On the entanglement entropy of Maxwell theory: a condensed matter perspective

A bstract Despite the seeming simplicity of the theory, calculating (and even defining) entanglement entropy for the Maxwell theory of a U(1) gauge field in (3+1) dimensions has been the subject of controversy. It is generally accepted that the ground state entanglement entropy for a region of linea...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2018; no. 12; pp. 1 - 24
Main Author Pretko, Michael
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2018
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1029-8479
1029-8479
DOI10.1007/JHEP12(2018)102

Cover

Loading…
Abstract A bstract Despite the seeming simplicity of the theory, calculating (and even defining) entanglement entropy for the Maxwell theory of a U(1) gauge field in (3+1) dimensions has been the subject of controversy. It is generally accepted that the ground state entanglement entropy for a region of linear size L behaves as an area law with a subleading logarithm, S = αL 2 − γ log L . While the logarithmic coefficient γ is believed to be universal, there has been disagreement about its precise value. After carefully accounting for subtle boundary corrections, multiple analyses in the high energy literature have converged on an answer related to the conformal trace anomaly, which is only sensitive to the local curvature of the partition. In contrast, a condensed matter treatment of the problem yielded a topological contribution which is not captured by the conformal field theory calculation. In this perspective piece, we review aspects of the various calculations and discuss the resolution of the discrepancy, emphasizing the important role played by charged states (the “extended Hilbert space”) in defining entanglement for a gauge theory. While the trace anomaly result is sufficient for a strictly pure gauge field, coupling the gauge field to dynamical charges of mass m gives a topological contribution to γ which survives even in the m → ∞ limit. For many situations, the topological contribution from dynamical charges is physically meaningful and should be taken into account. We also comment on other common issues of entanglement in gauge theories, such as entanglement distillation, algebraic definitions of entanglement, and gauge-fixing procedures.
AbstractList Despite the seeming simplicity of the theory, calculating (and even defining) entanglement entropy for the Maxwell theory of a U(1) gauge field in (3+1) dimensions has been the subject of controversy. It is generally accepted that the ground state entanglement entropy for a region of linear size L behaves as an area law with a subleading logarithm, S = αL 2 − γ log L . While the logarithmic coefficient γ is believed to be universal, there has been disagreement about its precise value. After carefully accounting for subtle boundary corrections, multiple analyses in the high energy literature have converged on an answer related to the conformal trace anomaly, which is only sensitive to the local curvature of the partition. In contrast, a condensed matter treatment of the problem yielded a topological contribution which is not captured by the conformal field theory calculation. In this perspective piece, we review aspects of the various calculations and discuss the resolution of the discrepancy, emphasizing the important role played by charged states (the “extended Hilbert space”) in defining entanglement for a gauge theory. While the trace anomaly result is sufficient for a strictly pure gauge field, coupling the gauge field to dynamical charges of mass m gives a topological contribution to γ which survives even in the m → ∞ limit. For many situations, the topological contribution from dynamical charges is physically meaningful and should be taken into account. We also comment on other common issues of entanglement in gauge theories, such as entanglement distillation, algebraic definitions of entanglement, and gauge-fixing procedures.
A bstract Despite the seeming simplicity of the theory, calculating (and even defining) entanglement entropy for the Maxwell theory of a U(1) gauge field in (3+1) dimensions has been the subject of controversy. It is generally accepted that the ground state entanglement entropy for a region of linear size L behaves as an area law with a subleading logarithm, S = αL 2 − γ log L . While the logarithmic coefficient γ is believed to be universal, there has been disagreement about its precise value. After carefully accounting for subtle boundary corrections, multiple analyses in the high energy literature have converged on an answer related to the conformal trace anomaly, which is only sensitive to the local curvature of the partition. In contrast, a condensed matter treatment of the problem yielded a topological contribution which is not captured by the conformal field theory calculation. In this perspective piece, we review aspects of the various calculations and discuss the resolution of the discrepancy, emphasizing the important role played by charged states (the “extended Hilbert space”) in defining entanglement for a gauge theory. While the trace anomaly result is sufficient for a strictly pure gauge field, coupling the gauge field to dynamical charges of mass m gives a topological contribution to γ which survives even in the m → ∞ limit. For many situations, the topological contribution from dynamical charges is physically meaningful and should be taken into account. We also comment on other common issues of entanglement in gauge theories, such as entanglement distillation, algebraic definitions of entanglement, and gauge-fixing procedures.
Despite the seeming simplicity of the theory, calculating (and even defining) entanglement entropy for the Maxwell theory of a U(1) gauge field in (3+1) dimensions has been the subject of controversy. It is generally accepted that the ground state entanglement entropy for a region of linear size L behaves as an area law with a subleading logarithm, S = αL2 − γ log L. While the logarithmic coefficient γ is believed to be universal, there has been disagreement about its precise value. After carefully accounting for subtle boundary corrections, multiple analyses in the high energy literature have converged on an answer related to the conformal trace anomaly, which is only sensitive to the local curvature of the partition. In contrast, a condensed matter treatment of the problem yielded a topological contribution which is not captured by the conformal field theory calculation. In this perspective piece, we review aspects of the various calculations and discuss the resolution of the discrepancy, emphasizing the important role played by charged states (the “extended Hilbert space”) in defining entanglement for a gauge theory. While the trace anomaly result is sufficient for a strictly pure gauge field, coupling the gauge field to dynamical charges of mass m gives a topological contribution to γ which survives even in the m → ∞ limit. For many situations, the topological contribution from dynamical charges is physically meaningful and should be taken into account. We also comment on other common issues of entanglement in gauge theories, such as entanglement distillation, algebraic definitions of entanglement, and gauge-fixing procedures.
Abstract Despite the seeming simplicity of the theory, calculating (and even defining) entanglement entropy for the Maxwell theory of a U(1) gauge field in (3+1) dimensions has been the subject of controversy. It is generally accepted that the ground state entanglement entropy for a region of linear size L behaves as an area law with a subleading logarithm, S = αL 2 − γ log L. While the logarithmic coefficient γ is believed to be universal, there has been disagreement about its precise value. After carefully accounting for subtle boundary corrections, multiple analyses in the high energy literature have converged on an answer related to the conformal trace anomaly, which is only sensitive to the local curvature of the partition. In contrast, a condensed matter treatment of the problem yielded a topological contribution which is not captured by the conformal field theory calculation. In this perspective piece, we review aspects of the various calculations and discuss the resolution of the discrepancy, emphasizing the important role played by charged states (the “extended Hilbert space”) in defining entanglement for a gauge theory. While the trace anomaly result is sufficient for a strictly pure gauge field, coupling the gauge field to dynamical charges of mass m gives a topological contribution to γ which survives even in the m → ∞ limit. For many situations, the topological contribution from dynamical charges is physically meaningful and should be taken into account. We also comment on other common issues of entanglement in gauge theories, such as entanglement distillation, algebraic definitions of entanglement, and gauge-fixing procedures.
ArticleNumber 102
Author Pretko, Michael
Author_xml – sequence: 1
  givenname: Michael
  orcidid: 0000-0001-5013-0186
  surname: Pretko
  fullname: Pretko, Michael
  email: michael.pretko@colorado.edu
  organization: Department of Physics and Center for Theory of Quantum Matter, University of Colorado
BookMark eNp9kM1LxDAQxYMo-Hn2WvCih9VMmjapNxE_UfSg55Cm07VLN6lJVt3_3taKiqCXZGZ4vzfD2ySr1lkkZBfoIVAqjq4vz-6B7TMK8gAoWyEb_VtMJBfF6o96nWyGMKMUMijoBrm9s0l8wgRt1Hba4rwvhsa7bpm4OrnVb6_YtoPG-eVxohPjbIU2YJXMdYzokw596NDE5gW3yVqt24A7n_8WeTw_ezi9nNzcXVydntxMDAcRJxWwnJcShAFu6kyaQnCZSZlKAFFSmfEiZ3laVSWysqCclpCzVAtRVbnOTZFukavRt3J6pjrfzLVfKqcb9TFwfqq0j41pUUlWCqwhq0XBuYS8NIIZBJZCJiAH2XvtjV6dd88LDFHN3MLb_nzFIJPAheCsVx2NKuNdCB7rr61A1ZC_GvNXQ_79YCCyX4Rpoo6N68PVTfsPR0cu9BvsFP33PX8h70Sal_o
CitedBy_id crossref_primary_10_1007_JHEP05_2023_084
crossref_primary_10_1007_JHEP08_2019_059
crossref_primary_10_1007_JHEP05_2024_083
crossref_primary_10_21468_SciPostPhys_11_3_052
crossref_primary_10_1007_JHEP09_2020_134
crossref_primary_10_1007_JHEP06_2023_030
crossref_primary_10_1103_PhysRevD_101_065020
Cites_doi 10.1016/j.physletb.2008.05.071
10.1088/0264-9381/31/21/214003
10.1073/pnas.1605716113
10.1007/JHEP01(2016)122
10.1103/PhysRevLett.96.100503
10.1103/PhysRevB.69.064404
10.1007/JHEP12(2016)069
10.1007/JHEP10(2017)081
10.1146/annurev-conmatphys-031214-014726
10.1016/j.physletb.2008.10.032
10.1088/0264-9381/31/21/214002
10.1007/JHEP05(2011)036
10.1016/0550-3213(94)90402-2
10.1103/PhysRevLett.96.110404
10.1103/PhysRevLett.111.037202
10.1103/PhysRevLett.117.131602
10.1103/PhysRevX.1.021002
10.1103/PhysRevB.73.035122
10.1103/PhysRevLett.114.111603
10.1103/PhysRevB.94.125112
10.1007/JHEP06(2015)187
10.1088/1126-6708/2006/08/045
10.1103/RevModPhys.82.277
10.1103/PhysRevLett.105.050502
10.1007/JHEP12(2013)020
10.1007/JHEP09(2015)069
10.1007/JHEP01(2016)136
10.1016/0550-3213(77)90410-2
10.1103/PhysRevLett.89.277004
10.1103/PhysRevB.68.184512
10.1007/JHEP02(2017)101
10.1007/JHEP07(2017)151
10.1007/JHEP03(2018)073
10.1007/JHEP04(2015)122
10.1103/PhysRevB.84.195120
10.1063/1.522898
10.1088/1742-5468/2013/02/P02008
10.1103/PhysRevLett.118.077202
10.1103/PhysRevB.71.125102
10.1103/PhysRevLett.96.010404
10.1103/PhysRevLett.100.047208
10.1103/PhysRevB.71.045110
10.1017/CBO9781139015509
10.1103/PhysRevLett.96.110405
ContentType Journal Article
Copyright The Author(s) 2018
Journal of High Energy Physics is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: The Author(s) 2018
– notice: Journal of High Energy Physics is a copyright of Springer, (2018). All Rights Reserved.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP12(2018)102
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 24
ExternalDocumentID oai_doaj_org_article_82b7ef15f7944816bc72ce1231571618
10_1007_JHEP12_2018_102
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
EJD
ER.
FEDTE
GQ6
GROUPED_DOAJ
H13
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
AAYZH
ABFSG
ABTEG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EMSAF
EPQRW
EQZZN
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PHGZM
PHGZT
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c417t-d1264b817c14cf58c974858838117b085496263ddbe2b9040b1623a77dd6a6c93
IEDL.DBID C24
ISSN 1029-8479
IngestDate Wed Aug 27 01:18:46 EDT 2025
Fri Jul 25 20:03:07 EDT 2025
Tue Jul 01 03:54:02 EDT 2025
Thu Apr 24 22:50:36 EDT 2025
Fri Feb 21 02:29:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Lattice Quantum Field Theory
Topological States of Matter
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-d1264b817c14cf58c974858838117b085496263ddbe2b9040b1623a77dd6a6c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5013-0186
OpenAccessLink https://link.springer.com/10.1007/JHEP12(2018)102
PQID 2158147742
PQPubID 2034718
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_82b7ef15f7944816bc72ce1231571618
proquest_journals_2158147742
crossref_primary_10_1007_JHEP12_2018_102
crossref_citationtrail_10_1007_JHEP12_2018_102
springer_journals_10_1007_JHEP12_2018_102
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References Aoki, Iritani, Nozaki, Numasawa, Shiba, Tasaki (CR29) 2015; 06
Wong, Klich, Pando Zayas, Vaman (CR60) 2013; 12
Wen (CR1) 2013; 2013
Solodukhin (CR17) 2008; B 665
Grover, Turner, Vishwanath (CR16) 2011; B 84
CR36
Agon, Headrick, Jafferis, Kasko (CR23) 2014; D 89
Harlow (CR53) 2016; 01
Faulkner, Lewkowycz (CR59) 2017; 07
Radičević (CR31) 2016; 04
Gioev, Klich (CR8) 2006; 96
Movassagh, Shor (CR10) 2016; 113
Buividovich, Polikarpov (CR18) 2008; B 670
Ghosh, Soni, Trivedi (CR28) 2015; 09
CR2
Van Acoleyen, Bultinck, Haegeman, Marien, Scholz, Verstraete (CR51) 2016; 117
Casini, Huerta (CR35) 2016; D 93
Nozaki, Watamura (CR37) 2016; 12
CR7
CR47
CR46
Wang (CR50) 2013; 111
Donnelly, Wall (CR30) 2016; D 94
Holzhey, Larsen, Wilczek (CR5) 1994; B 424
Nandkishore, Huse (CR12) 2015; 6
CR40
Bianchi, Myers (CR58) 2014; 31
Yang, Hung (CR42) 2018; 03
Pretko, Senthil (CR32) 2016; B 94
Motrunich, Senthil (CR43) 2002; 89
Hermele, Fisher, Balents (CR44) 2004; B 69
Bhattacharyya, Hung, Melby-Thompson (CR41) 2017; 10
Balasubramanian, McDermott, Van Raamsdonk (CR4) 2012; D 86
Casini, Huerta, Myers (CR20) 2011; 05
Levin, Wen (CR48) 2006; B 73
Kitaev, Preskill (CR14) 2006; 96
Ryu, Takayanagi (CR54) 2006; 08
CR19
CR15
CR13
CR56
CR52
Ross, Savary, Gaulin, Balents (CR49) 2011; X 1
Donnelly (CR24) 2014; 31
Donnelly, Wall (CR25) 2015; 114
Eisert, Cramer, Plenio (CR11) 2010; 82
Bisognano, Wichmann (CR57) 1976; 17
Soni, Trivedi (CR34) 2016; 01
Casini, Huerta (CR27) 2014; D 90
Huang (CR26) 2015; D 92
Casini, Huerta, Rosabal (CR22) 2014; D 89
Soni, Trivedi (CR38) 2017; 02
Calabrese, Cardy, Tonni (CR3) 2013; 1302
Agarwal, Karabali, Nair (CR39) 2017; D 96
CR21
Hung, Wan (CR33) 2015; 04
Swingle (CR9) 2010; 105
CR62
Calabrese, Cardy (CR6) 2004; 0406
Moessner, Sondhi (CR45) 2003; B 68
Duff (CR55) 1977; B 125
Witczak-Krempa, Hayward Sierens, Melko (CR61) 2017; 118
K Van Acoleyen (9612_CR51) 2016; 117
9612_CR19
A Bhattacharyya (9612_CR41) 2017; 10
S Ghosh (9612_CR28) 2015; 09
9612_CR13
9612_CR56
9612_CR15
OI Motrunich (9612_CR43) 2002; 89
W Donnelly (9612_CR25) 2015; 114
K-W Huang (9612_CR26) 2015; D 92
M Nozaki (9612_CR37) 2016; 12
9612_CR52
W Donnelly (9612_CR30) 2016; D 94
A Kitaev (9612_CR14) 2006; 96
PV Buividovich (9612_CR18) 2008; B 670
M Hermele (9612_CR44) 2004; B 69
S Aoki (9612_CR29) 2015; 06
9612_CR46
R Moessner (9612_CR45) 2003; B 68
9612_CR47
CA Agon (9612_CR23) 2014; D 89
X-G Wen (9612_CR1) 2013; 2013
M Levin (9612_CR48) 2006; B 73
R Movassagh (9612_CR10) 2016; 113
9612_CR40
G Wong (9612_CR60) 2013; 12
P Calabrese (9612_CR3) 2013; 1302
W Witczak-Krempa (9612_CR61) 2017; 118
B Swingle (9612_CR9) 2010; 105
W Donnelly (9612_CR24) 2014; 31
RM Soni (9612_CR38) 2017; 02
S Ryu (9612_CR54) 2006; 08
D Gioev (9612_CR8) 2006; 96
T Grover (9612_CR16) 2011; B 84
9612_CR36
R Nandkishore (9612_CR12) 2015; 6
D Harlow (9612_CR53) 2016; 01
A Agarwal (9612_CR39) 2017; D 96
H Casini (9612_CR20) 2011; 05
T Faulkner (9612_CR59) 2017; 07
H Casini (9612_CR22) 2014; D 89
H Casini (9612_CR35) 2016; D 93
9612_CR7
9612_CR2
RM Soni (9612_CR34) 2016; 01
P Calabrese (9612_CR6) 2004; 0406
MJ Duff (9612_CR55) 1977; B 125
M Pretko (9612_CR32) 2016; B 94
SN Solodukhin (9612_CR17) 2008; B 665
H Casini (9612_CR27) 2014; D 90
L-Y Hung (9612_CR33) 2015; 04
V Balasubramanian (9612_CR4) 2012; D 86
C Holzhey (9612_CR5) 1994; B 424
J Eisert (9612_CR11) 2010; 82
KA Ross (9612_CR49) 2011; X 1
L Wang (9612_CR50) 2013; 111
9612_CR21
E Bianchi (9612_CR58) 2014; 31
9612_CR62
Z Yang (9612_CR42) 2018; 03
JJ Bisognano (9612_CR57) 1976; 17
D Radičević (9612_CR31) 2016; 04
References_xml – volume: B 665
  start-page: 305
  year: 2008
  ident: CR17
  article-title: Entanglement entropy, conformal invariance and extrinsic geometry
  publication-title: Phys. Lett.
  doi: 10.1016/j.physletb.2008.05.071
– volume: 31
  start-page: 214003
  year: 2014
  ident: CR24
  article-title: Entanglement entropy and nonabelian gauge symmetry
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/31/21/214003
– volume: 113
  start-page: 13278
  year: 2016
  ident: CR10
  article-title: Supercritical entanglement in local systems: Counterexample to the area law for quantum matter
  publication-title: Proc. Nat. Acad. Sci.
  doi: 10.1073/pnas.1605716113
– volume: 01
  start-page: 122
  year: 2016
  ident: CR53
  article-title: Wormholes, Emergent Gauge Fields and the Weak Gravity Conjecture
  publication-title: JHEP
  doi: 10.1007/JHEP01(2016)122
– volume: 0406
  year: 2004
  ident: CR6
  article-title: Entanglement entropy and quantum field theory
  publication-title: J. Stat. Mech.
– volume: 96
  start-page: 100503
  year: 2006
  ident: CR8
  article-title: Entanglement Entropy of Fermions in Any Dimension and the Widom Conjecture
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.100503
– volume: D 89
  year: 2014
  ident: CR23
  article-title: Disk entanglement entropy for a Maxwell field
  publication-title: Phys. Rev.
– volume: B 69
  year: 2004
  ident: CR44
  article-title: Pyrochlore photons: The U(1) spin liquid in a S=12 three-dimensional frustrated magnet
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevB.69.064404
– volume: 12
  start-page: 069
  year: 2016
  ident: CR37
  article-title: Quantum Entanglement of Locally Excited States in Maxwell Theory
  publication-title: JHEP
  doi: 10.1007/JHEP12(2016)069
– volume: 2013
  start-page: 198710
  year: 2013
  ident: CR1
  article-title: Topological order: from long-range entangled quantum matter to an unification of light and electrons
  publication-title: ISRN Cond. Matt. Phys.
– volume: D 86
  year: 2012
  ident: CR4
  article-title: Momentum-space entanglement and renormalization in quantum field theory
  publication-title: Phys. Rev.
– ident: CR21
– volume: 10
  start-page: 081
  year: 2017
  ident: CR41
  article-title: Instantons and Entanglement Entropy
  publication-title: JHEP
  doi: 10.1007/JHEP10(2017)081
– ident: CR46
– ident: CR19
– volume: 6
  start-page: 15
  year: 2015
  ident: CR12
  article-title: Many body localization and thermalization in quantum statistical mechanics
  publication-title: Ann. Rev. Condensed Matter Phys.
  doi: 10.1146/annurev-conmatphys-031214-014726
– volume: B 670
  start-page: 141
  year: 2008
  ident: CR18
  article-title: Entanglement entropy in gauge theories and the holographic principle for electric strings
  publication-title: Phys. Lett.
  doi: 10.1016/j.physletb.2008.10.032
– volume: 31
  start-page: 214002
  year: 2014
  ident: CR58
  article-title: On the Architecture of Spacetime Geometry
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/31/21/214002
– volume: 05
  start-page: 036
  year: 2011
  ident: CR20
  article-title: Towards a derivation of holographic entanglement entropy
  publication-title: JHEP
  doi: 10.1007/JHEP05(2011)036
– ident: CR15
– volume: B 424
  start-page: 443
  year: 1994
  ident: CR5
  article-title: Geometric and renormalized entropy in conformal field theory
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(94)90402-2
– volume: 96
  start-page: 110404
  year: 2006
  ident: CR14
  article-title: Topological entanglement entropy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.110404
– volume: 111
  year: 2013
  ident: CR50
  article-title: Constructing Gapless Spin Liquid State for the Spin-1/2 J -J Heisenberg Model on a Square Lattice
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.037202
– volume: 117
  start-page: 131602
  year: 2016
  ident: CR51
  article-title: The entanglement of distillation for gauge theories
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.131602
– volume: X 1
  year: 2011
  ident: CR49
  article-title: Quantum Excitations in Quantum Spin Ice
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevX.1.021002
– ident: CR36
– volume: 04
  start-page: 163
  year: 2016
  ident: CR31
  article-title: Entanglement in Weakly Coupled Lattice Gauge Theories
  publication-title: JHEP
– volume: B 73
  year: 2006
  ident: CR48
  article-title: Quantum ether: photons and electrons from a rotor model
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevB.73.035122
– volume: 114
  start-page: 111603
  year: 2015
  ident: CR25
  article-title: Entanglement entropy of electromagnetic edge modes
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.111603
– volume: D 90
  start-page: 105013
  year: 2014
  ident: CR27
  article-title: Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice
  publication-title: Phys. Rev.
– volume: B 94
  start-page: 125112
  year: 2016
  ident: CR32
  article-title: Entanglement entropy of U(1) quantum spin liquids
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevB.94.125112
– volume: 06
  start-page: 187
  year: 2015
  ident: CR29
  article-title: On the definition of entanglement entropy in lattice gauge theories
  publication-title: JHEP
  doi: 10.1007/JHEP06(2015)187
– volume: 08
  start-page: 045
  year: 2006
  ident: CR54
  article-title: Aspects of Holographic Entanglement Entropy
  publication-title: JHEP
  doi: 10.1088/1126-6708/2006/08/045
– volume: 82
  start-page: 277
  year: 2010
  ident: CR11
  article-title: Area laws for the entanglement entropy — a review
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.277
– ident: CR47
– volume: 105
  year: 2010
  ident: CR9
  article-title: Entanglement Entropy and the Fermi Surface
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.050502
– ident: CR2
– volume: 12
  start-page: 020
  year: 2013
  ident: CR60
  article-title: Entanglement Temperature and Entanglement Entropy of Excited States
  publication-title: JHEP
  doi: 10.1007/JHEP12(2013)020
– volume: 09
  start-page: 069
  year: 2015
  ident: CR28
  article-title: On The Entanglement Entropy For Gauge Theories
  publication-title: JHEP
  doi: 10.1007/JHEP09(2015)069
– volume: 01
  start-page: 136
  year: 2016
  ident: CR34
  article-title: Aspects of Entanglement Entropy for Gauge Theories
  publication-title: JHEP
  doi: 10.1007/JHEP01(2016)136
– ident: CR56
– volume: D 93
  start-page: 105031
  year: 2016
  ident: CR35
  article-title: Entanglement entropy of a Maxwell field on the sphere
  publication-title: Phys. Rev.
– volume: B 125
  start-page: 334
  year: 1977
  ident: CR55
  article-title: Observations on Conformal Anomalies
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(77)90410-2
– ident: CR40
– volume: D 92
  year: 2015
  ident: CR26
  article-title: Central Charge and Entangled Gauge Fields
  publication-title: Phys. Rev.
– volume: 89
  start-page: 277004
  year: 2002
  ident: CR43
  article-title: Exotic Order in Simple Models of Bosonic Systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.277004
– volume: B 68
  start-page: 184512
  year: 2003
  ident: CR45
  article-title: Three-dimensional resonating-valence-bond liquids and their excitations
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevB.68.184512
– volume: 02
  start-page: 101
  year: 2017
  ident: CR38
  article-title: Entanglement entropy in (3 + 1)-d free U(1) gauge theory
  publication-title: JHEP
  doi: 10.1007/JHEP02(2017)101
– ident: CR52
– volume: 07
  start-page: 151
  year: 2017
  ident: CR59
  article-title: Bulk locality from modular flow
  publication-title: JHEP
  doi: 10.1007/JHEP07(2017)151
– volume: D 89
  year: 2014
  ident: CR22
  article-title: Remarks on entanglement entropy for gauge fields
  publication-title: Phys. Rev.
– ident: CR13
– volume: D 96
  start-page: 125008
  year: 2017
  ident: CR39
  article-title: Gauge-invariant Variables and Entanglement Entropy
  publication-title: Phys. Rev.
– volume: D 94
  start-page: 104053
  year: 2016
  ident: CR30
  article-title: Geometric entropy and edge modes of the electromagnetic field
  publication-title: Phys. Rev.
– ident: CR7
– volume: 03
  start-page: 073
  year: 2018
  ident: CR42
  article-title: Gauge choices and entanglement entropy of two dimensional lattice gauge fields
  publication-title: JHEP
  doi: 10.1007/JHEP03(2018)073
– volume: 04
  start-page: 122
  year: 2015
  ident: CR33
  article-title: Revisiting Entanglement Entropy of Lattice Gauge Theories
  publication-title: JHEP
  doi: 10.1007/JHEP04(2015)122
– ident: CR62
– volume: B 84
  start-page: 195120
  year: 2011
  ident: CR16
  article-title: Entanglement Entropy of Gapped Phases and Topological Order in Three dimensions
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevB.84.195120
– volume: 17
  start-page: 303
  year: 1976
  ident: CR57
  article-title: On the Duality Condition for Quantum Fields
  publication-title: J. Math. Phys.
  doi: 10.1063/1.522898
– volume: 1302
  year: 2013
  ident: CR3
  article-title: Entanglement negativity in extended systems: A field theoretical approach
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/2013/02/P02008
– volume: 118
  year: 2017
  ident: CR61
  article-title: Cornering gapless quantum states via their torus entanglement
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.077202
– volume: 31
  start-page: 214003
  year: 2014
  ident: 9612_CR24
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/31/21/214003
– volume: 04
  start-page: 163
  year: 2016
  ident: 9612_CR31
  publication-title: JHEP
– ident: 9612_CR36
– volume: 01
  start-page: 122
  year: 2016
  ident: 9612_CR53
  publication-title: JHEP
  doi: 10.1007/JHEP01(2016)122
– volume: D 89
  year: 2014
  ident: 9612_CR22
  publication-title: Phys. Rev.
– volume: 12
  start-page: 020
  year: 2013
  ident: 9612_CR60
  publication-title: JHEP
  doi: 10.1007/JHEP12(2013)020
– ident: 9612_CR13
– ident: 9612_CR46
  doi: 10.1103/PhysRevB.71.125102
– ident: 9612_CR7
  doi: 10.1103/PhysRevLett.96.010404
– volume: 2013
  start-page: 198710
  year: 2013
  ident: 9612_CR1
  publication-title: ISRN Cond. Matt. Phys.
– volume: 10
  start-page: 081
  year: 2017
  ident: 9612_CR41
  publication-title: JHEP
  doi: 10.1007/JHEP10(2017)081
– ident: 9612_CR47
  doi: 10.1103/PhysRevLett.100.047208
– volume: B 84
  start-page: 195120
  year: 2011
  ident: 9612_CR16
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevB.84.195120
– volume: 111
  year: 2013
  ident: 9612_CR50
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.037202
– ident: 9612_CR56
– ident: 9612_CR52
  doi: 10.1103/PhysRevB.71.045110
– volume: 04
  start-page: 122
  year: 2015
  ident: 9612_CR33
  publication-title: JHEP
  doi: 10.1007/JHEP04(2015)122
– volume: B 665
  start-page: 305
  year: 2008
  ident: 9612_CR17
  publication-title: Phys. Lett.
  doi: 10.1016/j.physletb.2008.05.071
– volume: B 73
  year: 2006
  ident: 9612_CR48
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevB.73.035122
– volume: D 93
  start-page: 105031
  year: 2016
  ident: 9612_CR35
  publication-title: Phys. Rev.
– volume: 1302
  year: 2013
  ident: 9612_CR3
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/2013/02/P02008
– volume: 06
  start-page: 187
  year: 2015
  ident: 9612_CR29
  publication-title: JHEP
  doi: 10.1007/JHEP06(2015)187
– ident: 9612_CR2
– volume: 03
  start-page: 073
  year: 2018
  ident: 9612_CR42
  publication-title: JHEP
  doi: 10.1007/JHEP03(2018)073
– volume: 114
  start-page: 111603
  year: 2015
  ident: 9612_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.111603
– volume: D 86
  year: 2012
  ident: 9612_CR4
  publication-title: Phys. Rev.
– ident: 9612_CR19
– volume: 05
  start-page: 036
  year: 2011
  ident: 9612_CR20
  publication-title: JHEP
  doi: 10.1007/JHEP05(2011)036
– volume: B 94
  start-page: 125112
  year: 2016
  ident: 9612_CR32
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevB.94.125112
– volume: 6
  start-page: 15
  year: 2015
  ident: 9612_CR12
  publication-title: Ann. Rev. Condensed Matter Phys.
  doi: 10.1146/annurev-conmatphys-031214-014726
– volume: 113
  start-page: 13278
  year: 2016
  ident: 9612_CR10
  publication-title: Proc. Nat. Acad. Sci.
  doi: 10.1073/pnas.1605716113
– volume: 89
  start-page: 277004
  year: 2002
  ident: 9612_CR43
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.277004
– volume: 0406
  year: 2004
  ident: 9612_CR6
  publication-title: J. Stat. Mech.
– volume: B 670
  start-page: 141
  year: 2008
  ident: 9612_CR18
  publication-title: Phys. Lett.
  doi: 10.1016/j.physletb.2008.10.032
– volume: 96
  start-page: 110404
  year: 2006
  ident: 9612_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.110404
– volume: 02
  start-page: 101
  year: 2017
  ident: 9612_CR38
  publication-title: JHEP
  doi: 10.1007/JHEP02(2017)101
– ident: 9612_CR62
  doi: 10.1017/CBO9781139015509
– volume: 17
  start-page: 303
  year: 1976
  ident: 9612_CR57
  publication-title: J. Math. Phys.
  doi: 10.1063/1.522898
– ident: 9612_CR40
– volume: B 125
  start-page: 334
  year: 1977
  ident: 9612_CR55
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(77)90410-2
– volume: X 1
  year: 2011
  ident: 9612_CR49
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevX.1.021002
– volume: B 68
  start-page: 184512
  year: 2003
  ident: 9612_CR45
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevB.68.184512
– ident: 9612_CR21
– volume: 117
  start-page: 131602
  year: 2016
  ident: 9612_CR51
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.131602
– volume: 07
  start-page: 151
  year: 2017
  ident: 9612_CR59
  publication-title: JHEP
  doi: 10.1007/JHEP07(2017)151
– volume: D 94
  start-page: 104053
  year: 2016
  ident: 9612_CR30
  publication-title: Phys. Rev.
– volume: 01
  start-page: 136
  year: 2016
  ident: 9612_CR34
  publication-title: JHEP
  doi: 10.1007/JHEP01(2016)136
– volume: 08
  start-page: 045
  year: 2006
  ident: 9612_CR54
  publication-title: JHEP
  doi: 10.1088/1126-6708/2006/08/045
– volume: 09
  start-page: 069
  year: 2015
  ident: 9612_CR28
  publication-title: JHEP
  doi: 10.1007/JHEP09(2015)069
– volume: 31
  start-page: 214002
  year: 2014
  ident: 9612_CR58
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/31/21/214002
– volume: B 424
  start-page: 443
  year: 1994
  ident: 9612_CR5
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(94)90402-2
– volume: D 89
  year: 2014
  ident: 9612_CR23
  publication-title: Phys. Rev.
– volume: 82
  start-page: 277
  year: 2010
  ident: 9612_CR11
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.277
– volume: 105
  year: 2010
  ident: 9612_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.050502
– volume: 12
  start-page: 069
  year: 2016
  ident: 9612_CR37
  publication-title: JHEP
  doi: 10.1007/JHEP12(2016)069
– volume: D 92
  year: 2015
  ident: 9612_CR26
  publication-title: Phys. Rev.
– volume: 118
  year: 2017
  ident: 9612_CR61
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.077202
– volume: B 69
  year: 2004
  ident: 9612_CR44
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevB.69.064404
– volume: 96
  start-page: 100503
  year: 2006
  ident: 9612_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.100503
– ident: 9612_CR15
  doi: 10.1103/PhysRevLett.96.110405
– volume: D 90
  start-page: 105013
  year: 2014
  ident: 9612_CR27
  publication-title: Phys. Rev.
– volume: D 96
  start-page: 125008
  year: 2017
  ident: 9612_CR39
  publication-title: Phys. Rev.
SSID ssj0015190
Score 2.349847
Snippet A bstract Despite the seeming simplicity of the theory, calculating (and even defining) entanglement entropy for the Maxwell theory of a U(1) gauge field in...
Despite the seeming simplicity of the theory, calculating (and even defining) entanglement entropy for the Maxwell theory of a U(1) gauge field in (3+1)...
Abstract Despite the seeming simplicity of the theory, calculating (and even defining) entanglement entropy for the Maxwell theory of a U(1) gauge field in...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Classical and Quantum Gravitation
Condensed matter physics
Curvature
Distillation
Elementary Particles
Entropy
Field theory
Gauge theory
High energy physics
Hilbert space
Lattice Quantum Field Theory
Mathematical analysis
Physics
Physics and Astronomy
Quantum entanglement
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
String Theory
Topological States of Matter
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELyIT6xWycFDe1i72U02WW8qLaVQ9WChtyVPL7otbQX7753so1WhePG42WQ3zCSZb5KZLwhdJ5I5IZgMJFj7gFKXBFKEaeBi7tM2Q2GYT04ePSaDMR1O2OTbVV8-JqykBy4F1xWR4tYR5mDgUEESpXmkLay3hHFP9u5XX7B5tTNVnR8ALglrIp-Qd4eD3jOJ2mDsRIdUOyi1DSqo-n_gy19HooWl6R-g_Qoi4ruya4dox-ZHaLcI1dSLYzR6yjGgNuyDvvPXMvrbP8ynsxWeOjySn35DDhcpiqtbLDG4vLC6LKzB7wWbJp5tMixP0Ljfe3kYBNWlCIGmhC8DQ0CEShCuCdWOCQ0OgWBCxD5jVAGAoqknmDFG2UilMEUVAYQjOTcmkYlO41PUyKe5PUNYm5hyRZmwkaZOqRTAm_LEhFQ5FirVRDe1mDJdMYb7iyvesprruJRr5uUKBVETtdcNZiVZxvaq917u62qe5booAN1nle6zv3TfRK1aa1k19RYZYBhBKKBa-Een1uTm9Zb-nP9Hfy7Qnv9eGe3SQo3l_MNeAmZZqqtieH4BMsLi4g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA9-IPgifuL8Ig8-zIdq0yVN6ouoTIawKeJgb6VJGl-0ndsE_e-9a9MNBX1smpRySe5-udz9jpDTOBNOKZEFGVj7gHMXB5kKk8B1JKZthsoKTE7uD-LekN-PxMg73KY-rLLRiZWitqVBH_kFmCbFOICV6Gr8HmDVKLxd9SU0lskqqGAFh6_Vm-7g8Wl-jwD4JGwIfUJ5cd_rPrKoDUZPnTHvSWlsUUXZ_wNn_roarSzO3SbZ8FCRXtdzu0WW8mKbrFUhm2a6Q_oPBQX0RjH4u3ipo8DxYVKOv2jpaD_7RMccrVIVvy5pRuHoC1pmmlv6VrFq0vEi03KXDO-6z7e9wBdHCAxnchZYBqLUiknDuHFCGTgYKKFUBzNHNQApniDRjLU6j3QCW1UzQDqZlNbGWWySzh5ZKcoi3yfU2A6XmguVR4Y7rRMAcRoJCrl2ItS6Rc4bMaXGM4djAYvXtOE8ruWaolyhIWqR9nzAuCbN-LvrDcp93g3ZrquGcvKS-s2TqkjL3DHhQHlwxWJtZGRysLlMSCT8b5GjZtZSvwWn6WLBtMhZM5OL13_8z8H_nzok69izjmc5IiuzyUd-DKhkpk_80vsGdNvdHQ
  priority: 102
  providerName: ProQuest
Title On the entanglement entropy of Maxwell theory: a condensed matter perspective
URI https://link.springer.com/article/10.1007/JHEP12(2018)102
https://www.proquest.com/docview/2158147742
https://doaj.org/article/82b7ef15f7944816bc72ce1231571618
Volume 2018
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_4geBF_MT5MXLwoIfK0iVN6k3H5hCmIg68lSZtvGg3tgnuv_e9tFWm7OAltGlCy8vH-6V5v18AzqJUOq1lGqTo7QMhXBSkuhUHrq2IttnSmSRy8uA-6g_F3Yt8WQFec2F8tHu9Jeln6prsdtfvPvLwHB2WvuAkH7kuceFOnbpDBIdq4wABSatW8PlbacH5eI3-BWD5ay_Uu5jeNmxV2JBdl425Ayt5sQsbPkbTTvdg8FAwhGuMor2L1zLsm24mo_GcjRwbpJ_0J455buL8iqUM17o4rUzzjL17GU02_qFW7sOw133u9IPqNITACq5mQcbRdkZzZbmwTmqLKwEttW4TVdQgchIxKctkmclDE-PYNByhTapUlkVpZOP2AawVoyI_BGaztlBGSJ2HVjhjYkRthhQJhXGyZUwDLmszJbaSCqcTK96SWuS4tGtCdsWMsAHn3xXGpUrG8qI3ZPfvYiRv7TNGk9ekGi2JDo3KHZcOZwuheWSsCm2OTpZLRQr_DTipWy2pxtw0QfCiuUA4i--4qFvy5_GS7zn6R9lj2KTLMprlBNZmk4_8FDHJzDRhVfdum7B-071_fGr6Pklp1Gn6VT6mw_D6CwUx3FU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgSXqrzE0gI-gNQeQmPHjh0khHh02T62cGil3kL86qVNtruLYP8Uv5GZJN4VSOXWYxw7isbjmc_2zDeEvMorGbSWVVKBt0-ECHlS6bRIQqYwbTPVTmJy8vgkH52Jw3N5vkZ-x1wYDKuMNrE11K6xeEa-B65JMwFghb-fXCdYNQpvV2MJjU4tjvziJ2zZZu8OPsP8vuZ8uH_6aZT0VQUSK5iaJ47BPxjNlGXCBqktIGottc4w5dIAAhEFMrQ4Zzw3Bei4YQARKqWcy6vcIvkSmPw7IssKXFF6-GV5awFoKI30QanaOxztf2N8B1ys3mX9uU30fG2BgL9Q7T8Xsa1_G26SjR6Y0g-dJj0ga75-SO62AaJ29oiMv9YUsCLFUPP6oos5x4dpM1nQJtBx9QuPAWmbGLl4SysKG22waTPv6FXL4Uknq7zOx-TsVoT2hKzXTe2fEmpdJpQRUntuRTCmAMhokA5RmCBTYwbkTRRTaXueciyXcVlGhuVOriXKFRr4gOwsB0w6io6bu35EuS-7Ibd229BML8p-qZaaG-UDkwFMldAsN1Zx68HDM6mwvMCAbMdZK_sFPytX6jkgu3EmV69v-J9n___US3JvdDo-Lo8PTo62yH0c1UXSbJP1-fSHfw54aG5etEpIyffb1vo_8EQWUA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5NnUC8IH6KsgF-AGl7CI1dO3aREGKsVbfRUiEm7S3ETrwXlpS2CPqv8ddxl8StQBpve4xjR9H5fPfZvvsO4GWSKW-MyqIMvX0kpU-izMSDyPc1pW3GJleUnDyZJuNzeXqhLnbgd8iFobDKYBNrQ51Xjs7Ie-iaDJcIVkTPt2ERs-PRu_n3iCpI0U1rKKfRqMhZsf6J27fl25NjnOtXQoyGXz6Mo7bCQOQk16so5_g_1nDtuHReGYfo2ihj-pR-aRGNyAGxteS5LYQdoL5bjnAh0zrPkyxxRMSE5n9X464o7sDu0XA6-7y5w0BsFAcyoVj3TsfDGRcH6HDNIW9PcYIfrMsF_IVx_7mWrb3d6B7cbWEqe9_o1X3YKcoHcKsOF3XLhzD5VDJEjowCz8vLJgKdHhbVfM0qzybZLzoUZHWa5PoNyxhuu9HCLYucXdWMnmy-zfJ8BOc3IrbH0CmrsngCzOV9qa1UphBOemsHCCAtkSNK61VsbRdeBzGlrmUtp-IZ39LAt9zINSW5YoPowsFmwLwh7Li-6xHJfdONmLbrhmpxmbYLNzXC6sJz5dFwScMT67RwBfp7rjQVG-jCfpi1tF3-y3SrrF04DDO5fX3N_zz9_6dewG3U-PTjyfRsD-7QoCasZh86q8WP4hmCo5V93mohg683rfh_AM3GG-I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+entanglement+entropy+of+Maxwell+theory%3A+a+condensed+matter+perspective&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Pretko%2C+Michael&rft.date=2018-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2018&rft.issue=12&rft_id=info:doi/10.1007%2FJHEP12%282018%29102&rft.externalDocID=10_1007_JHEP12_2018_102
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon