1503.06237] [INSPIRE]
AgónCADe BoerJPedrazaJFGeometric Aspects of Holographic Bit ThreadsJHEP2019050752019JHEP...05..075A39768121416.83094[arXiv:1811.08879] [INSPIRE]
NguyenPDevakulTHalbaschMGZaletelMPSwingleBEntanglement of purification: from spin chains to holographyJHEP2018010982018JHEP...01..098N37625481384.81117[arXiv:1709.07424] [INSPIRE]
Q. Wen, Formulas for Partial Entanglement Entropy, Phys. Rev. Res.2 (2020) 023170 [arXiv:1910.10978] [INSPIRE].
A. Karzanov and M. Lomonosov, Flow systems in undirected networks (in Russian), in Mathematical Programming, O.I. Larichev ed., Institute for System Studies, Moscow Russia (1978), pp. 59–66.
Kudler-FlamJRyuSEntanglement negativity and minimal entanglement wedge cross sections in holographic theoriesPhys. Rev. D2019991060142019PhRvD..99j6014K4010024[arXiv:1808.00446] [INSPIRE]
WittenEAnti-de Sitter space and holographyAdv. Theor. Math. Phys.199822531998AdTMP...2..253W16330120914.53048[hep-th/9802150] [INSPIRE]
Kudler-FlamJMacCormackIRyuSHolographic entanglement contour, bit threads, and the entanglement tsunamiJ. Phys. A2019523254014002469[arXiv:1902.04654] [INSPIRE]
HaydenPNezamiSQiX-LThomasNWalterMYangZHolographic duality from random tensor networksJHEP2016110092016JHEP...11..009H35844421390.83344[arXiv:1601.01694] [INSPIRE]
HubenyVERangamaniMTakayanagiTA Covariant holographic entanglement entropy proposalJHEP2007070622007JHEP...07..062H2326725[arXiv:0705.0016] [INSPIRE]
J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [Adv. Theor. Math. Phys.2 (1998) 231] [hep-th/9711200] [INSPIRE].
DuttaSFaulknerTA canonical purification for the entanglement wedge cross-sectionJHEP2021031782021JHEP...03..178D42626371461.81104[arXiv:1905.00577] [INSPIRE]
J.-R. Sun and Y. Sun, On the emergence of gravitational dynamics from tensor networks, arXiv:1912.02070 [INSPIRE].
Kudler-FlamJShapourianHRyuSThe negativity contour: a quasi-local measure of entanglement for mixed statesSciPost Phys.202080632020ScPP....8...63K4180616[arXiv:1908.07540] [INSPIRE]
CuiSXHaydenPHeTHeadrickMStoicaBWalterMBit Threads and Holographic MonogamyCommun. Math. Phys.20193766092019CMaPh.376..609C409385607202528[arXiv:1808.05234] [INSPIRE]
WenQFine structure in holographic entanglement and entanglement contourPhys. Rev. D2018981060042018PhRvD..98j6009W3954742[arXiv:1803.05552] [INSPIRE]
WenQEntanglement contour and modular flow from subset entanglement entropiesJHEP2020050182020JHEP...05..018W41124531437.81014[arXiv:1902.06905] [INSPIRE]
E. Tonni, J. Rodríguez-Laguna and G. Sierra, Entanglement Hamiltonian and entanglement contour in inhomogeneous 1D critical systems, J. Stat. Mech.1804 (2018) 043105 [arXiv:1712.03557] [INSPIRE].
B.M. Terhal, M. Horodecki, D.W. Leung and D.P. DiVincenzo, The entanglement of purification, J. Math. Phys.43 (2002) 4286 [quant-ph/0202044].
