Magnetic skyrmions for unconventional computing
Improvements in computing performance have significantly slowed down over the past few years owing to the intrinsic limitations of computing hardware. However, the demand for data computing has increased exponentially. To solve this problem, tremendous attention has been focused on the continuous sc...
Saved in:
Published in | Materials horizons Vol. 8; no. 3; pp. 854 - 868 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Improvements in computing performance have significantly slowed down over the past few years owing to the intrinsic limitations of computing hardware. However, the demand for data computing has increased exponentially. To solve this problem, tremendous attention has been focused on the continuous scaling of Moore's law as well as the advanced non-von Neumann computing architecture. A rich variety of unconventional computing paradigms has been devised with the rapid development of nanoscale devices. Magnetic skyrmions, spin swirling quasiparticles, have been endowed with great expectations for unconventional computing due to their potential as the smallest information carriers by exploiting their physics and dynamics. In this paper, we provide an overview of the recent progress of skyrmion-based unconventional computing from a joint device-application perspective. This paper aims to build up a panoramic picture, analyze the remaining challenges, and most importantly to shed light on the outlook of skyrmion based unconventional computing for interdisciplinary researchers.
A rich variety of unconventional computing paradigms has been raised with the rapid development of nanoscale devices. Magnetic skyrmions, spin swirling quasiparticles, have been endowed with great expectations for unconventional computing. |
---|---|
AbstractList | Improvements in computing performance have significantly slowed down over the past few years owing to the intrinsic limitations of computing hardware. However, the demand for data computing has increased exponentially. To solve this problem, tremendous attention has been focused on the continuous scaling of Moore's law as well as the advanced non-von Neumann computing architecture. A rich variety of unconventional computing paradigms has been devised with the rapid development of nanoscale devices. Magnetic skyrmions, spin swirling quasiparticles, have been endowed with great expectations for unconventional computing due to their potential as the smallest information carriers by exploiting their physics and dynamics. In this paper, we provide an overview of the recent progress of skyrmion-based unconventional computing from a joint device-application perspective. This paper aims to build up a panoramic picture, analyze the remaining challenges, and most importantly to shed light on the outlook of skyrmion based unconventional computing for interdisciplinary researchers. Improvements in computing performance have significantly slowed down over the past few years owing to the intrinsic limitations of computing hardware. However, the demand for data computing has increased exponentially. To solve this problem, tremendous attention has been focused on the continuous scaling of Moore's law as well as the advanced non-von Neumann computing architecture. A rich variety of unconventional computing paradigms has been devised with the rapid development of nanoscale devices. Magnetic skyrmions, spin swirling quasiparticles, have been endowed with great expectations for unconventional computing due to their potential as the smallest information carriers by exploiting their physics and dynamics. In this paper, we provide an overview of the recent progress of skyrmion-based unconventional computing from a joint device-application perspective. This paper aims to build up a panoramic picture, analyze the remaining challenges, and most importantly to shed light on the outlook of skyrmion based unconventional computing for interdisciplinary researchers.Improvements in computing performance have significantly slowed down over the past few years owing to the intrinsic limitations of computing hardware. However, the demand for data computing has increased exponentially. To solve this problem, tremendous attention has been focused on the continuous scaling of Moore's law as well as the advanced non-von Neumann computing architecture. A rich variety of unconventional computing paradigms has been devised with the rapid development of nanoscale devices. Magnetic skyrmions, spin swirling quasiparticles, have been endowed with great expectations for unconventional computing due to their potential as the smallest information carriers by exploiting their physics and dynamics. In this paper, we provide an overview of the recent progress of skyrmion-based unconventional computing from a joint device-application perspective. This paper aims to build up a panoramic picture, analyze the remaining challenges, and most importantly to shed light on the outlook of skyrmion based unconventional computing for interdisciplinary researchers. Improvements in computing performance have significantly slowed down over the past few years owing to the intrinsic limitations of computing hardware. However, the demand for data computing has increased exponentially. To solve this problem, tremendous attention has been focused on the continuous scaling of Moore's law as well as the advanced non-von Neumann computing architecture. A rich variety of unconventional computing paradigms has been devised with the rapid development of nanoscale devices. Magnetic skyrmions, spin swirling quasiparticles, have been endowed with great expectations for unconventional computing due to their potential as the smallest information carriers by exploiting their physics and dynamics. In this paper, we provide an overview of the recent progress of skyrmion-based unconventional computing from a joint device-application perspective. This paper aims to build up a panoramic picture, analyze the remaining challenges, and most importantly to shed light on the outlook of skyrmion based unconventional computing for interdisciplinary researchers. A rich variety of unconventional computing paradigms has been raised with the rapid development of nanoscale devices. Magnetic skyrmions, spin swirling quasiparticles, have been endowed with great expectations for unconventional computing. |
Author | Kang, Wang Zhou, Yan Zhang, Xichao Nie, Tianxiao Li, Sai Zhao, Weisheng Wang, Kang L |
AuthorAffiliation | School of Integrated Circuit Science and Engineering School of Science and Engineering Shenyuan Honors College The Chinese University of Hong Kong Department of Electrical and Computer Engineering University of California Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University |
AuthorAffiliation_xml | – name: School of Science and Engineering – name: University of California – name: Shenyuan Honors College – name: The Chinese University of Hong Kong – name: Department of Electrical and Computer Engineering – name: Beijing Advanced Innovation Center for Big Data and Brain Computing – name: Beihang University – name: School of Integrated Circuit Science and Engineering |
Author_xml | – sequence: 1 givenname: Sai surname: Li fullname: Li, Sai – sequence: 2 givenname: Wang surname: Kang fullname: Kang, Wang – sequence: 3 givenname: Xichao surname: Zhang fullname: Zhang, Xichao – sequence: 4 givenname: Tianxiao surname: Nie fullname: Nie, Tianxiao – sequence: 5 givenname: Yan surname: Zhou fullname: Zhou, Yan – sequence: 6 givenname: Kang L surname: Wang fullname: Wang, Kang L – sequence: 7 givenname: Weisheng surname: Zhao fullname: Zhao, Weisheng |
BookMark | eNptkd9LwzAQx4NMcM69-C4MfBGh7q5pkvZxzB8TNnzR55Kl6exsk5m0wv57MycThnBwx_H5HnffOyc9Y40m5BLhDoFm4wKad0AOVJ6QfgwMI04Z6x3qRJyRofdrAECaMEihT8YLuTK6rdTIf2xdU1njR6V1o84oa760aUNH1iNlm03XVmZ1QU5LWXs9_M0D8vb48DqdRfOXp-fpZB6pBEUbqZKlGmKBbIkFMoSskJAWaSlUkS5RckW54iAkz1iRZozxZcIYohIq5iUr6YDc7OdunP3stG_zpvJK17U02nY-jznE4boQAb0-Qte2c2HrQDGgAgXHLFC3e0o5673TZb5xVSPdNkfId_bl97CY_dg3CTAcwapq5c6L1smq_l9ytZc4rw6j_z5CvwHHgnus |
CitedBy_id | crossref_primary_10_1103_PhysRevB_105_184402 crossref_primary_10_1016_j_isci_2023_106311 crossref_primary_10_1088_1361_6528_ac3f14 crossref_primary_10_1038_s41467_023_39207_9 crossref_primary_10_1002_adfm_202419782 crossref_primary_10_1063_5_0046950 crossref_primary_10_1134_S0031918X22030097 crossref_primary_10_1016_j_actamat_2024_120381 crossref_primary_10_1016_j_jmmm_2021_168877 crossref_primary_10_1088_1361_6463_ad2e4f crossref_primary_10_1103_PhysRevB_104_174446 crossref_primary_10_1093_nsr_nwac021 crossref_primary_10_1021_acs_nanolett_3c04238 crossref_primary_10_1063_5_0215267 crossref_primary_10_1038_s41598_023_46677_w crossref_primary_10_1088_1361_6463_ac6cb2 crossref_primary_10_1063_5_0184626 crossref_primary_10_1088_1361_6463_acd9d4 crossref_primary_10_1021_acs_jpclett_2c03313 crossref_primary_10_1038_s41467_022_32525_4 crossref_primary_10_1103_PhysRevB_108_144438 crossref_primary_10_1039_D3MH00868A crossref_primary_10_3390_nano11010194 crossref_primary_10_1140_epjb_s10051_024_00703_6 crossref_primary_10_1038_s42005_021_00761_7 crossref_primary_10_1557_s43579_024_00633_5 crossref_primary_10_1016_j_physleta_2022_128326 crossref_primary_10_1103_PhysRevB_110_064437 crossref_primary_10_1002_aelm_202400251 crossref_primary_10_1016_j_physrep_2023_09_008 crossref_primary_10_1038_s41467_022_34309_2 crossref_primary_10_1103_PhysRevB_110_174405 crossref_primary_10_1088_2634_4386_ad2afb crossref_primary_10_1103_PhysRevB_103_174416 crossref_primary_10_1103_PhysRevB_104_064421 crossref_primary_10_1021_acs_nanolett_2c03287 crossref_primary_10_1002_agt2_590 crossref_primary_10_1103_PhysRevB_109_054407 crossref_primary_10_1002_adfm_202405296 crossref_primary_10_1021_acs_nanolett_1c00865 crossref_primary_10_1134_S002136402260327X crossref_primary_10_1063_5_0056259 crossref_primary_10_1007_s10825_020_01648_6 crossref_primary_10_1063_5_0190339 crossref_primary_10_1103_PhysRevB_109_L220404 crossref_primary_10_1103_PhysRevE_110_L042601 crossref_primary_10_31857_S1234567823090070 crossref_primary_10_1016_j_jmmm_2022_169631 crossref_primary_10_1103_PhysRevResearch_5_043065 crossref_primary_10_1103_PhysRevApplied_16_014040 crossref_primary_10_1038_s41524_024_01285_8 crossref_primary_10_1002_idm2_12072 crossref_primary_10_1038_s41467_023_41203_y crossref_primary_10_1038_s41467_022_28334_4 crossref_primary_10_1016_j_jmmm_2022_169905 crossref_primary_10_1016_j_physe_2023_115776 crossref_primary_10_1103_PhysRevLett_130_106701 crossref_primary_10_1002_adfm_202416203 crossref_primary_10_1103_PhysRevB_106_054413 crossref_primary_10_1103_PhysRevB_103_184418 crossref_primary_10_1016_j_jmmm_2022_169107 crossref_primary_10_1360_TB_2024_0922 crossref_primary_10_1021_acs_nanolett_3c05024 crossref_primary_10_1088_0256_307X_41_6_067501 crossref_primary_10_1002_adfm_202204288 crossref_primary_10_1002_adfm_202301817 crossref_primary_10_1002_adfm_202400971 crossref_primary_10_1021_acs_nanolett_2c00836 crossref_primary_10_1088_1361_648X_acf106 crossref_primary_10_1109_JPROC_2021_3084997 crossref_primary_10_1016_j_jmmm_2023_171122 crossref_primary_10_3379_msjmag_2301R003 crossref_primary_10_1103_PhysRevLett_129_267401 crossref_primary_10_1109_TED_2023_3318519 crossref_primary_10_1103_PhysRevB_108_174414 crossref_primary_10_1103_RevModPhys_94_035005 crossref_primary_10_1007_s11426_023_1767_2 crossref_primary_10_1103_PhysRevB_108_144428 crossref_primary_10_1088_2634_4386_acb841 crossref_primary_10_1063_5_0066375 crossref_primary_10_1103_PhysRevB_108_184407 crossref_primary_10_1021_acs_nanolett_2c03106 crossref_primary_10_1360_TB_2024_0931 crossref_primary_10_1088_1361_6528_acb714 |
Cites_doi | 10.1109/TED.2020.2989420 10.1103/PhysRevApplied.11.034015 10.1038/s41563-019-0468-3 10.1038/srep11369 10.1103/PhysRevApplied.9.064018 10.1038/nmat4856 10.1063/1.4917011 10.1109/MNET.2014.6863131 10.1103/PhysRevB.93.224505 10.1038/nmat4402 10.1126/science.1145799 10.1002/adma.201103723 10.1038/nmat3054 10.1109/JPROC.2018.2790840 10.1063/1.4978510 10.1038/nnano.2013.29 10.1109/TED.2019.2938952 10.1038/s41928-018-0122-0 10.1063/1.4938539 10.1109/TNANO.2015.2437902 10.1103/PhysRevLett.110.167201 10.1038/natrevmats.2017.31 10.1038/nature23011 10.1038/s41586-019-1677-2 10.1109/TNANO.2012.2202125 10.1088/1367-2630/17/2/023061 10.1103/PhysRevB.90.064410 10.1103/PhysRevLett.87.037203 10.1016/0303-2647(96)01624-3 10.1021/acs.nanolett.9b02840 10.1088/1361-6463/ab8418 10.1063/1.5115183 10.1038/s41928-019-0273-7 10.1007/978-3-319-99558-8 10.1038/s41928-017-0006-8 10.1038/s41928-018-0023-2 10.1088/0957-4484/22/25/254023 10.1103/PhysRevApplied.9.014034 10.1038/ncomms15448 10.1038/s41598-018-35828-z 10.1016/j.physrep.2017.08.001 10.1103/PhysRevApplied.12.064053 10.1016/0029-5582(62)90775-7 10.1039/C7NR09722K 10.1038/s41467-018-06827-5 10.1016/j.neunet.2019.03.005 10.1109/JXCDC.2019.2904191 10.1038/s41467-019-11831-4 10.1063/1.5006918 10.1103/PhysRevB.97.214426 10.1038/530144a 10.1063/1.5012763 10.1063/1.5042308 10.1038/s41928-018-0054-8 10.1109/TCSII.2015.2456372 10.1126/science.1166767 10.1002/adma.200903680 10.1021/nl201040y 10.1186/s11671-017-2114-9 10.1063/1.4930904 10.1103/PhysRevB.93.020404 10.1016/j.cplett.2016.02.054 10.1088/1361-6528/aa7af5 10.1109/JPROC.2016.2591578 10.1109/TMAG.2018.2889566 10.1145/2465787.2465794 10.1038/s41467-019-13182-6 10.1038/srep15773 10.1002/adma.201701144 10.1109/JPROC.2016.2597152 10.1038/natrevmats.2016.44 10.1038/s41467-019-13993-7 10.1038/s41565-019-0593-9 10.1038/s41467-016-0009-6 10.1021/nl904092h 10.1038/s41467-017-00869-x 10.1109/ACCESS.2018.2794584 10.1038/s41928-020-0385-0 10.1109/LED.2019.2946863 10.1088/1361-6463/aaf784 10.1002/adma.201203680 10.1103/PhysRevApplied.9.044007 10.1088/1361-6528/aa5838 10.1021/acs.nanolett.8b03983 10.1162/089976602760407955 10.1038/s41565-019-0436-8 10.1016/j.pbiomolbio.2017.08.004 10.1038/nmat3862 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7SR 7TB 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/d0mh01603a |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2051-6355 |
EndPage | 868 |
ExternalDocumentID | 10_1039_D0MH01603A d0mh01603a |
GroupedDBID | 0R 4.4 AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACIWK ACLDK ADMRA ADSRN AENEX AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- HZ H~N J3I O-G O9- RCNCU RIG RPMJG RRC RSCEA 0R~ AAJAE AARTK AAWGC AAXHV AAYXX ABASK ABEMK ABPDG ABXOH AEFDR AENGV AETIL AFLYV AFOGI AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY 7SR 7TB 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c417t-cf58e02715b1d15109da08d8f7cd8b1a6c36c607a695d89556b45511c7c26f5f3 |
ISSN | 2051-6347 2051-6355 |
IngestDate | Fri Jul 11 01:06:30 EDT 2025 Mon Jun 30 03:59:32 EDT 2025 Tue Jul 01 01:36:13 EDT 2025 Thu Apr 24 23:04:09 EDT 2025 Sat Jan 08 03:48:09 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c417t-cf58e02715b1d15109da08d8f7cd8b1a6c36c607a695d89556b45511c7c26f5f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8088-0404 0000-0001-5641-9191 0000-0001-9656-9696 |
PQID | 2503717619 |
PQPubID | 2047518 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1039_D0MH01603A proquest_miscellaneous_2602635635 proquest_journals_2503717619 crossref_citationtrail_10_1039_D0MH01603A rsc_primary_d0mh01603a |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Materials horizons |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Wiesendanger (D0MH01603A-(cit34)/*[position()=1]) 2016; 1 Legrand (D0MH01603A-(cit108)/*[position()=1]) 2020; 19 Krzysteczko (D0MH01603A-(cit59)/*[position()=1]) 2012; 24 Jo (D0MH01603A-(cit53)/*[position()=1]) 2010; 10 Wu (D0MH01603A-(cit52)/*[position()=1]) 2015; 62 Grollier (D0MH01603A-(cit14)/*[position()=1]) 2016; 104 Li (D0MH01603A-(cit49)/*[position()=1]) Park (D0MH01603A-(cit103)/*[position()=1]) Yang (D0MH01603A-(cit98)/*[position()=1]) 2016; 93 Sun (D0MH01603A-(cit106)/*[position()=1]) 2013; 110 Yu (D0MH01603A-(cit54)/*[position()=1]) 2013; 25 Back (D0MH01603A-(cit26)/*[position()=1]) 2020; 53 Kézsmárki (D0MH01603A-(cit33)/*[position()=1]) 2015; 14 Kalita (D0MH01603A-(cit71)/*[position()=1]) 2019; 9 Mochizuki (D0MH01603A-(cit25)/*[position()=1]) 2014; 13 Roy (D0MH01603A-(cit7)/*[position()=1]) 2019; 575 Prychynenko (D0MH01603A-(cit88)/*[position()=1]) 2018; 9 Alaghi (D0MH01603A-(cit91)/*[position()=1]) 2013; 12 Du (D0MH01603A-(cit84)/*[position()=1]) 2017; 8 Zidan (D0MH01603A-(cit9)/*[position()=1]) 2018; 1 Lin (D0MH01603A-(cit11)/*[position()=1]) 2019; 2 Fert (D0MH01603A-(cit27)/*[position()=1]) 2017; 2 Fan (D0MH01603A-(cit72)/*[position()=1]) 2015; 14 Bogdanov (D0MH01603A-(cit30)/*[position()=1]) 2001; 87 Jiang (D0MH01603A-(cit19)/*[position()=1]) 2017; 704 Fert (D0MH01603A-(cit41)/*[position()=1]) 2013; 8 Zhang (D0MH01603A-(cit42)/*[position()=1]) 2019; 40 Wu (D0MH01603A-(cit104)/*[position()=1]) 2020; 11 Dohi (D0MH01603A-(cit102)/*[position()=1]) 2019; 10 Parkin (D0MH01603A-(cit23)/*[position()=1]) 2008; 320 Torrejon (D0MH01603A-(cit86)/*[position()=1]) 2017; 547 Miltat (D0MH01603A-(cit93)/*[position()=1]) 2018; 97 Blasing (D0MH01603A-(cit12)/*[position()=1]) 2020 Azam (D0MH01603A-(cit76)/*[position()=1]) 2018; 124 Finocchio (D0MH01603A-(cit45)/*[position()=1]) 2015; 107 Zhang (D0MH01603A-(cit35)/*[position()=1]) 2015; 5 Le Gallo (D0MH01603A-(cit6)/*[position()=1]) 2018; 1 Woo (D0MH01603A-(cit36)/*[position()=1]) 2018; 1 Rowland (D0MH01603A-(cit32)/*[position()=1]) 2016; 93 Lin (D0MH01603A-(cit73)/*[position()=1]) Kuzum (D0MH01603A-(cit56)/*[position()=1]) 2012; 12 Yao (D0MH01603A-(cit95)/*[position()=1]) 2020; 67 Suri (D0MH01603A-(cit57)/*[position()=1]) Nakane (D0MH01603A-(cit87)/*[position()=1]) 2018; 6 Burr (D0MH01603A-(cit70)/*[position()=1]) 2017; 2 Zázvorka (D0MH01603A-(cit94)/*[position()=1]) 2019; 14 Kang (D0MH01603A-(cit28)/*[position()=1]) 2016; 104 Zhang (D0MH01603A-(cit44)/*[position()=1]) 2015; 17 Finizio (D0MH01603A-(cit37)/*[position()=1]) 2019; 19 Seo (D0MH01603A-(cit55)/*[position()=1]) 2011; 22 Sengupta (D0MH01603A-(cit58)/*[position()=1]) 2015; 106 Fernandes (D0MH01603A-(cit80)/*[position()=1]) 2020; 32 Brigner (D0MH01603A-(cit78)/*[position()=1]) 2019; 5 Brigner (D0MH01603A-(cit79)/*[position()=1]) 2019; 66 Chui (D0MH01603A-(cit46)/*[position()=1]) 2015; 5 Fan (D0MH01603A-(cit60)/*[position()=1]) 2015; 14 Tanaka (D0MH01603A-(cit85)/*[position()=1]) 2019; 115 Islam (D0MH01603A-(cit13)/*[position()=1]) 2019; 52 Sengupta (D0MH01603A-(cit18)/*[position()=1]) 2017; 4 Skyrme (D0MH01603A-(cit29)/*[position()=1]) 1962; 31 Yang (D0MH01603A-(cit64)/*[position()=1]) 2017; 3 Liu (D0MH01603A-(cit99)/*[position()=1]) 2016; 649 Borisyuk (D0MH01603A-(cit69)/*[position()=1]) 1997; 40 Wiesendanger (D0MH01603A-(cit38)/*[position()=1]) 2018 Zhang (D0MH01603A-(cit101)/*[position()=1]) 2016; 94 Lu (D0MH01603A-(cit1)/*[position()=1]) 2014; 28 Zhang (D0MH01603A-(cit43)/*[position()=1]) 2015; 5 Ma (D0MH01603A-(cit74)/*[position()=1]) 2019; 19 Chen (D0MH01603A-(cit107)/*[position()=1]) 2018; 54 Huang (D0MH01603A-(cit67)/*[position()=1]) 2017; 28 Zhang (D0MH01603A-(cit21)/*[position()=1]) 2015; 5 Lima Fernandes (D0MH01603A-(cit24)/*[position()=1]) 2018; 9 Zhang (D0MH01603A-(cit22)/*[position()=1]) 2020; 32 Jaeger (D0MH01603A-(cit81)/*[position()=1]) 2001 Zahedinejad (D0MH01603A-(cit17)/*[position()=1]) 2020; 15 Fert (D0MH01603A-(cit20)/*[position()=1]) 2013; 8 Jin (D0MH01603A-(cit48)/*[position()=1]) 2018; 9 Jiang (D0MH01603A-(cit96)/*[position()=1]) 2017; 8 van de Burgt (D0MH01603A-(cit51)/*[position()=1]) 2017; 16 Wang (D0MH01603A-(cit65)/*[position()=1]) 2018; 1 Hasegawa (D0MH01603A-(cit63)/*[position()=1]) 2010; 22 Jiang (D0MH01603A-(cit90)/*[position()=1]) 2019; 115 Waldrop (D0MH01603A-(cit10)/*[position()=1]) 2016; 530 He (D0MH01603A-(cit77)/*[position()=1]) Gkoupidenis (D0MH01603A-(cit4)/*[position()=1]) 2017; 8 Chauwin (D0MH01603A-(cit97)/*[position()=1]) 2019; 12 Hou (D0MH01603A-(cit105)/*[position()=1]) 2017; 29 Ohno (D0MH01603A-(cit62)/*[position()=1]) 2011; 10 Maass (D0MH01603A-(cit82)/*[position()=1]) 2002; 14 Cai (D0MH01603A-(cit15)/*[position()=1]) 2019; 11 Bourianoff (D0MH01603A-(cit89)/*[position()=1]) 2018; 8 Adamatzky (D0MH01603A-(cit8)/*[position()=1]) 2017; 131 Muhlbauer (D0MH01603A-(cit31)/*[position()=1]) 2009; 323 Pinna (D0MH01603A-(cit92)/*[position()=1]) 2018; 9 Russek (D0MH01603A-(cit16)/*[position()=1]) Meyer (D0MH01603A-(cit40)/*[position()=1]) 2019; 10 Song (D0MH01603A-(cit68)/*[position()=1]) 2020; 3 Dally (D0MH01603A-(cit3)/*[position()=1]) Kim (D0MH01603A-(cit39)/*[position()=1]) 2014; 90 Schrauwen (D0MH01603A-(cit83)/*[position()=1]) Sharad (D0MH01603A-(cit61)/*[position()=1]) 2012; 11 Li (D0MH01603A-(cit66)/*[position()=1]) 2017; 28 Wang (D0MH01603A-(cit5)/*[position()=1]) 2017; 12 Chen (D0MH01603A-(cit75)/*[position()=1]) 2018; 10 Armbrust (D0MH01603A-(cit2)/*[position()=1]) Luo (D0MH01603A-(cit47)/*[position()=1]) 2017; 110 Yu (D0MH01603A-(cit50)/*[position()=1]) 2018; 106 |
References_xml | – doi: Dally Gray Poulton – issn: 2001 publication-title: The "Echo State" Approach to Analysing and Training Recurrent Neural Networks doi: Jaeger – doi: Schrauwen Verstraeten Van Campenhout – doi: Suri Bichler Querlioz – issn: 2018 publication-title: Atomic- and Nanoscale Magnetism doi: Wiesendanger – doi: Park Peng Liang – issn: 2019 publication-title: Crafting magnetic skyrmions at room temperature: size, stability and dynamics in multilayers doi: Legrand – doi: Lin Annadi Sonde – doi: He Fan – doi: Armbrust Xin Lian – doi: Russek Donnelly Schneider – doi: Li Kang Chen – volume: 67 start-page: 2553 year: 2020 ident: D0MH01603A-(cit95)/*[position()=1] publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2020.2989420 – volume: 11 start-page: 034015 year: 2019 ident: D0MH01603A-(cit15)/*[position()=1] publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.11.034015 – volume: 19 start-page: 34 year: 2020 ident: D0MH01603A-(cit108)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/s41563-019-0468-3 – volume: 5 start-page: 11369 year: 2015 ident: D0MH01603A-(cit43)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep11369 – volume: 9 start-page: 1 year: 2018 ident: D0MH01603A-(cit92)/*[position()=1] publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.9.064018 – volume: 16 start-page: 414 year: 2017 ident: D0MH01603A-(cit51)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4856 – volume: 106 start-page: 143701 year: 2015 ident: D0MH01603A-(cit58)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4917011 – volume: 28 start-page: 46 year: 2014 ident: D0MH01603A-(cit1)/*[position()=1] publication-title: IEEE Netw. doi: 10.1109/MNET.2014.6863131 – volume: 93 start-page: 224505 year: 2016 ident: D0MH01603A-(cit98)/*[position()=1] publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.224505 – volume: 14 start-page: 1116 year: 2015 ident: D0MH01603A-(cit33)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4402 – volume: 320 start-page: 190 year: 2008 ident: D0MH01603A-(cit23)/*[position()=1] publication-title: Science doi: 10.1126/science.1145799 – volume: 24 start-page: 762 year: 2012 ident: D0MH01603A-(cit59)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201103723 – volume: 10 start-page: 591 year: 2011 ident: D0MH01603A-(cit62)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3054 – volume: 106 start-page: 260 year: 2018 ident: D0MH01603A-(cit50)/*[position()=1] publication-title: Proc. IEEE doi: 10.1109/JPROC.2018.2790840 – volume: 110 start-page: 112402 year: 2017 ident: D0MH01603A-(cit47)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4978510 – volume: 8 start-page: 152 year: 2013 ident: D0MH01603A-(cit20)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.29 – volume: 66 start-page: 4970 year: 2019 ident: D0MH01603A-(cit79)/*[position()=1] publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2019.2938952 – volume: 1 start-page: 434 year: 2018 ident: D0MH01603A-(cit36)/*[position()=1] publication-title: Nat. Electron. doi: 10.1038/s41928-018-0122-0 – ident: D0MH01603A-(cit83)/*[position()=1] – volume: 107 start-page: 262401 year: 2015 ident: D0MH01603A-(cit45)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4938539 – volume: 14 start-page: 1013 year: 2015 ident: D0MH01603A-(cit72)/*[position()=1] publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2015.2437902 – volume: 110 start-page: 167201 year: 2013 ident: D0MH01603A-(cit106)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.167201 – ident: D0MH01603A-(cit77)/*[position()=1] – volume: 2 start-page: 17031 year: 2017 ident: D0MH01603A-(cit27)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.31 – volume: 547 start-page: 428 year: 2017 ident: D0MH01603A-(cit86)/*[position()=1] publication-title: Nature doi: 10.1038/nature23011 – volume: 575 start-page: 607 year: 2019 ident: D0MH01603A-(cit7)/*[position()=1] publication-title: Nature doi: 10.1038/s41586-019-1677-2 – volume: 11 start-page: 843 year: 2012 ident: D0MH01603A-(cit61)/*[position()=1] publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2012.2202125 – start-page: 1 year: 2020 ident: D0MH01603A-(cit12)/*[position()=1] publication-title: Proc. IEEE – volume: 17 start-page: 023061 year: 2015 ident: D0MH01603A-(cit44)/*[position()=1] publication-title: New J. Phys. doi: 10.1088/1367-2630/17/2/023061 – ident: D0MH01603A-(cit16)/*[position()=1] – volume: 5 start-page: 1 year: 2015 ident: D0MH01603A-(cit21)/*[position()=1] publication-title: Sci. Rep. – volume: 90 start-page: 064410 year: 2014 ident: D0MH01603A-(cit39)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.90.064410 – volume: 87 start-page: 037203 year: 2001 ident: D0MH01603A-(cit30)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.037203 – volume: 40 start-page: 3 year: 1997 ident: D0MH01603A-(cit69)/*[position()=1] publication-title: BioSystems doi: 10.1016/0303-2647(96)01624-3 – volume: 19 start-page: 7246 year: 2019 ident: D0MH01603A-(cit37)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b02840 – volume-title: The “Echo State” Approach to Analysing and Training Recurrent Neural Networks year: 2001 ident: D0MH01603A-(cit81)/*[position()=1] – volume: 53 start-page: 363001 year: 2020 ident: D0MH01603A-(cit26)/*[position()=1] publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/ab8418 – volume: 115 start-page: 192403 year: 2019 ident: D0MH01603A-(cit90)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.5115183 – volume: 14 start-page: 1013 year: 2015 ident: D0MH01603A-(cit60)/*[position()=1] publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2015.2437902 – volume: 3 start-page: 1 year: 2017 ident: D0MH01603A-(cit64)/*[position()=1] publication-title: Adv. Electron. Mater. – volume: 2 start-page: 274 year: 2019 ident: D0MH01603A-(cit11)/*[position()=1] publication-title: Nat. Electron. doi: 10.1038/s41928-019-0273-7 – volume-title: Atomic- and Nanoscale Magnetism year: 2018 ident: D0MH01603A-(cit38)/*[position()=1] doi: 10.1007/978-3-319-99558-8 – volume: 1 start-page: 22 year: 2018 ident: D0MH01603A-(cit9)/*[position()=1] publication-title: Nat. Electron. doi: 10.1038/s41928-017-0006-8 – volume: 1 start-page: 137 year: 2018 ident: D0MH01603A-(cit65)/*[position()=1] publication-title: Nat. Electron. doi: 10.1038/s41928-018-0023-2 – volume: 22 start-page: 254023 year: 2011 ident: D0MH01603A-(cit55)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/22/25/254023 – volume: 9 start-page: 014034 year: 2018 ident: D0MH01603A-(cit88)/*[position()=1] publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.9.014034 – volume: 8 start-page: 1 year: 2017 ident: D0MH01603A-(cit4)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms15448 – volume: 9 start-page: 53 year: 2019 ident: D0MH01603A-(cit71)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-018-35828-z – ident: D0MH01603A-(cit49)/*[position()=1] – volume: 704 start-page: 1 year: 2017 ident: D0MH01603A-(cit19)/*[position()=1] publication-title: Phys. Rep. doi: 10.1016/j.physrep.2017.08.001 – volume: 12 start-page: 1 year: 2019 ident: D0MH01603A-(cit97)/*[position()=1] publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.12.064053 – volume: 31 start-page: 556 year: 1962 ident: D0MH01603A-(cit29)/*[position()=1] publication-title: Nucl. Phys. doi: 10.1016/0029-5582(62)90775-7 – volume: 10 start-page: 6139 year: 2018 ident: D0MH01603A-(cit75)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR09722K – volume: 9 start-page: 1 year: 2018 ident: D0MH01603A-(cit24)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-06827-5 – volume: 115 start-page: 100 year: 2019 ident: D0MH01603A-(cit85)/*[position()=1] publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.03.005 – volume: 5 start-page: 19 year: 2019 ident: D0MH01603A-(cit78)/*[position()=1] publication-title: IEEE J. Explor. Solid-State Comput. Devices Circuits doi: 10.1109/JXCDC.2019.2904191 – ident: D0MH01603A-(cit57)/*[position()=1] – volume: 10 start-page: 3823 year: 2019 ident: D0MH01603A-(cit40)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-11831-4 – volume: 32 start-page: 425802 year: 2020 ident: D0MH01603A-(cit80)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 8 start-page: 055602 year: 2018 ident: D0MH01603A-(cit89)/*[position()=1] publication-title: AIP Adv. doi: 10.1063/1.5006918 – ident: D0MH01603A-(cit103)/*[position()=1] – volume: 97 start-page: 214426 year: 2018 ident: D0MH01603A-(cit93)/*[position()=1] publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.214426 – volume: 530 start-page: 144 year: 2016 ident: D0MH01603A-(cit10)/*[position()=1] publication-title: Nature doi: 10.1038/530144a – volume: 4 start-page: 041105 year: 2017 ident: D0MH01603A-(cit18)/*[position()=1] publication-title: Appl. Phys. Rev. doi: 10.1063/1.5012763 – volume: 94 start-page: 1 year: 2016 ident: D0MH01603A-(cit101)/*[position()=1] publication-title: Phys. Rev. B – volume: 2 start-page: 89 year: 2017 ident: D0MH01603A-(cit70)/*[position()=1] publication-title: Adv. Phys.: X – volume: 124 start-page: 152122 year: 2018 ident: D0MH01603A-(cit76)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.5042308 – ident: D0MH01603A-(cit2)/*[position()=1] – volume: 1 start-page: 246 year: 2018 ident: D0MH01603A-(cit6)/*[position()=1] publication-title: Nat. Electron. doi: 10.1038/s41928-018-0054-8 – volume: 62 start-page: 1088 year: 2015 ident: D0MH01603A-(cit52)/*[position()=1] publication-title: IEEE Trans Circuits Syst II Express Briefs doi: 10.1109/TCSII.2015.2456372 – volume: 323 start-page: 915 year: 2009 ident: D0MH01603A-(cit31)/*[position()=1] publication-title: Science doi: 10.1126/science.1166767 – volume: 8 start-page: 152 year: 2013 ident: D0MH01603A-(cit41)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.29 – volume: 22 start-page: 1831 year: 2010 ident: D0MH01603A-(cit63)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200903680 – ident: D0MH01603A-(cit73)/*[position()=1] – volume: 12 start-page: 2179 year: 2012 ident: D0MH01603A-(cit56)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl201040y – volume: 32 start-page: 143001 year: 2020 ident: D0MH01603A-(cit22)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 12 start-page: 347 year: 2017 ident: D0MH01603A-(cit5)/*[position()=1] publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-017-2114-9 – volume: 5 start-page: 097126 year: 2015 ident: D0MH01603A-(cit46)/*[position()=1] publication-title: AIP Adv. doi: 10.1063/1.4930904 – volume: 93 start-page: 020404 year: 2016 ident: D0MH01603A-(cit32)/*[position()=1] publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.020404 – volume: 649 start-page: 135 year: 2016 ident: D0MH01603A-(cit99)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2016.02.054 – volume: 28 start-page: 31LT01 year: 2017 ident: D0MH01603A-(cit66)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/1361-6528/aa7af5 – volume: 104 start-page: 2040 year: 2016 ident: D0MH01603A-(cit28)/*[position()=1] publication-title: Proc. IEEE doi: 10.1109/JPROC.2016.2591578 – volume: 54 start-page: 1 year: 2018 ident: D0MH01603A-(cit107)/*[position()=1] publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2018.2889566 – volume: 12 start-page: 1 year: 2013 ident: D0MH01603A-(cit91)/*[position()=1] publication-title: ACM Trans. Embed. Comput. Syst. doi: 10.1145/2465787.2465794 – volume: 10 start-page: 5153 year: 2019 ident: D0MH01603A-(cit102)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-13182-6 – volume: 5 start-page: 15773 year: 2015 ident: D0MH01603A-(cit35)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep15773 – volume: 29 start-page: 1701144 year: 2017 ident: D0MH01603A-(cit105)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201701144 – volume: 104 start-page: 2024 year: 2016 ident: D0MH01603A-(cit14)/*[position()=1] publication-title: Proc. IEEE doi: 10.1109/JPROC.2016.2597152 – volume: 1 start-page: 16044 year: 2016 ident: D0MH01603A-(cit34)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.44 – volume: 11 start-page: 1 year: 2020 ident: D0MH01603A-(cit104)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-13993-7 – volume: 15 start-page: 47 year: 2020 ident: D0MH01603A-(cit17)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0593-9 – volume: 8 start-page: 1 year: 2017 ident: D0MH01603A-(cit84)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-016-0009-6 – volume: 10 start-page: 1297 year: 2010 ident: D0MH01603A-(cit53)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl904092h – volume: 8 start-page: 882 year: 2017 ident: D0MH01603A-(cit96)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-017-00869-x – volume: 6 start-page: 4462 year: 2018 ident: D0MH01603A-(cit87)/*[position()=1] publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2794584 – volume: 3 start-page: 148 year: 2020 ident: D0MH01603A-(cit68)/*[position()=1] publication-title: Nat. Electron. doi: 10.1038/s41928-020-0385-0 – ident: D0MH01603A-(cit3)/*[position()=1] – volume: 40 start-page: 1984 year: 2019 ident: D0MH01603A-(cit42)/*[position()=1] publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2019.2946863 – volume: 52 start-page: 113001 year: 2019 ident: D0MH01603A-(cit13)/*[position()=1] publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/aaf784 – volume: 25 start-page: 1774 year: 2013 ident: D0MH01603A-(cit54)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201203680 – volume: 9 start-page: 1 year: 2018 ident: D0MH01603A-(cit48)/*[position()=1] publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.9.044007 – volume: 28 start-page: 08LT02 year: 2017 ident: D0MH01603A-(cit67)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/1361-6528/aa5838 – volume: 19 start-page: 353 year: 2019 ident: D0MH01603A-(cit74)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b03983 – volume: 14 start-page: 2531 year: 2002 ident: D0MH01603A-(cit82)/*[position()=1] publication-title: Neural Comput. doi: 10.1162/089976602760407955 – volume: 14 start-page: 658 year: 2019 ident: D0MH01603A-(cit94)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0436-8 – volume: 131 start-page: 469 year: 2017 ident: D0MH01603A-(cit8)/*[position()=1] publication-title: Prog. Biophys. Mol. Biol. doi: 10.1016/j.pbiomolbio.2017.08.004 – volume: 13 start-page: 241 year: 2014 ident: D0MH01603A-(cit25)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3862 |
SSID | ssj0001345080 |
Score | 2.5410292 |
SecondaryResourceType | review_article |
Snippet | Improvements in computing performance have significantly slowed down over the past few years owing to the intrinsic limitations of computing hardware. However,... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 854 |
SubjectTerms | Computation Elementary excitations Hypothetical particles Moore's law Nanotechnology devices Particle theory Swirling |
Title | Magnetic skyrmions for unconventional computing |
URI | https://www.proquest.com/docview/2503717619 https://www.proquest.com/docview/2602635635 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa67gIHxK-JwkBBcEFTNjuO7fjGBEMFMU6d6C1y7HirgBR1mQT763mOYydjOwykKopc10n9Pj8_Pz9_D6HXzFpLKM9TKWSV5pWGO8LqtCKmMExkXOouyvcLn5_kn5ZsOZm8HZ8uaat9fXnjuZL_kSqUgVzdKdl_kGxsFArgHuQLV5AwXG8l42N12rhDiHvn336DwFzUi4sahKlqHEuuu8QNYYoK2ZtU699w72y9WV0Gp50LzVl5T_Eq6uLepfxV9U2M_cxLF3a_HnY3PIkvYO7Xqi_uXQrZKKbKa54MRmrKqafC3K_HZZ5TN6jOYoQQOlKDhSeGDjOqT5xzTVlj6rhO3-PjeZfsOtKdDozYf81UMX6w2zmnshx-u4W2M1goZFO0fXi0-Ph58LPRHGxQ52qL_yqw1FJ5MDRw1S4ZFhtbm5AJprM4FvfRvX6pkBx6uT9Ak7p5iO6OCCQfoYOAgCQiIAEEJFcRkEQEPEYnH44W7-ZpnwIj1TkRbaotK2qcCcJg8IBxhqVRuDCFFdoUFVFcU645FopLZgrJGK9ysIGJFjrjllm6g6bNuqmfoIRwZXMjYCSCla6EqTIsrbBUCWwNpWSG3oQOKHXPD-_SlHwvr_f2DL2KdX96VpQba-2Gfiz7UXNegslNBXHOsxl6Gb8GneY2qlRTry-gjsuLRhl8ZmgH-j8-w-AfZ13b6umt3uAZujPgexdN281F_RyMyLZ60ePkD14MbbE |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+skyrmions+for+unconventional+computing&rft.jtitle=Materials+horizons&rft.au=Li%2C+Sai&rft.au=Kang%2C+Wang&rft.au=Zhang%2C+Xichao&rft.au=Nie%2C+Tianxiao&rft.date=2021-03-01&rft.issn=2051-6347&rft.eissn=2051-6355&rft.volume=8&rft.issue=3&rft.spage=854&rft.epage=868&rft_id=info:doi/10.1039%2FD0MH01603A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D0MH01603A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-6347&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-6347&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-6347&client=summon |