Magnetic skyrmions for unconventional computing

Improvements in computing performance have significantly slowed down over the past few years owing to the intrinsic limitations of computing hardware. However, the demand for data computing has increased exponentially. To solve this problem, tremendous attention has been focused on the continuous sc...

Full description

Saved in:
Bibliographic Details
Published inMaterials horizons Vol. 8; no. 3; pp. 854 - 868
Main Authors Li, Sai, Kang, Wang, Zhang, Xichao, Nie, Tianxiao, Zhou, Yan, Wang, Kang L, Zhao, Weisheng
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Improvements in computing performance have significantly slowed down over the past few years owing to the intrinsic limitations of computing hardware. However, the demand for data computing has increased exponentially. To solve this problem, tremendous attention has been focused on the continuous scaling of Moore's law as well as the advanced non-von Neumann computing architecture. A rich variety of unconventional computing paradigms has been devised with the rapid development of nanoscale devices. Magnetic skyrmions, spin swirling quasiparticles, have been endowed with great expectations for unconventional computing due to their potential as the smallest information carriers by exploiting their physics and dynamics. In this paper, we provide an overview of the recent progress of skyrmion-based unconventional computing from a joint device-application perspective. This paper aims to build up a panoramic picture, analyze the remaining challenges, and most importantly to shed light on the outlook of skyrmion based unconventional computing for interdisciplinary researchers. A rich variety of unconventional computing paradigms has been raised with the rapid development of nanoscale devices. Magnetic skyrmions, spin swirling quasiparticles, have been endowed with great expectations for unconventional computing.
AbstractList Improvements in computing performance have significantly slowed down over the past few years owing to the intrinsic limitations of computing hardware. However, the demand for data computing has increased exponentially. To solve this problem, tremendous attention has been focused on the continuous scaling of Moore's law as well as the advanced non-von Neumann computing architecture. A rich variety of unconventional computing paradigms has been devised with the rapid development of nanoscale devices. Magnetic skyrmions, spin swirling quasiparticles, have been endowed with great expectations for unconventional computing due to their potential as the smallest information carriers by exploiting their physics and dynamics. In this paper, we provide an overview of the recent progress of skyrmion-based unconventional computing from a joint device-application perspective. This paper aims to build up a panoramic picture, analyze the remaining challenges, and most importantly to shed light on the outlook of skyrmion based unconventional computing for interdisciplinary researchers.
Improvements in computing performance have significantly slowed down over the past few years owing to the intrinsic limitations of computing hardware. However, the demand for data computing has increased exponentially. To solve this problem, tremendous attention has been focused on the continuous scaling of Moore's law as well as the advanced non-von Neumann computing architecture. A rich variety of unconventional computing paradigms has been devised with the rapid development of nanoscale devices. Magnetic skyrmions, spin swirling quasiparticles, have been endowed with great expectations for unconventional computing due to their potential as the smallest information carriers by exploiting their physics and dynamics. In this paper, we provide an overview of the recent progress of skyrmion-based unconventional computing from a joint device-application perspective. This paper aims to build up a panoramic picture, analyze the remaining challenges, and most importantly to shed light on the outlook of skyrmion based unconventional computing for interdisciplinary researchers.Improvements in computing performance have significantly slowed down over the past few years owing to the intrinsic limitations of computing hardware. However, the demand for data computing has increased exponentially. To solve this problem, tremendous attention has been focused on the continuous scaling of Moore's law as well as the advanced non-von Neumann computing architecture. A rich variety of unconventional computing paradigms has been devised with the rapid development of nanoscale devices. Magnetic skyrmions, spin swirling quasiparticles, have been endowed with great expectations for unconventional computing due to their potential as the smallest information carriers by exploiting their physics and dynamics. In this paper, we provide an overview of the recent progress of skyrmion-based unconventional computing from a joint device-application perspective. This paper aims to build up a panoramic picture, analyze the remaining challenges, and most importantly to shed light on the outlook of skyrmion based unconventional computing for interdisciplinary researchers.
Improvements in computing performance have significantly slowed down over the past few years owing to the intrinsic limitations of computing hardware. However, the demand for data computing has increased exponentially. To solve this problem, tremendous attention has been focused on the continuous scaling of Moore's law as well as the advanced non-von Neumann computing architecture. A rich variety of unconventional computing paradigms has been devised with the rapid development of nanoscale devices. Magnetic skyrmions, spin swirling quasiparticles, have been endowed with great expectations for unconventional computing due to their potential as the smallest information carriers by exploiting their physics and dynamics. In this paper, we provide an overview of the recent progress of skyrmion-based unconventional computing from a joint device-application perspective. This paper aims to build up a panoramic picture, analyze the remaining challenges, and most importantly to shed light on the outlook of skyrmion based unconventional computing for interdisciplinary researchers. A rich variety of unconventional computing paradigms has been raised with the rapid development of nanoscale devices. Magnetic skyrmions, spin swirling quasiparticles, have been endowed with great expectations for unconventional computing.
Author Kang, Wang
Zhou, Yan
Zhang, Xichao
Nie, Tianxiao
Li, Sai
Zhao, Weisheng
Wang, Kang L
AuthorAffiliation School of Integrated Circuit Science and Engineering
School of Science and Engineering
Shenyuan Honors College
The Chinese University of Hong Kong
Department of Electrical and Computer Engineering
University of California
Beijing Advanced Innovation Center for Big Data and Brain Computing
Beihang University
AuthorAffiliation_xml – name: School of Science and Engineering
– name: University of California
– name: Shenyuan Honors College
– name: The Chinese University of Hong Kong
– name: Department of Electrical and Computer Engineering
– name: Beijing Advanced Innovation Center for Big Data and Brain Computing
– name: Beihang University
– name: School of Integrated Circuit Science and Engineering
Author_xml – sequence: 1
  givenname: Sai
  surname: Li
  fullname: Li, Sai
– sequence: 2
  givenname: Wang
  surname: Kang
  fullname: Kang, Wang
– sequence: 3
  givenname: Xichao
  surname: Zhang
  fullname: Zhang, Xichao
– sequence: 4
  givenname: Tianxiao
  surname: Nie
  fullname: Nie, Tianxiao
– sequence: 5
  givenname: Yan
  surname: Zhou
  fullname: Zhou, Yan
– sequence: 6
  givenname: Kang L
  surname: Wang
  fullname: Wang, Kang L
– sequence: 7
  givenname: Weisheng
  surname: Zhao
  fullname: Zhao, Weisheng
BookMark eNptkd9LwzAQx4NMcM69-C4MfBGh7q5pkvZxzB8TNnzR55Kl6exsk5m0wv57MycThnBwx_H5HnffOyc9Y40m5BLhDoFm4wKad0AOVJ6QfgwMI04Z6x3qRJyRofdrAECaMEihT8YLuTK6rdTIf2xdU1njR6V1o84oa760aUNH1iNlm03XVmZ1QU5LWXs9_M0D8vb48DqdRfOXp-fpZB6pBEUbqZKlGmKBbIkFMoSskJAWaSlUkS5RckW54iAkz1iRZozxZcIYohIq5iUr6YDc7OdunP3stG_zpvJK17U02nY-jznE4boQAb0-Qte2c2HrQDGgAgXHLFC3e0o5673TZb5xVSPdNkfId_bl97CY_dg3CTAcwapq5c6L1smq_l9ytZc4rw6j_z5CvwHHgnus
CitedBy_id crossref_primary_10_1103_PhysRevB_105_184402
crossref_primary_10_1016_j_isci_2023_106311
crossref_primary_10_1088_1361_6528_ac3f14
crossref_primary_10_1038_s41467_023_39207_9
crossref_primary_10_1002_adfm_202419782
crossref_primary_10_1063_5_0046950
crossref_primary_10_1134_S0031918X22030097
crossref_primary_10_1016_j_actamat_2024_120381
crossref_primary_10_1016_j_jmmm_2021_168877
crossref_primary_10_1088_1361_6463_ad2e4f
crossref_primary_10_1103_PhysRevB_104_174446
crossref_primary_10_1093_nsr_nwac021
crossref_primary_10_1021_acs_nanolett_3c04238
crossref_primary_10_1063_5_0215267
crossref_primary_10_1038_s41598_023_46677_w
crossref_primary_10_1088_1361_6463_ac6cb2
crossref_primary_10_1063_5_0184626
crossref_primary_10_1088_1361_6463_acd9d4
crossref_primary_10_1021_acs_jpclett_2c03313
crossref_primary_10_1038_s41467_022_32525_4
crossref_primary_10_1103_PhysRevB_108_144438
crossref_primary_10_1039_D3MH00868A
crossref_primary_10_3390_nano11010194
crossref_primary_10_1140_epjb_s10051_024_00703_6
crossref_primary_10_1038_s42005_021_00761_7
crossref_primary_10_1557_s43579_024_00633_5
crossref_primary_10_1016_j_physleta_2022_128326
crossref_primary_10_1103_PhysRevB_110_064437
crossref_primary_10_1002_aelm_202400251
crossref_primary_10_1016_j_physrep_2023_09_008
crossref_primary_10_1038_s41467_022_34309_2
crossref_primary_10_1103_PhysRevB_110_174405
crossref_primary_10_1088_2634_4386_ad2afb
crossref_primary_10_1103_PhysRevB_103_174416
crossref_primary_10_1103_PhysRevB_104_064421
crossref_primary_10_1021_acs_nanolett_2c03287
crossref_primary_10_1002_agt2_590
crossref_primary_10_1103_PhysRevB_109_054407
crossref_primary_10_1002_adfm_202405296
crossref_primary_10_1021_acs_nanolett_1c00865
crossref_primary_10_1134_S002136402260327X
crossref_primary_10_1063_5_0056259
crossref_primary_10_1007_s10825_020_01648_6
crossref_primary_10_1063_5_0190339
crossref_primary_10_1103_PhysRevB_109_L220404
crossref_primary_10_1103_PhysRevE_110_L042601
crossref_primary_10_31857_S1234567823090070
crossref_primary_10_1016_j_jmmm_2022_169631
crossref_primary_10_1103_PhysRevResearch_5_043065
crossref_primary_10_1103_PhysRevApplied_16_014040
crossref_primary_10_1038_s41524_024_01285_8
crossref_primary_10_1002_idm2_12072
crossref_primary_10_1038_s41467_023_41203_y
crossref_primary_10_1038_s41467_022_28334_4
crossref_primary_10_1016_j_jmmm_2022_169905
crossref_primary_10_1016_j_physe_2023_115776
crossref_primary_10_1103_PhysRevLett_130_106701
crossref_primary_10_1002_adfm_202416203
crossref_primary_10_1103_PhysRevB_106_054413
crossref_primary_10_1103_PhysRevB_103_184418
crossref_primary_10_1016_j_jmmm_2022_169107
crossref_primary_10_1360_TB_2024_0922
crossref_primary_10_1021_acs_nanolett_3c05024
crossref_primary_10_1088_0256_307X_41_6_067501
crossref_primary_10_1002_adfm_202204288
crossref_primary_10_1002_adfm_202301817
crossref_primary_10_1002_adfm_202400971
crossref_primary_10_1021_acs_nanolett_2c00836
crossref_primary_10_1088_1361_648X_acf106
crossref_primary_10_1109_JPROC_2021_3084997
crossref_primary_10_1016_j_jmmm_2023_171122
crossref_primary_10_3379_msjmag_2301R003
crossref_primary_10_1103_PhysRevLett_129_267401
crossref_primary_10_1109_TED_2023_3318519
crossref_primary_10_1103_PhysRevB_108_174414
crossref_primary_10_1103_RevModPhys_94_035005
crossref_primary_10_1007_s11426_023_1767_2
crossref_primary_10_1103_PhysRevB_108_144428
crossref_primary_10_1088_2634_4386_acb841
crossref_primary_10_1063_5_0066375
crossref_primary_10_1103_PhysRevB_108_184407
crossref_primary_10_1021_acs_nanolett_2c03106
crossref_primary_10_1360_TB_2024_0931
crossref_primary_10_1088_1361_6528_acb714
Cites_doi 10.1109/TED.2020.2989420
10.1103/PhysRevApplied.11.034015
10.1038/s41563-019-0468-3
10.1038/srep11369
10.1103/PhysRevApplied.9.064018
10.1038/nmat4856
10.1063/1.4917011
10.1109/MNET.2014.6863131
10.1103/PhysRevB.93.224505
10.1038/nmat4402
10.1126/science.1145799
10.1002/adma.201103723
10.1038/nmat3054
10.1109/JPROC.2018.2790840
10.1063/1.4978510
10.1038/nnano.2013.29
10.1109/TED.2019.2938952
10.1038/s41928-018-0122-0
10.1063/1.4938539
10.1109/TNANO.2015.2437902
10.1103/PhysRevLett.110.167201
10.1038/natrevmats.2017.31
10.1038/nature23011
10.1038/s41586-019-1677-2
10.1109/TNANO.2012.2202125
10.1088/1367-2630/17/2/023061
10.1103/PhysRevB.90.064410
10.1103/PhysRevLett.87.037203
10.1016/0303-2647(96)01624-3
10.1021/acs.nanolett.9b02840
10.1088/1361-6463/ab8418
10.1063/1.5115183
10.1038/s41928-019-0273-7
10.1007/978-3-319-99558-8
10.1038/s41928-017-0006-8
10.1038/s41928-018-0023-2
10.1088/0957-4484/22/25/254023
10.1103/PhysRevApplied.9.014034
10.1038/ncomms15448
10.1038/s41598-018-35828-z
10.1016/j.physrep.2017.08.001
10.1103/PhysRevApplied.12.064053
10.1016/0029-5582(62)90775-7
10.1039/C7NR09722K
10.1038/s41467-018-06827-5
10.1016/j.neunet.2019.03.005
10.1109/JXCDC.2019.2904191
10.1038/s41467-019-11831-4
10.1063/1.5006918
10.1103/PhysRevB.97.214426
10.1038/530144a
10.1063/1.5012763
10.1063/1.5042308
10.1038/s41928-018-0054-8
10.1109/TCSII.2015.2456372
10.1126/science.1166767
10.1002/adma.200903680
10.1021/nl201040y
10.1186/s11671-017-2114-9
10.1063/1.4930904
10.1103/PhysRevB.93.020404
10.1016/j.cplett.2016.02.054
10.1088/1361-6528/aa7af5
10.1109/JPROC.2016.2591578
10.1109/TMAG.2018.2889566
10.1145/2465787.2465794
10.1038/s41467-019-13182-6
10.1038/srep15773
10.1002/adma.201701144
10.1109/JPROC.2016.2597152
10.1038/natrevmats.2016.44
10.1038/s41467-019-13993-7
10.1038/s41565-019-0593-9
10.1038/s41467-016-0009-6
10.1021/nl904092h
10.1038/s41467-017-00869-x
10.1109/ACCESS.2018.2794584
10.1038/s41928-020-0385-0
10.1109/LED.2019.2946863
10.1088/1361-6463/aaf784
10.1002/adma.201203680
10.1103/PhysRevApplied.9.044007
10.1088/1361-6528/aa5838
10.1021/acs.nanolett.8b03983
10.1162/089976602760407955
10.1038/s41565-019-0436-8
10.1016/j.pbiomolbio.2017.08.004
10.1038/nmat3862
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7SR
7TB
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/d0mh01603a
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2051-6355
EndPage 868
ExternalDocumentID 10_1039_D0MH01603A
d0mh01603a
GroupedDBID 0R
4.4
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
HZ
H~N
J3I
O-G
O9-
RCNCU
RIG
RPMJG
RRC
RSCEA
0R~
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABPDG
ABXOH
AEFDR
AENGV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
7SR
7TB
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c417t-cf58e02715b1d15109da08d8f7cd8b1a6c36c607a695d89556b45511c7c26f5f3
ISSN 2051-6347
2051-6355
IngestDate Fri Jul 11 01:06:30 EDT 2025
Mon Jun 30 03:59:32 EDT 2025
Tue Jul 01 01:36:13 EDT 2025
Thu Apr 24 23:04:09 EDT 2025
Sat Jan 08 03:48:09 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c417t-cf58e02715b1d15109da08d8f7cd8b1a6c36c607a695d89556b45511c7c26f5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8088-0404
0000-0001-5641-9191
0000-0001-9656-9696
PQID 2503717619
PQPubID 2047518
PageCount 15
ParticipantIDs crossref_primary_10_1039_D0MH01603A
proquest_miscellaneous_2602635635
proquest_journals_2503717619
crossref_citationtrail_10_1039_D0MH01603A
rsc_primary_d0mh01603a
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Materials horizons
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Wiesendanger (D0MH01603A-(cit34)/*[position()=1]) 2016; 1
Legrand (D0MH01603A-(cit108)/*[position()=1]) 2020; 19
Krzysteczko (D0MH01603A-(cit59)/*[position()=1]) 2012; 24
Jo (D0MH01603A-(cit53)/*[position()=1]) 2010; 10
Wu (D0MH01603A-(cit52)/*[position()=1]) 2015; 62
Grollier (D0MH01603A-(cit14)/*[position()=1]) 2016; 104
Li (D0MH01603A-(cit49)/*[position()=1])
Park (D0MH01603A-(cit103)/*[position()=1])
Yang (D0MH01603A-(cit98)/*[position()=1]) 2016; 93
Sun (D0MH01603A-(cit106)/*[position()=1]) 2013; 110
Yu (D0MH01603A-(cit54)/*[position()=1]) 2013; 25
Back (D0MH01603A-(cit26)/*[position()=1]) 2020; 53
Kézsmárki (D0MH01603A-(cit33)/*[position()=1]) 2015; 14
Kalita (D0MH01603A-(cit71)/*[position()=1]) 2019; 9
Mochizuki (D0MH01603A-(cit25)/*[position()=1]) 2014; 13
Roy (D0MH01603A-(cit7)/*[position()=1]) 2019; 575
Prychynenko (D0MH01603A-(cit88)/*[position()=1]) 2018; 9
Alaghi (D0MH01603A-(cit91)/*[position()=1]) 2013; 12
Du (D0MH01603A-(cit84)/*[position()=1]) 2017; 8
Zidan (D0MH01603A-(cit9)/*[position()=1]) 2018; 1
Lin (D0MH01603A-(cit11)/*[position()=1]) 2019; 2
Fert (D0MH01603A-(cit27)/*[position()=1]) 2017; 2
Fan (D0MH01603A-(cit72)/*[position()=1]) 2015; 14
Bogdanov (D0MH01603A-(cit30)/*[position()=1]) 2001; 87
Jiang (D0MH01603A-(cit19)/*[position()=1]) 2017; 704
Fert (D0MH01603A-(cit41)/*[position()=1]) 2013; 8
Zhang (D0MH01603A-(cit42)/*[position()=1]) 2019; 40
Wu (D0MH01603A-(cit104)/*[position()=1]) 2020; 11
Dohi (D0MH01603A-(cit102)/*[position()=1]) 2019; 10
Parkin (D0MH01603A-(cit23)/*[position()=1]) 2008; 320
Torrejon (D0MH01603A-(cit86)/*[position()=1]) 2017; 547
Miltat (D0MH01603A-(cit93)/*[position()=1]) 2018; 97
Blasing (D0MH01603A-(cit12)/*[position()=1]) 2020
Azam (D0MH01603A-(cit76)/*[position()=1]) 2018; 124
Finocchio (D0MH01603A-(cit45)/*[position()=1]) 2015; 107
Zhang (D0MH01603A-(cit35)/*[position()=1]) 2015; 5
Le Gallo (D0MH01603A-(cit6)/*[position()=1]) 2018; 1
Woo (D0MH01603A-(cit36)/*[position()=1]) 2018; 1
Rowland (D0MH01603A-(cit32)/*[position()=1]) 2016; 93
Lin (D0MH01603A-(cit73)/*[position()=1])
Kuzum (D0MH01603A-(cit56)/*[position()=1]) 2012; 12
Yao (D0MH01603A-(cit95)/*[position()=1]) 2020; 67
Suri (D0MH01603A-(cit57)/*[position()=1])
Nakane (D0MH01603A-(cit87)/*[position()=1]) 2018; 6
Burr (D0MH01603A-(cit70)/*[position()=1]) 2017; 2
Zázvorka (D0MH01603A-(cit94)/*[position()=1]) 2019; 14
Kang (D0MH01603A-(cit28)/*[position()=1]) 2016; 104
Zhang (D0MH01603A-(cit44)/*[position()=1]) 2015; 17
Finizio (D0MH01603A-(cit37)/*[position()=1]) 2019; 19
Seo (D0MH01603A-(cit55)/*[position()=1]) 2011; 22
Sengupta (D0MH01603A-(cit58)/*[position()=1]) 2015; 106
Fernandes (D0MH01603A-(cit80)/*[position()=1]) 2020; 32
Brigner (D0MH01603A-(cit78)/*[position()=1]) 2019; 5
Brigner (D0MH01603A-(cit79)/*[position()=1]) 2019; 66
Chui (D0MH01603A-(cit46)/*[position()=1]) 2015; 5
Fan (D0MH01603A-(cit60)/*[position()=1]) 2015; 14
Tanaka (D0MH01603A-(cit85)/*[position()=1]) 2019; 115
Islam (D0MH01603A-(cit13)/*[position()=1]) 2019; 52
Sengupta (D0MH01603A-(cit18)/*[position()=1]) 2017; 4
Skyrme (D0MH01603A-(cit29)/*[position()=1]) 1962; 31
Yang (D0MH01603A-(cit64)/*[position()=1]) 2017; 3
Liu (D0MH01603A-(cit99)/*[position()=1]) 2016; 649
Borisyuk (D0MH01603A-(cit69)/*[position()=1]) 1997; 40
Wiesendanger (D0MH01603A-(cit38)/*[position()=1]) 2018
Zhang (D0MH01603A-(cit101)/*[position()=1]) 2016; 94
Lu (D0MH01603A-(cit1)/*[position()=1]) 2014; 28
Zhang (D0MH01603A-(cit43)/*[position()=1]) 2015; 5
Ma (D0MH01603A-(cit74)/*[position()=1]) 2019; 19
Chen (D0MH01603A-(cit107)/*[position()=1]) 2018; 54
Huang (D0MH01603A-(cit67)/*[position()=1]) 2017; 28
Zhang (D0MH01603A-(cit21)/*[position()=1]) 2015; 5
Lima Fernandes (D0MH01603A-(cit24)/*[position()=1]) 2018; 9
Zhang (D0MH01603A-(cit22)/*[position()=1]) 2020; 32
Jaeger (D0MH01603A-(cit81)/*[position()=1]) 2001
Zahedinejad (D0MH01603A-(cit17)/*[position()=1]) 2020; 15
Fert (D0MH01603A-(cit20)/*[position()=1]) 2013; 8
Jin (D0MH01603A-(cit48)/*[position()=1]) 2018; 9
Jiang (D0MH01603A-(cit96)/*[position()=1]) 2017; 8
van de Burgt (D0MH01603A-(cit51)/*[position()=1]) 2017; 16
Wang (D0MH01603A-(cit65)/*[position()=1]) 2018; 1
Hasegawa (D0MH01603A-(cit63)/*[position()=1]) 2010; 22
Jiang (D0MH01603A-(cit90)/*[position()=1]) 2019; 115
Waldrop (D0MH01603A-(cit10)/*[position()=1]) 2016; 530
He (D0MH01603A-(cit77)/*[position()=1])
Gkoupidenis (D0MH01603A-(cit4)/*[position()=1]) 2017; 8
Chauwin (D0MH01603A-(cit97)/*[position()=1]) 2019; 12
Hou (D0MH01603A-(cit105)/*[position()=1]) 2017; 29
Ohno (D0MH01603A-(cit62)/*[position()=1]) 2011; 10
Maass (D0MH01603A-(cit82)/*[position()=1]) 2002; 14
Cai (D0MH01603A-(cit15)/*[position()=1]) 2019; 11
Bourianoff (D0MH01603A-(cit89)/*[position()=1]) 2018; 8
Adamatzky (D0MH01603A-(cit8)/*[position()=1]) 2017; 131
Muhlbauer (D0MH01603A-(cit31)/*[position()=1]) 2009; 323
Pinna (D0MH01603A-(cit92)/*[position()=1]) 2018; 9
Russek (D0MH01603A-(cit16)/*[position()=1])
Meyer (D0MH01603A-(cit40)/*[position()=1]) 2019; 10
Song (D0MH01603A-(cit68)/*[position()=1]) 2020; 3
Dally (D0MH01603A-(cit3)/*[position()=1])
Kim (D0MH01603A-(cit39)/*[position()=1]) 2014; 90
Schrauwen (D0MH01603A-(cit83)/*[position()=1])
Sharad (D0MH01603A-(cit61)/*[position()=1]) 2012; 11
Li (D0MH01603A-(cit66)/*[position()=1]) 2017; 28
Wang (D0MH01603A-(cit5)/*[position()=1]) 2017; 12
Chen (D0MH01603A-(cit75)/*[position()=1]) 2018; 10
Armbrust (D0MH01603A-(cit2)/*[position()=1])
Luo (D0MH01603A-(cit47)/*[position()=1]) 2017; 110
Yu (D0MH01603A-(cit50)/*[position()=1]) 2018; 106
References_xml – doi: Dally Gray Poulton
– issn: 2001
  publication-title: The "Echo State" Approach to Analysing and Training Recurrent Neural Networks
  doi: Jaeger
– doi: Schrauwen Verstraeten Van Campenhout
– doi: Suri Bichler Querlioz
– issn: 2018
  publication-title: Atomic- and Nanoscale Magnetism
  doi: Wiesendanger
– doi: Park Peng Liang
– issn: 2019
  publication-title: Crafting magnetic skyrmions at room temperature: size, stability and dynamics in multilayers
  doi: Legrand
– doi: Lin Annadi Sonde
– doi: He Fan
– doi: Armbrust Xin Lian
– doi: Russek Donnelly Schneider
– doi: Li Kang Chen
– volume: 67
  start-page: 2553
  year: 2020
  ident: D0MH01603A-(cit95)/*[position()=1]
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2020.2989420
– volume: 11
  start-page: 034015
  year: 2019
  ident: D0MH01603A-(cit15)/*[position()=1]
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.11.034015
– volume: 19
  start-page: 34
  year: 2020
  ident: D0MH01603A-(cit108)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0468-3
– volume: 5
  start-page: 11369
  year: 2015
  ident: D0MH01603A-(cit43)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep11369
– volume: 9
  start-page: 1
  year: 2018
  ident: D0MH01603A-(cit92)/*[position()=1]
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.9.064018
– volume: 16
  start-page: 414
  year: 2017
  ident: D0MH01603A-(cit51)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4856
– volume: 106
  start-page: 143701
  year: 2015
  ident: D0MH01603A-(cit58)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4917011
– volume: 28
  start-page: 46
  year: 2014
  ident: D0MH01603A-(cit1)/*[position()=1]
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2014.6863131
– volume: 93
  start-page: 224505
  year: 2016
  ident: D0MH01603A-(cit98)/*[position()=1]
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.224505
– volume: 14
  start-page: 1116
  year: 2015
  ident: D0MH01603A-(cit33)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4402
– volume: 320
  start-page: 190
  year: 2008
  ident: D0MH01603A-(cit23)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1145799
– volume: 24
  start-page: 762
  year: 2012
  ident: D0MH01603A-(cit59)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201103723
– volume: 10
  start-page: 591
  year: 2011
  ident: D0MH01603A-(cit62)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3054
– volume: 106
  start-page: 260
  year: 2018
  ident: D0MH01603A-(cit50)/*[position()=1]
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2018.2790840
– volume: 110
  start-page: 112402
  year: 2017
  ident: D0MH01603A-(cit47)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4978510
– volume: 8
  start-page: 152
  year: 2013
  ident: D0MH01603A-(cit20)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.29
– volume: 66
  start-page: 4970
  year: 2019
  ident: D0MH01603A-(cit79)/*[position()=1]
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2019.2938952
– volume: 1
  start-page: 434
  year: 2018
  ident: D0MH01603A-(cit36)/*[position()=1]
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0122-0
– ident: D0MH01603A-(cit83)/*[position()=1]
– volume: 107
  start-page: 262401
  year: 2015
  ident: D0MH01603A-(cit45)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4938539
– volume: 14
  start-page: 1013
  year: 2015
  ident: D0MH01603A-(cit72)/*[position()=1]
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2015.2437902
– volume: 110
  start-page: 167201
  year: 2013
  ident: D0MH01603A-(cit106)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.167201
– ident: D0MH01603A-(cit77)/*[position()=1]
– volume: 2
  start-page: 17031
  year: 2017
  ident: D0MH01603A-(cit27)/*[position()=1]
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.31
– volume: 547
  start-page: 428
  year: 2017
  ident: D0MH01603A-(cit86)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature23011
– volume: 575
  start-page: 607
  year: 2019
  ident: D0MH01603A-(cit7)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/s41586-019-1677-2
– volume: 11
  start-page: 843
  year: 2012
  ident: D0MH01603A-(cit61)/*[position()=1]
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2012.2202125
– start-page: 1
  year: 2020
  ident: D0MH01603A-(cit12)/*[position()=1]
  publication-title: Proc. IEEE
– volume: 17
  start-page: 023061
  year: 2015
  ident: D0MH01603A-(cit44)/*[position()=1]
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/2/023061
– ident: D0MH01603A-(cit16)/*[position()=1]
– volume: 5
  start-page: 1
  year: 2015
  ident: D0MH01603A-(cit21)/*[position()=1]
  publication-title: Sci. Rep.
– volume: 90
  start-page: 064410
  year: 2014
  ident: D0MH01603A-(cit39)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.90.064410
– volume: 87
  start-page: 037203
  year: 2001
  ident: D0MH01603A-(cit30)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.037203
– volume: 40
  start-page: 3
  year: 1997
  ident: D0MH01603A-(cit69)/*[position()=1]
  publication-title: BioSystems
  doi: 10.1016/0303-2647(96)01624-3
– volume: 19
  start-page: 7246
  year: 2019
  ident: D0MH01603A-(cit37)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b02840
– volume-title: The “Echo State” Approach to Analysing and Training Recurrent Neural Networks
  year: 2001
  ident: D0MH01603A-(cit81)/*[position()=1]
– volume: 53
  start-page: 363001
  year: 2020
  ident: D0MH01603A-(cit26)/*[position()=1]
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/ab8418
– volume: 115
  start-page: 192403
  year: 2019
  ident: D0MH01603A-(cit90)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5115183
– volume: 14
  start-page: 1013
  year: 2015
  ident: D0MH01603A-(cit60)/*[position()=1]
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2015.2437902
– volume: 3
  start-page: 1
  year: 2017
  ident: D0MH01603A-(cit64)/*[position()=1]
  publication-title: Adv. Electron. Mater.
– volume: 2
  start-page: 274
  year: 2019
  ident: D0MH01603A-(cit11)/*[position()=1]
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0273-7
– volume-title: Atomic- and Nanoscale Magnetism
  year: 2018
  ident: D0MH01603A-(cit38)/*[position()=1]
  doi: 10.1007/978-3-319-99558-8
– volume: 1
  start-page: 22
  year: 2018
  ident: D0MH01603A-(cit9)/*[position()=1]
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-017-0006-8
– volume: 1
  start-page: 137
  year: 2018
  ident: D0MH01603A-(cit65)/*[position()=1]
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0023-2
– volume: 22
  start-page: 254023
  year: 2011
  ident: D0MH01603A-(cit55)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/25/254023
– volume: 9
  start-page: 014034
  year: 2018
  ident: D0MH01603A-(cit88)/*[position()=1]
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.9.014034
– volume: 8
  start-page: 1
  year: 2017
  ident: D0MH01603A-(cit4)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15448
– volume: 9
  start-page: 53
  year: 2019
  ident: D0MH01603A-(cit71)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-35828-z
– ident: D0MH01603A-(cit49)/*[position()=1]
– volume: 704
  start-page: 1
  year: 2017
  ident: D0MH01603A-(cit19)/*[position()=1]
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2017.08.001
– volume: 12
  start-page: 1
  year: 2019
  ident: D0MH01603A-(cit97)/*[position()=1]
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.12.064053
– volume: 31
  start-page: 556
  year: 1962
  ident: D0MH01603A-(cit29)/*[position()=1]
  publication-title: Nucl. Phys.
  doi: 10.1016/0029-5582(62)90775-7
– volume: 10
  start-page: 6139
  year: 2018
  ident: D0MH01603A-(cit75)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR09722K
– volume: 9
  start-page: 1
  year: 2018
  ident: D0MH01603A-(cit24)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06827-5
– volume: 115
  start-page: 100
  year: 2019
  ident: D0MH01603A-(cit85)/*[position()=1]
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.03.005
– volume: 5
  start-page: 19
  year: 2019
  ident: D0MH01603A-(cit78)/*[position()=1]
  publication-title: IEEE J. Explor. Solid-State Comput. Devices Circuits
  doi: 10.1109/JXCDC.2019.2904191
– ident: D0MH01603A-(cit57)/*[position()=1]
– volume: 10
  start-page: 3823
  year: 2019
  ident: D0MH01603A-(cit40)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11831-4
– volume: 32
  start-page: 425802
  year: 2020
  ident: D0MH01603A-(cit80)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 8
  start-page: 055602
  year: 2018
  ident: D0MH01603A-(cit89)/*[position()=1]
  publication-title: AIP Adv.
  doi: 10.1063/1.5006918
– ident: D0MH01603A-(cit103)/*[position()=1]
– volume: 97
  start-page: 214426
  year: 2018
  ident: D0MH01603A-(cit93)/*[position()=1]
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.214426
– volume: 530
  start-page: 144
  year: 2016
  ident: D0MH01603A-(cit10)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/530144a
– volume: 4
  start-page: 041105
  year: 2017
  ident: D0MH01603A-(cit18)/*[position()=1]
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5012763
– volume: 94
  start-page: 1
  year: 2016
  ident: D0MH01603A-(cit101)/*[position()=1]
  publication-title: Phys. Rev. B
– volume: 2
  start-page: 89
  year: 2017
  ident: D0MH01603A-(cit70)/*[position()=1]
  publication-title: Adv. Phys.: X
– volume: 124
  start-page: 152122
  year: 2018
  ident: D0MH01603A-(cit76)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5042308
– ident: D0MH01603A-(cit2)/*[position()=1]
– volume: 1
  start-page: 246
  year: 2018
  ident: D0MH01603A-(cit6)/*[position()=1]
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0054-8
– volume: 62
  start-page: 1088
  year: 2015
  ident: D0MH01603A-(cit52)/*[position()=1]
  publication-title: IEEE Trans Circuits Syst II Express Briefs
  doi: 10.1109/TCSII.2015.2456372
– volume: 323
  start-page: 915
  year: 2009
  ident: D0MH01603A-(cit31)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1166767
– volume: 8
  start-page: 152
  year: 2013
  ident: D0MH01603A-(cit41)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.29
– volume: 22
  start-page: 1831
  year: 2010
  ident: D0MH01603A-(cit63)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903680
– ident: D0MH01603A-(cit73)/*[position()=1]
– volume: 12
  start-page: 2179
  year: 2012
  ident: D0MH01603A-(cit56)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl201040y
– volume: 32
  start-page: 143001
  year: 2020
  ident: D0MH01603A-(cit22)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 12
  start-page: 347
  year: 2017
  ident: D0MH01603A-(cit5)/*[position()=1]
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-017-2114-9
– volume: 5
  start-page: 097126
  year: 2015
  ident: D0MH01603A-(cit46)/*[position()=1]
  publication-title: AIP Adv.
  doi: 10.1063/1.4930904
– volume: 93
  start-page: 020404
  year: 2016
  ident: D0MH01603A-(cit32)/*[position()=1]
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.020404
– volume: 649
  start-page: 135
  year: 2016
  ident: D0MH01603A-(cit99)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2016.02.054
– volume: 28
  start-page: 31LT01
  year: 2017
  ident: D0MH01603A-(cit66)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aa7af5
– volume: 104
  start-page: 2040
  year: 2016
  ident: D0MH01603A-(cit28)/*[position()=1]
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2016.2591578
– volume: 54
  start-page: 1
  year: 2018
  ident: D0MH01603A-(cit107)/*[position()=1]
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2018.2889566
– volume: 12
  start-page: 1
  year: 2013
  ident: D0MH01603A-(cit91)/*[position()=1]
  publication-title: ACM Trans. Embed. Comput. Syst.
  doi: 10.1145/2465787.2465794
– volume: 10
  start-page: 5153
  year: 2019
  ident: D0MH01603A-(cit102)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13182-6
– volume: 5
  start-page: 15773
  year: 2015
  ident: D0MH01603A-(cit35)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep15773
– volume: 29
  start-page: 1701144
  year: 2017
  ident: D0MH01603A-(cit105)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701144
– volume: 104
  start-page: 2024
  year: 2016
  ident: D0MH01603A-(cit14)/*[position()=1]
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2016.2597152
– volume: 1
  start-page: 16044
  year: 2016
  ident: D0MH01603A-(cit34)/*[position()=1]
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.44
– volume: 11
  start-page: 1
  year: 2020
  ident: D0MH01603A-(cit104)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13993-7
– volume: 15
  start-page: 47
  year: 2020
  ident: D0MH01603A-(cit17)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0593-9
– volume: 8
  start-page: 1
  year: 2017
  ident: D0MH01603A-(cit84)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-016-0009-6
– volume: 10
  start-page: 1297
  year: 2010
  ident: D0MH01603A-(cit53)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl904092h
– volume: 8
  start-page: 882
  year: 2017
  ident: D0MH01603A-(cit96)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00869-x
– volume: 6
  start-page: 4462
  year: 2018
  ident: D0MH01603A-(cit87)/*[position()=1]
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2794584
– volume: 3
  start-page: 148
  year: 2020
  ident: D0MH01603A-(cit68)/*[position()=1]
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-020-0385-0
– ident: D0MH01603A-(cit3)/*[position()=1]
– volume: 40
  start-page: 1984
  year: 2019
  ident: D0MH01603A-(cit42)/*[position()=1]
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2019.2946863
– volume: 52
  start-page: 113001
  year: 2019
  ident: D0MH01603A-(cit13)/*[position()=1]
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/aaf784
– volume: 25
  start-page: 1774
  year: 2013
  ident: D0MH01603A-(cit54)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201203680
– volume: 9
  start-page: 1
  year: 2018
  ident: D0MH01603A-(cit48)/*[position()=1]
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.9.044007
– volume: 28
  start-page: 08LT02
  year: 2017
  ident: D0MH01603A-(cit67)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aa5838
– volume: 19
  start-page: 353
  year: 2019
  ident: D0MH01603A-(cit74)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b03983
– volume: 14
  start-page: 2531
  year: 2002
  ident: D0MH01603A-(cit82)/*[position()=1]
  publication-title: Neural Comput.
  doi: 10.1162/089976602760407955
– volume: 14
  start-page: 658
  year: 2019
  ident: D0MH01603A-(cit94)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0436-8
– volume: 131
  start-page: 469
  year: 2017
  ident: D0MH01603A-(cit8)/*[position()=1]
  publication-title: Prog. Biophys. Mol. Biol.
  doi: 10.1016/j.pbiomolbio.2017.08.004
– volume: 13
  start-page: 241
  year: 2014
  ident: D0MH01603A-(cit25)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3862
SSID ssj0001345080
Score 2.5410292
SecondaryResourceType review_article
Snippet Improvements in computing performance have significantly slowed down over the past few years owing to the intrinsic limitations of computing hardware. However,...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 854
SubjectTerms Computation
Elementary excitations
Hypothetical particles
Moore's law
Nanotechnology devices
Particle theory
Swirling
Title Magnetic skyrmions for unconventional computing
URI https://www.proquest.com/docview/2503717619
https://www.proquest.com/docview/2602635635
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa67gIHxK-JwkBBcEFTNjuO7fjGBEMFMU6d6C1y7HirgBR1mQT763mOYydjOwykKopc10n9Pj8_Pz9_D6HXzFpLKM9TKWSV5pWGO8LqtCKmMExkXOouyvcLn5_kn5ZsOZm8HZ8uaat9fXnjuZL_kSqUgVzdKdl_kGxsFArgHuQLV5AwXG8l42N12rhDiHvn336DwFzUi4sahKlqHEuuu8QNYYoK2ZtU699w72y9WV0Gp50LzVl5T_Eq6uLepfxV9U2M_cxLF3a_HnY3PIkvYO7Xqi_uXQrZKKbKa54MRmrKqafC3K_HZZ5TN6jOYoQQOlKDhSeGDjOqT5xzTVlj6rhO3-PjeZfsOtKdDozYf81UMX6w2zmnshx-u4W2M1goZFO0fXi0-Ph58LPRHGxQ52qL_yqw1FJ5MDRw1S4ZFhtbm5AJprM4FvfRvX6pkBx6uT9Ak7p5iO6OCCQfoYOAgCQiIAEEJFcRkEQEPEYnH44W7-ZpnwIj1TkRbaotK2qcCcJg8IBxhqVRuDCFFdoUFVFcU645FopLZgrJGK9ysIGJFjrjllm6g6bNuqmfoIRwZXMjYCSCla6EqTIsrbBUCWwNpWSG3oQOKHXPD-_SlHwvr_f2DL2KdX96VpQba-2Gfiz7UXNegslNBXHOsxl6Gb8GneY2qlRTry-gjsuLRhl8ZmgH-j8-w-AfZ13b6umt3uAZujPgexdN281F_RyMyLZ60ePkD14MbbE
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+skyrmions+for+unconventional+computing&rft.jtitle=Materials+horizons&rft.au=Li%2C+Sai&rft.au=Kang%2C+Wang&rft.au=Zhang%2C+Xichao&rft.au=Nie%2C+Tianxiao&rft.date=2021-03-01&rft.issn=2051-6347&rft.eissn=2051-6355&rft.volume=8&rft.issue=3&rft.spage=854&rft.epage=868&rft_id=info:doi/10.1039%2FD0MH01603A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D0MH01603A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-6347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-6347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-6347&client=summon