LinY-YSunJ-RSunYBit thread, entanglement distillation, and entanglement of purificationPhys. Rev. D20211031260022021PhRvD.103l6002L4290062[arXiv:2012.05737] [INSPIRE]
TamaokaKEntanglement Wedge Cross Section from the Dual Density MatrixPhys. Rev. Lett.20191221416012019PhRvL.122n1601T[arXiv:1809.09109] [INSPIRE]
A Coser (16958_CR32) 2017; 50
SS Gubser (16958_CR2) 1998; 428
T Faulkner (16958_CR10) 2017; 08
N Bao (16958_CR11) 2019; 36
16958_CR19
16958_CR18
16958_CR13
N Bao (16958_CR50) 2019; 07
16958_CR59
16958_CR14
Y Kusuki (16958_CR56) 2019; 123
E Witten (16958_CR3) 1998; 2
M Freedman (16958_CR39) 2017; 352
16958_CR42
I Bakhmatov (16958_CR43) 2017; 07
16958_CR44
CA Agón (16958_CR16) 2021; 01
F Pastawski (16958_CR21) 2015; 06
G Di Giulio (16958_CR30) 2019; 1912
A Frank (16958_CR60) 1997; 10
VE Hubeny (16958_CR6) 2007; 07
T Faulkner (16958_CR9) 2014; 03
16958_CR46
16958_CR45
J Kudler-Flam (16958_CR33) 2020; 8
16958_CR1
S Ryu (16958_CR4) 2006; 96
S Ryu (16958_CR5) 2006; 08
Q Wen (16958_CR36) 2021; 04
Q Wen (16958_CR29) 2019; 01
VE Hubeny (16958_CR53) 2018; 12
S Dutta (16958_CR54) 2021; 03
Q Wen (16958_CR27) 2020; 05
16958_CR31
Y-Y Lin (16958_CR12) 2020; 12
16958_CR35
G Penington (16958_CR61) 2020; 09
16958_CR34
16958_CR7
16958_CR37
A Almheiri (16958_CR64) 2020; 05
J Kudler-Flam (16958_CR55) 2019; 99
A Almheiri (16958_CR62) 2019; 12
Q Wen (16958_CR28) 2018; 98
N Bao (16958_CR15) 2019; 11
P Hayden (16958_CR22) 2016; 11
T Takayanagi (16958_CR47) 2018; 14
16958_CR20
M Miyaji (16958_CR38) 2015; 115
J Kudler-Flam (16958_CR25) 2019; 52
SX Cui (16958_CR40) 2019; 376
K Tamaoka (16958_CR57) 2019; 122
P Nguyen (16958_CR48) 2018; 01
N Lashkari (16958_CR8) 2014; 04
16958_CR24
16958_CR23
Y-Y Lin (16958_CR17) 2021; 103
16958_CR26
M Headrick (16958_CR41) 2018; 35
J Harper (16958_CR51) 2019; 08
A Almheiri (16958_CR63) 2020; 03
CA Agón (16958_CR52) 2019; 05
R Espíndola (16958_CR58) 2018; 78
D-H Du (16958_CR49) 2019; 08
References_xml – reference: B. Swingle, Entanglement Renormalization and Holography, Phys. Rev. D86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].
– reference: AlmheiriAHartmanTMaldacenaJMShaghoulianETajdiniAReplica Wormholes and the Entropy of Hawking RadiationJHEP2020050132020JHEP...05..013A41124581437.83084[arXiv:1911.12333] [INSPIRE]
– reference: PeningtonGEntanglement Wedge Reconstruction and the Information ParadoxJHEP2020090022020JHEP...09..002P42032571454.81039[arXiv:1905.08255] [INSPIRE]
– reference: WenQFine structure in holographic entanglement and entanglement contourPhys. Rev. D2018981060042018PhRvD..98j6009W3954742[arXiv:1803.05552] [INSPIRE]
– reference: Kudler-FlamJShapourianHRyuSThe negativity contour: a quasi-local measure of entanglement for mixed statesSciPost Phys.202080632020ScPP....8...63K4180616[arXiv:1908.07540] [INSPIRE]
– reference: A. Milsted and G. Vidal, Geometric interpretation of the multi-scale entanglement renormalization ansatz, arXiv:1812.00529 [INSPIRE].
– reference: Y. Chen and G. Vidal, Entanglement contour, J. Stat. Mech.1410 (2014) P10011 [arXiv:1406.1471].
– reference: M. Van Raamsdonk, Building up spacetime with quantum entanglement, Int. J. Mod. Phys. D19 (2010) 2429 [Gen. Rel. Grav.42 (2010) 2323] [arXiv:1005.3035] [INSPIRE].
– reference: GubserSSKlebanovIRPolyakovAMGauge theory correlators from noncritical string theoryPhys. Lett. B19984281051998PhLB..428..105G16307661355.81126[hep-th/9802109] [INSPIRE]
– reference: LinY-YSunJ-RSunYSurface growth scheme for bulk reconstruction and tensor networkJHEP2020120832020JHEP...12..083L42394561457.83059[arXiv:2010.03167] [INSPIRE]
– reference: Y.Y. Lin, J.R. Sun and Y. Sun, Surface growth approach for bulk reconstruction, arXiv:2010.03167.
– reference: KusukiYKudler-FlamJRyuSDerivation of Holographic Negativity in AdS3/CFT2Phys. Rev. Lett.20191231316032019PhRvL.123m1603K4016265[arXiv:1907.07824] [INSPIRE]
– reference: AlmheiriAMahajanRMaldacenaJMZhaoYThe Page curve of Hawking radiation from semiclassical geometryJHEP2020031492020JHEP...03..149A40899731435.83110[arXiv:1908.10996] [INSPIRE]
– reference: FrankAKarzanovASeboAOn integer multiflow maximizationSIAM J. Discrete Math.19971015814305530869.05038
– reference: FreedmanMHeadrickMBit threads and holographic entanglementCommun. Math. Phys.20173524072017CMaPh.352..407F36232631425.81014[arXiv:1604.00354] [INSPIRE]
– reference: B. Swingle, Constructing holographic spacetimes using entanglement renormalization, arXiv:1209.3304 [INSPIRE].
– reference: Kudler-FlamJMacCormackIRyuSHolographic entanglement contour, bit threads, and the entanglement tsunamiJ. Phys. A2019523254014002469[arXiv:1902.04654] [INSPIRE]
– reference: MiyajiMNumasawaTShibaNTakayanagiTWatanabeKContinuous Multiscale Entanglement Renormalization Ansatz as Holographic Surface-State CorrespondencePhys. Rev. Lett.20151151716022015PhRvL.115q1602M[arXiv:1506.01353] [INSPIRE]
– reference: BaoNChatwin-DaviesAPollackJRemmenGNTowards a Bit Threads Derivation of Holographic Entanglement of PurificationJHEP2019071522019JHEP...07..152B39905501418.83022[arXiv:1905.04317] [INSPIRE]
– reference: HubenyVERangamaniMTakayanagiTA Covariant holographic entanglement entropy proposalJHEP2007070622007JHEP...07..062H2326725[arXiv:0705.0016] [INSPIRE]
– reference: BakhmatovIDegerNSGutowskiJColgáinEÓYavartanooHCalibrated Entanglement EntropyJHEP2017071172017JHEP...07..117B36866811380.81287[arXiv:1705.08319] [INSPIRE]
– reference: CoserADe NobiliCTonniEA contour for the entanglement entropies in harmonic latticesJ. Phys. A20175031400136734731372.81135[arXiv:1701.08427] [INSPIRE]
– reference: DuttaSFaulknerTA canonical purification for the entanglement wedge cross-sectionJHEP2021031782021JHEP...03..178D42626371461.81104[arXiv:1905.00577] [INSPIRE]
– reference: Di GiulioGAriasRTonniEEntanglement Hamiltonians in 1D free lattice models after a global quantum quenchJ. Stat. Mech.2019191212310340635821459.81012[arXiv:1905.01144] [INSPIRE]
– reference: M. Headrick, J. Held and J. Herman, Crossing versus locking: Bit threads and continuum multiflows, arXiv:2008.03197 [INSPIRE].
– reference: M. Miyaji and T. Takayanagi, Surface/State Correspondence as a Generalized Holography, Prog. Theor. Exp. Phys.2015 (2015) 073B03 [arXiv:1503.03542] [INSPIRE].
– reference: A. Karzanov and M. Lomonosov, Flow systems in undirected networks (in Russian), in Mathematical Programming, O.I. Larichev ed., Institute for System Studies, Moscow Russia (1978), pp. 59–66.
– reference: WenQBalanced Partial Entanglement and the Entanglement Wedge Cross SectionJHEP2021043012021JHEP...04..301W4276149[arXiv:2103.00415] [INSPIRE]
– reference: HeadrickMHubenyVERiemannian and Lorentzian flow-cut theoremsClass. Quant. Grav.2018351037967891391.83016[arXiv:1710.09516] [INSPIRE]
– reference: HubenyVEBulk locality and cooperative flowsJHEP2018120682018JHEP...12..068H39006641405.81133[arXiv:1808.05313] [INSPIRE]
– reference: AgónCACáceresEPedrazaJFBit threads, Einstein’s equations and bulk localityJHEP2021011932021JHEP...01..193A42576481459.83003[arXiv:2007.07907] [INSPIRE]
– reference: FaulknerTGuicaMHartmanTMyersRCVan RaamsdonkMGravitation from Entanglement in Holographic CFTsJHEP2014030512014JHEP...03..051F31917421333.83141[arXiv:1312.7856] [INSPIRE]
– reference: HarperJHeadrickMBit threads and holographic entanglement of purificationJHEP2019081012019JHEP...08..101H40133731421.83101[arXiv:1906.05970] [INSPIRE]
– reference: E. Tonni, J. Rodríguez-Laguna and G. Sierra, Entanglement Hamiltonian and entanglement contour in inhomogeneous 1D critical systems, J. Stat. Mech.1804 (2018) 043105 [arXiv:1712.03557] [INSPIRE].
– reference: PastawskiFYoshidaBHarlowDPreskillJHolographic quantum error-correcting codes: Toy models for the bulk/boundary correspondenceJHEP2015061492015JHEP...06..149P33701861388.81094[arXiv:1503.06237] [INSPIRE]
– reference: J.-R. Sun and Y. Sun, On the emergence of gravitational dynamics from tensor networks, arXiv:1912.02070 [INSPIRE].
– reference: TamaokaKEntanglement Wedge Cross Section from the Dual Density MatrixPhys. Rev. Lett.20191221416012019PhRvL.122n1601T[arXiv:1809.09109] [INSPIRE]
– reference: J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [Adv. Theor. Math. Phys.2 (1998) 231] [hep-th/9711200] [INSPIRE].
– reference: I. MacCormack, M.T. Tan, J. Kudler-Flam and S. Ryu, Operator and entanglement growth in non-thermalizing systems: many-body localization and the random singlet phase, arXiv:2001.08222 [INSPIRE].
– reference: Kudler-FlamJRyuSEntanglement negativity and minimal entanglement wedge cross sections in holographic theoriesPhys. Rev. D2019991060142019PhRvD..99j6014K4010024[arXiv:1808.00446] [INSPIRE]
– reference: WittenEAnti-de Sitter space and holographyAdv. Theor. Math. Phys.199822531998AdTMP...2..253W16330120914.53048[hep-th/9802150] [INSPIRE]
– reference: Q. Wen, Formulas for Partial Entanglement Entropy, Phys. Rev. Res.2 (2020) 023170 [arXiv:1910.10978] [INSPIRE].
– reference: A. Rolph, Quantum bit threads, arXiv:2105.08072 [INSPIRE].
– reference: RyuSTakayanagiTAspects of Holographic Entanglement EntropyJHEP2006080452006JHEP...08..045R22499251228.83110[hep-th/0605073] [INSPIRE]
– reference: C.A. Agón and J.F. Pedraza, Quantum bit threads and holographic entanglement, arXiv:2105.08063 [INSPIRE].
– reference: TakayanagiTUmemotoKEntanglement of purification through holographic dualityNature Phys.2018145732018NatPh..14..573U[arXiv:1708.09393] [INSPIRE]
– reference: DuD-HChenC-BShuF-WBit threads and holographic entanglement of purificationJHEP2019081402019JHEP...08..140D40134121421.83099[arXiv:1904.06871] [INSPIRE]
– reference: M. Han and Q. Wen, Entanglement entropies from entanglement contour: annuli and spherical shells, arXiv:1905.05522 [INSPIRE].
– reference: WenQEntanglement contour and modular flow from subset entanglement entropiesJHEP2020050182020JHEP...05..018W41124531437.81014[arXiv:1902.06905] [INSPIRE]
– reference: NguyenPDevakulTHalbaschMGZaletelMPSwingleBEntanglement of purification: from spin chains to holographyJHEP2018010982018JHEP...01..098N37625481384.81117[arXiv:1709.07424] [INSPIRE]
– reference: B.M. Terhal, M. Horodecki, D.W. Leung and D.P. DiVincenzo, The entanglement of purification, J. Math. Phys.43 (2002) 4286 [quant-ph/0202044].
– reference: BaoNPeningtonGSorceJWallACBeyond Toy Models: Distilling Tensor Networks in Full AdS/CFTJHEP2019110692019JHEP...11..069B40694941429.81063[arXiv:1812.01171] [INSPIRE]
– reference: LinY-YSunJ-RSunYBit thread, entanglement distillation, and entanglement of purificationPhys. Rev. D20211031260022021PhRvD.103l6002L4290062[arXiv:2012.05737] [INSPIRE]
– reference: LashkariNMcDermottMBVan RaamsdonkMGravitational dynamics from entanglement ‘thermodynamics’JHEP2014041952014JHEP...04..195L[arXiv:1308.3716] [INSPIRE]
– reference: RyuSTakayanagiTHolographic derivation of entanglement entropy from AdS/CFTPhys. Rev. Lett.2006961816022006PhRvL..96r1602R22210501228.83110[hep-th/0603001] [INSPIRE]
– reference: AlmheiriAEngelhardtNMarolfDMaxfieldHThe entropy of bulk quantum fields and the entanglement wedge of an evaporating black holeJHEP2019120632019JHEP...12..063A40757121431.83123[arXiv:1905.08762] [INSPIRE]
– reference: CuiSXHaydenPHeTHeadrickMStoicaBWalterMBit Threads and Holographic MonogamyCommun. Math. Phys.20193766092019CMaPh.376..609C409385607202528[arXiv:1808.05234] [INSPIRE]
– reference: WenQTowards the generalized gravitational entropy for spacetimes with non-Lorentz invariant dualsJHEP2019012202019JHEP...01..220W3919275[arXiv:1810.11756] [INSPIRE]
– reference: BaoNCaoCFischettiSKeelerCTowards Bulk Metric Reconstruction from Extremal Area VariationsClass. Quant. Grav.2019361850022019CQGra..36r5002B399788307416115[arXiv:1904.04834] [INSPIRE]
– reference: FaulknerTHaehlFMHijanoEParrikarORabideauCVan RaamsdonkMNonlinear Gravity from Entanglement in Conformal Field TheoriesJHEP2017080572017JHEP...08..057F36974251381.83099[arXiv:1705.03026] [INSPIRE]
– reference: AgónCADe BoerJPedrazaJFGeometric Aspects of Holographic Bit ThreadsJHEP2019050752019JHEP...05..075A39768121416.83094[arXiv:1811.08879] [INSPIRE]
– reference: HaydenPNezamiSQiX-LThomasNWalterMYangZHolographic duality from random tensor networksJHEP2016110092016JHEP...11..009H35844421390.83344[arXiv:1601.01694] [INSPIRE]
– reference: X.-L. Qi, Exact holographic mapping and emergent space-time geometry, arXiv:1309.6282 [INSPIRE].
– reference: EspíndolaRGuijosaAPedrazaJFEntanglement Wedge Reconstruction and Entanglement of PurificationEur. Phys. J. C2018786462018EPJC...78..646E[arXiv:1804.05855] [INSPIRE]
– volume: 07
  start-page: 117
  year: 2017
  ident: 16958_CR43
  publication-title: JHEP
  doi: 10.1007/JHEP07(2017)117
– volume: 12
  start-page: 063
  year: 2019
  ident: 16958_CR62
  publication-title: JHEP
  doi: 10.1007/JHEP12(2019)063
– ident: 16958_CR26
  doi: 10.1103/PhysRevResearch.2.023170
– volume: 1912
  start-page: 123103
  year: 2019
  ident: 16958_CR30
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/ab4e8f
– ident: 16958_CR34
  doi: 10.1088/1742-5468/aab67d
– ident: 16958_CR42
– ident: 16958_CR23
– volume: 03
  start-page: 178
  year: 2021
  ident: 16958_CR54
  publication-title: JHEP
  doi: 10.1007/JHEP03(2021)178
– volume: 96
  start-page: 181602
  year: 2006
  ident: 16958_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.181602
– ident: 16958_CR59
– ident: 16958_CR13
– ident: 16958_CR24
  doi: 10.1088/1742-5468/2014/10/P10011
– volume: 06
  start-page: 149
  year: 2015
  ident: 16958_CR21
  publication-title: JHEP
  doi: 10.1007/JHEP06(2015)149
– volume: 115
  start-page: 171602
  year: 2015
  ident: 16958_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.171602
– volume: 36
  start-page: 185002
  year: 2019
  ident: 16958_CR11
  publication-title: Class. Quant. Grav.
  doi: 10.1088/1361-6382/ab377f
– volume: 01
  start-page: 193
  year: 2021
  ident: 16958_CR16
  publication-title: JHEP
  doi: 10.1007/JHEP01(2021)193
– volume: 05
  start-page: 075
  year: 2019
  ident: 16958_CR52
  publication-title: JHEP
  doi: 10.1007/JHEP05(2019)075
– volume: 98
  start-page: 106004
  year: 2018
  ident: 16958_CR28
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.106004
– volume: 03
  start-page: 149
  year: 2020
  ident: 16958_CR63
  publication-title: JHEP
  doi: 10.1007/JHEP03(2020)149
– ident: 16958_CR7
  doi: 10.1142/S0218271810018529
– volume: 14
  start-page: 573
  year: 2018
  ident: 16958_CR47
  publication-title: Nature Phys.
  doi: 10.1038/s41567-018-0075-2
– volume: 11
  start-page: 069
  year: 2019
  ident: 16958_CR15
  publication-title: JHEP
  doi: 10.1007/JHEP11(2019)069
– volume: 50
  start-page: 314001
  year: 2017
  ident: 16958_CR32
  publication-title: J. Phys. A
  doi: 10.1088/1751-8121/aa7902
– volume: 08
  start-page: 045
  year: 2006
  ident: 16958_CR5
  publication-title: JHEP
  doi: 10.1088/1126-6708/2006/08/045
– volume: 78
  start-page: 646
  year: 2018
  ident: 16958_CR58
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-018-6140-2
– ident: 16958_CR37
  doi: 10.1093/ptep/ptv089
– volume: 03
  start-page: 051
  year: 2014
  ident: 16958_CR9
  publication-title: JHEP
  doi: 10.1007/JHEP03(2014)051
– volume: 122
  start-page: 141601
  year: 2019
  ident: 16958_CR57
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.141601
– volume: 10
  start-page: 158
  year: 1997
  ident: 16958_CR60
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/S0895480195287723
– volume: 07
  start-page: 152
  year: 2019
  ident: 16958_CR50
  publication-title: JHEP
– volume: 01
  start-page: 098
  year: 2018
  ident: 16958_CR48
  publication-title: JHEP
  doi: 10.1007/JHEP01(2018)098
– ident: 16958_CR46
  doi: 10.1063/1.1498001
– volume: 07
  start-page: 062
  year: 2007
  ident: 16958_CR6
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/07/062
– volume: 12
  start-page: 083
  year: 2020
  ident: 16958_CR12
  publication-title: JHEP
  doi: 10.1007/JHEP12(2020)083
– ident: 16958_CR19
– ident: 16958_CR44
– ident: 16958_CR1
  doi: 10.1063/1.59653
– volume: 08
  start-page: 140
  year: 2019
  ident: 16958_CR49
  publication-title: JHEP
  doi: 10.1007/JHEP08(2019)140
– volume: 05
  start-page: 013
  year: 2020
  ident: 16958_CR64
  publication-title: JHEP
  doi: 10.1007/JHEP05(2020)013
– volume: 08
  start-page: 057
  year: 2017
  ident: 16958_CR10
  publication-title: JHEP
  doi: 10.1007/JHEP08(2017)057
– volume: 08
  start-page: 101
  year: 2019
  ident: 16958_CR51
  publication-title: JHEP
  doi: 10.1007/JHEP08(2019)101
– volume: 352
  start-page: 407
  year: 2017
  ident: 16958_CR39
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-016-2796-3
– volume: 2
  start-page: 253
  year: 1998
  ident: 16958_CR3
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.1998.v2.n2.a2
– volume: 09
  start-page: 002
  year: 2020
  ident: 16958_CR61
  publication-title: JHEP
  doi: 10.1007/JHEP09(2020)002
– volume: 35
  start-page: 10
  year: 2018
  ident: 16958_CR41
  publication-title: Class. Quant. Grav.
  doi: 10.1088/1361-6382/aab83c
– ident: 16958_CR20
– volume: 05
  start-page: 018
  year: 2020
  ident: 16958_CR27
  publication-title: JHEP
  doi: 10.1007/JHEP05(2020)018
– ident: 16958_CR45
– volume: 376
  start-page: 609
  year: 2019
  ident: 16958_CR40
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-019-03510-8
– ident: 16958_CR18
  doi: 10.1103/PhysRevD.86.065007
– volume: 99
  start-page: 106014
  year: 2019
  ident: 16958_CR55
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.99.106014
– volume: 52
  start-page: 325401
  year: 2019
  ident: 16958_CR25
  publication-title: J. Phys. A
  doi: 10.1088/1751-8121/ab2dae
– volume: 01
  start-page: 220
  year: 2019
  ident: 16958_CR29
  publication-title: JHEP
  doi: 10.1007/JHEP01(2019)220
– volume: 428
  start-page: 105
  year: 1998
  ident: 16958_CR2
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(98)00377-3
– volume: 8
  start-page: 063
  year: 2020
  ident: 16958_CR33
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.8.4.063
– volume: 123
  start-page: 131603
  year: 2019
  ident: 16958_CR56
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.131603
– volume: 04
  start-page: 301
  year: 2021
  ident: 16958_CR36
  publication-title: JHEP
  doi: 10.1007/JHEP04(2021)301
– volume: 04
  start-page: 195
  year: 2014
  ident: 16958_CR8
  publication-title: JHEP
  doi: 10.1007/JHEP04(2014)195
– volume: 103
  start-page: 126002
  year: 2021
  ident: 16958_CR17
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.126002
– ident: 16958_CR35
– volume: 12
  start-page: 068
  year: 2018
  ident: 16958_CR53
  publication-title: JHEP
  doi: 10.1007/JHEP12(2018)068
– ident: 16958_CR14
– volume: 11
  start-page: 009
  year: 2016
  ident: 16958_CR22
  publication-title: JHEP
  doi: 10.1007/JHEP11(2016)009
– ident: 16958_CR31
SSID ssj0015190
Score 2.4711814
Snippet A bstract In the holographic framework, we argue that the partial entanglement entropy (PEE) can be explicitly interpreted as the component flow flux in a...
In the holographic framework, we argue that the partial entanglement entropy (PEE) can be explicitly interpreted as the component flow flux in a locking bit...
Abstract In the holographic framework, we argue that the partial entanglement entropy (PEE) can be explicitly interpreted as the component flow flux in a...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms AdS-CFT Correspondence
Classical and Quantum Gravitation
Concrete construction
Configurations
Conformal Field Theory
Elementary Particles
Entanglement
Entropy
Gauge-gravity correspondence
High energy physics
Locking
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Spacetime
String Theory
Symmetry
SummonAdditionalLinks – databaseName: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8iCF7ET6xO6cHDdqhL2qRpjjo7xkDZwcFuIV-Vgczhuv_fl35MJwwvHpu-F9L30r7fS9LfQ-iOFiwWXKSR0qyIIF6bSNhCRxAciLCZSVjFU_D8ko6mdDxjsx-lvvyZsJoeuDZcH-C8NpYpB4qUK6sF9G5okSQkNYIa__WFmNcmU83-AeAS3BL5YN4fj_IJwV1I9EmPpHQrBlVU_Vv48teWaBVphsfoqIGI4UM9tBO05xan6KA6qmlWZ2jwBJPGLwOEgN3CSZ6HS1_pYAUq_l-RqhUilF8CD_W8hGvAhTaEvLeYv61rh5-j6TB_HYyiphRCZCjhZWS5EgoeneBMxI76TVjlHEuU5pnCurA8xdwxEBHYpBpyFEGMyQALCSI0MckF2l98LNwlCjNuXcxtYVMmwDegXghnDYdslWtqdIDuW-NI0_CE-3IV77JlOK6tKb01JVgzQN2NwrKmyNgt-uitvRHz3NZVA3hcNh6Xf3k8QJ3WV7J54VYyBiBFEs8sFKBe67_v2zvGc_Uf47lGh74_H9Bi3EH75efa3QBSKfVtNSm_AEek4-0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60IngRnxitkoOH9hDNJrvZ7FFjSikoPVjoLexTClKLTf-_s3lUWunBW7KZgWRml_lmJ_sNQvfE0ogzngRCUhtAvFYB11YGEBww16mKacVT8PqWDCdkNKXThiTJnYXZqt8_job5GIc9SNFxH5D9PjqgOGauR0OWZOtyAcCQsOXt-au0EXIqZv4NOLlVAa0Cy-AEHTeI0H-qXXiK9sz8DB1Wf2aq5TnKXmCOuKzfB6jmj_PcX7jGBktQcUdDqlEISG7H25ezEu4BBmof0lw7-1jV_r1Ak0H-ng2DpvNBoAhmZaCZ4EJyi8OUR4a4mqswhsZCslSE0mqWhMxQEOGhSiSkJBwrlQL04ZhLrOJL1Jl_zc0V8lOmTcS01Qnl4ApQt9xoxSA5ZZIo6aGH1jiFamjBXXeKz6IlNK6tWThrFmBND_XWCouaEWO36LOz9lrMUVlXA-DholkZTk4qTYWBmUGY0PDZNFLExjFOFCfKQ93WV0WzvpZFBLgJx45IyEP91n-_j3e8z_U_ZG_Qkbt0YSoKu6hTfq_MLeCPUt5Vc-8HLzXRrw
  priority: 102
  providerName: Springer Nature
Title Deriving the PEE proposal from the locking bit thread configuration
URI https://link.springer.com/article/10.1007/JHEP10(2021)164
https://www.proquest.com/docview/2584135445
https://doaj.org/article/164bcd5aed8c47adb9f52c4f3316c94c
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED-NVkh7QWMbWqGr8rAHeMiIEzuOn1Bb0lVIQxWiEm9R_IWQUFto-f-5S50iJrGXSHbOUXJn-76c3wH84l6kSqo8rrXwMeprEyvrdYzKgSlbmEw0OAV_r_PpnF_dibsQcFuHY5Xtnths1HZpKEZ-nqKmZBlBx1ysnmKqGkXZ1VBCYw-6uAUXRQe6o_J6drPLI6B9krSAPok8v5qWM5acosPPzljO3-miBrL_nZ35T2q00TiTL3AQTMVouJXtIXxyi6-w3xzZNOtvML7EyUPhgAhtuGhWltGKKh6scQj9M9L0oqaiUHikHzbYRvvQRuj_-of7l63gv8N8Ut6Op3EoiRAbzuQmtrJWtVaeJYVKHadkbO2cyGotizrR3so8kU4giUpMrtFXUcyYAm0ixZRmJjuCzmK5cD8gKqR1qbTe5kKhjHC4V84aiV6r1NzoHvxumVOZgBdOZSseqxbpeMvNirhZITd7cLobsNpCZXxMOiJu78gI47rpWD7fV2HJEJ02VtQOpwyXtcXPFqnhPstYbhQ3Pei3sqrCwltXb9OkB2et_N5uf_A-x_9_1Al8JkpSWWnSh87m-cX9RFtkowewV0z-DMK0w9Y45XTNx4PGu8frPB2-AtMU4AI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7Boopeqr4Q21KaA5XgkBI7dhwfqqqFXZanOIDELcSvFVK1u2V3VfVP9Td2Jo9FIMGNY5yxlYw_-xt77BmALREk10pncWlkiJGvbaxdMDGSA9Mut6ms4hScnmWDS3F0Ja-W4F97F4aOVbZzYjVRu7GlPfJdjkzJUgod833yO6asUeRdbVNo1LA49n__4JJt-u1wH_v3C-f93sXeIG6yCsRWMDWLnSp1aXRgSa65F-TPLL2XaWlUXiYmOJUlyksU0YnNDJr7mlmbo1mhmTbMptjuMqyIFJmcbqb3DxZeC7SGkjZ8UKJ2jwa9c5Zsc6TRHZaJe8xXJQi4Z9U-cMRW_NZ_Da8awzT6USPpDSz50Vt4UR0QtdN3sLePUKXNhwgtxui814smlF9hilXohkpVirxIG--RuZnhM1qjLsLVdrgZzmuYvYfLZ1HVGnRG45FfhyhXznPlgsukRkRg9aC9swrXyMoIa7rwtVVOYZvo5JQk41fRxlWutVmQNgvUZhe2FxUmdWCOx0V_krYXYhRRuyoY3w6LZoCSnLFOlh4BKlTp8LcltyKkKcusFrYLG21fFc0wnxZ3oOzCTtt_d68f-Z4PTzf1GVYHF6cnxcnh2fFHeEm1iCx5sgGd2e3cf0IraGY2K-hFcP3cWP8PWQ8XAg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEJ-iY0AeQNoeQmPHjuMHhNiaqtugqhCT9hbir2nS1Ja1E9q_tr-Ou3x0GtJ422OcOys5_-y789l3AB9EkFwrncWVkSFGfW1j7YKJUTkw7XKbyjpPwfdJNj4WhyfyZAOuu7swdKyyWxPrhdrNLe2RDzhqSpZS6phBaI9FTIejL4vfMVWQokhrV06jgciRv_qD7tvy88EQx_oj56Pi5_44bisMxFYwtYqdqnRldGBJrrkXFNusvJdpZVReJSY4lSXKSyTRic0Mmv6aWZujiaGZNsym2O8D2FTkFfVgc6-YTH-sYxhoGyVdMqFEDQ7HxZQlOxyV6i7LxC09WJcLuGXj_hOWrbXd6Ck8ac3U6GuDq2ew4WfP4WF9XNQuX8D-EIFLWxER2o_RtCiiBVVbWCIL3VepW1FL0jZ8ZM5W-Iy2qYvQ9w5np5cN6F7C8b0I6xX0ZvOZfw1RrpznygWXSY34QPagvbMKPWZlhDV9-NQJp7RtrnIqmXFedlmWG2mWJM0SpdmHnTXDoknTcTfpHkl7TUb5teuG-cVp2U5XojPWycojXIWqHP625FaENGWZ1cL2Ybsbq7Kd9MvyBqJ92O3G7-b1Hd-z9f-u3sMjxHn57WBy9AYeExNpTp5sQ291cenfokm0Mu9a7EXw677h_hcHlhyU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deriving+the+PEE+proposal+from+the+locking+bit+thread+configuration&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Lin%2C+Yi-Yu&rft.au=Sun%2C+Jia-Rui&rft.au=Zhang%2C+Jun&rft.date=2021-10-20&rft.issn=1029-8479&rft.eissn=1029-8479&rft.volume=2021&rft.issue=10&rft_id=info:doi/10.1007%2FJHEP10%282021%29164&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_JHEP10_2021_164
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon