A Method for Measuring Contact Points in Human–Object Interaction Utilizing Infrared Cameras

This article presents a novel method for measuring contact points in human–object interaction. Research in multiple prehension-related fields, e.g., action planning, affordance, motor function, ergonomics, and robotic grasping, benefits from accurate and precise measurements of contact points betwee...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in robotics and AI Vol. 8; p. 800131
Main Authors Hakala, Jussi, Häkkinen, Jukka
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 14.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article presents a novel method for measuring contact points in human–object interaction. Research in multiple prehension-related fields, e.g., action planning, affordance, motor function, ergonomics, and robotic grasping, benefits from accurate and precise measurements of contact points between a subject’s hands and objects. During interaction, the subject’s hands occlude the contact points, which poses a major challenge for direct optical measurement methods. Our method solves the occlusion problem by exploiting thermal energy transfer from the subject’s hand to the object surface during interaction. After the interaction, we measure the heat emitted by the object surface with four high-resolution infrared cameras surrounding the object. A computer-vision algorithm detects the areas in the infrared images where the subject’s fingers have touched the object. A structured light 3D scanner produces a point cloud of the scene, which enables the localization of the object in relation to the infrared cameras. We then use the localization result to project the detected contact points from the infrared camera images to the surface of the 3D model of the object. Data collection with this method is fast, unobtrusive, contactless, markerless, and automated. The method enables accurate measurement of contact points in non-trivially complex objects. Furthermore, the method is extendable to measuring surface contact areas, or patches, instead of contact points. In this article, we present the method and sample grasp measurement results with publicly available objects.
AbstractList This article presents a novel method for measuring contact points in human–object interaction. Research in multiple prehension-related fields, e.g., action planning, affordance, motor function, ergonomics, and robotic grasping, benefits from accurate and precise measurements of contact points between a subject’s hands and objects. During interaction, the subject’s hands occlude the contact points, which poses a major challenge for direct optical measurement methods. Our method solves the occlusion problem by exploiting thermal energy transfer from the subject’s hand to the object surface during interaction. After the interaction, we measure the heat emitted by the object surface with four high-resolution infrared cameras surrounding the object. A computer-vision algorithm detects the areas in the infrared images where the subject’s fingers have touched the object. A structured light 3D scanner produces a point cloud of the scene, which enables the localization of the object in relation to the infrared cameras. We then use the localization result to project the detected contact points from the infrared camera images to the surface of the 3D model of the object. Data collection with this method is fast, unobtrusive, contactless, markerless, and automated. The method enables accurate measurement of contact points in non-trivially complex objects. Furthermore, the method is extendable to measuring surface contact areas, or patches, instead of contact points. In this article, we present the method and sample grasp measurement results with publicly available objects.
This article presents a novel method for measuring contact points in human-object interaction. Research in multiple prehension-related fields, e.g., action planning, affordance, motor function, ergonomics, and robotic grasping, benefits from accurate and precise measurements of contact points between a subject's hands and objects. During interaction, the subject's hands occlude the contact points, which poses a major challenge for direct optical measurement methods. Our method solves the occlusion problem by exploiting thermal energy transfer from the subject's hand to the object surface during interaction. After the interaction, we measure the heat emitted by the object surface with four high-resolution infrared cameras surrounding the object. A computer-vision algorithm detects the areas in the infrared images where the subject's fingers have touched the object. A structured light 3D scanner produces a point cloud of the scene, which enables the localization of the object in relation to the infrared cameras. We then use the localization result to project the detected contact points from the infrared camera images to the surface of the 3D model of the object. Data collection with this method is fast, unobtrusive, contactless, markerless, and automated. The method enables accurate measurement of contact points in non-trivially complex objects. Furthermore, the method is extendable to measuring surface contact areas, or patches, instead of contact points. In this article, we present the method and sample grasp measurement results with publicly available objects.This article presents a novel method for measuring contact points in human-object interaction. Research in multiple prehension-related fields, e.g., action planning, affordance, motor function, ergonomics, and robotic grasping, benefits from accurate and precise measurements of contact points between a subject's hands and objects. During interaction, the subject's hands occlude the contact points, which poses a major challenge for direct optical measurement methods. Our method solves the occlusion problem by exploiting thermal energy transfer from the subject's hand to the object surface during interaction. After the interaction, we measure the heat emitted by the object surface with four high-resolution infrared cameras surrounding the object. A computer-vision algorithm detects the areas in the infrared images where the subject's fingers have touched the object. A structured light 3D scanner produces a point cloud of the scene, which enables the localization of the object in relation to the infrared cameras. We then use the localization result to project the detected contact points from the infrared camera images to the surface of the 3D model of the object. Data collection with this method is fast, unobtrusive, contactless, markerless, and automated. The method enables accurate measurement of contact points in non-trivially complex objects. Furthermore, the method is extendable to measuring surface contact areas, or patches, instead of contact points. In this article, we present the method and sample grasp measurement results with publicly available objects.
Author Hakala, Jussi
Häkkinen, Jukka
AuthorAffiliation Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki , Helsinki , Finland
AuthorAffiliation_xml – name: Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki , Helsinki , Finland
Author_xml – sequence: 1
  givenname: Jussi
  surname: Hakala
  fullname: Hakala, Jussi
– sequence: 2
  givenname: Jukka
  surname: Häkkinen
  fullname: Häkkinen, Jukka
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35237668$$D View this record in MEDLINE/PubMed
BookMark eNpVkktuFDEQhlsoiISQA7BBvWQzg1_jxwYpGgEZKSgsyBbLXV098ajbDrYbCVbcgRtyEjyZECUrl6o-fyXL_8vmKMSATfOakiXn2rwbUuzKkhFGl5oQyumz5oQxIxeGCnH0qD5uznLekcqstOBKvWiO-YpxJaU-ab6dt5-x3MS-HWKqpctz8mHbrmMoDkr7JfpQcutDezFPLvz9_eeq22EdbELBVAkfQ3td_Oh_7a9twpBcwr5du6mO86vm-eDGjGf352lz_fHD1_XF4vLq02Z9frkAQVVZ9EQBZ0AcM0gJEQhGa9L3BrREBOQwEJQgRX0ABwZIkTijHHCnahf4abM5ePvodvY2-cmlnzY6b-8aMW2tS8XDiNY5RUBpybEzQtLeGNFpachKcgXAaXW9P7hu527CHjCU5MYn0qeT4G_sNv6wWmvOKKmCt_eCFL_PmIudfAYcRxcwztkyyVdCSapERd883vWw5P8HVYAeAEgx54TDA0KJ3efA3uXA7nNgDzng_wDskKgW
Cites_doi 10.1016/j.concog.2006.06.003
10.1016/j.foodres.2020.109025
10.1007/s43154-020-00021-6
10.1037/0096-1523.5.4.692
10.1037/0096-1523.25.4.927
10.1007/s10973-020-09665-0
10.1371/journal.pone.0204052
10.1037/xhp0000492
10.1109/LRA.2018.2852777
10.1016/j.jtherbio.2019.01.009
10.1111/eci.13474
10.1016/j.humov.2004.08.004
10.1109/THMS.2017.2681423
10.1177/0278364917700714
10.1007/s002210050658
10.1126/scirobotics.aay4663
10.3200/JMBR.40.5.446-476
10.1007/s00221-006-0840-9
10.1109/lra.2020.2974391
10.1109/MRA.2004.1371616
10.1126/scirobotics.abd9461
10.1007/s13198-020-00958-z
10.1016/j.enbuild.2021.110989
10.1109/ICAR.2015.7251504
10.1007/BFb0052986
10.1016/s0166-4328(05)80253-0
10.1109/TASE.2015.2396014
10.1007/s00221-005-0277-6
10.1167/13.8.23
ContentType Journal Article
Copyright Copyright © 2022 Hakala and Häkkinen.
Copyright © 2022 Hakala and Häkkinen. 2022 Hakala and Häkkinen
Copyright_xml – notice: Copyright © 2022 Hakala and Häkkinen.
– notice: Copyright © 2022 Hakala and Häkkinen. 2022 Hakala and Häkkinen
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/frobt.2021.800131
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Hakala and Häkkinen
EISSN 2296-9144
ExternalDocumentID oai_doaj_org_article_aa70c7863eb9461d994b86905637cc31
PMC8883210
35237668
10_3389_frobt_2021_800131
Genre Journal Article
Review
GrantInformation_xml – fundername: ;
  grantid: 4331/31/2016
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
PGMZT
RPM
IAO
ICD
IEA
IPNFZ
ISR
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c417t-d07c32c0a29e1004ec9880dd9c86eece3cf0e6c648433c2ce1e0a97ac3a7c64c3
IEDL.DBID DOA
ISSN 2296-9144
IngestDate Wed Aug 27 01:29:35 EDT 2025
Thu Aug 21 14:09:28 EDT 2025
Thu Jul 10 22:24:03 EDT 2025
Thu Jan 02 22:56:32 EST 2025
Tue Jul 01 03:44:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords grasping
touch
infrared camera
contact point
prehension movements
Language English
License Copyright © 2022 Hakala and Häkkinen.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-d07c32c0a29e1004ec9880dd9c86eece3cf0e6c648433c2ce1e0a97ac3a7c64c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Reviewed by: Kai Wang, China United Network Communications Group, China
Alexander Rassau, Edith Cowan University, Australia
Edited by: Antonios Gasteratos, Democritus University of Thrace, Greece
This article was submitted to Robot and Machine Vision, a section of the journal Frontiers in Robotics and AI
Ruediger Dillmann, Karlsruhe Institute of Technology (KIT), Germany
OpenAccessLink https://doaj.org/article/aa70c7863eb9461d994b86905637cc31
PMID 35237668
PQID 2635476174
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_aa70c7863eb9461d994b86905637cc31
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8883210
proquest_miscellaneous_2635476174
pubmed_primary_35237668
crossref_primary_10_3389_frobt_2021_800131
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-14
PublicationDateYYYYMMDD 2022-02-14
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-14
  day: 14
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in robotics and AI
PublicationTitleAlternate Front Robot AI
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Kleinholdermann (B28) 2013; 13
Gentilucci (B21) 1992; 47
Goldfeder (B23) 2009
Gizińska (B22) 2021; 145
Kita (B26) 1998; 1371
Cai (B4) 2017; 47
Gabellieri (B20) 2020; 5
Duan (B15) 2021; 244
Bridgeman (B3) 1979; 5
Charusta (B8) 2012
Chu (B11) 2018; 3
Cressman (B12) 2007; 16
Khera (B25) 2020; 11
Cesari (B7) 1999; 25
Choi (B10) 2004; 23
Calli (B5) 2017; 36
ElMasry (B17) 2020; 131
Fan (B18) 2006; 171
Lyubanenko (B29) 2017
Chen (B9) 2018; 44
Song (B37) 2016; 13
Zatsiorsky (B40) 2008; 40
Oikonomidis (B33) 2011
Cui (B13) 2021; 6
Ansuini (B1) 2007; 180
Martinez‐Jimenez (B30) 2021; 51
Yang (B39) 2015
Bock (B2) 1999; 125
Naeemabadi (B32) 2018; 13
Calli (B6) 2015
Miller (B31) 2004; 11
Sridhar (B38) 2016
Ivašić-Kos (B24) 2019
(B19) 2016
Shilco (B35) 2019; 80
Siddharth (B36) 2016
(B34) 2018
Do (B14) 2018
Edmonds (B16) 2019; 4
Kleeberger (B27) 2020; 1
References_xml – start-page: 4162
  year: 2012
  ident: B8
  article-title: Independent Contact Regions Based on a Patch Contact Model
– volume: 16
  start-page: 265
  year: 2007
  ident: B12
  article-title: On-Line Control of Pointing Is Modified by Unseen Visual Shapes
  publication-title: Conscious. Cogn.
  doi: 10.1016/j.concog.2006.06.003
– volume: 131
  start-page: 109025
  year: 2020
  ident: B17
  article-title: Emerging thermal Imaging Techniques for Seed Quality Evaluation: Principles and Applications
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2020.109025
– volume: 1
  start-page: 239
  year: 2020
  ident: B27
  article-title: A Survey on Learning-Based Robotic Grasping
  publication-title: Curr. Robot Rep.
  doi: 10.1007/s43154-020-00021-6
– volume: 5
  start-page: 692
  year: 1979
  ident: B3
  article-title: Relation between Cognitive and Motor-Oriented Systems of Visual Position Perception
  publication-title: J. Exp. Psychol. Hum. Perception Perform.
  doi: 10.1037/0096-1523.5.4.692
– volume: 25
  start-page: 927
  year: 1999
  ident: B7
  article-title: The Scaling of Human Grip Configurations
  publication-title: J. Exp. Psychol. Hum. Perception Perform.
  doi: 10.1037/0096-1523.25.4.927
– volume-title: FLIR A65 FOV 45 (30 Hz, Ver. 2016) Product Documentation
  year: 2016
  ident: B19
– start-page: 63
  volume-title: Multi-camera Finger Tracking and 3D Trajectory Reconstruction for HCI Studies
  year: 2017
  ident: B29
– volume: 145
  start-page: 77
  year: 2021
  ident: B22
  article-title: Thermal Imaging for Detecting Temperature Changes within the Rheumatoid Foot
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-020-09665-0
– volume: 13
  start-page: e0204052
  year: 2018
  ident: B32
  article-title: Investigating the Impact of a Motion Capture System on Microsoft Kinect V2 Recordings: A Caution for Using the Technologies Together
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0204052
– start-page: 1
  year: 2011
  ident: B33
  article-title: Efficient Model-Based 3D Tracking of Hand Articulations Using Kinect
– start-page: 400
  year: 2015
  ident: B39
  article-title: Grasp Type Revisited: A Modern Perspective on a Classical Feature for Vision
– volume: 44
  start-page: 953
  year: 2018
  ident: B9
  article-title: Volitional and Automatic Control of the Hand when Reaching to Grasp Objects
  publication-title: J. Exp. Psychol. Hum. Perception Perform.
  doi: 10.1037/xhp0000492
– volume: 3
  start-page: 3355
  year: 2018
  ident: B11
  article-title: Real-World Multiobject, Multigrasp Detection
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2018.2852777
– start-page: 20
  year: 2019
  ident: B24
  article-title: Human Detection in thermal Imaging Using YOLO
– volume: 80
  start-page: 82
  year: 2019
  ident: B35
  article-title: Normative Surface Skin Temperature Changes Due to Blood Redistribution: A Prospective Study
  publication-title: J. Therm. Biol.
  doi: 10.1016/j.jtherbio.2019.01.009
– volume: 51
  start-page: e13474
  year: 2021
  ident: B30
  article-title: Diagnostic Accuracy of Infrared thermal Imaging for Detecting COVID‐19 Infection in Minimally Symptomatic Patients
  publication-title: Eur. J. Clin. Invest.
  doi: 10.1111/eci.13474
– year: 2018
  ident: B34
  article-title: PhoXi® 3D Scanner User Manual and Installation Instructions 01/2018, Rev
– volume: 23
  start-page: 785
  year: 2004
  ident: B10
  article-title: Scaling Affordances for Human Reach Actions
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/j.humov.2004.08.004
– volume: 47
  start-page: 524
  year: 2017
  ident: B4
  article-title: An Ego-Vision System for Hand Grasp Analysis
  publication-title: IEEE Trans. Human-Mach. Syst.
  doi: 10.1109/THMS.2017.2681423
– volume: 36
  start-page: 261
  year: 2017
  ident: B5
  article-title: Yale-CMU-Berkeley Dataset for Robotic Manipulation Research
  publication-title: Int. J. Robotics Res.
  doi: 10.1177/0278364917700714
– volume: 125
  start-page: 61
  year: 1999
  ident: B2
  article-title: Reprogramming of Grip Aperture in a Double-Step Virtual Grasping Paradigm
  publication-title: Exp. Brain Res.
  doi: 10.1007/s002210050658
– volume: 4
  start-page: eaay4663
  year: 2019
  ident: B16
  article-title: A Tale of Two Explanations: Enhancing Human Trust by Explaining Robot Behavior
  publication-title: Sci. Robot
  doi: 10.1126/scirobotics.aay4663
– volume: 40
  start-page: 446
  year: 2008
  ident: B40
  article-title: Multifinger Prehension: An Overview
  publication-title: J. Mot. Behav.
  doi: 10.3200/JMBR.40.5.446-476
– volume: 180
  start-page: 85
  year: 2007
  ident: B1
  article-title: Control of Hand Shaping in Response to Object Shape Perturbation
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-006-0840-9
– volume: 5
  start-page: 2808
  year: 2020
  ident: B20
  article-title: Grasp it Like a Pro: Grasp of Unknown Objects with Robotic Hands Based on Skilled Human Expertise
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/lra.2020.2974391
– volume: 11
  start-page: 110
  year: 2004
  ident: B31
  article-title: GraspIt!
  publication-title: IEEE Robot. Automat. Mag.
  doi: 10.1109/MRA.2004.1371616
– volume: 6
  start-page: eabd9461
  year: 2021
  ident: B13
  article-title: Toward Next-Generation Learned Robot Manipulation
  publication-title: Sci. Robot
  doi: 10.1126/scirobotics.abd9461
– volume: 11
  start-page: 614
  year: 2020
  ident: B25
  article-title: Valve Regulated lead Acid Battery Diagnostic System Based on Infrared thermal Imaging and Fuzzy Algorithm
  publication-title: Int. J. Syst. Assur. Eng. Manag.
  doi: 10.1007/s13198-020-00958-z
– start-page: 2545
  year: 2016
  ident: B36
  article-title: Driver Hand Localization and Grasp Analysis: A Vision-Based Real-Time Approach
– volume: 244
  start-page: 110989
  year: 2021
  ident: B15
  article-title: Real-Time Surveillance-Video-Based Personalized thermal comfort Recognition
  publication-title: Energy and Buildings
  doi: 10.1016/j.enbuild.2021.110989
– year: 2015
  ident: B6
  article-title: The YCB Object and Model Set: Towards Common Benchmarks for Manipulation Research
  doi: 10.1109/ICAR.2015.7251504
– volume: 1371
  start-page: 23
  year: 1998
  ident: B26
  article-title: Movement Phases in Signs and Co-Speech Gestures, and Their Transcription by Human Coders
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/BFb0052986
– volume: 47
  start-page: 71
  year: 1992
  ident: B21
  article-title: Temporal Coupling between Transport and Grasp Components during Prehension Movements: Effects of Visual Perturbation
  publication-title: Behav. Brain Res.
  doi: 10.1016/s0166-4328(05)80253-0
– volume: 13
  start-page: 798
  year: 2016
  ident: B37
  article-title: Learning to Detect Visual Grasp Affordance
  publication-title: IEEE Trans. Automat. Sci. Eng.
  doi: 10.1109/TASE.2015.2396014
– volume: 171
  start-page: 283
  year: 2006
  ident: B18
  article-title: Control of Hand Orientation and Arm Movement during Reach and Grasp
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-005-0277-6
– start-page: 294
  volume-title: Lecture Notes in Computer Science
  year: 2016
  ident: B38
  article-title: Real-Time Joint Tracking of a Hand Manipulating an Object from RGB-D Input
– start-page: 1710
  year: 2009
  ident: B23
  article-title: The Columbia Grasp Database
– start-page: 5882
  year: 2018
  ident: B14
  article-title: Affordancenet: An End-To-End Deep Learning Approach for Object Affordance Detection
– volume: 13
  start-page: 23
  year: 2013
  ident: B28
  article-title: Human Grasp point Selection
  publication-title: J. Vis.
  doi: 10.1167/13.8.23
SSID ssj0001584377
Score 2.173635
SecondaryResourceType review_article
Snippet This article presents a novel method for measuring contact points in human–object interaction. Research in multiple prehension-related fields, e.g., action...
This article presents a novel method for measuring contact points in human-object interaction. Research in multiple prehension-related fields, e.g., action...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 800131
SubjectTerms contact point
grasping
infrared camera
prehension movements
Robotics and AI
touch
Title A Method for Measuring Contact Points in Human–Object Interaction Utilizing Infrared Cameras
URI https://www.ncbi.nlm.nih.gov/pubmed/35237668
https://www.proquest.com/docview/2635476174
https://pubmed.ncbi.nlm.nih.gov/PMC8883210
https://doaj.org/article/aa70c7863eb9461d994b86905637cc31
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT-WAoHwFKDISJ6TQxHb8cSwVVUEqcGClnrCciS0ioSzaTS-c-A_8w_4SZuxttYuQuHCL7ESx3sTxm7HnDWMvkSWYrjOmTgZErZBz1E6GoXaqTTakLoScKHz-QZ8t1PuL7mKr1BedCSvywAW4oxBMA8ZqGXundDs4p3qqotRpaQByBrXANW_LmSr5wVZJY8o2Jnph7iitlj2dnRTta5tFZnYWoqzX_zeS-edZya3F5_Quu7Nhjfy4jPYeuxWnA3Z7S0vwPvtyzM9zNWiONBQvKfSHHZzkpwLM_NNynOY1Hyee4_ZXP3997CkGw3NMsKQ38MU8fht_0GPvprSis-n8JFDYav2ALU7ffj45qzfFE2pQrZnroTEgBTRBuEiqcBEcTtVhcGB1jBAlpCZq0AqBkiAgtrEJzgSQwWAryIdsb1pO8THjIikQITQWEjqPqUGzo58lRHDRBd13FXt1jaT_XjQyPPoWBLvPsHuC3RfYK_aGsL65keStcwMa3W-M7v9l9Iq9uLaUx-lAexxhisvLtSdtHWWQlqmKPSqWu3kVck38nWpbMbNj052x7PZM49csuW0tVXRqnvyPwT9l-4JyKKiqjHrG9ubVZTxEZjP3z_NH_Bt5Ofgv
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+for+Measuring+Contact+Points+in+Human%E2%80%93Object+Interaction+Utilizing+Infrared+Cameras&rft.jtitle=Frontiers+in+robotics+and+AI&rft.au=Hakala%2C+Jussi&rft.au=H%C3%A4kkinen%2C+Jukka&rft.date=2022-02-14&rft.issn=2296-9144&rft.eissn=2296-9144&rft.volume=8&rft_id=info:doi/10.3389%2Ffrobt.2021.800131&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_frobt_2021_800131
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-9144&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-9144&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-9144&client=summon