Qudits and High-Dimensional Quantum Computing
Qudit is a multi-level computational unit alternative to the conventional 2-level qubit. Compared to qubit, qudit provides a larger state space to store and process information, and thus can provide reduction of the circuit complexity, simplification of the experimental setup and enhancement of the...
Saved in:
Published in | Frontiers in physics Vol. 8 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
10.11.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2296-424X 2296-424X |
DOI | 10.3389/fphy.2020.589504 |
Cover
Loading…
Abstract | Qudit is a multi-level computational unit alternative to the conventional 2-level qubit. Compared to qubit, qudit provides a larger state space to store and process information, and thus can provide reduction of the circuit complexity, simplification of the experimental setup and enhancement of the algorithm efficiency. This review provides an overview of qudit-based quantum computing covering a variety of topics ranging from circuit building, algorithm design, to experimental methods. We first discuss the qudit gate universality and a variety of qudit gates including the pi/8 gate, the SWAP gate, and the multi-level controlled-gate. We then present the qudit version of several representative quantum algorithms including the Deutsch-Jozsa algorithm, the quantum Fourier transform, and the phase estimation algorithm. Finally we discuss various physical realizations for qudit computation such as the photonic platform, iron trap, and nuclear magnetic resonance. |
---|---|
AbstractList | Qudit is a multi-level computational unit alternative to the conventional 2-level qubit. Compared to qubit, qudit provides a larger state space to store and process information, and thus can provide reduction of the circuit complexity, simplification of the experimental setup and enhancement of the algorithm efficiency. This review provides an overview of qudit-based quantum computing covering a variety of topics ranging from circuit building, algorithm design, to experimental methods. We first discuss the qudit gate universality and a variety of qudit gates including the pi/8 gate, the SWAP gate, and the multi-level controlled-gate. We then present the qudit version of several representative quantum algorithms including the Deutsch-Jozsa algorithm, the quantum Fourier transform, and the phase estimation algorithm. Finally we discuss various physical realizations for qudit computation such as the photonic platform, iron trap, and nuclear magnetic resonance. |
Author | Kais, Sabre Wang, Yuchen Sanders, Barry C. Hu, Zixuan |
Author_xml | – sequence: 1 givenname: Yuchen surname: Wang fullname: Wang, Yuchen – sequence: 2 givenname: Zixuan surname: Hu fullname: Hu, Zixuan – sequence: 3 givenname: Barry C. surname: Sanders fullname: Sanders, Barry C. – sequence: 4 givenname: Sabre surname: Kais fullname: Kais, Sabre |
BookMark | eNp1kMtKA0EQRRtRMMbsXc4PTKzu6enHUuIjgYAEFNw1lX4kHeYRZnoW-XsToyCCq7oUnEvVuSGXTdt4Qu4oTItC6fuw3x6mDBhMS6VL4BdkxJgWOWf84_JXviaTvt8BAGWlVoyPSL4aXEx9ho3L5nGzzR9j7Zs-tg1W2WrAJg11Nmvr_ZBis7klVwGr3k--55i8Pz-9zeb58vVlMXtY5pZTmXIHUgm7DqEQWtkygGbOerl2paRCFAVF7UEHFdbUSSYtCwq54kJSAHSOF2OyOPe6Fndm38Uau4NpMZqvRdttDHYp2sobZYUMAsoSnedBc-3AB_ROS8VkodixS5y7bNf2feeDsTFhOn6YOoyVoWBODs3JoTk5NGeHRxD-gD-H_It8AttsdlY |
CitedBy_id | crossref_primary_10_1103_PhysRevA_106_022609 crossref_primary_10_1088_1367_2630_acdf77 crossref_primary_10_1140_epjp_s13360_024_05751_6 crossref_primary_10_1088_1402_4896_adbec6 crossref_primary_10_1140_epja_s10050_024_01347_x crossref_primary_10_1007_s11128_020_02927_8 crossref_primary_10_1088_2040_8986_ada0c5 crossref_primary_10_1038_s41534_024_00829_6 crossref_primary_10_21468_SciPostPhysCore_7_2_032 crossref_primary_10_1103_PhysRevD_106_L091502 crossref_primary_10_1126_sciadv_ado3472 crossref_primary_10_1038_s42005_023_01370_2 crossref_primary_10_1103_PhysRevLett_134_050601 crossref_primary_10_1038_s41534_025_01007_y crossref_primary_10_1088_1572_9494_ad5664 crossref_primary_10_1103_PhysRevA_108_032420 crossref_primary_10_1103_PhysRevA_108_062616 crossref_primary_10_1088_1674_1056_ad02e4 crossref_primary_10_1103_PhysRevA_106_032424 crossref_primary_10_1142_S0219749923500478 crossref_primary_10_1007_s10773_024_05569_z crossref_primary_10_1103_PhysRevA_109_022441 crossref_primary_10_1103_PhysRevB_109_085128 crossref_primary_10_1063_5_0237842 crossref_primary_10_3390_e26100857 crossref_primary_10_1088_2058_9565_ad7be7 crossref_primary_10_1103_PhysRevLett_133_143403 crossref_primary_10_1103_PhysRevA_108_062609 crossref_primary_10_22331_q_2023_01_19_902 crossref_primary_10_1103_PhysRevApplied_22_064002 crossref_primary_10_22331_q_2024_09_12_1472 crossref_primary_10_1038_s41567_025_02797_w crossref_primary_10_1134_S0040577924120018 crossref_primary_10_1038_s41467_022_28767_x crossref_primary_10_1103_PhysRevA_109_012621 crossref_primary_10_54503_0002_3035_2024_59_1_41 crossref_primary_10_1103_PhysRevA_110_012205 crossref_primary_10_3389_frqst_2023_1228208 crossref_primary_10_1088_1367_2630_ad6635 crossref_primary_10_1088_1674_1056_accb48 crossref_primary_10_1103_PhysRevA_109_022431 crossref_primary_10_1103_PhysRevApplied_19_064026 crossref_primary_10_1002_adma_202405006 crossref_primary_10_1103_PhysRevApplied_19_064024 crossref_primary_10_1088_1361_6455_ac8d3f crossref_primary_10_1103_PhysRevLett_133_010202 crossref_primary_10_1088_1402_4896_ad0006 crossref_primary_10_1063_5_0223431 crossref_primary_10_22331_q_2025_03_12_1661 crossref_primary_10_1103_PhysRevD_111_043038 crossref_primary_10_1109_LCA_2024_3483840 crossref_primary_10_1007_s13222_024_00467_4 crossref_primary_10_1038_s41598_023_29211_w crossref_primary_10_1103_PhysRevA_109_032229 crossref_primary_10_1063_5_0106615 crossref_primary_10_22331_q_2022_09_08_798 crossref_primary_10_1134_S0040577924040032 crossref_primary_10_22331_q_2024_01_31_1238 crossref_primary_10_1002_ange_202214668 crossref_primary_10_1103_PhysRevA_110_062208 crossref_primary_10_1103_PhysRevLett_131_171902 crossref_primary_10_1103_PhysRevLett_132_060603 crossref_primary_10_1103_PhysRevA_110_033718 crossref_primary_10_1038_s41598_022_16225_z crossref_primary_10_1103_PhysRevA_106_022412 crossref_primary_10_1007_s11128_020_02851_x crossref_primary_10_1007_s42484_024_00146_3 crossref_primary_10_1021_acs_inorgchem_1c01267 crossref_primary_10_1103_PhysRevX_13_021028 crossref_primary_10_1140_epja_s10050_023_01141_1 crossref_primary_10_1103_PhysRevResearch_5_L032006 crossref_primary_10_1088_1402_4896_acf740 crossref_primary_10_3390_e24070963 crossref_primary_10_1038_s41534_024_00892_z crossref_primary_10_4213_tmf10730 crossref_primary_10_1016_j_future_2024_107632 crossref_primary_10_1007_s42484_023_00125_0 crossref_primary_10_1103_PhysRevResearch_7_L012049 crossref_primary_10_1016_j_asoc_2024_112096 crossref_primary_10_4213_tmf10618 crossref_primary_10_1002_qute_202400057 crossref_primary_10_1016_j_jocs_2024_102454 crossref_primary_10_1016_j_optlastec_2023_109381 crossref_primary_10_1002_qute_202400295 crossref_primary_10_1007_s11128_025_04679_9 crossref_primary_10_1038_s41598_023_39906_9 crossref_primary_10_1134_S1995080224600110 crossref_primary_10_1038_s41598_021_83521_5 crossref_primary_10_1103_PhysRevApplied_22_034003 crossref_primary_10_1364_JOSAB_481720 crossref_primary_10_1088_1402_4896_ad80e7 crossref_primary_10_1007_s10773_024_05832_3 crossref_primary_10_1109_TIT_2024_3486278 crossref_primary_10_1109_ACCESS_2024_3411307 crossref_primary_10_1007_s11432_022_3602_0 crossref_primary_10_1021_jacs_3c12008 crossref_primary_10_1103_PhysRevA_106_062402 crossref_primary_10_1007_s11128_022_03792_3 crossref_primary_10_1038_s41586_024_08365_1 crossref_primary_10_1103_PRXQuantum_4_040333 crossref_primary_10_21468_SciPostPhys_17_5_136 crossref_primary_10_1103_PhysRevResearch_6_013202 crossref_primary_10_1039_D4CP02405B crossref_primary_10_1103_PhysRevApplied_22_044072 crossref_primary_10_1140_epjqt_s40507_024_00236_y crossref_primary_10_22331_q_2024_12_10_1557 crossref_primary_10_1103_PhysRevA_105_062453 crossref_primary_10_1119_5_0062128 crossref_primary_10_1103_PhysRevResearch_4_043135 crossref_primary_10_7566_JPSJ_90_114002 crossref_primary_10_3389_fphy_2022_900612 crossref_primary_10_1103_PhysRevA_103_052605 crossref_primary_10_1364_OE_500848 crossref_primary_10_1103_PhysRevA_107_052215 crossref_primary_10_22331_q_2022_05_09_708 crossref_primary_10_1088_1367_2630_ad1d0e crossref_primary_10_1038_s42005_022_01017_8 crossref_primary_10_4204_EPTCS_384_13 crossref_primary_10_1103_PhysRevB_111_054525 crossref_primary_10_1134_S0021364024604214 crossref_primary_10_1007_s10773_023_05339_3 crossref_primary_10_1103_PhysRevB_106_165130 crossref_primary_10_1002_anie_202214668 crossref_primary_10_1103_PhysRevA_109_022612 crossref_primary_10_1103_PhysRevLett_133_153602 crossref_primary_10_1103_PRXQuantum_5_020346 crossref_primary_10_1063_5_0174472 crossref_primary_10_1021_acs_jctc_4c00874 crossref_primary_10_1088_1751_8121_ad1ea4 crossref_primary_10_1103_PhysRevApplied_22_054067 crossref_primary_10_1038_s41467_022_35773_6 crossref_primary_10_1103_PhysRevResearch_6_013101 crossref_primary_10_1021_acsnano_4c14327 crossref_primary_10_1088_1367_2630_adb903 crossref_primary_10_1088_1751_8121_acbace crossref_primary_10_1103_PRXQuantum_4_030327 crossref_primary_10_1002_qua_26990 crossref_primary_10_1038_s41467_025_57557_4 crossref_primary_10_1103_PhysRevLett_127_040502 crossref_primary_10_1088_2058_9565_ad37d4 crossref_primary_10_1038_s41534_024_00934_6 crossref_primary_10_1016_j_mex_2023_102136 crossref_primary_10_1103_PhysRevLett_129_160501 crossref_primary_10_1103_PhysRevResearch_5_033105 crossref_primary_10_1007_s12045_023_1723_0 crossref_primary_10_1088_1572_9494_ad48fb crossref_primary_10_1002_adma_202109621 crossref_primary_10_1140_epjs_s11734_023_00977_4 crossref_primary_10_1088_1572_9494_ad84bc crossref_primary_10_1103_PhysRevA_105_042434 crossref_primary_10_1103_PhysRevA_106_012429 crossref_primary_10_1049_qtc2_12058 crossref_primary_10_3390_math11092018 crossref_primary_10_21468_SciPostPhys_16_2_043 crossref_primary_10_1364_AOP_497143 crossref_primary_10_1103_PhysRevResearch_6_013008 crossref_primary_10_1038_s41567_022_01658_0 crossref_primary_10_1088_2058_9565_ad7315 crossref_primary_10_1103_PhysRevApplied_18_034047 crossref_primary_10_55859_ijiss_1294840 crossref_primary_10_1038_s41567_024_02745_0 crossref_primary_10_1364_OE_486855 crossref_primary_10_3390_software3040024 crossref_primary_10_1103_PhysRevA_105_042424 crossref_primary_10_1103_PhysRevA_105_032621 crossref_primary_10_1038_s41534_022_00648_7 crossref_primary_10_22331_q_2025_02_26_1647 crossref_primary_10_1007_s12596_023_01506_1 crossref_primary_10_1038_s41586_022_05339_z crossref_primary_10_1103_PhysRevA_105_023113 crossref_primary_10_1103_PhysRevA_106_062428 crossref_primary_10_1103_PhysRevA_110_062602 crossref_primary_10_1103_PhysRevLett_130_030603 crossref_primary_10_1103_PhysRevLett_129_023401 crossref_primary_10_1088_1361_6455_ad9a9f crossref_primary_10_1103_PhysRevLett_133_083601 crossref_primary_10_1103_PhysRevA_109_052620 crossref_primary_10_1103_PhysRevA_108_032615 crossref_primary_10_1063_5_0230335 crossref_primary_10_1103_PhysRevResearch_6_023077 crossref_primary_10_1103_PhysRevA_109_032619 crossref_primary_10_1103_PhysRevResearch_4_023117 crossref_primary_10_1103_PhysRevA_105_052229 crossref_primary_10_1021_acs_jctc_4c01400 crossref_primary_10_1103_PhysRevA_110_012617 crossref_primary_10_1088_1367_2630_ad1c91 crossref_primary_10_22331_q_2022_04_13_687 crossref_primary_10_1088_1402_4896_adab34 crossref_primary_10_1103_PhysRevApplied_19_034089 crossref_primary_10_1103_PhysRevA_109_032607 crossref_primary_10_1109_ACCESS_2022_3196656 crossref_primary_10_1088_2058_9565_ad985f crossref_primary_10_4204_EPTCS_384_9 crossref_primary_10_1002_qute_202100136 crossref_primary_10_1038_s42005_024_01914_0 crossref_primary_10_1103_PhysRevLett_132_103801 crossref_primary_10_1007_s11141_025_10353_y crossref_primary_10_1038_s41566_024_01524_w crossref_primary_10_22331_q_2023_10_16_1141 crossref_primary_10_1021_jacs_3c08946 crossref_primary_10_1103_PhysRevResearch_6_013050 crossref_primary_10_1103_PhysRevResearch_5_043025 crossref_primary_10_22331_q_2023_06_05_1032 crossref_primary_10_1109_TCSI_2023_3314646 crossref_primary_10_4204_EPTCS_394_4 crossref_primary_10_1103_PhysRevA_111_032408 crossref_primary_10_1002_qute_202200129 crossref_primary_10_1016_j_nancom_2023_100466 crossref_primary_10_1088_1751_8121_ad8607 crossref_primary_10_1140_epjp_s13360_023_04399_y crossref_primary_10_1103_PhysRevA_107_022431 crossref_primary_10_1103_PhysRevD_110_014507 crossref_primary_10_1103_PhysRevLett_129_100501 crossref_primary_10_1038_s41467_024_45368_y crossref_primary_10_1038_s41467_024_51434_2 crossref_primary_10_1103_PhysRevA_107_062410 crossref_primary_10_1021_jacs_1c12414 crossref_primary_10_1103_PhysRevLett_133_240203 crossref_primary_10_1103_PRXQuantum_3_040320 crossref_primary_10_1364_OE_510497 crossref_primary_10_1103_PhysRevA_104_012419 crossref_primary_10_1088_1361_6633_ad1f81 crossref_primary_10_1016_j_neucom_2025_129404 crossref_primary_10_1021_acs_jctc_4c00544 crossref_primary_10_1038_s41598_024_78386_3 crossref_primary_10_1038_s41467_023_37375_2 crossref_primary_10_3389_fdgth_2024_1502745 crossref_primary_10_1103_PhysRevLett_129_250501 crossref_primary_10_1103_PhysRevA_110_022424 |
Cites_doi | 10.5555/3179439.3179447 10.1137/s0036144598347011 10.1039/c1cs15115k 10.1103/PhysRevA.71.052318 10.1088/1367-2630/ab8ab1 10.1103/PhysRevLett.114.200502 10.1109/TC.2007.35 10.1142/S0219749911008143 10.1002/qute.201900038 10.1038/nature07128 10.1063/1.4772185 10.1038/s41598-019-56758-4 10.1038/srep14671 10.1088/1367-2630/14/6/063006 10.1039/c0cs00158a 10.1039/c2cs35205b 10.1007/s002200200645 10.1103/PhysRevX.2.041021 10.1016/j.tcs.2006.09.006 10.1134/S106377611205007X 10.1103/PhysRevA.66.062322 10.1038/lsa.2017.146 10.1088/0305-4470/34/44/316 10.1126/sciadv.1701491 10.1007/s11128-015-1016-y 10.1063/1.532911 10.1038/nature07125 10.1088/1751-8113/47/38/385305 10.1103/PhysRevLett.83.5162 10.1126/science.1113479 10.1103/PhysRevLett.110.060504 10.1007/s11128-012-0480-x 10.1201/9781420035377.pt2 10.1098/rspa.1985.0070 10.1103/PhysRevA.83.032310 10.1103/PhysRevA.66.022317 10.5555/3179473.3179481 10.1063/1.3575402 10.1007/s10773-018-3910-4 10.1038/nature07126 10.1103/PhysRevA.68.062303 10.1103/PhysRevA.62.052309 10.1103/PhysRevLett.86.5188 10.1103/PhysRevA.75.032325 10.1038/414883a 10.1016/j.physleta.2011.10.016 10.1038/s41534-019-0173-8 10.1038/46503 10.1103/PhysRevLett.93.130501 10.1103/PhysRevA.73.023420 10.1103/PhysRevLett.101.020403 10.1126/science.1121541 10.1109/TCAD.2005.855930 10.1103/physreva.82.030301 10.1098/rspa.1992.0167 10.1126/science.1189075 10.1103/RevModPhys.80.1061 10.1103/PhysRevA.87.012325 10.1038/s41598-019-52866-3 10.1103/PhysRevA.85.062321 10.1088/0253-6102/55/5/11 10.1016/S0034-4877(06)80014-5 10.1364/OE.23.018422 10.1063/1.4914941 10.1103/physrevx.9.041042 10.1002/qute.201900074 10.1088/1367-2630/7/1/174 10.1103/physrevlett.119.187702 10.1016/s0020-0190(00)00084-3 10.1038/30181 10.1098/rspa.1998.0164 10.1103/PhysRevA.86.022316 10.1103/PhysRevLett.119.180510 10.1103/PhysRevA.65.052316 10.1038/4650310.1038/nature22986 10.1109/SFCS.1994.365700 10.1103/physreva.89.022313 10.1126/science.1081045 10.1016/s0003-4916(02)00018-0 10.1103/PhysRevLett.111.150501 10.1038/35071024 10.1038/srep04044 10.1103/PhysRevA.101.022304 10.1109/ISMVL.2007.3 10.1038/nnano.2012.258 10.1103/physrevlett.120.030502 10.1103/PhysRevA.63.052314 10.1038/nature05346 10.1103/PhysRevLett.86.910 10.1038/nmat3050 10.1103/physreva.79.064305 10.1103/PhysRevA.57.120 10.1103/PhysRevA.69.062311 10.1038/nature13460 10.1137/S0097539796300921 10.1039/C6DT03298B 10.1088/1464-4266/5/6/011 10.1103/PhysRevA.87.022341 10.1142/S0219749912500347 10.1088/0305-4470/36/10/312 10.1103/PhysRevA.94.042307 10.1103/PhysRevA.88.034303 10.1007/s40509-019-00196-4 10.1103/PhysRevB.93.125105 10.1063/1.2425191 10.1103/PhysRevLett.102.110502 10.1088/0305-4470/34/42/307 10.1021/ic026295u 10.1126/science.1131871 10.1063/1.528006 10.1103/PhysRevB.100.144508 10.1080/09500340210123947 10.1103/PhysRevA.90.022307 10.1103/PhysRevLett.102.020503 10.1137/S0097539705447323 10.1103/PhysRevLett.73.58 10.1007/s11433-014-5551-9 10.1103/PhysRevApplied.6.054005 10.1063/1.1476391 10.1103/PhysRevA.67.062313 10.1103/PhysRevA.65.012320 10.1126/science.1148092 10.1103/PhysRevLett.125.050501 10.1103/PhysRevLett.81.2152 10.1016/j.physleta.2015.03.023 10.1103/physreva.51.1015 10.1126/science.1249802 10.1007/s11128-015-1229-0 10.1103/PhysRevLett.103.150502 10.1103/physreva.64.012310 10.1088/0031-8949/2009/t137/014003 10.1016/j.physleta.2014.10.003 10.1039/B804804E 10.1364/oe.26.001825 10.1103/PhysRevA.96.012306 10.1103/PhysRevLett.94.230502 10.1038/srep02594 10.1103/physreva.90.032317 10.1016/0009-2614(94)00117-0 10.1039/C5CS00933B 10.1103/PhysRevA.80.052314 10.1038/nature13171 10.1103/PhysRevA.57.127 10.1103/PhysRevA.75.022313 10.1103/PhysRevE.58.5355 10.1080/00268976.2019.1580392 10.1007/s11128-013-0621-x 10.1002/9781118742631.ch01 10.1103/PhysRevA.82.062315 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/fphy.2020.589504 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2296-424X |
ExternalDocumentID | oai_doaj_org_article_8c67f6055ade4f949d0efaed97827382 10_3389_fphy_2020_589504 |
GroupedDBID | 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 |
ID | FETCH-LOGICAL-c417t-d0786cbff3698c5f092dce7bd57166331a9e09f8fb1d727c2f8a48467100add43 |
IEDL.DBID | DOA |
ISSN | 2296-424X |
IngestDate | Wed Aug 27 01:13:09 EDT 2025 Thu Apr 24 23:03:21 EDT 2025 Tue Jul 01 01:02:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-d0786cbff3698c5f092dce7bd57166331a9e09f8fb1d727c2f8a48467100add43 |
OpenAccessLink | https://doaj.org/article/8c67f6055ade4f949d0efaed97827382 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8c67f6055ade4f949d0efaed97827382 crossref_citationtrail_10_3389_fphy_2020_589504 crossref_primary_10_3389_fphy_2020_589504 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-10 |
PublicationDateYYYYMMDD | 2020-11-10 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in physics |
PublicationYear | 2020 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Humphreys (B73) 2013; 111 Cui (B38) 2015; 56 Bloch (B15) 2008; 453 Aharonov (B3) 2007; 37 Zahedinejad (B160) 2015; 114 Slichter (B144) 2013 Moreno-Pineda (B115) 2018; 47 Imany (B75) 2019; 5 Nielsen (B125) 2011 Freedman (B57) 2002; 227 Khan (B87) 2006; 367 Erhard (B52) 2018; 7 Klyachko (B92) 2008; 101 Wilmott (B158) 2011; 9 Kitaev (B90) 2003; 303 Bocharov (B17) 2017; 96 Milburn (B113) 2009 Anwar (B6) 2012; 14 Bernstein (B12) 1997; 26 Campbell (B25) 2012; 2 Mischuck (B114) 2013; 87 Chiorescu (B29) 2003; 299 Martinis (B110) 2014; 90 Hein (B70) 2004; 69 Chuang (B30) 1998; 393 Zhan (B163) 2015; 23 Zilic (B165) 2007; 56 Nielsen (B126) 2006; 311 Zobov (B166) 2012; 114 Clemente-Juan (B32) 2012; 41 Bullock (B24) 2005; 94 Hugh (B111) 2005; 7 Reich (B136) 2014; 47 Garcia-Escartin (B61) 2013; 12 Li (B100); 3 Zhou (B164) 2003; 68 Thiele (B146) 2014; 344 Cao (B26) 2011; 55 Fan (B53) 2007 Bocharov (B16) 2016; 16 Prevedel (B132) 2007; 445 Nielsen (B122) 2005 Childress (B27) 2006; 314 Jafarzadeh (B80) 2020; 22 Gualdi (B68) 2014; 90 Li (B101) 2011; 375 Ralph (B133) 2007; 75 Shor (B142) 1994 Patera (B130) 1988; 29 Shi (B141) 2002 Ishikawa (B77) 2003; 42 Joo (B82) 2019; 9 Ganzhorn (B59) 2013; 8 Dua (B49) 2019; 100 Kais (B84) 2014; 154 Gottesman (B66) 1999; 402 Gottesman (B64) 1998; 57 Lu (B106) 2019; 3 Tonchev (B147) 2016; 94 Farhi (B55) 2000 Kochen (B93) 1975 Lu (B107) 2018; 120 Sheridan (B140) 2010; 82 Das (B40) 2008; 80 Shor (B143) 1999; 41 Bovey (B19) 1988 Daskin (B42) 2011; 134 Finnila (B56) 1994; 219 Nguyen (B121) 2019; 58 Zeng (B162) 2007; 75 Ivanov (B79) 2012; 85 Abrams (B1) 1999; 83 Alber (B4) 2001; 34 Gao (B60) 2020 Muthukrishnan (B118) 2000; 62 Deutsch (B45) 1992; 439 Li (B102); 88 Morvan (B117) 2020 Pan (B128) 2014; 89 Kyoseva (B97) 2006; 73 Fujii (B58) 2003; 5 Aromí (B7) 2012; 41 Ecker (B51) 2019; 9 Deutsch (B44) 1985; 400 Eastin (B50) 2009; 102 Howard (B71) 2012; 86 Nowack (B127) 2007; 318 Amin (B5) 2013; 12 Gedik (B62) 2015; 5 Shende (B139) 2006; 25 Cleve (B33) 1998; 454 Imany (B76) 2018; 26 Blatt (B14) 2008; 453 Boykin (B20) 2000; 75 Briegel (B22) 2001; 86 Godfrin (B63) 2017; 119 Babazadeh (B9) 2017; 119 Barends (B10) 2014; 508 Wang (B154) 2008; 10 Adcock (B2) 2016; 15 Brennen (B21) 2005; 71 Klimov (B91) 2003; 67 Aspuru-Guzik (B8) 2005; 309 Leuenberger (B99) 2001; 410 Wang (B155) 2001; 34 Clarke (B31) 2008; 453 Dogra (B48) 2014; 378 Daskin (B41) 2012; 137 Parasa (B129) Troiani (B148) 2011; 40 Fan (B54) 2008 Reck (B135) 1994; 73 Vlasov (B153) 2002; 43 Urdampilleta (B149) 2011; 10 Mermin (B112) 2001; 65 Kononenko (B94) 2020 Vandersypen (B152) 2001; 414 Howard (B72) 2014; 510 Nielsen (B123) 2006; 57 Brylinski (B23) 2002 Nielsen (B124) 2002; 66 Hutter (B74) 2016; 93 Gottesman (B65) 1999 Kessel (B86) 2002; 66 Nagata (B119) 2020; 7 Lee (B98) 2006; 89 Kiktenko (B88) 2015; 379 van Dam (B150) 2011; 83 Wilmott (B159) 2012; 10 Bogani (B18) 2010 Di (B46) 2013; 87 Low (B105) 2009; 80 Watabe (B156) 2020; 10 Harrow (B69) 2009; 103 Luo (B108) 2014; 57 Krishna (B95) 2016 Keet (B85) 2010; 82 Neumann (B120) 2010; 329 Paz-Silva (B131) 2009; 102 Webb (B157) 2016; 16 Raussendorf (B134) 2001; 86 Bartlett (B11) 2002; 65 Kiktenko (B89) 2020; 101 Bian (B13) 2019; 117 Childs (B28) 2001 Moreno Pineda (B116) 2016; 45 Luo (B109) 2014; 4 Kues (B96) 2017; 546 Van den Nest (B151) 2013; 110 Dennis (B43) 2001; 63 Liu (B103) 2009; 79 Cui (B37) 2015; 14 Kadowaki (B83) 1998; 58 Loss (B104) 1998; 57 Zahedinejad (B161) 2016; 6 Cozzolino (B36) 2019; 2 Cory (B35) 1998; 81 Rowe (B137) 1999; 40 Coppersmith (B34) 2002 Daboul (B39) 2003; 36 Sawerwain (B138) 2013 Stroud (B145) 2002; 49 Islam (B78) 2017; 3 Gottesman (B67) 2001; 64 Jelezko (B81) 2004; 93 DiVincenzo (B47) 1995; 51 |
References_xml | – year: 2001 ident: B28 article-title: Secure assisted quantum computation – volume: 16 start-page: 1379 year: 2016 ident: B157 article-title: The Clifford group forms a unitary 3-design publication-title: Quant Inf Comput doi: 10.5555/3179439.3179447 – volume: 41 start-page: 303 year: 1999 ident: B143 article-title: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer publication-title: SIAM Rev doi: 10.1137/s0036144598347011 – volume: 41 start-page: 537 year: 2012 ident: B7 article-title: Design of magnetic coordination complexes for quantum computing publication-title: Chem Soc Rev doi: 10.1039/c1cs15115k – volume: 71 start-page: 052318 year: 2005 ident: B21 article-title: Criteria for exact qudit universality publication-title: Phys Rev A doi: 10.1103/PhysRevA.71.052318 – volume: 22 start-page: 063014 year: 2020 ident: B80 article-title: Randomized benchmarking for qudit Clifford gates publication-title: New J Phys doi: 10.1088/1367-2630/ab8ab1 – volume: 114 start-page: 200502 year: 2015 ident: B160 article-title: High-fidelity single-shot Toffoli gate via quantum control publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.114.200502 – year: 2005 ident: B122 article-title: A geometric approach to quantum circuit lower bounds – volume-title: Principles of magnetic resonance year: 2013 ident: B144 – volume: 56 start-page: 202 year: 2007 ident: B165 article-title: Scaling and better approximating quantum Fourier transform by higher radices publication-title: IEEE Trans Comput doi: 10.1109/TC.2007.35 – volume: 9 start-page: 1511 year: 2011 ident: B158 article-title: On swapping the states of two qudits publication-title: Int J Quant Inf doi: 10.1142/S0219749911008143 – volume: 2 start-page: 1900038 year: 2019 ident: B36 article-title: High‐dimensional quantum communication: benefits, progress, and future challenges publication-title: Adv Quantum Tech doi: 10.1002/qute.201900038 – volume: 453 start-page: 1031 year: 2008 ident: B31 article-title: Superconducting quantum bits publication-title: Nature doi: 10.1038/nature07128 – volume: 137 start-page: 234112 year: 2012 ident: B41 article-title: Universal programmable quantum circuit schemes to emulate an operator publication-title: J Chem Phys doi: 10.1063/1.4772185 – volume: 10 start-page: 146 year: 2020 ident: B156 article-title: Enhancing quantum annealing performance by a degenerate two-level system publication-title: Sci Rep doi: 10.1038/s41598-019-56758-4 – volume: 5 start-page: 14671 year: 2015 ident: B62 article-title: Computational speed-up with a single qudit publication-title: Sci Rep doi: 10.1038/srep14671 – volume: 14 start-page: 063006 year: 2012 ident: B6 article-title: Qutrit magic state distillation publication-title: New J Phys doi: 10.1088/1367-2630/14/6/063006 – volume: 40 start-page: 3119 year: 2011 ident: B148 article-title: Molecular spins for quantum information technologies publication-title: Chem Soc Rev doi: 10.1039/c0cs00158a – volume: 41 start-page: 7464 year: 2012 ident: B32 article-title: Magnetic polyoxometalates: from molecular magnetism to molecular spintronics and quantum computing publication-title: Chem Soc Rev doi: 10.1039/c2cs35205b – volume: 227 start-page: 605 year: 2002 ident: B57 article-title: A modular functor which is universal¶for quantum computation publication-title: Commun Math Phys doi: 10.1007/s002200200645 – volume: 2 start-page: 041021 year: 2012 ident: B25 article-title: Magic-state distillation in all prime dimensions using quantum Reed-Muller codes publication-title: Phys Rev X doi: 10.1103/PhysRevX.2.041021 – volume: 367 start-page: 336 year: 2006 ident: B87 article-title: Synthesis of multi-qudit hybrid and d-valued quantum logic circuits by decomposition publication-title: Theor Comput Sci doi: 10.1016/j.tcs.2006.09.006 – volume: 114 start-page: 923 year: 2012 ident: B166 article-title: Implementation of a quantum adiabatic algorithm for factorization on two qudits publication-title: J Exp Theor Phys doi: 10.1134/S106377611205007X – volume: 66 start-page: 062322 year: 2002 ident: B86 article-title: Implementation schemes in NMR of quantum processors and the Deutsch-Jozsa algorithm by using virtual spin representation publication-title: Phys Rev A doi: 10.1103/PhysRevA.66.062322 – volume: 7 start-page: 17146 year: 2018 ident: B52 article-title: Twisted photons: new quantum perspectives in high dimensions publication-title: Light Sci Appl doi: 10.1038/lsa.2017.146 – volume: 34 start-page: 9577 year: 2001 ident: B155 article-title: Continuous-variable and hybrid quantum gates publication-title: J Phys Math Gen doi: 10.1088/0305-4470/34/44/316 – volume: 3 start-page: e1701491 year: 2017 ident: B78 article-title: Provably secure and high-rate quantum key distribution with time-bin qudits publication-title: Sci Adv doi: 10.1126/sciadv.1701491 – volume: 14 start-page: 2687 year: 2015 ident: B37 article-title: Universal quantum computation with weakly integral anyons publication-title: Quant Inf Process doi: 10.1007/s11128-015-1016-y – volume: 40 start-page: 3604 year: 1999 ident: B137 article-title: Representations of the Weyl group and Wigner functions for SU(3) publication-title: J Math Phys doi: 10.1063/1.532911 – volume: 453 start-page: 1008 year: 2008 ident: B14 article-title: Entangled states of trapped atomic ions publication-title: Nature doi: 10.1038/nature07125 – volume: 47 start-page: 385305 year: 2014 ident: B136 article-title: Optimal qudit operator bases for efficient characterization of quantum gates publication-title: J Phys Math Theor doi: 10.1088/1751-8113/47/38/385305 – year: 2016 ident: B95 article-title: A generalization of Bernstein-Vazirani algorithm to qudit systems – volume: 83 start-page: 5162 year: 1999 ident: B1 article-title: Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.83.5162 – volume: 309 start-page: 1704 year: 2005 ident: B8 article-title: Simulated quantum computation of molecular energies publication-title: Science doi: 10.1126/science.1113479 – volume: 110 start-page: 060504 year: 2013 ident: B151 article-title: Universal quantum computation with little entanglement publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.110.060504 – volume: 12 start-page: 1819 year: 2013 ident: B5 article-title: Adiabatic quantum optimization with qudits publication-title: Quant Inf Process doi: 10.1007/s11128-012-0480-x – start-page: 117 volume-title: Mathematics of quantum computation year: 2002 ident: B23 article-title: Universal quantum gates doi: 10.1201/9781420035377.pt2 – volume: 400 start-page: 97 year: 1985 ident: B44 article-title: Quantum theory, the Church–Turing principle and the universal quantum computer publication-title: J Phys doi: 10.1098/rspa.1985.0070 – start-page: 293 volume-title: The problem of hidden variables in quantum mechanics year: 1975 ident: B93 – volume: 83 start-page: 032310 year: 2011 ident: B150 article-title: Noise thresholds for higher-dimensional systems using the discrete Wigner function publication-title: Phys Rev A doi: 10.1103/PhysRevA.83.032310 – year: 2000 ident: B55 article-title: Quantum computation by adiabatic evolution – volume: 66 start-page: 022317 year: 2002 ident: B124 article-title: Universal simulation of hamiltonian dynamics for quantum systems with finite-dimensional state spaces publication-title: Phys Rev A doi: 10.1103/PhysRevA.66.022317 – volume: 16 start-page: 862 year: 2016 ident: B16 article-title: Improved quantum ternary arithmetic publication-title: Quant Inf Comput doi: 10.5555/3179473.3179481 – volume: 134 start-page: 144112 year: 2011 ident: B42 article-title: Decomposition of unitary matrices for finding quantum circuits: application to molecular hamiltonians publication-title: J Chem Phys doi: 10.1063/1.3575402 – volume: 58 start-page: 71 year: 2019 ident: B121 article-title: Quantum key distribution protocol based on modified generalization of Deutsch-Jozsa algorithm in d-level quantum system publication-title: Int J Theor Phys doi: 10.1007/s10773-018-3910-4 – volume: 453 start-page: 1016 year: 2008 ident: B15 article-title: Quantum coherence and entanglement with ultracold atoms in optical lattices publication-title: Nature doi: 10.1038/nature07126 – volume: 68 start-page: 062303 year: 2003 ident: B164 article-title: Quantum computation based ond-level cluster state publication-title: Phys Rev A doi: 10.1103/PhysRevA.68.062303 – volume: 62 start-page: 052309 year: 2000 ident: B118 article-title: Multivalued logic gates for quantum computation publication-title: Phys Rev A doi: 10.1103/PhysRevA.62.052309 – start-page: 224 ident: B129 article-title: Quantum phase estimation using multivalued logic – volume: 86 start-page: 5188 year: 2001 ident: B134 article-title: A one-way quantum computer publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.86.5188 – volume: 75 start-page: 032325 year: 2007 ident: B162 article-title: Local unitary versus local Clifford equivalence of stabilizer and graph states publication-title: Phys Rev A doi: 10.1103/PhysRevA.75.032325 – volume: 414 start-page: 883 year: 2001 ident: B152 article-title: Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance publication-title: Nature doi: 10.1038/414883a – volume: 375 start-page: 4249 year: 2011 ident: B101 article-title: Fast quantum search algorithm for databases of arbitrary size and its implementation in a cavity QED system publication-title: Phys Lett doi: 10.1016/j.physleta.2011.10.016 – volume: 5 year: 2019 ident: B75 article-title: High-dimensional optical quantum logic in large operational spaces publication-title: npj Quantum Inf doi: 10.1038/s41534-019-0173-8 – volume: 402 start-page: 390 year: 1999 ident: B66 article-title: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations publication-title: Nature doi: 10.1038/46503 – volume: 93 start-page: 130501 year: 2004 ident: B81 article-title: Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.93.130501 – volume: 73 start-page: 023420 year: 2006 ident: B97 article-title: Coherent pulsed excitation of degenerate multistate systems: exact analytic solutions publication-title: Phys Rev A doi: 10.1103/PhysRevA.73.023420 – volume: 101 start-page: 020403 year: 2008 ident: B92 article-title: Simple test for hidden variables in spin-1 systems publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.101.020403 – volume: 311 start-page: 1133 year: 2006 ident: B126 article-title: Quantum computation as geometry publication-title: Science doi: 10.1126/science.1121541 – volume: 25 start-page: 1000 year: 2006 ident: B139 article-title: Synthesis of quantum-logic circuits publication-title: IEEE Trans Comput Aided Des Integrated Circ Syst doi: 10.1109/TCAD.2005.855930 – volume: 82 start-page: 030301 year: 2010 ident: B140 article-title: Security proof for quantum key distribution using qudit systems publication-title: Phys Rev A doi: 10.1103/physreva.82.030301 – volume: 439 start-page: 553 year: 1992 ident: B45 article-title: Rapid solution of problems by quantum computation publication-title: Proc Roy Soc Lond A doi: 10.1098/rspa.1992.0167 – volume: 329 start-page: 542 year: 2010 ident: B120 article-title: Single-shot readout of a single nuclear spin publication-title: Science doi: 10.1126/science.1189075 – volume: 80 start-page: 1061 year: 2008 ident: B40 article-title: Colloquium: quantum annealing and analog quantum computation publication-title: Rev Mod Phys doi: 10.1103/RevModPhys.80.1061 – year: 2002 ident: B141 article-title: Both Toffoli and controlled-NOT need little help to do universal quantum computation – volume: 87 start-page: 012325 year: 2013 ident: B46 article-title: Synthesis of multivalued quantum logic circuits by elementary gates publication-title: Phys Rev A doi: 10.1103/PhysRevA.87.012325 – volume: 9 start-page: 16592 year: 2019 ident: B82 article-title: Logical measurement-based quantum computation in circuit-qed publication-title: Sci Rep doi: 10.1038/s41598-019-52866-3 – year: 2002 ident: B34 article-title: An approximate Fourier transform useful in quantum factoring – volume: 85 start-page: 062321 year: 2012 ident: B79 article-title: Time-efficient implementation of quantum search with qudits publication-title: Phys Rev A doi: 10.1103/PhysRevA.85.062321 – volume: 55 start-page: 790 year: 2011 ident: B26 article-title: Quantum fourier transform and phase estimation in qudit system publication-title: Commun Theor Phys doi: 10.1088/0253-6102/55/5/11 – volume: 57 start-page: 147 year: 2006 ident: B123 article-title: Cluster-state quantum computation publication-title: Rep Math Phys doi: 10.1016/S0034-4877(06)80014-5 – volume: 23 start-page: 18422 year: 2015 ident: B163 article-title: Linear optical demonstration of quantum speed-up with a single qudit publication-title: Opt Express doi: 10.1364/OE.23.018422 – volume: 56 start-page: 032202 year: 2015 ident: B38 article-title: Universal quantum computation with metaplectic anyons publication-title: J Math Phys doi: 10.1063/1.4914941 – volume: 9 start-page: 041042 year: 2019 ident: B51 article-title: Overcoming noise in entanglement distribution publication-title: Phys Rev X doi: 10.1103/physrevx.9.041042 – volume: 3 start-page: 1900074 year: 2019 ident: B106 article-title: Quantum phase estimation with time‐frequency qudits in a single photon publication-title: Adv Quantum Tech doi: 10.1002/qute.201900074 – volume: 7 start-page: 174 year: 2005 ident: B111 article-title: Trapped-ion qutrit spin molecule quantum computer publication-title: New J Phys doi: 10.1088/1367-2630/7/1/174 – year: 2020 ident: B117 article-title: Qutrit randomized benchmarking – volume: 119 start-page: 187702 year: 2017 ident: B63 article-title: Operating quantum states in single magnetic molecules: implementation of grover’s quantum algorithm publication-title: Phys Rev Lett doi: 10.1103/physrevlett.119.187702 – volume: 75 start-page: 101 year: 2000 ident: B20 article-title: A new universal and fault-tolerant quantum basis publication-title: Inf Process Lett doi: 10.1016/s0020-0190(00)00084-3 – volume: 393 start-page: 143 year: 1998 ident: B30 article-title: Experimental realization of a quantum algorithm publication-title: Nature doi: 10.1038/30181 – volume: 454 start-page: 339 year: 1998 ident: B33 article-title: Quantum algorithms revisited publication-title: Proc Roy Soc Lond A doi: 10.1098/rspa.1998.0164 – volume: 86 start-page: 022316 year: 2012 ident: B71 article-title: Qudit versions of the qubitπ/8gate publication-title: Phys Rev A doi: 10.1103/PhysRevA.86.022316 – volume: 119 start-page: 180510 year: 2017 ident: B9 article-title: High-dimensional single-photon quantum gates: concepts and experiments publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.119.180510 – volume: 65 start-page: 052316 year: 2002 ident: B11 article-title: Quantum encodings in spin systems and harmonic oscillators publication-title: Phys Rev A doi: 10.1103/PhysRevA.65.052316 – volume: 546 start-page: 622 year: 2017 ident: B96 article-title: On-chip generation of high-dimensional entangled quantum states and their coherent control publication-title: Nature doi: 10.1038/4650310.1038/nature22986 – start-page: 124 year: 1994 ident: B142 article-title: Algorithms for quantum computation: discrete logarithms and factoring doi: 10.1109/SFCS.1994.365700 – volume: 89 start-page: 022313 year: 2014 ident: B128 article-title: Experimental realization of quantum algorithm for solving linear systems of equations publication-title: Phys Rev A doi: 10.1103/physreva.89.022313 – volume: 299 start-page: 1869 year: 2003 ident: B29 article-title: Coherent quantum dynamics of a superconducting flux qubit publication-title: Science doi: 10.1126/science.1081045 – volume: 303 start-page: 2 year: 2003 ident: B90 article-title: Fault-tolerant quantum computation by anyons publication-title: Ann Phys doi: 10.1016/s0003-4916(02)00018-0 – volume: 111 start-page: 150501 year: 2013 ident: B73 article-title: Linear optical quantum computing in a single spatial mode publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.111.150501 – volume: 410 start-page: 789 year: 2001 ident: B99 article-title: Quantum computing in molecular magnets publication-title: Nature doi: 10.1038/35071024 – volume-title: Quantum computation and quantum information year: 2011 ident: B125 – volume: 4 start-page: 4044 year: 2014 ident: B109 article-title: Geometry of quantum computation with qudits publication-title: Sci Rep doi: 10.1038/srep04044 – start-page: 302 year: 1999 ident: B65 article-title: Fault-tolerant computation with higher-dimensional systems – volume: 101 start-page: 022304 year: 2020 ident: B89 article-title: Scalable quantum computing with qudits on a graph publication-title: Phys Rev A doi: 10.1103/PhysRevA.101.022304 – year: 2008 ident: B54 article-title: Applications of multi-valued quantum algorithms doi: 10.1109/ISMVL.2007.3 – volume: 8 start-page: 165 year: 2013 ident: B59 article-title: Strong spin-phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system publication-title: Nat Nanotechnol doi: 10.1038/nnano.2012.258 – start-page: 12 year: 2007 ident: B53 article-title: A generalization of the Deutsch-Jozsa algorithm to multi-valued quantum logic doi: 10.1109/ISMVL.2007.3 – volume: 120 start-page: 030502 year: 2018 ident: B107 article-title: Electro-optic frequency beam splitters and tritters for high-fidelity photonic quantum inf. process publication-title: Phys Rev Lett doi: 10.1103/physrevlett.120.030502 – volume: 63 start-page: 052314 year: 2001 ident: B43 article-title: Toward fault-tolerant quantum computation without concatenation publication-title: Phys Rev A doi: 10.1103/PhysRevA.63.052314 – volume: 445 start-page: 65 year: 2007 ident: B132 article-title: High-speed linear optics quantum computing using active feed-forward publication-title: Nature doi: 10.1038/nature05346 – volume: 86 start-page: 910 year: 2001 ident: B22 article-title: Persistent entanglement in arrays of interacting particles publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.86.910 – volume: 10 start-page: 502 year: 2011 ident: B149 article-title: Supramolecular spin valves publication-title: Nat Mater doi: 10.1038/nmat3050 – volume: 79 start-page: 064305 year: 2009 ident: B103 article-title: Decay of multiqudit entanglement publication-title: Phys Rev A doi: 10.1103/physreva.79.064305 – volume: 57 start-page: 120 year: 1998 ident: B104 article-title: Quantum computation with quantum dots publication-title: Phys Rev A doi: 10.1103/PhysRevA.57.120 – volume: 69 start-page: 062311 year: 2004 ident: B70 article-title: Multiparty entanglement in graph states publication-title: Phys Rev A doi: 10.1103/PhysRevA.69.062311 – volume: 510 start-page: 351 year: 2014 ident: B72 article-title: Contextuality supplies the 'magic' for quantum computation publication-title: Nature doi: 10.1038/nature13460 – volume: 26 start-page: 1411 year: 1997 ident: B12 article-title: Quantum complexity theory publication-title: SIAM J Comput doi: 10.1137/S0097539796300921 – volume: 45 start-page: 18417 year: 2016 ident: B116 article-title: Surface confinement of TbPc2-SMMs: structural, electronic and magnetic properties publication-title: Dalton Trans doi: 10.1039/C6DT03298B – volume: 5 start-page: S613 year: 2003 ident: B58 article-title: Exchange gate on the qudit space and fock space publication-title: J Opt B Quantum Semiclassical Opt doi: 10.1088/1464-4266/5/6/011 – volume: 87 start-page: 022341 year: 2013 ident: B114 article-title: Qudit quantum computation in the Jaynes-Cummings model publication-title: Phys Rev A doi: 10.1103/PhysRevA.87.022341 – start-page: 194 volume-title: Nanoscience and technology: a collection of reviews from nature journals year: 2010 ident: B18 article-title: Molecular spintronics using single-molecule magnets – volume: 10 start-page: 1250034 year: 2012 ident: B159 article-title: On a generalized quantum swap gate publication-title: Int J Quant Inf doi: 10.1142/S0219749912500347 – volume: 36 start-page: 2525 year: 2003 ident: B39 article-title: Quantum gates on hybrid qudits publication-title: J Phys Math Gen doi: 10.1088/0305-4470/36/10/312 – volume: 94 start-page: 042307 year: 2016 ident: B147 article-title: Quantum phase estimation and quantum counting with qudits publication-title: Phys Rev A doi: 10.1103/PhysRevA.94.042307 – volume: 88 start-page: 034303 ident: B102 article-title: Efficient universal quantum computation with auxiliary Hilbert space publication-title: Phys Rev A doi: 10.1103/PhysRevA.88.034303 – volume: 7 start-page: 17 year: 2020 ident: B119 article-title: Generalization of the Bernstein-Vazirani algorithm beyond qubit systems publication-title: Quantum Stud Math Found doi: 10.1007/s40509-019-00196-4 – volume: 93 start-page: 125105 year: 2016 ident: B74 article-title: Quantum computing with parafermions publication-title: Phys Rev B doi: 10.1103/PhysRevB.93.125105 – volume: 89 start-page: 074105 year: 2006 ident: B98 article-title: Projective measurement in nuclear magnetic resonance publication-title: Appl Phys Lett doi: 10.1063/1.2425191 – volume: 102 start-page: 110502 year: 2009 ident: B50 article-title: Restrictions on transversal encoded quantum gate sets publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.102.110502 – volume: 34 start-page: 8821 year: 2001 ident: B4 article-title: Efficient bipartite quantum state purification in arbitrary dimensional Hilbert spaces publication-title: J Phys Math Gen doi: 10.1088/0305-4470/34/42/307 – volume: 42 start-page: 2440 year: 2003 ident: B77 article-title: Determination of ligand-field parameters and f-electronic structures of double-decker bis(phthalocyaninato)lanthanide complexes publication-title: Inorg Chem doi: 10.1021/ic026295u – year: 2020 ident: B94 article-title: Characterization of control in a superconducting qutrit using randomized benchmarking – volume: 314 start-page: 281 year: 2006 ident: B27 article-title: Coherent dynamics of coupled electron and nuclear spin qubits in diamond publication-title: Science doi: 10.1126/science.1131871 – volume: 29 start-page: 665 year: 1988 ident: B130 article-title: The Pauli matrices in n dimensions and finest gradings of simple Lie algebras of type An−1 publication-title: J Math Phys doi: 10.1063/1.528006 – volume: 100 start-page: 144508 year: 2019 ident: B49 article-title: Universal quantum computing with parafermions assisted by a half-fluxon publication-title: Phys Rev B doi: 10.1103/PhysRevB.100.144508 – volume: 49 start-page: 2115 year: 2002 ident: B145 article-title: Quantum fast fourier transform using multilevel atoms publication-title: J Mod Optic doi: 10.1080/09500340210123947 – volume: 90 start-page: 022307 year: 2014 ident: B110 article-title: Fast adiabatic qubit gates using onlyσzcontrol publication-title: Phys Rev A doi: 10.1103/PhysRevA.90.022307 – volume: 102 start-page: 020503 year: 2009 ident: B131 article-title: Perfect mirror transport protocol with higher dimensional quantum chains publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.102.020503 – volume: 37 start-page: 166 year: 2007 ident: B3 article-title: Adiabatic quantum computation is equivalent to standard quantum computation publication-title: SIAM J Comput doi: 10.1137/S0097539705447323 – volume: 73 start-page: 58 year: 1994 ident: B135 article-title: Experimental realization of any discrete unitary operator publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.73.58 – volume: 57 start-page: 1712 year: 2014 ident: B108 article-title: Universal quantum computation with qudits publication-title: Sci China Phys Mech Astron doi: 10.1007/s11433-014-5551-9 – volume: 6 start-page: 054005 year: 2016 ident: B161 article-title: Designing high-fidelity single-shot three-qubit gates: a machine-learning approach publication-title: Phys Rev Appl doi: 10.1103/PhysRevApplied.6.054005 – volume: 43 start-page: 2959 year: 2002 ident: B153 article-title: Noncommutative tori and universal sets of nonbinary quantum gates publication-title: J Math Phys doi: 10.1063/1.1476391 – volume: 67 start-page: 062313 year: 2003 ident: B91 article-title: Qutrit quantum computer with trapped ions publication-title: Phys Rev A doi: 10.1103/PhysRevA.67.062313 – volume: 65 start-page: 012320 year: 2001 ident: B112 article-title: From classical state swapping to quantum teleportation publication-title: Phys Rev A doi: 10.1103/PhysRevA.65.012320 – volume: 318 start-page: 1430 year: 2007 ident: B127 article-title: Coherent control of a single electron spin with electric fields publication-title: Science doi: 10.1126/science.1148092 – year: 2020 ident: B60 article-title: Computer-inspired concept for high-dimensional multipartite quantum gates publication-title: Phys Rev Lett 125, 050501 doi: 10.1103/PhysRevLett.125.050501 – volume: 81 start-page: 2152 year: 1998 ident: B35 article-title: Experimental quantum error correction publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.81.2152 – volume: 379 start-page: 1409 year: 2015 ident: B88 article-title: Single qudit realization of the Deutsch algorithm using superconducting many-level quantum circuits publication-title: Phys Lett A doi: 10.1016/j.physleta.2015.03.023 – volume: 51 start-page: 1015 year: 1995 ident: B47 article-title: Two-bit gates are universal for quantum computation publication-title: Phys Rev A doi: 10.1103/physreva.51.1015 – year: 2013 ident: B138 article-title: Quantum circuits based on qutrits as a tool for solving systems of linear equations – volume: 344 start-page: 1135 year: 2014 ident: B146 article-title: Electrically driven nuclear spin resonance in single-molecule magnets publication-title: Science doi: 10.1126/science.1249802 – volume: 15 start-page: 1361 year: 2016 ident: B2 article-title: Quantum computation with coherent spin states and the close Hadamard problem publication-title: Quant Inf Process doi: 10.1007/s11128-015-1229-0 – volume: 103 start-page: 150502 year: 2009 ident: B69 article-title: Quantum algorithm for linear systems of equations publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.103.150502 – volume: 64 start-page: 012310 year: 2001 ident: B67 article-title: Encoding a qubit in an oscillator publication-title: Phys Rev doi: 10.1103/physreva.64.012310 – start-page: 014003 year: 2009 ident: B113 article-title: Photons as qubits publication-title: Phys Scripta doi: 10.1088/0031-8949/2009/t137/014003 – volume: 378 start-page: 3452 year: 2014 ident: B48 article-title: Determining the parity of a permutation using an experimental nmr qutrit publication-title: Phys Lett doi: 10.1016/j.physleta.2014.10.003 – volume: 10 start-page: 5388 year: 2008 ident: B154 article-title: Quantum algorithm for obtaining the energy spectrum of molecular systems publication-title: Phys Chem Chem Phys doi: 10.1039/B804804E – volume: 26 start-page: 1825 year: 2018 ident: B76 article-title: 50-ghz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator publication-title: Opt Express doi: 10.1364/oe.26.001825 – volume: 96 start-page: 012306 year: 2017 ident: B17 article-title: Factoring with qutrits: shor’s algorithm on ternary and metaplectic quantum architectures publication-title: Phys Rev A doi: 10.1103/PhysRevA.96.012306 – volume: 94 start-page: 230502 year: 2005 ident: B24 article-title: Asymptotically optimal quantum circuits ford-level systems publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.94.230502 – volume: 3 start-page: 2594 ident: B100 article-title: Geometry of quantum computation with qutrits publication-title: Sci Rep doi: 10.1038/srep02594 – volume: 90 start-page: 032317 year: 2014 ident: B68 article-title: Efficient Monte Carlo characterization of quantum operations for qudits publication-title: Phys Rev A doi: 10.1103/physreva.90.032317 – volume: 219 start-page: 343 year: 1994 ident: B56 article-title: Quantum annealing: a new method for minimizing multidimensional functions publication-title: Chem Phys Lett doi: 10.1016/0009-2614(94)00117-0 – volume: 47 start-page: 501 year: 2018 ident: B115 article-title: Molecular spin qudits for quantum algorithms publication-title: Chem Soc Rev doi: 10.1039/C5CS00933B – volume: 80 start-page: 052314 year: 2009 ident: B105 article-title: Learning and testing algorithms for the Clifford group publication-title: Phys Rev A doi: 10.1103/PhysRevA.80.052314 – volume: 508 start-page: 500 year: 2014 ident: B10 article-title: Superconducting quantum circuits at the surface code threshold for fault tolerance publication-title: Nature doi: 10.1038/nature13171 – volume: 57 start-page: 127 year: 1998 ident: B64 article-title: Theory of fault-tolerant quantum computation publication-title: Phys Rev doi: 10.1103/PhysRevA.57.127 – volume: 75 start-page: 022313 year: 2007 ident: B133 article-title: Efficient Toffoli gates using qudits publication-title: Phys Rev A doi: 10.1103/PhysRevA.75.022313 – volume-title: Nuclear magnetic resonance spectroscopy year: 1988 ident: B19 – volume: 58 start-page: 5355 year: 1998 ident: B83 article-title: Quantum annealing in the transverse ising model publication-title: Phys Rev E doi: 10.1103/PhysRevE.58.5355 – volume: 117 start-page: 2069 year: 2019 ident: B13 article-title: Quantum computing methods for electronic states of the water molecule publication-title: Mol Phys doi: 10.1080/00268976.2019.1580392 – volume: 12 start-page: 3625 year: 2013 ident: B61 article-title: A swap gate for qudits publication-title: Quant Inf Process doi: 10.1007/s11128-013-0621-x – volume: 154 start-page: 1 year: 2014 ident: B84 article-title: Introduction to quantum information and computation for chemistry publication-title: Quantum Inf Comput Chem doi: 10.1002/9781118742631.ch01 – volume: 82 start-page: 062315 year: 2010 ident: B85 article-title: Quantum secret sharing with qudit graph states publication-title: Phys Rev A doi: 10.1103/PhysRevA.82.062315 |
SSID | ssj0001259824 |
Score | 2.628187 |
SecondaryResourceType | review_article |
Snippet | Qudit is a multi-level computational unit alternative to the conventional 2-level qubit. Compared to qubit, qudit provides a larger state space to store and... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
SubjectTerms | quantum computing quantum information qudit algorithm qudit gates qudit implementation |
Title | Qudits and High-Dimensional Quantum Computing |
URI | https://doaj.org/article/8c67f6055ade4f949d0efaed97827382 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELyIT6wv9uDFQ2y2SXaTo69SPAgFC70t2Uly0iq2_f_OJNvSk168huwy-03IzLeZfMPYzRCQ9njhee2c5Cp44Aac4EYqi-PStJCqLV6r8VS9zPRsq9UX1YRleeAM3MBAVUfMubXzQUWrrBchuuCR_dCtkrT7YszbIlP57woJ06l8LokszA4iWo10cCjutLG668u2jkNbcv0prowO2H6XEBb32ZBDthPmR2w3FWbC4pjxCV2bWBRI-AuqyeBPJMefpTSKyQpxWX0UuTUDBqETNh09vz2OedfigIMq6yX3GKEraGOUlTWgo7BDD6FuvUYeU0lZOhuEjSa2pcdMA4bROEUpQykE7kxKnrLe_HMezlhhZdAKZDpbUzqWrpWBxMigbKMHFftssP7gBjr9b2pD8d4gDyCIGoKoIYiaDFGf3W6e-MraF7_MfSAMN_NItToNoC-bzpfNX748_4-XXLA9sounUr1L1lt-r8IVJg7L9jqtkR-ncL-X |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Qudits+and+High-Dimensional+Quantum+Computing&rft.jtitle=Frontiers+in+physics&rft.au=Yuchen+Wang&rft.au=Yuchen+Wang&rft.au=Zixuan+Hu&rft.au=Zixuan+Hu&rft.date=2020-11-10&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-424X&rft.volume=8&rft_id=info:doi/10.3389%2Ffphy.2020.589504&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8c67f6055ade4f949d0efaed97827382 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-424X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-424X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-424X&client=summon |