Viewpoint Invariant Human Re-Identification in Camera Networks Using Pose Priors and Subject-Discriminative Features
Human re-identification across cameras with non-overlapping fields of view is one of the most important and difficult problems in video surveillance and analysis. However, current algorithms are likely to fail in real-world scenarios for several reasons. For example, surveillance cameras are typical...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 37; no. 5; pp. 1095 - 1108 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.05.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human re-identification across cameras with non-overlapping fields of view is one of the most important and difficult problems in video surveillance and analysis. However, current algorithms are likely to fail in real-world scenarios for several reasons. For example, surveillance cameras are typically mounted high above the ground plane, causing serious perspective changes. Also, most algorithms approach matching across images using the same descriptors, regardless of camera viewpoint or human pose. Here, we introduce a re-identification algorithm that addresses both problems. We build a model for human appearance as a function of pose, using training data gathered from a calibrated camera. We then apply this "pose prior" in online re-identification to make matching and identification more robust to viewpoint. We further integrate person-specific features learned over the course of tracking to improve the algorithm's performance. We evaluate the performance of the proposed algorithm and compare it to several state-of-the-art algorithms, demonstrating superior performance on standard benchmarking datasets as well as a challenging new airport surveillance scenario. |
---|---|
AbstractList | Human re-identification across cameras with non-overlapping fields of view is one of the most important and difficult problems in video surveillance and analysis. However, current algorithms are likely to fail in real-world scenarios for several reasons. For example, surveillance cameras are typically mounted high above the ground plane, causing serious perspective changes. Also, most algorithms approach matching across images using the same descriptors, regardless of camera viewpoint or human pose. Here, we introduce a re-identification algorithm that addresses both problems. We build a model for human appearance as a function of pose, using training data gathered from a calibrated camera. We then apply this "pose prior" in online re-identification to make matching and identification more robust to viewpoint. We further integrate person-specific features learned over the course of tracking to improve the algorithm's performance. We evaluate the performance of the proposed algorithm and compare it to several state-of-the-art algorithms, demonstrating superior performance on standard benchmarking datasets as well as a challenging new airport surveillance scenario. |
Author | Ziyan Wu Radke, Richard J. Yang Li |
Author_xml | – sequence: 1 surname: Ziyan Wu fullname: Ziyan Wu email: ziyan@alum.rpi.edu organization: Dept. of Electr., Comput., & Syst. Eng., Rensselaer Polytech. Inst., Troy, NY, USA – sequence: 2 surname: Yang Li fullname: Yang Li email: liy21@rpi.edu organization: Dept. of Electr., Comput., & Syst. Eng., Rensselaer Polytech. Inst., Troy, NY, USA – sequence: 3 givenname: Richard J. surname: Radke fullname: Radke, Richard J. email: rjradke@ecse.rpi.edu organization: Dept. of Electr., Comput., & Syst. Eng., Rensselaer Polytech. Inst., Troy, NY, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26353331$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1uEzEUhS1URNPCC4CELLHpZoJ_ZuzxsgotjVQg6g9by-O5gxwydmp7WvH2uE3oogtW9uL77HvPOUIHPnhA6D0lc0qJ-nyzOv22nDNC6znjgnDJX6EZo4JUiil2gGaECla1LWsP0VFKa1LIhvA36JAJ3nDO6Qzlnw4etsH5jJf-3kRnyu1iGo3HV1Ate_DZDc6a7ILHzuOFGSEa_B3yQ4i_E75Nzv_Cq5AAr6ILMWHje3w9dWuwufriko1udL7494DPweQpQnqLXg9mk-Dd_jxGt-dnN4uL6vLH1-Xi9LKyNZW56puesFYOFgBMJ0UjWWdpXxtuFGk7UXPLQHEmzNANqpayb1vbN8zWlkjFKD9GJ7t3tzHcTZCyHstAsNkYD2FKmkpKG143ghf00wt0Haboy3SaCqWIkI1Shfq4p6ZuhF5vy3Im_tH_8iwA2wE2hpQiDM8IJfqxNP1Umn4sTe9LK1L7QrIuPyWeo3Gb_6sfdqorGT3_JRQlTDL-F59GpM0 |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1109_TMM_2017_2755983 crossref_primary_10_1007_s11263_019_01290_1 crossref_primary_10_1049_iet_cvi_2018_5402 crossref_primary_10_1109_ACCESS_2018_2857210 crossref_primary_10_1016_j_patrec_2018_12_015 crossref_primary_10_1109_TIP_2018_2861366 crossref_primary_10_1007_s11277_024_11489_2 crossref_primary_10_1109_TIP_2017_2651364 crossref_primary_10_1109_TIP_2019_2915655 crossref_primary_10_1049_iet_bmt_2016_0198 crossref_primary_10_1007_s00521_018_3529_7 crossref_primary_10_1016_j_neucom_2016_01_037 crossref_primary_10_1109_TIP_2017_2652725 crossref_primary_10_1016_j_patcog_2023_109669 crossref_primary_10_1049_iet_cvi_2018_5130 crossref_primary_10_1109_ACCESS_2019_2905552 crossref_primary_10_1109_TIP_2018_2819820 crossref_primary_10_1117_1_JEI_27_3_033041 crossref_primary_10_1109_TETCI_2021_3127906 crossref_primary_10_1007_s11042_016_4188_2 crossref_primary_10_1109_TCYB_2018_2869739 crossref_primary_10_1080_07421222_2020_1759961 crossref_primary_10_1109_TCYB_2016_2568264 crossref_primary_10_3390_math9243162 crossref_primary_10_1109_TIFS_2017_2765524 crossref_primary_10_3390_electronics9071083 crossref_primary_10_1016_j_neucom_2018_02_039 crossref_primary_10_1109_TIP_2020_3000904 crossref_primary_10_1109_TNNLS_2018_2875429 crossref_primary_10_1109_TPAMI_2018_2807450 crossref_primary_10_1007_s11263_017_0991_0 crossref_primary_10_1109_TNNLS_2020_3029299 crossref_primary_10_1142_S0219519417400115 crossref_primary_10_1109_TNNLS_2022_3209537 crossref_primary_10_1109_TPAMI_2017_2764893 crossref_primary_10_1016_j_patcog_2019_106991 crossref_primary_10_1016_j_patcog_2017_06_037 crossref_primary_10_1007_s00521_020_04809_7 crossref_primary_10_1109_TCSVT_2016_2556538 crossref_primary_10_1016_j_imavis_2023_104843 crossref_primary_10_1109_TIP_2018_2815840 crossref_primary_10_1109_TSMC_2016_2645660 crossref_primary_10_1016_j_neucom_2015_05_072 crossref_primary_10_1016_j_patcog_2016_08_001 crossref_primary_10_1016_j_patcog_2016_11_018 crossref_primary_10_1590_1678_4324_2019180001 crossref_primary_10_1016_j_jestch_2017_03_001 crossref_primary_10_1109_TIP_2020_3020648 crossref_primary_10_1007_s11042_017_4875_7 crossref_primary_10_1109_TCSVT_2017_2732822 crossref_primary_10_1016_j_neucom_2017_07_019 crossref_primary_10_1109_TIP_2015_2466117 crossref_primary_10_1109_TCSVT_2016_2596159 crossref_primary_10_1109_TIM_2023_3269117 crossref_primary_10_1016_j_patcog_2017_09_024 crossref_primary_10_1109_TIP_2021_3082298 crossref_primary_10_1109_TCSVT_2015_2424056 crossref_primary_10_1145_3369393 crossref_primary_10_1007_s11042_020_09997_x crossref_primary_10_1016_j_patcog_2019_06_007 crossref_primary_10_1109_TIFS_2024_3520304 crossref_primary_10_1109_TIV_2024_3350669 crossref_primary_10_1016_j_patcog_2017_10_005 crossref_primary_10_1109_TIP_2019_2910414 crossref_primary_10_1109_JIOT_2020_3015239 crossref_primary_10_1109_ACCESS_2020_2978344 |
Cites_doi | 10.1023/B:VISI.0000029664.99615.94 10.1016/j.cviu.2007.01.003 10.1109/TPAMI.2009.154 10.1016/j.cviu.2007.09.014 10.5244/C.23.23 10.1109/AVSS.2010.34 10.1109/AVSS.2012.55 10.1016/j.patrec.2011.11.016 10.1109/ICPR.2008.4761709 10.5244/C.24.21 10.1016/j.patrec.2012.02.014 10.1109/AVSS.2011.6027340 10.1109/TPAMI.2012.138 10.1145/2072572.2072590 10.1109/TPAMI.2003.1251144 10.5244/C.25.68 10.1109/ICCV.2011.6126413 10.1109/DICTA.2012.6411689 10.1109/SIBGRAPI.2009.42 10.1109/CVPR.2010.5539926 10.1145/1273496.1273523 10.1109/CVPR.2013.460 10.1016/j.cviu.2010.01.004 10.1109/AVSS.2012.81 10.1109/CVPR.2012.6247987 10.1007/s00138-006-0063-x 10.1016/j.patcog.2010.11.011 10.1109/ICCV.2009.5459197 10.1016/j.sigpro.2009.09.005 10.5244/C.26.57 10.1109/AVSS.2011.6027319 10.1109/CVPR.2006.223 10.1109/AVSS.2010.68 10.1016/j.patrec.2008.04.001 10.1145/1150402.1150429 10.1109/TPAMI.2006.178 10.1016/j.imavis.2011.08.008 10.1109/CVPR.2013.426 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2015 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2015 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TPAMI.2014.2360373 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Technology Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 2160-9292 1939-3539 |
EndPage | 1108 |
ExternalDocumentID | 3759032041 26353331 10_1109_TPAMI_2014_2360373 6910272 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GrantInformation_xml | – fundername: U.S. Department of Homeland Security grantid: 2013-ST-061-ED0001 funderid: 10.13039/100000180 |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AGSQL AHBIQ AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION RIG 5VS 9M8 ABFSI ADRHT AETEA AETIX AI. AIBXA AKJIK ALLEH FA8 H~9 IBMZZ ICLAB IFJZH NPM RNI RZB VH1 XJT 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c417t-d5d0287fceeeab76572bc1d4a3a908b643c2e9326afbf9477d88cd52c4c079213 |
IEDL.DBID | RIE |
ISSN | 0162-8828 |
IngestDate | Fri Jul 11 14:49:06 EDT 2025 Sun Jun 29 14:04:01 EDT 2025 Mon Jul 21 05:51:17 EDT 2025 Tue Jul 01 03:18:21 EDT 2025 Thu Apr 24 23:09:09 EDT 2025 Wed Aug 27 02:47:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | viewpoint invariance camera networks Human re-identification |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-d5d0287fceeeab76572bc1d4a3a908b643c2e9326afbf9477d88cd52c4c079213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26353331 |
PQID | 1699067599 |
PQPubID | 85458 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1109_TPAMI_2014_2360373 pubmed_primary_26353331 proquest_miscellaneous_1711534563 ieee_primary_6910272 crossref_primary_10_1109_TPAMI_2014_2360373 proquest_journals_1699067599 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-May-1 2015-5-1 2015-May 20150501 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-May-1 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2015 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref14 ref11 hirzer (ref24) 0 ref10 tapaswi (ref42) 0 ref17 ref16 ref19 ref18 bak (ref5) 2011; 30 ref51 dikmen (ref15) 0 ref46 ref45 ref48 ref41 ref44 ref43 (ref38) 0 bak (ref2) 0 ref49 gray (ref20) 0 ref8 ref7 ref9 ref4 ref3 ref6 ref40 hirzer (ref22) 0 ref34 ref37 ref36 ref33 ref32 d’angelo (ref13) 2011 ref1 ref39 liu (ref31) 0 ref23 ref26 ref25 ref21 ref28 ref27 ref29 weinberger (ref47) 2009; 10 lin (ref30) 0 ma (ref35) 0 zheng (ref50) 0 |
References_xml | – ident: ref32 doi: 10.1023/B:VISI.0000029664.99615.94 – ident: ref25 doi: 10.1016/j.cviu.2007.01.003 – ident: ref45 doi: 10.1109/TPAMI.2009.154 – ident: ref7 doi: 10.1016/j.cviu.2007.09.014 – ident: ref51 doi: 10.5244/C.23.23 – ident: ref4 doi: 10.1109/AVSS.2010.34 – ident: ref23 doi: 10.1109/AVSS.2012.55 – ident: ref8 doi: 10.1016/j.patrec.2011.11.016 – ident: ref28 doi: 10.1109/ICPR.2008.4761709 – ident: ref40 doi: 10.5244/C.24.21 – ident: ref36 doi: 10.1016/j.patrec.2012.02.014 – ident: ref12 doi: 10.1109/AVSS.2011.6027340 – start-page: 23 year: 0 ident: ref30 article-title: Learning pairwise dissimilarity profiles for appearance recognition in visual surveillance publication-title: Proc 4th Int Symp Adv Vis Comput – ident: ref49 doi: 10.1109/TPAMI.2012.138 – ident: ref6 doi: 10.1145/2072572.2072590 – ident: ref46 doi: 10.1109/TPAMI.2003.1251144 – start-page: 413 year: 0 ident: ref35 article-title: Local descriptors encoded by Fisher vectors for person re-identification publication-title: Proc 12th Int Conf Comput Vis – ident: ref11 doi: 10.5244/C.25.68 – ident: ref10 doi: 10.1109/ICCV.2011.6126413 – ident: ref9 doi: 10.1109/DICTA.2012.6411689 – year: 2011 ident: ref13 article-title: People re-identification in camera networks based on probabilistic color histograms publication-title: Proc Visual Info Process Commun II Proc SPIE – start-page: 501 year: 0 ident: ref15 article-title: Pedestrian recognition with a learned metric publication-title: Proc 10th Asian Conf Comput Vis – start-page: 2658 year: 0 ident: ref42 article-title: Knock! Knock! Who is it? Probabilistic person identification in TV-series publication-title: Proc IEEE Conf Comput Vis Pattern Recog – start-page: 391 year: 0 ident: ref31 publication-title: Proc 12th Int Conf Comput Vis – ident: ref41 doi: 10.1109/SIBGRAPI.2009.42 – ident: ref17 doi: 10.1109/CVPR.2010.5539926 – ident: ref14 doi: 10.1145/1273496.1273523 – ident: ref48 doi: 10.1109/CVPR.2013.460 – ident: ref1 doi: 10.1016/j.cviu.2010.01.004 – ident: ref16 doi: 10.1109/AVSS.2012.81 – volume: 10 start-page: 207 year: 2009 ident: ref47 article-title: Distance metric learning for large margin nearest neighbor classification publication-title: J Mach Learn Res – ident: ref37 doi: 10.1109/CVPR.2012.6247987 – start-page: 262 year: 0 ident: ref20 article-title: Viewpoint invariant pedestrian recognition with an ensemble of localized features publication-title: Proc 10th Eur Conf Comput Vis – start-page: 806 year: 0 ident: ref2 article-title: Learning to match appearances by correlations in a covariance metric space publication-title: Proc 12th Eur Conf Comput Vis – ident: ref18 doi: 10.1007/s00138-006-0063-x – start-page: 2650 year: 0 ident: ref50 article-title: Transfer re-identification: From person to set-based verification publication-title: Proc IEEE Conf Comput Vis Pattern Recog – ident: ref29 doi: 10.1016/j.patcog.2010.11.011 – ident: ref21 doi: 10.1109/ICCV.2009.5459197 – ident: ref44 doi: 10.1016/j.sigpro.2009.09.005 – start-page: 780 year: 0 ident: ref24 article-title: Relaxed pairwise learned metric for person re-identification publication-title: Proc 12th Eur Conf Comput Vis – ident: ref34 doi: 10.5244/C.26.57 – ident: ref27 doi: 10.1109/AVSS.2011.6027319 – ident: ref19 doi: 10.1109/CVPR.2006.223 – start-page: 91 year: 0 ident: ref22 article-title: Person re-identification by descriptive and discriminative classification publication-title: Proc 17th Scandin Conf Image Anal – ident: ref3 doi: 10.1109/AVSS.2010.68 – ident: ref43 doi: 10.1016/j.patrec.2008.04.001 – ident: ref26 doi: 10.1145/1150402.1150429 – year: 0 ident: ref38 – ident: ref33 doi: 10.1109/TPAMI.2006.178 – volume: 30 start-page: 443 year: 2011 ident: ref5 article-title: Boosted human re-identification using Riemannian manifolds publication-title: Image Vis Comput doi: 10.1016/j.imavis.2011.08.008 – ident: ref39 doi: 10.1109/CVPR.2013.426 |
SSID | ssj0014503 |
Score | 2.4934034 |
Snippet | Human re-identification across cameras with non-overlapping fields of view is one of the most important and difficult problems in video surveillance and... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1095 |
SubjectTerms | Algorithms Camera Networks Cameras Feature extraction Histograms Human Re-Identification Image color analysis Measurement Performance evaluation Strips Surveillance Viewpoint invariance |
Title | Viewpoint Invariant Human Re-Identification in Camera Networks Using Pose Priors and Subject-Discriminative Features |
URI | https://ieeexplore.ieee.org/document/6910272 https://www.ncbi.nlm.nih.gov/pubmed/26353331 https://www.proquest.com/docview/1699067599 https://www.proquest.com/docview/1711534563 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9UwFD_MPemDm5sfd5sSwTftXZsmTfM4Nscm3HGRTfZW0iSForTjtnXgX-9J0nYiKr4VmqQp5-t3Tk7OAXgXo8ho6k79K3RXmdA6yo20kUrLnEqWm1i5eMfqKru4YZ9u-e0WfJjvwlhrffKZXbpHf5ZvWj24UNlxhraNClS4j9BxC3e15hMDxn0XZEQwKOHoRkwXZGJ5fL0-WV26LC62pGkWp8I1z3FFWNLQW-7BHvkGK3_Hmt7mnO_AatptSDX5uhz6cql__FbI8X9_ZxeejuCTnARueQZbttmDnamxAxnlfA-e_FKlcB_6L7W9v2vrpieXzXf0rZEYxAf_yWcbhZu-1Rj6I3VDTpULdJGrkGDeEZ-VQNZtZ8l6U7ebjqjGENRYLgQUndVOcbmEHKd4iYOkw8Z2z-Hm_OP16UU0NmuINEtEHxluEKqICo2uVaXIuKClTgxTqZJxXiLw0dQ6sKiqspJMCJPn2nCqmY6FpEn6ArabtrGvgFToommDjg9LcVolS8k1t1TySsqKW72AZCJZocdK5q6hxrfCezSxLDzFC0fxYqT4At7Pc-5CHY9_jt535JpHjpRawNHEGcUo6l2RZGjQ0e2ScgFv59copO7kRTW2HXCMQOCdIlbFlV8GjprXnhjx4M_fPITHuDMeciyPYLvfDPY14qC-fOMF4CcIMgIO |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAcKLRQFgoYiRtkmzh2HB-rQrUL3dUKbVFvkWM7UgRKqk0CEr-esfMAIUDcIsV2HM3rm_F4BuBViCKjqTv1L9BdZULrIDXSBirOUypZakLl4h2rdbK4Yu-v-fUevJnuwlhrffKZnbtHf5Zvat25UNlpgraNClS4t9Du86i_rTWdGTDu-yAjhkEZR0divCITytPt5my1dHlcbE7jJIyFa5_jyrDEfXe5nxbJt1j5O9r0VufiAFbjfvtkk8_zrs3n-vtvpRz_94fuw70BfpKznl8ewJ6tDuFgbO1ABkk_hLu_1Ck8gvZTab_d1GXVkmX1Fb1rJAfx4X_y0Qb9Xd9iCP6RsiLnyoW6yLpPMW-Iz0sgm7qxZLMr611DVGUI6iwXBArelk51uZQcp3qJA6XdzjYP4eri3fZ8EQztGgLNItEGhhsEK6JAs2tVLhIuaK4jw1SsZJjmCH00tQ4uqiIvJBPCpKk2nGqmQyFpFD-C_aqu7GMgBTpp2qDrw2KcVshccs0tlbyQsuBWzyAaSZbpoZa5a6nxJfM-TSgzT_HMUTwbKD6D19Ocm76Sxz9HHzlyTSMHSs3gZOSMbBD2JosSNOnoeEk5g5fTaxRTd_aiKlt3OEYg9I4RreLKxz1HTWuPjPjkz998AbcX29Vldrlcf3gKd3CXvM-4PIH9dtfZZ4iK2vy5F4Yfn-4FVw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Viewpoint+Invariant+Human+Re-Identification+in+Camera+Networks+Using+Pose+Priors+and+Subject-Discriminative+Features&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Wu%2C+Ziyan&rft.au=Li%2C+Yang&rft.au=Radke%2C+Richard+J&rft.date=2015-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=37&rft.issue=5&rft.spage=1095&rft_id=info:doi/10.1109%2FTPAMI.2014.2360373&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3759032041 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |