On the entanglement entropy of Maxwell theory: a condensed matter perspective
A bstract Despite the seeming simplicity of the theory, calculating (and even defining) entanglement entropy for the Maxwell theory of a U(1) gauge field in (3+1) dimensions has been the subject of controversy. It is generally accepted that the ground state entanglement entropy for a region of linea...
Saved in:
Published in | The journal of high energy physics Vol. 2018; no. 12; pp. 1 - 24 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2018
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 1029-8479 1029-8479 |
DOI | 10.1007/JHEP12(2018)102 |
Cover
Loading…
Abstract | A
bstract
Despite the seeming simplicity of the theory, calculating (and even defining) entanglement entropy for the Maxwell theory of a U(1) gauge field in (3+1) dimensions has been the subject of controversy. It is generally accepted that the ground state entanglement entropy for a region of linear size
L
behaves as an area law with a subleading logarithm,
S
=
αL
2
−
γ
log
L
. While the logarithmic coefficient
γ
is believed to be universal, there has been disagreement about its precise value. After carefully accounting for subtle boundary corrections, multiple analyses in the high energy literature have converged on an answer related to the conformal trace anomaly, which is only sensitive to the local curvature of the partition. In contrast, a condensed matter treatment of the problem yielded a topological contribution which is not captured by the conformal field theory calculation. In this perspective piece, we review aspects of the various calculations and discuss the resolution of the discrepancy, emphasizing the important role played by charged states (the “extended Hilbert space”) in defining entanglement for a gauge theory. While the trace anomaly result is sufficient for a strictly pure gauge field, coupling the gauge field to dynamical charges of mass
m
gives a topological contribution to
γ
which survives even in the
m
→ ∞ limit. For many situations, the topological contribution from dynamical charges is physically meaningful and should be taken into account. We also comment on other common issues of entanglement in gauge theories, such as entanglement distillation, algebraic definitions of entanglement, and gauge-fixing procedures. |
---|---|
AbstractList | Despite the seeming simplicity of the theory, calculating (and even defining) entanglement entropy for the Maxwell theory of a U(1) gauge field in (3+1) dimensions has been the subject of controversy. It is generally accepted that the ground state entanglement entropy for a region of linear size
L
behaves as an area law with a subleading logarithm,
S
=
αL
2
−
γ
log
L
. While the logarithmic coefficient
γ
is believed to be universal, there has been disagreement about its precise value. After carefully accounting for subtle boundary corrections, multiple analyses in the high energy literature have converged on an answer related to the conformal trace anomaly, which is only sensitive to the local curvature of the partition. In contrast, a condensed matter treatment of the problem yielded a topological contribution which is not captured by the conformal field theory calculation. In this perspective piece, we review aspects of the various calculations and discuss the resolution of the discrepancy, emphasizing the important role played by charged states (the “extended Hilbert space”) in defining entanglement for a gauge theory. While the trace anomaly result is sufficient for a strictly pure gauge field, coupling the gauge field to dynamical charges of mass
m
gives a topological contribution to
γ
which survives even in the
m
→ ∞ limit. For many situations, the topological contribution from dynamical charges is physically meaningful and should be taken into account. We also comment on other common issues of entanglement in gauge theories, such as entanglement distillation, algebraic definitions of entanglement, and gauge-fixing procedures. A bstract Despite the seeming simplicity of the theory, calculating (and even defining) entanglement entropy for the Maxwell theory of a U(1) gauge field in (3+1) dimensions has been the subject of controversy. It is generally accepted that the ground state entanglement entropy for a region of linear size L behaves as an area law with a subleading logarithm, S = αL 2 − γ log L . While the logarithmic coefficient γ is believed to be universal, there has been disagreement about its precise value. After carefully accounting for subtle boundary corrections, multiple analyses in the high energy literature have converged on an answer related to the conformal trace anomaly, which is only sensitive to the local curvature of the partition. In contrast, a condensed matter treatment of the problem yielded a topological contribution which is not captured by the conformal field theory calculation. In this perspective piece, we review aspects of the various calculations and discuss the resolution of the discrepancy, emphasizing the important role played by charged states (the “extended Hilbert space”) in defining entanglement for a gauge theory. While the trace anomaly result is sufficient for a strictly pure gauge field, coupling the gauge field to dynamical charges of mass m gives a topological contribution to γ which survives even in the m → ∞ limit. For many situations, the topological contribution from dynamical charges is physically meaningful and should be taken into account. We also comment on other common issues of entanglement in gauge theories, such as entanglement distillation, algebraic definitions of entanglement, and gauge-fixing procedures. Despite the seeming simplicity of the theory, calculating (and even defining) entanglement entropy for the Maxwell theory of a U(1) gauge field in (3+1) dimensions has been the subject of controversy. It is generally accepted that the ground state entanglement entropy for a region of linear size L behaves as an area law with a subleading logarithm, S = αL2 − γ log L. While the logarithmic coefficient γ is believed to be universal, there has been disagreement about its precise value. After carefully accounting for subtle boundary corrections, multiple analyses in the high energy literature have converged on an answer related to the conformal trace anomaly, which is only sensitive to the local curvature of the partition. In contrast, a condensed matter treatment of the problem yielded a topological contribution which is not captured by the conformal field theory calculation. In this perspective piece, we review aspects of the various calculations and discuss the resolution of the discrepancy, emphasizing the important role played by charged states (the “extended Hilbert space”) in defining entanglement for a gauge theory. While the trace anomaly result is sufficient for a strictly pure gauge field, coupling the gauge field to dynamical charges of mass m gives a topological contribution to γ which survives even in the m → ∞ limit. For many situations, the topological contribution from dynamical charges is physically meaningful and should be taken into account. We also comment on other common issues of entanglement in gauge theories, such as entanglement distillation, algebraic definitions of entanglement, and gauge-fixing procedures. Abstract Despite the seeming simplicity of the theory, calculating (and even defining) entanglement entropy for the Maxwell theory of a U(1) gauge field in (3+1) dimensions has been the subject of controversy. It is generally accepted that the ground state entanglement entropy for a region of linear size L behaves as an area law with a subleading logarithm, S = αL 2 − γ log L. While the logarithmic coefficient γ is believed to be universal, there has been disagreement about its precise value. After carefully accounting for subtle boundary corrections, multiple analyses in the high energy literature have converged on an answer related to the conformal trace anomaly, which is only sensitive to the local curvature of the partition. In contrast, a condensed matter treatment of the problem yielded a topological contribution which is not captured by the conformal field theory calculation. In this perspective piece, we review aspects of the various calculations and discuss the resolution of the discrepancy, emphasizing the important role played by charged states (the “extended Hilbert space”) in defining entanglement for a gauge theory. While the trace anomaly result is sufficient for a strictly pure gauge field, coupling the gauge field to dynamical charges of mass m gives a topological contribution to γ which survives even in the m → ∞ limit. For many situations, the topological contribution from dynamical charges is physically meaningful and should be taken into account. We also comment on other common issues of entanglement in gauge theories, such as entanglement distillation, algebraic definitions of entanglement, and gauge-fixing procedures. |
ArticleNumber | 102 |
Author | Pretko, Michael |
Author_xml | – sequence: 1 givenname: Michael orcidid: 0000-0001-5013-0186 surname: Pretko fullname: Pretko, Michael email: michael.pretko@colorado.edu organization: Department of Physics and Center for Theory of Quantum Matter, University of Colorado |
BookMark | eNp9kM1LxDAQxYMo-Hn2WvCih9VMmjapNxE_UfSg55Cm07VLN6lJVt3_3taKiqCXZGZ4vzfD2ySr1lkkZBfoIVAqjq4vz-6B7TMK8gAoWyEb_VtMJBfF6o96nWyGMKMUMijoBrm9s0l8wgRt1Hba4rwvhsa7bpm4OrnVb6_YtoPG-eVxohPjbIU2YJXMdYzokw596NDE5gW3yVqt24A7n_8WeTw_ezi9nNzcXVydntxMDAcRJxWwnJcShAFu6kyaQnCZSZlKAFFSmfEiZ3laVSWysqCclpCzVAtRVbnOTZFukavRt3J6pjrfzLVfKqcb9TFwfqq0j41pUUlWCqwhq0XBuYS8NIIZBJZCJiAH2XvtjV6dd88LDFHN3MLb_nzFIJPAheCsVx2NKuNdCB7rr61A1ZC_GvNXQ_79YCCyX4Rpoo6N68PVTfsPR0cu9BvsFP33PX8h70Sal_o |
CitedBy_id | crossref_primary_10_1007_JHEP05_2023_084 crossref_primary_10_1007_JHEP08_2019_059 crossref_primary_10_1007_JHEP05_2024_083 crossref_primary_10_21468_SciPostPhys_11_3_052 crossref_primary_10_1007_JHEP09_2020_134 crossref_primary_10_1007_JHEP06_2023_030 crossref_primary_10_1103_PhysRevD_101_065020 |
Cites_doi | 10.1016/j.physletb.2008.05.071 10.1088/0264-9381/31/21/214003 10.1073/pnas.1605716113 10.1007/JHEP01(2016)122 10.1103/PhysRevLett.96.100503 10.1103/PhysRevB.69.064404 10.1007/JHEP12(2016)069 10.1007/JHEP10(2017)081 10.1146/annurev-conmatphys-031214-014726 10.1016/j.physletb.2008.10.032 10.1088/0264-9381/31/21/214002 10.1007/JHEP05(2011)036 10.1016/0550-3213(94)90402-2 10.1103/PhysRevLett.96.110404 10.1103/PhysRevLett.111.037202 10.1103/PhysRevLett.117.131602 10.1103/PhysRevX.1.021002 10.1103/PhysRevB.73.035122 10.1103/PhysRevLett.114.111603 10.1103/PhysRevB.94.125112 10.1007/JHEP06(2015)187 10.1088/1126-6708/2006/08/045 10.1103/RevModPhys.82.277 10.1103/PhysRevLett.105.050502 10.1007/JHEP12(2013)020 10.1007/JHEP09(2015)069 10.1007/JHEP01(2016)136 10.1016/0550-3213(77)90410-2 10.1103/PhysRevLett.89.277004 10.1103/PhysRevB.68.184512 10.1007/JHEP02(2017)101 10.1007/JHEP07(2017)151 10.1007/JHEP03(2018)073 10.1007/JHEP04(2015)122 10.1103/PhysRevB.84.195120 10.1063/1.522898 10.1088/1742-5468/2013/02/P02008 10.1103/PhysRevLett.118.077202 10.1103/PhysRevB.71.125102 10.1103/PhysRevLett.96.010404 10.1103/PhysRevLett.100.047208 10.1103/PhysRevB.71.045110 10.1017/CBO9781139015509 10.1103/PhysRevLett.96.110405 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 Journal of High Energy Physics is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: The Author(s) 2018 – notice: Journal of High Energy Physics is a copyright of Springer, (2018). All Rights Reserved. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/JHEP12(2018)102 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 24 |
ExternalDocumentID | oai_doaj_org_article_82b7ef15f7944816bc72ce1231571618 10_1007_JHEP12_2018_102 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS EJD ER. FEDTE GQ6 GROUPED_DOAJ H13 HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYXX AAYZH ABFSG ABTEG ACAFW ACARI ACBXY ACSTC ADKPE ADRFC AEFHF AEJGL AERVB AETNG AEZWR AFHIU AFLOW AGJBK AGQPQ AHSBF AHSEE AHWEU AIXLP AIYBF AKPSB AMVHM ARNYC BAPOH BBWZM BGNMA CAG CITATION CJUJL COF CRLBU EDWGO EMSAF EPQRW EQZZN IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PHGZM PHGZT PJBAE Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c417t-d1264b817c14cf58c974858838117b085496263ddbe2b9040b1623a77dd6a6c93 |
IEDL.DBID | C24 |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:18:46 EDT 2025 Fri Jul 25 20:03:07 EDT 2025 Tue Jul 01 03:54:02 EDT 2025 Thu Apr 24 22:50:36 EDT 2025 Fri Feb 21 02:29:40 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Lattice Quantum Field Theory Topological States of Matter |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-d1264b817c14cf58c974858838117b085496263ddbe2b9040b1623a77dd6a6c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5013-0186 |
OpenAccessLink | https://link.springer.com/10.1007/JHEP12(2018)102 |
PQID | 2158147742 |
PQPubID | 2034718 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_82b7ef15f7944816bc72ce1231571618 proquest_journals_2158147742 crossref_primary_10_1007_JHEP12_2018_102 crossref_citationtrail_10_1007_JHEP12_2018_102 springer_journals_10_1007_JHEP12_2018_102 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2018 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | Aoki, Iritani, Nozaki, Numasawa, Shiba, Tasaki (CR29) 2015; 06 Wong, Klich, Pando Zayas, Vaman (CR60) 2013; 12 Wen (CR1) 2013; 2013 Solodukhin (CR17) 2008; B 665 Grover, Turner, Vishwanath (CR16) 2011; B 84 CR36 Agon, Headrick, Jafferis, Kasko (CR23) 2014; D 89 Harlow (CR53) 2016; 01 Faulkner, Lewkowycz (CR59) 2017; 07 Radičević (CR31) 2016; 04 Gioev, Klich (CR8) 2006; 96 Movassagh, Shor (CR10) 2016; 113 Buividovich, Polikarpov (CR18) 2008; B 670 Ghosh, Soni, Trivedi (CR28) 2015; 09 CR2 Van Acoleyen, Bultinck, Haegeman, Marien, Scholz, Verstraete (CR51) 2016; 117 Casini, Huerta (CR35) 2016; D 93 Nozaki, Watamura (CR37) 2016; 12 CR7 CR47 CR46 Wang (CR50) 2013; 111 Donnelly, Wall (CR30) 2016; D 94 Holzhey, Larsen, Wilczek (CR5) 1994; B 424 Nandkishore, Huse (CR12) 2015; 6 CR40 Bianchi, Myers (CR58) 2014; 31 Yang, Hung (CR42) 2018; 03 Pretko, Senthil (CR32) 2016; B 94 Motrunich, Senthil (CR43) 2002; 89 Hermele, Fisher, Balents (CR44) 2004; B 69 Bhattacharyya, Hung, Melby-Thompson (CR41) 2017; 10 Balasubramanian, McDermott, Van Raamsdonk (CR4) 2012; D 86 Casini, Huerta, Myers (CR20) 2011; 05 Levin, Wen (CR48) 2006; B 73 Kitaev, Preskill (CR14) 2006; 96 Ryu, Takayanagi (CR54) 2006; 08 CR19 CR15 CR13 CR56 CR52 Ross, Savary, Gaulin, Balents (CR49) 2011; X 1 Donnelly (CR24) 2014; 31 Donnelly, Wall (CR25) 2015; 114 Eisert, Cramer, Plenio (CR11) 2010; 82 Bisognano, Wichmann (CR57) 1976; 17 Soni, Trivedi (CR34) 2016; 01 Casini, Huerta (CR27) 2014; D 90 Huang (CR26) 2015; D 92 Casini, Huerta, Rosabal (CR22) 2014; D 89 Soni, Trivedi (CR38) 2017; 02 Calabrese, Cardy, Tonni (CR3) 2013; 1302 Agarwal, Karabali, Nair (CR39) 2017; D 96 CR21 Hung, Wan (CR33) 2015; 04 Swingle (CR9) 2010; 105 CR62 Calabrese, Cardy (CR6) 2004; 0406 Moessner, Sondhi (CR45) 2003; B 68 Duff (CR55) 1977; B 125 Witczak-Krempa, Hayward Sierens, Melko (CR61) 2017; 118 K Van Acoleyen (9612_CR51) 2016; 117 9612_CR19 A Bhattacharyya (9612_CR41) 2017; 10 S Ghosh (9612_CR28) 2015; 09 9612_CR13 9612_CR56 9612_CR15 OI Motrunich (9612_CR43) 2002; 89 W Donnelly (9612_CR25) 2015; 114 K-W Huang (9612_CR26) 2015; D 92 M Nozaki (9612_CR37) 2016; 12 9612_CR52 W Donnelly (9612_CR30) 2016; D 94 A Kitaev (9612_CR14) 2006; 96 PV Buividovich (9612_CR18) 2008; B 670 M Hermele (9612_CR44) 2004; B 69 S Aoki (9612_CR29) 2015; 06 9612_CR46 R Moessner (9612_CR45) 2003; B 68 9612_CR47 CA Agon (9612_CR23) 2014; D 89 X-G Wen (9612_CR1) 2013; 2013 M Levin (9612_CR48) 2006; B 73 R Movassagh (9612_CR10) 2016; 113 9612_CR40 G Wong (9612_CR60) 2013; 12 P Calabrese (9612_CR3) 2013; 1302 W Witczak-Krempa (9612_CR61) 2017; 118 B Swingle (9612_CR9) 2010; 105 W Donnelly (9612_CR24) 2014; 31 RM Soni (9612_CR38) 2017; 02 S Ryu (9612_CR54) 2006; 08 D Gioev (9612_CR8) 2006; 96 T Grover (9612_CR16) 2011; B 84 9612_CR36 R Nandkishore (9612_CR12) 2015; 6 D Harlow (9612_CR53) 2016; 01 A Agarwal (9612_CR39) 2017; D 96 H Casini (9612_CR20) 2011; 05 T Faulkner (9612_CR59) 2017; 07 H Casini (9612_CR22) 2014; D 89 H Casini (9612_CR35) 2016; D 93 9612_CR7 9612_CR2 RM Soni (9612_CR34) 2016; 01 P Calabrese (9612_CR6) 2004; 0406 MJ Duff (9612_CR55) 1977; B 125 M Pretko (9612_CR32) 2016; B 94 SN Solodukhin (9612_CR17) 2008; B 665 H Casini (9612_CR27) 2014; D 90 L-Y Hung (9612_CR33) 2015; 04 V Balasubramanian (9612_CR4) 2012; D 86 C Holzhey (9612_CR5) 1994; B 424 J Eisert (9612_CR11) 2010; 82 KA Ross (9612_CR49) 2011; X 1 L Wang (9612_CR50) 2013; 111 9612_CR21 E Bianchi (9612_CR58) 2014; 31 9612_CR62 Z Yang (9612_CR42) 2018; 03 JJ Bisognano (9612_CR57) 1976; 17 D Radičević (9612_CR31) 2016; 04 |
References_xml | – volume: B 665 start-page: 305 year: 2008 ident: CR17 article-title: Entanglement entropy, conformal invariance and extrinsic geometry publication-title: Phys. Lett. doi: 10.1016/j.physletb.2008.05.071 – volume: 31 start-page: 214003 year: 2014 ident: CR24 article-title: Entanglement entropy and nonabelian gauge symmetry publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/31/21/214003 – volume: 113 start-page: 13278 year: 2016 ident: CR10 article-title: Supercritical entanglement in local systems: Counterexample to the area law for quantum matter publication-title: Proc. Nat. Acad. Sci. doi: 10.1073/pnas.1605716113 – volume: 01 start-page: 122 year: 2016 ident: CR53 article-title: Wormholes, Emergent Gauge Fields and the Weak Gravity Conjecture publication-title: JHEP doi: 10.1007/JHEP01(2016)122 – volume: 0406 year: 2004 ident: CR6 article-title: Entanglement entropy and quantum field theory publication-title: J. Stat. Mech. – volume: 96 start-page: 100503 year: 2006 ident: CR8 article-title: Entanglement Entropy of Fermions in Any Dimension and the Widom Conjecture publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.100503 – volume: D 89 year: 2014 ident: CR23 article-title: Disk entanglement entropy for a Maxwell field publication-title: Phys. Rev. – volume: B 69 year: 2004 ident: CR44 article-title: Pyrochlore photons: The U(1) spin liquid in a S=12 three-dimensional frustrated magnet publication-title: Phys. Rev. doi: 10.1103/PhysRevB.69.064404 – volume: 12 start-page: 069 year: 2016 ident: CR37 article-title: Quantum Entanglement of Locally Excited States in Maxwell Theory publication-title: JHEP doi: 10.1007/JHEP12(2016)069 – volume: 2013 start-page: 198710 year: 2013 ident: CR1 article-title: Topological order: from long-range entangled quantum matter to an unification of light and electrons publication-title: ISRN Cond. Matt. Phys. – volume: D 86 year: 2012 ident: CR4 article-title: Momentum-space entanglement and renormalization in quantum field theory publication-title: Phys. Rev. – ident: CR21 – volume: 10 start-page: 081 year: 2017 ident: CR41 article-title: Instantons and Entanglement Entropy publication-title: JHEP doi: 10.1007/JHEP10(2017)081 – ident: CR46 – ident: CR19 – volume: 6 start-page: 15 year: 2015 ident: CR12 article-title: Many body localization and thermalization in quantum statistical mechanics publication-title: Ann. Rev. Condensed Matter Phys. doi: 10.1146/annurev-conmatphys-031214-014726 – volume: B 670 start-page: 141 year: 2008 ident: CR18 article-title: Entanglement entropy in gauge theories and the holographic principle for electric strings publication-title: Phys. Lett. doi: 10.1016/j.physletb.2008.10.032 – volume: 31 start-page: 214002 year: 2014 ident: CR58 article-title: On the Architecture of Spacetime Geometry publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/31/21/214002 – volume: 05 start-page: 036 year: 2011 ident: CR20 article-title: Towards a derivation of holographic entanglement entropy publication-title: JHEP doi: 10.1007/JHEP05(2011)036 – ident: CR15 – volume: B 424 start-page: 443 year: 1994 ident: CR5 article-title: Geometric and renormalized entropy in conformal field theory publication-title: Nucl. Phys. doi: 10.1016/0550-3213(94)90402-2 – volume: 96 start-page: 110404 year: 2006 ident: CR14 article-title: Topological entanglement entropy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.110404 – volume: 111 year: 2013 ident: CR50 article-title: Constructing Gapless Spin Liquid State for the Spin-1/2 J -J Heisenberg Model on a Square Lattice publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.037202 – volume: 117 start-page: 131602 year: 2016 ident: CR51 article-title: The entanglement of distillation for gauge theories publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.131602 – volume: X 1 year: 2011 ident: CR49 article-title: Quantum Excitations in Quantum Spin Ice publication-title: Phys. Rev. doi: 10.1103/PhysRevX.1.021002 – ident: CR36 – volume: 04 start-page: 163 year: 2016 ident: CR31 article-title: Entanglement in Weakly Coupled Lattice Gauge Theories publication-title: JHEP – volume: B 73 year: 2006 ident: CR48 article-title: Quantum ether: photons and electrons from a rotor model publication-title: Phys. Rev. doi: 10.1103/PhysRevB.73.035122 – volume: 114 start-page: 111603 year: 2015 ident: CR25 article-title: Entanglement entropy of electromagnetic edge modes publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.111603 – volume: D 90 start-page: 105013 year: 2014 ident: CR27 article-title: Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice publication-title: Phys. Rev. – volume: B 94 start-page: 125112 year: 2016 ident: CR32 article-title: Entanglement entropy of U(1) quantum spin liquids publication-title: Phys. Rev. doi: 10.1103/PhysRevB.94.125112 – volume: 06 start-page: 187 year: 2015 ident: CR29 article-title: On the definition of entanglement entropy in lattice gauge theories publication-title: JHEP doi: 10.1007/JHEP06(2015)187 – volume: 08 start-page: 045 year: 2006 ident: CR54 article-title: Aspects of Holographic Entanglement Entropy publication-title: JHEP doi: 10.1088/1126-6708/2006/08/045 – volume: 82 start-page: 277 year: 2010 ident: CR11 article-title: Area laws for the entanglement entropy — a review publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.277 – ident: CR47 – volume: 105 year: 2010 ident: CR9 article-title: Entanglement Entropy and the Fermi Surface publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.050502 – ident: CR2 – volume: 12 start-page: 020 year: 2013 ident: CR60 article-title: Entanglement Temperature and Entanglement Entropy of Excited States publication-title: JHEP doi: 10.1007/JHEP12(2013)020 – volume: 09 start-page: 069 year: 2015 ident: CR28 article-title: On The Entanglement Entropy For Gauge Theories publication-title: JHEP doi: 10.1007/JHEP09(2015)069 – volume: 01 start-page: 136 year: 2016 ident: CR34 article-title: Aspects of Entanglement Entropy for Gauge Theories publication-title: JHEP doi: 10.1007/JHEP01(2016)136 – ident: CR56 – volume: D 93 start-page: 105031 year: 2016 ident: CR35 article-title: Entanglement entropy of a Maxwell field on the sphere publication-title: Phys. Rev. – volume: B 125 start-page: 334 year: 1977 ident: CR55 article-title: Observations on Conformal Anomalies publication-title: Nucl. Phys. doi: 10.1016/0550-3213(77)90410-2 – ident: CR40 – volume: D 92 year: 2015 ident: CR26 article-title: Central Charge and Entangled Gauge Fields publication-title: Phys. Rev. – volume: 89 start-page: 277004 year: 2002 ident: CR43 article-title: Exotic Order in Simple Models of Bosonic Systems publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.277004 – volume: B 68 start-page: 184512 year: 2003 ident: CR45 article-title: Three-dimensional resonating-valence-bond liquids and their excitations publication-title: Phys. Rev. doi: 10.1103/PhysRevB.68.184512 – volume: 02 start-page: 101 year: 2017 ident: CR38 article-title: Entanglement entropy in (3 + 1)-d free U(1) gauge theory publication-title: JHEP doi: 10.1007/JHEP02(2017)101 – ident: CR52 – volume: 07 start-page: 151 year: 2017 ident: CR59 article-title: Bulk locality from modular flow publication-title: JHEP doi: 10.1007/JHEP07(2017)151 – volume: D 89 year: 2014 ident: CR22 article-title: Remarks on entanglement entropy for gauge fields publication-title: Phys. Rev. – ident: CR13 – volume: D 96 start-page: 125008 year: 2017 ident: CR39 article-title: Gauge-invariant Variables and Entanglement Entropy publication-title: Phys. Rev. – volume: D 94 start-page: 104053 year: 2016 ident: CR30 article-title: Geometric entropy and edge modes of the electromagnetic field publication-title: Phys. Rev. – ident: CR7 – volume: 03 start-page: 073 year: 2018 ident: CR42 article-title: Gauge choices and entanglement entropy of two dimensional lattice gauge fields publication-title: JHEP doi: 10.1007/JHEP03(2018)073 – volume: 04 start-page: 122 year: 2015 ident: CR33 article-title: Revisiting Entanglement Entropy of Lattice Gauge Theories publication-title: JHEP doi: 10.1007/JHEP04(2015)122 – ident: CR62 – volume: B 84 start-page: 195120 year: 2011 ident: CR16 article-title: Entanglement Entropy of Gapped Phases and Topological Order in Three dimensions publication-title: Phys. Rev. doi: 10.1103/PhysRevB.84.195120 – volume: 17 start-page: 303 year: 1976 ident: CR57 article-title: On the Duality Condition for Quantum Fields publication-title: J. Math. Phys. doi: 10.1063/1.522898 – volume: 1302 year: 2013 ident: CR3 article-title: Entanglement negativity in extended systems: A field theoretical approach publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/2013/02/P02008 – volume: 118 year: 2017 ident: CR61 article-title: Cornering gapless quantum states via their torus entanglement publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.077202 – volume: 31 start-page: 214003 year: 2014 ident: 9612_CR24 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/31/21/214003 – volume: 04 start-page: 163 year: 2016 ident: 9612_CR31 publication-title: JHEP – ident: 9612_CR36 – volume: 01 start-page: 122 year: 2016 ident: 9612_CR53 publication-title: JHEP doi: 10.1007/JHEP01(2016)122 – volume: D 89 year: 2014 ident: 9612_CR22 publication-title: Phys. Rev. – volume: 12 start-page: 020 year: 2013 ident: 9612_CR60 publication-title: JHEP doi: 10.1007/JHEP12(2013)020 – ident: 9612_CR13 – ident: 9612_CR46 doi: 10.1103/PhysRevB.71.125102 – ident: 9612_CR7 doi: 10.1103/PhysRevLett.96.010404 – volume: 2013 start-page: 198710 year: 2013 ident: 9612_CR1 publication-title: ISRN Cond. Matt. Phys. – volume: 10 start-page: 081 year: 2017 ident: 9612_CR41 publication-title: JHEP doi: 10.1007/JHEP10(2017)081 – ident: 9612_CR47 doi: 10.1103/PhysRevLett.100.047208 – volume: B 84 start-page: 195120 year: 2011 ident: 9612_CR16 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.84.195120 – volume: 111 year: 2013 ident: 9612_CR50 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.037202 – ident: 9612_CR56 – ident: 9612_CR52 doi: 10.1103/PhysRevB.71.045110 – volume: 04 start-page: 122 year: 2015 ident: 9612_CR33 publication-title: JHEP doi: 10.1007/JHEP04(2015)122 – volume: B 665 start-page: 305 year: 2008 ident: 9612_CR17 publication-title: Phys. Lett. doi: 10.1016/j.physletb.2008.05.071 – volume: B 73 year: 2006 ident: 9612_CR48 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.73.035122 – volume: D 93 start-page: 105031 year: 2016 ident: 9612_CR35 publication-title: Phys. Rev. – volume: 1302 year: 2013 ident: 9612_CR3 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/2013/02/P02008 – volume: 06 start-page: 187 year: 2015 ident: 9612_CR29 publication-title: JHEP doi: 10.1007/JHEP06(2015)187 – ident: 9612_CR2 – volume: 03 start-page: 073 year: 2018 ident: 9612_CR42 publication-title: JHEP doi: 10.1007/JHEP03(2018)073 – volume: 114 start-page: 111603 year: 2015 ident: 9612_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.111603 – volume: D 86 year: 2012 ident: 9612_CR4 publication-title: Phys. Rev. – ident: 9612_CR19 – volume: 05 start-page: 036 year: 2011 ident: 9612_CR20 publication-title: JHEP doi: 10.1007/JHEP05(2011)036 – volume: B 94 start-page: 125112 year: 2016 ident: 9612_CR32 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.94.125112 – volume: 6 start-page: 15 year: 2015 ident: 9612_CR12 publication-title: Ann. Rev. Condensed Matter Phys. doi: 10.1146/annurev-conmatphys-031214-014726 – volume: 113 start-page: 13278 year: 2016 ident: 9612_CR10 publication-title: Proc. Nat. Acad. Sci. doi: 10.1073/pnas.1605716113 – volume: 89 start-page: 277004 year: 2002 ident: 9612_CR43 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.277004 – volume: 0406 year: 2004 ident: 9612_CR6 publication-title: J. Stat. Mech. – volume: B 670 start-page: 141 year: 2008 ident: 9612_CR18 publication-title: Phys. Lett. doi: 10.1016/j.physletb.2008.10.032 – volume: 96 start-page: 110404 year: 2006 ident: 9612_CR14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.110404 – volume: 02 start-page: 101 year: 2017 ident: 9612_CR38 publication-title: JHEP doi: 10.1007/JHEP02(2017)101 – ident: 9612_CR62 doi: 10.1017/CBO9781139015509 – volume: 17 start-page: 303 year: 1976 ident: 9612_CR57 publication-title: J. Math. Phys. doi: 10.1063/1.522898 – ident: 9612_CR40 – volume: B 125 start-page: 334 year: 1977 ident: 9612_CR55 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(77)90410-2 – volume: X 1 year: 2011 ident: 9612_CR49 publication-title: Phys. Rev. doi: 10.1103/PhysRevX.1.021002 – volume: B 68 start-page: 184512 year: 2003 ident: 9612_CR45 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.68.184512 – ident: 9612_CR21 – volume: 117 start-page: 131602 year: 2016 ident: 9612_CR51 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.131602 – volume: 07 start-page: 151 year: 2017 ident: 9612_CR59 publication-title: JHEP doi: 10.1007/JHEP07(2017)151 – volume: D 94 start-page: 104053 year: 2016 ident: 9612_CR30 publication-title: Phys. Rev. – volume: 01 start-page: 136 year: 2016 ident: 9612_CR34 publication-title: JHEP doi: 10.1007/JHEP01(2016)136 – volume: 08 start-page: 045 year: 2006 ident: 9612_CR54 publication-title: JHEP doi: 10.1088/1126-6708/2006/08/045 – volume: 09 start-page: 069 year: 2015 ident: 9612_CR28 publication-title: JHEP doi: 10.1007/JHEP09(2015)069 – volume: 31 start-page: 214002 year: 2014 ident: 9612_CR58 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/31/21/214002 – volume: B 424 start-page: 443 year: 1994 ident: 9612_CR5 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(94)90402-2 – volume: D 89 year: 2014 ident: 9612_CR23 publication-title: Phys. Rev. – volume: 82 start-page: 277 year: 2010 ident: 9612_CR11 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.277 – volume: 105 year: 2010 ident: 9612_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.050502 – volume: 12 start-page: 069 year: 2016 ident: 9612_CR37 publication-title: JHEP doi: 10.1007/JHEP12(2016)069 – volume: D 92 year: 2015 ident: 9612_CR26 publication-title: Phys. Rev. – volume: 118 year: 2017 ident: 9612_CR61 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.077202 – volume: B 69 year: 2004 ident: 9612_CR44 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.69.064404 – volume: 96 start-page: 100503 year: 2006 ident: 9612_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.100503 – ident: 9612_CR15 doi: 10.1103/PhysRevLett.96.110405 – volume: D 90 start-page: 105013 year: 2014 ident: 9612_CR27 publication-title: Phys. Rev. – volume: D 96 start-page: 125008 year: 2017 ident: 9612_CR39 publication-title: Phys. Rev. |
SSID | ssj0015190 |
Score | 2.349847 |
Snippet | A
bstract
Despite the seeming simplicity of the theory, calculating (and even defining) entanglement entropy for the Maxwell theory of a U(1) gauge field in... Despite the seeming simplicity of the theory, calculating (and even defining) entanglement entropy for the Maxwell theory of a U(1) gauge field in (3+1)... Abstract Despite the seeming simplicity of the theory, calculating (and even defining) entanglement entropy for the Maxwell theory of a U(1) gauge field in... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Classical and Quantum Gravitation Condensed matter physics Curvature Distillation Elementary Particles Entropy Field theory Gauge theory High energy physics Hilbert space Lattice Quantum Field Theory Mathematical analysis Physics Physics and Astronomy Quantum entanglement Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory String Theory Topological States of Matter |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELyIT6xWycFDe1i72U02WW8qLaVQ9WChtyVPL7otbQX7753so1WhePG42WQ3zCSZb5KZLwhdJ5I5IZgMJFj7gFKXBFKEaeBi7tM2Q2GYT04ePSaDMR1O2OTbVV8-JqykBy4F1xWR4tYR5mDgUEESpXmkLay3hHFP9u5XX7B5tTNVnR8ALglrIp-Qd4eD3jOJ2mDsRIdUOyi1DSqo-n_gy19HooWl6R-g_Qoi4ruya4dox-ZHaLcI1dSLYzR6yjGgNuyDvvPXMvrbP8ynsxWeOjySn35DDhcpiqtbLDG4vLC6LKzB7wWbJp5tMixP0Ljfe3kYBNWlCIGmhC8DQ0CEShCuCdWOCQ0OgWBCxD5jVAGAoqknmDFG2UilMEUVAYQjOTcmkYlO41PUyKe5PUNYm5hyRZmwkaZOqRTAm_LEhFQ5FirVRDe1mDJdMYb7iyvesprruJRr5uUKBVETtdcNZiVZxvaq917u62qe5booAN1nle6zv3TfRK1aa1k19RYZYBhBKKBa-Een1uTm9Zb-nP9Hfy7Qnv9eGe3SQo3l_MNeAmZZqqtieH4BMsLi4g priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA9-IPgifuL8Ig8-zIdq0yVN6ouoTIawKeJgb6VJGl-0ndsE_e-9a9MNBX1smpRySe5-udz9jpDTOBNOKZEFGVj7gHMXB5kKk8B1JKZthsoKTE7uD-LekN-PxMg73KY-rLLRiZWitqVBH_kFmCbFOICV6Gr8HmDVKLxd9SU0lskqqGAFh6_Vm-7g8Wl-jwD4JGwIfUJ5cd_rPrKoDUZPnTHvSWlsUUXZ_wNn_roarSzO3SbZ8FCRXtdzu0WW8mKbrFUhm2a6Q_oPBQX0RjH4u3ipo8DxYVKOv2jpaD_7RMccrVIVvy5pRuHoC1pmmlv6VrFq0vEi03KXDO-6z7e9wBdHCAxnchZYBqLUiknDuHFCGTgYKKFUBzNHNQApniDRjLU6j3QCW1UzQDqZlNbGWWySzh5ZKcoi3yfU2A6XmguVR4Y7rRMAcRoJCrl2ItS6Rc4bMaXGM4djAYvXtOE8ruWaolyhIWqR9nzAuCbN-LvrDcp93g3ZrquGcvKS-s2TqkjL3DHhQHlwxWJtZGRysLlMSCT8b5GjZtZSvwWn6WLBtMhZM5OL13_8z8H_nzok69izjmc5IiuzyUd-DKhkpk_80vsGdNvdHQ priority: 102 providerName: ProQuest |
Title | On the entanglement entropy of Maxwell theory: a condensed matter perspective |
URI | https://link.springer.com/article/10.1007/JHEP12(2018)102 https://www.proquest.com/docview/2158147742 https://doaj.org/article/82b7ef15f7944816bc72ce1231571618 |
Volume | 2018 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_4geBF_MT5MXLwoIfK0iVN6k3H5hCmIg68lSZtvGg3tgnuv_e9tFWm7OAltGlCy8vH-6V5v18AzqJUOq1lGqTo7QMhXBSkuhUHrq2IttnSmSRy8uA-6g_F3Yt8WQFec2F8tHu9Jeln6prsdtfvPvLwHB2WvuAkH7kuceFOnbpDBIdq4wABSatW8PlbacH5eI3-BWD5ay_Uu5jeNmxV2JBdl425Ayt5sQsbPkbTTvdg8FAwhGuMor2L1zLsm24mo_GcjRwbpJ_0J455buL8iqUM17o4rUzzjL17GU02_qFW7sOw133u9IPqNITACq5mQcbRdkZzZbmwTmqLKwEttW4TVdQgchIxKctkmclDE-PYNByhTapUlkVpZOP2AawVoyI_BGaztlBGSJ2HVjhjYkRthhQJhXGyZUwDLmszJbaSCqcTK96SWuS4tGtCdsWMsAHn3xXGpUrG8qI3ZPfvYiRv7TNGk9ekGi2JDo3KHZcOZwuheWSsCm2OTpZLRQr_DTipWy2pxtw0QfCiuUA4i--4qFvy5_GS7zn6R9lj2KTLMprlBNZmk4_8FDHJzDRhVfdum7B-071_fGr6Pklp1Gn6VT6mw_D6CwUx3FU |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgSXqrzE0gI-gNQeQmPHjh0khHh02T62cGil3kL86qVNtruLYP8Uv5GZJN4VSOXWYxw7isbjmc_2zDeEvMorGbSWVVKBt0-ECHlS6bRIQqYwbTPVTmJy8vgkH52Jw3N5vkZ-x1wYDKuMNrE11K6xeEa-B65JMwFghb-fXCdYNQpvV2MJjU4tjvziJ2zZZu8OPsP8vuZ8uH_6aZT0VQUSK5iaJ47BPxjNlGXCBqktIGottc4w5dIAAhEFMrQ4Zzw3Bei4YQARKqWcy6vcIvkSmPw7IssKXFF6-GV5awFoKI30QanaOxztf2N8B1ys3mX9uU30fG2BgL9Q7T8Xsa1_G26SjR6Y0g-dJj0ga75-SO62AaJ29oiMv9YUsCLFUPP6oos5x4dpM1nQJtBx9QuPAWmbGLl4SysKG22waTPv6FXL4Uknq7zOx-TsVoT2hKzXTe2fEmpdJpQRUntuRTCmAMhokA5RmCBTYwbkTRRTaXueciyXcVlGhuVOriXKFRr4gOwsB0w6io6bu35EuS-7Ibd229BML8p-qZaaG-UDkwFMldAsN1Zx68HDM6mwvMCAbMdZK_sFPytX6jkgu3EmV69v-J9n___US3JvdDo-Lo8PTo62yH0c1UXSbJP1-fSHfw54aG5etEpIyffb1vo_8EQWUA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5NnUC8IH6KsgF-AGl7CI1dO3aREGKsVbfRUiEm7S3ETrwXlpS2CPqv8ddxl8StQBpve4xjR9H5fPfZvvsO4GWSKW-MyqIMvX0kpU-izMSDyPc1pW3GJleUnDyZJuNzeXqhLnbgd8iFobDKYBNrQ51Xjs7Ie-iaDJcIVkTPt2ERs-PRu_n3iCpI0U1rKKfRqMhZsf6J27fl25NjnOtXQoyGXz6Mo7bCQOQk16so5_g_1nDtuHReGYfo2ihj-pR-aRGNyAGxteS5LYQdoL5bjnAh0zrPkyxxRMSE5n9X464o7sDu0XA6-7y5w0BsFAcyoVj3TsfDGRcH6HDNIW9PcYIfrMsF_IVx_7mWrb3d6B7cbWEqe9_o1X3YKcoHcKsOF3XLhzD5VDJEjowCz8vLJgKdHhbVfM0qzybZLzoUZHWa5PoNyxhuu9HCLYucXdWMnmy-zfJ8BOc3IrbH0CmrsngCzOV9qa1UphBOemsHCCAtkSNK61VsbRdeBzGlrmUtp-IZ39LAt9zINSW5YoPowsFmwLwh7Li-6xHJfdONmLbrhmpxmbYLNzXC6sJz5dFwScMT67RwBfp7rjQVG-jCfpi1tF3-y3SrrF04DDO5fX3N_zz9_6dewG3U-PTjyfRsD-7QoCasZh86q8WP4hmCo5V93mohg683rfh_AM3GG-I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+entanglement+entropy+of+Maxwell+theory%3A+a+condensed+matter+perspective&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Pretko%2C+Michael&rft.date=2018-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2018&rft.issue=12&rft_id=info:doi/10.1007%2FJHEP12%282018%29102&rft.externalDocID=10_1007_JHEP12_2018_102 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |