Viewpoint Invariant Human Re-Identification in Camera Networks Using Pose Priors and Subject-Discriminative Features

Human re-identification across cameras with non-overlapping fields of view is one of the most important and difficult problems in video surveillance and analysis. However, current algorithms are likely to fail in real-world scenarios for several reasons. For example, surveillance cameras are typical...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 37; no. 5; pp. 1095 - 1108
Main Authors Ziyan Wu, Yang Li, Radke, Richard J.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human re-identification across cameras with non-overlapping fields of view is one of the most important and difficult problems in video surveillance and analysis. However, current algorithms are likely to fail in real-world scenarios for several reasons. For example, surveillance cameras are typically mounted high above the ground plane, causing serious perspective changes. Also, most algorithms approach matching across images using the same descriptors, regardless of camera viewpoint or human pose. Here, we introduce a re-identification algorithm that addresses both problems. We build a model for human appearance as a function of pose, using training data gathered from a calibrated camera. We then apply this "pose prior" in online re-identification to make matching and identification more robust to viewpoint. We further integrate person-specific features learned over the course of tracking to improve the algorithm's performance. We evaluate the performance of the proposed algorithm and compare it to several state-of-the-art algorithms, demonstrating superior performance on standard benchmarking datasets as well as a challenging new airport surveillance scenario.
AbstractList Human re-identification across cameras with non-overlapping fields of view is one of the most important and difficult problems in video surveillance and analysis. However, current algorithms are likely to fail in real-world scenarios for several reasons. For example, surveillance cameras are typically mounted high above the ground plane, causing serious perspective changes. Also, most algorithms approach matching across images using the same descriptors, regardless of camera viewpoint or human pose. Here, we introduce a re-identification algorithm that addresses both problems. We build a model for human appearance as a function of pose, using training data gathered from a calibrated camera. We then apply this "pose prior" in online re-identification to make matching and identification more robust to viewpoint. We further integrate person-specific features learned over the course of tracking to improve the algorithm's performance. We evaluate the performance of the proposed algorithm and compare it to several state-of-the-art algorithms, demonstrating superior performance on standard benchmarking datasets as well as a challenging new airport surveillance scenario.
Author Ziyan Wu
Radke, Richard J.
Yang Li
Author_xml – sequence: 1
  surname: Ziyan Wu
  fullname: Ziyan Wu
  email: ziyan@alum.rpi.edu
  organization: Dept. of Electr., Comput., & Syst. Eng., Rensselaer Polytech. Inst., Troy, NY, USA
– sequence: 2
  surname: Yang Li
  fullname: Yang Li
  email: liy21@rpi.edu
  organization: Dept. of Electr., Comput., & Syst. Eng., Rensselaer Polytech. Inst., Troy, NY, USA
– sequence: 3
  givenname: Richard J.
  surname: Radke
  fullname: Radke, Richard J.
  email: rjradke@ecse.rpi.edu
  organization: Dept. of Electr., Comput., & Syst. Eng., Rensselaer Polytech. Inst., Troy, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26353331$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uEzEUhS1URNPCC4CELLHpZoJ_ZuzxsgotjVQg6g9by-O5gxwydmp7WvH2uE3oogtW9uL77HvPOUIHPnhA6D0lc0qJ-nyzOv22nDNC6znjgnDJX6EZo4JUiil2gGaECla1LWsP0VFKa1LIhvA36JAJ3nDO6Qzlnw4etsH5jJf-3kRnyu1iGo3HV1Ate_DZDc6a7ILHzuOFGSEa_B3yQ4i_E75Nzv_Cq5AAr6ILMWHje3w9dWuwufriko1udL7494DPweQpQnqLXg9mk-Dd_jxGt-dnN4uL6vLH1-Xi9LKyNZW56puesFYOFgBMJ0UjWWdpXxtuFGk7UXPLQHEmzNANqpayb1vbN8zWlkjFKD9GJ7t3tzHcTZCyHstAsNkYD2FKmkpKG143ghf00wt0Haboy3SaCqWIkI1Shfq4p6ZuhF5vy3Im_tH_8iwA2wE2hpQiDM8IJfqxNP1Umn4sTe9LK1L7QrIuPyWeo3Gb_6sfdqorGT3_JRQlTDL-F59GpM0
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TMM_2017_2755983
crossref_primary_10_1007_s11263_019_01290_1
crossref_primary_10_1049_iet_cvi_2018_5402
crossref_primary_10_1109_ACCESS_2018_2857210
crossref_primary_10_1016_j_patrec_2018_12_015
crossref_primary_10_1109_TIP_2018_2861366
crossref_primary_10_1007_s11277_024_11489_2
crossref_primary_10_1109_TIP_2017_2651364
crossref_primary_10_1109_TIP_2019_2915655
crossref_primary_10_1049_iet_bmt_2016_0198
crossref_primary_10_1007_s00521_018_3529_7
crossref_primary_10_1016_j_neucom_2016_01_037
crossref_primary_10_1109_TIP_2017_2652725
crossref_primary_10_1016_j_patcog_2023_109669
crossref_primary_10_1049_iet_cvi_2018_5130
crossref_primary_10_1109_ACCESS_2019_2905552
crossref_primary_10_1109_TIP_2018_2819820
crossref_primary_10_1117_1_JEI_27_3_033041
crossref_primary_10_1109_TETCI_2021_3127906
crossref_primary_10_1007_s11042_016_4188_2
crossref_primary_10_1109_TCYB_2018_2869739
crossref_primary_10_1080_07421222_2020_1759961
crossref_primary_10_1109_TCYB_2016_2568264
crossref_primary_10_3390_math9243162
crossref_primary_10_1109_TIFS_2017_2765524
crossref_primary_10_3390_electronics9071083
crossref_primary_10_1016_j_neucom_2018_02_039
crossref_primary_10_1109_TIP_2020_3000904
crossref_primary_10_1109_TNNLS_2018_2875429
crossref_primary_10_1109_TPAMI_2018_2807450
crossref_primary_10_1007_s11263_017_0991_0
crossref_primary_10_1109_TNNLS_2020_3029299
crossref_primary_10_1142_S0219519417400115
crossref_primary_10_1109_TNNLS_2022_3209537
crossref_primary_10_1109_TPAMI_2017_2764893
crossref_primary_10_1016_j_patcog_2019_106991
crossref_primary_10_1016_j_patcog_2017_06_037
crossref_primary_10_1007_s00521_020_04809_7
crossref_primary_10_1109_TCSVT_2016_2556538
crossref_primary_10_1016_j_imavis_2023_104843
crossref_primary_10_1109_TIP_2018_2815840
crossref_primary_10_1109_TSMC_2016_2645660
crossref_primary_10_1016_j_neucom_2015_05_072
crossref_primary_10_1016_j_patcog_2016_08_001
crossref_primary_10_1016_j_patcog_2016_11_018
crossref_primary_10_1590_1678_4324_2019180001
crossref_primary_10_1016_j_jestch_2017_03_001
crossref_primary_10_1109_TIP_2020_3020648
crossref_primary_10_1007_s11042_017_4875_7
crossref_primary_10_1109_TCSVT_2017_2732822
crossref_primary_10_1016_j_neucom_2017_07_019
crossref_primary_10_1109_TIP_2015_2466117
crossref_primary_10_1109_TCSVT_2016_2596159
crossref_primary_10_1109_TIM_2023_3269117
crossref_primary_10_1016_j_patcog_2017_09_024
crossref_primary_10_1109_TIP_2021_3082298
crossref_primary_10_1109_TCSVT_2015_2424056
crossref_primary_10_1145_3369393
crossref_primary_10_1007_s11042_020_09997_x
crossref_primary_10_1016_j_patcog_2019_06_007
crossref_primary_10_1109_TIFS_2024_3520304
crossref_primary_10_1109_TIV_2024_3350669
crossref_primary_10_1016_j_patcog_2017_10_005
crossref_primary_10_1109_TIP_2019_2910414
crossref_primary_10_1109_JIOT_2020_3015239
crossref_primary_10_1109_ACCESS_2020_2978344
Cites_doi 10.1023/B:VISI.0000029664.99615.94
10.1016/j.cviu.2007.01.003
10.1109/TPAMI.2009.154
10.1016/j.cviu.2007.09.014
10.5244/C.23.23
10.1109/AVSS.2010.34
10.1109/AVSS.2012.55
10.1016/j.patrec.2011.11.016
10.1109/ICPR.2008.4761709
10.5244/C.24.21
10.1016/j.patrec.2012.02.014
10.1109/AVSS.2011.6027340
10.1109/TPAMI.2012.138
10.1145/2072572.2072590
10.1109/TPAMI.2003.1251144
10.5244/C.25.68
10.1109/ICCV.2011.6126413
10.1109/DICTA.2012.6411689
10.1109/SIBGRAPI.2009.42
10.1109/CVPR.2010.5539926
10.1145/1273496.1273523
10.1109/CVPR.2013.460
10.1016/j.cviu.2010.01.004
10.1109/AVSS.2012.81
10.1109/CVPR.2012.6247987
10.1007/s00138-006-0063-x
10.1016/j.patcog.2010.11.011
10.1109/ICCV.2009.5459197
10.1016/j.sigpro.2009.09.005
10.5244/C.26.57
10.1109/AVSS.2011.6027319
10.1109/CVPR.2006.223
10.1109/AVSS.2010.68
10.1016/j.patrec.2008.04.001
10.1145/1150402.1150429
10.1109/TPAMI.2006.178
10.1016/j.imavis.2011.08.008
10.1109/CVPR.2013.426
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2014.2360373
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Technology Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 1108
ExternalDocumentID 3759032041
26353331
10_1109_TPAMI_2014_2360373
6910272
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: U.S. Department of Homeland Security
  grantid: 2013-ST-061-ED0001
  funderid: 10.13039/100000180
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
RIG
5VS
9M8
ABFSI
ADRHT
AETEA
AETIX
AI.
AIBXA
AKJIK
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c417t-d5d0287fceeeab76572bc1d4a3a908b643c2e9326afbf9477d88cd52c4c079213
IEDL.DBID RIE
ISSN 0162-8828
IngestDate Fri Jul 11 14:49:06 EDT 2025
Sun Jun 29 14:04:01 EDT 2025
Mon Jul 21 05:51:17 EDT 2025
Tue Jul 01 03:18:21 EDT 2025
Thu Apr 24 23:09:09 EDT 2025
Wed Aug 27 02:47:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords viewpoint invariance
camera networks
Human re-identification
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-d5d0287fceeeab76572bc1d4a3a908b643c2e9326afbf9477d88cd52c4c079213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26353331
PQID 1699067599
PQPubID 85458
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TPAMI_2014_2360373
pubmed_primary_26353331
proquest_miscellaneous_1711534563
ieee_primary_6910272
crossref_primary_10_1109_TPAMI_2014_2360373
proquest_journals_1699067599
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-May-1
2015-5-1
2015-May
20150501
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-May-1
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref14
ref11
hirzer (ref24) 0
ref10
tapaswi (ref42) 0
ref17
ref16
ref19
ref18
bak (ref5) 2011; 30
ref51
dikmen (ref15) 0
ref46
ref45
ref48
ref41
ref44
ref43
(ref38) 0
bak (ref2) 0
ref49
gray (ref20) 0
ref8
ref7
ref9
ref4
ref3
ref6
ref40
hirzer (ref22) 0
ref34
ref37
ref36
ref33
ref32
d’angelo (ref13) 2011
ref1
ref39
liu (ref31) 0
ref23
ref26
ref25
ref21
ref28
ref27
ref29
weinberger (ref47) 2009; 10
lin (ref30) 0
ma (ref35) 0
zheng (ref50) 0
References_xml – ident: ref32
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: ref25
  doi: 10.1016/j.cviu.2007.01.003
– ident: ref45
  doi: 10.1109/TPAMI.2009.154
– ident: ref7
  doi: 10.1016/j.cviu.2007.09.014
– ident: ref51
  doi: 10.5244/C.23.23
– ident: ref4
  doi: 10.1109/AVSS.2010.34
– ident: ref23
  doi: 10.1109/AVSS.2012.55
– ident: ref8
  doi: 10.1016/j.patrec.2011.11.016
– ident: ref28
  doi: 10.1109/ICPR.2008.4761709
– ident: ref40
  doi: 10.5244/C.24.21
– ident: ref36
  doi: 10.1016/j.patrec.2012.02.014
– ident: ref12
  doi: 10.1109/AVSS.2011.6027340
– start-page: 23
  year: 0
  ident: ref30
  article-title: Learning pairwise dissimilarity profiles for appearance recognition in visual surveillance
  publication-title: Proc 4th Int Symp Adv Vis Comput
– ident: ref49
  doi: 10.1109/TPAMI.2012.138
– ident: ref6
  doi: 10.1145/2072572.2072590
– ident: ref46
  doi: 10.1109/TPAMI.2003.1251144
– start-page: 413
  year: 0
  ident: ref35
  article-title: Local descriptors encoded by Fisher vectors for person re-identification
  publication-title: Proc 12th Int Conf Comput Vis
– ident: ref11
  doi: 10.5244/C.25.68
– ident: ref10
  doi: 10.1109/ICCV.2011.6126413
– ident: ref9
  doi: 10.1109/DICTA.2012.6411689
– year: 2011
  ident: ref13
  article-title: People re-identification in camera networks based on probabilistic color histograms
  publication-title: Proc Visual Info Process Commun II Proc SPIE
– start-page: 501
  year: 0
  ident: ref15
  article-title: Pedestrian recognition with a learned metric
  publication-title: Proc 10th Asian Conf Comput Vis
– start-page: 2658
  year: 0
  ident: ref42
  article-title: Knock! Knock! Who is it? Probabilistic person identification in TV-series
  publication-title: Proc IEEE Conf Comput Vis Pattern Recog
– start-page: 391
  year: 0
  ident: ref31
  publication-title: Proc 12th Int Conf Comput Vis
– ident: ref41
  doi: 10.1109/SIBGRAPI.2009.42
– ident: ref17
  doi: 10.1109/CVPR.2010.5539926
– ident: ref14
  doi: 10.1145/1273496.1273523
– ident: ref48
  doi: 10.1109/CVPR.2013.460
– ident: ref1
  doi: 10.1016/j.cviu.2010.01.004
– ident: ref16
  doi: 10.1109/AVSS.2012.81
– volume: 10
  start-page: 207
  year: 2009
  ident: ref47
  article-title: Distance metric learning for large margin nearest neighbor classification
  publication-title: J Mach Learn Res
– ident: ref37
  doi: 10.1109/CVPR.2012.6247987
– start-page: 262
  year: 0
  ident: ref20
  article-title: Viewpoint invariant pedestrian recognition with an ensemble of localized features
  publication-title: Proc 10th Eur Conf Comput Vis
– start-page: 806
  year: 0
  ident: ref2
  article-title: Learning to match appearances by correlations in a covariance metric space
  publication-title: Proc 12th Eur Conf Comput Vis
– ident: ref18
  doi: 10.1007/s00138-006-0063-x
– start-page: 2650
  year: 0
  ident: ref50
  article-title: Transfer re-identification: From person to set-based verification
  publication-title: Proc IEEE Conf Comput Vis Pattern Recog
– ident: ref29
  doi: 10.1016/j.patcog.2010.11.011
– ident: ref21
  doi: 10.1109/ICCV.2009.5459197
– ident: ref44
  doi: 10.1016/j.sigpro.2009.09.005
– start-page: 780
  year: 0
  ident: ref24
  article-title: Relaxed pairwise learned metric for person re-identification
  publication-title: Proc 12th Eur Conf Comput Vis
– ident: ref34
  doi: 10.5244/C.26.57
– ident: ref27
  doi: 10.1109/AVSS.2011.6027319
– ident: ref19
  doi: 10.1109/CVPR.2006.223
– start-page: 91
  year: 0
  ident: ref22
  article-title: Person re-identification by descriptive and discriminative classification
  publication-title: Proc 17th Scandin Conf Image Anal
– ident: ref3
  doi: 10.1109/AVSS.2010.68
– ident: ref43
  doi: 10.1016/j.patrec.2008.04.001
– ident: ref26
  doi: 10.1145/1150402.1150429
– year: 0
  ident: ref38
– ident: ref33
  doi: 10.1109/TPAMI.2006.178
– volume: 30
  start-page: 443
  year: 2011
  ident: ref5
  article-title: Boosted human re-identification using Riemannian manifolds
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2011.08.008
– ident: ref39
  doi: 10.1109/CVPR.2013.426
SSID ssj0014503
Score 2.4934034
Snippet Human re-identification across cameras with non-overlapping fields of view is one of the most important and difficult problems in video surveillance and...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1095
SubjectTerms Algorithms
Camera Networks
Cameras
Feature extraction
Histograms
Human Re-Identification
Image color analysis
Measurement
Performance evaluation
Strips
Surveillance
Viewpoint invariance
Title Viewpoint Invariant Human Re-Identification in Camera Networks Using Pose Priors and Subject-Discriminative Features
URI https://ieeexplore.ieee.org/document/6910272
https://www.ncbi.nlm.nih.gov/pubmed/26353331
https://www.proquest.com/docview/1699067599
https://www.proquest.com/docview/1711534563
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9UwFD_MPemDm5sfd5sSwTftXZsmTfM4Nscm3HGRTfZW0iSForTjtnXgX-9J0nYiKr4VmqQp5-t3Tk7OAXgXo8ho6k79K3RXmdA6yo20kUrLnEqWm1i5eMfqKru4YZ9u-e0WfJjvwlhrffKZXbpHf5ZvWj24UNlxhraNClS4j9BxC3e15hMDxn0XZEQwKOHoRkwXZGJ5fL0-WV26LC62pGkWp8I1z3FFWNLQW-7BHvkGK3_Hmt7mnO_AatptSDX5uhz6cql__FbI8X9_ZxeejuCTnARueQZbttmDnamxAxnlfA-e_FKlcB_6L7W9v2vrpieXzXf0rZEYxAf_yWcbhZu-1Rj6I3VDTpULdJGrkGDeEZ-VQNZtZ8l6U7ebjqjGENRYLgQUndVOcbmEHKd4iYOkw8Z2z-Hm_OP16UU0NmuINEtEHxluEKqICo2uVaXIuKClTgxTqZJxXiLw0dQ6sKiqspJMCJPn2nCqmY6FpEn6ArabtrGvgFToommDjg9LcVolS8k1t1TySsqKW72AZCJZocdK5q6hxrfCezSxLDzFC0fxYqT4At7Pc-5CHY9_jt535JpHjpRawNHEGcUo6l2RZGjQ0e2ScgFv59copO7kRTW2HXCMQOCdIlbFlV8GjprXnhjx4M_fPITHuDMeciyPYLvfDPY14qC-fOMF4CcIMgIO
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAcKLRQFgoYiRtkmzh2HB-rQrUL3dUKbVFvkWM7UgRKqk0CEr-esfMAIUDcIsV2HM3rm_F4BuBViCKjqTv1L9BdZULrIDXSBirOUypZakLl4h2rdbK4Yu-v-fUevJnuwlhrffKZnbtHf5Zvat25UNlpgraNClS4t9Du86i_rTWdGTDu-yAjhkEZR0divCITytPt5my1dHlcbE7jJIyFa5_jyrDEfXe5nxbJt1j5O9r0VufiAFbjfvtkk8_zrs3n-vtvpRz_94fuw70BfpKznl8ewJ6tDuFgbO1ABkk_hLu_1Ck8gvZTab_d1GXVkmX1Fb1rJAfx4X_y0Qb9Xd9iCP6RsiLnyoW6yLpPMW-Iz0sgm7qxZLMr611DVGUI6iwXBArelk51uZQcp3qJA6XdzjYP4eri3fZ8EQztGgLNItEGhhsEK6JAs2tVLhIuaK4jw1SsZJjmCH00tQ4uqiIvJBPCpKk2nGqmQyFpFD-C_aqu7GMgBTpp2qDrw2KcVshccs0tlbyQsuBWzyAaSZbpoZa5a6nxJfM-TSgzT_HMUTwbKD6D19Ocm76Sxz9HHzlyTSMHSs3gZOSMbBD2JosSNOnoeEk5g5fTaxRTd_aiKlt3OEYg9I4RreLKxz1HTWuPjPjkz998AbcX29Vldrlcf3gKd3CXvM-4PIH9dtfZZ4iK2vy5F4Yfn-4FVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Viewpoint+Invariant+Human+Re-Identification+in+Camera+Networks+Using+Pose+Priors+and+Subject-Discriminative+Features&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Wu%2C+Ziyan&rft.au=Li%2C+Yang&rft.au=Radke%2C+Richard+J&rft.date=2015-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=37&rft.issue=5&rft.spage=1095&rft_id=info:doi/10.1109%2FTPAMI.2014.2360373&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3759032041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon