Renormalization of twist-two operators in covariant gauge to three loops in QCD
A bstract The leading short-distance contributions to hadronic hard-scattering cross sections in the operator product expansion are described by twist-two quark and gluon operators. The anomalous dimensions of these operators determine the splitting functions that govern the scale evolution of parto...
Saved in:
Published in | The journal of high energy physics Vol. 2023; no. 4; pp. 41 - 62 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
11.04.2023
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
The leading short-distance contributions to hadronic hard-scattering cross sections in the operator product expansion are described by twist-two quark and gluon operators. The anomalous dimensions of these operators determine the splitting functions that govern the scale evolution of parton distribution functions. In massless QCD, these anomalous dimensions can be determined through the calculation of off-shell operator matrix elements, typically performed in a covariant gauge, where the physical operators mix with gauge-variant operators of the same quantum numbers. We derive a new method to systematically extract the counterterm Feynman rules resulting from these gauge-variant operators. As a first application of the new method, we rederive the unpolarized three-loop singlet anomalous dimensions, independently confirming previous results obtained with other methods. Employing a general covariant gauge, we observe the explicit cancellation of the gauge parameter dependence in these results. |
---|---|
AbstractList | The leading short-distance contributions to hadronic hard-scattering cross sections in the operator product expansion are described by twist-two quark and gluon operators. The anomalous dimensions of these operators determine the splitting functions that govern the scale evolution of parton distribution functions. In massless QCD, these anomalous dimensions can be determined through the calculation of off-shell operator matrix elements, typically performed in a covariant gauge, where the physical operators mix with gauge-variant operators of the same quantum numbers. We derive a new method to systematically extract the counterterm Feynman rules resulting from these gauge-variant operators. As a first application of the new method, we rederive the unpolarized three-loop singlet anomalous dimensions, independently confirming previous results obtained with other methods. Employing a general covariant gauge, we observe the explicit cancellation of the gauge parameter dependence in these results. Abstract The leading short-distance contributions to hadronic hard-scattering cross sections in the operator product expansion are described by twist-two quark and gluon operators. The anomalous dimensions of these operators determine the splitting functions that govern the scale evolution of parton distribution functions. In massless QCD, these anomalous dimensions can be determined through the calculation of off-shell operator matrix elements, typically performed in a covariant gauge, where the physical operators mix with gauge-variant operators of the same quantum numbers. We derive a new method to systematically extract the counterterm Feynman rules resulting from these gauge-variant operators. As a first application of the new method, we rederive the unpolarized three-loop singlet anomalous dimensions, independently confirming previous results obtained with other methods. Employing a general covariant gauge, we observe the explicit cancellation of the gauge parameter dependence in these results. A bstract The leading short-distance contributions to hadronic hard-scattering cross sections in the operator product expansion are described by twist-two quark and gluon operators. The anomalous dimensions of these operators determine the splitting functions that govern the scale evolution of parton distribution functions. In massless QCD, these anomalous dimensions can be determined through the calculation of off-shell operator matrix elements, typically performed in a covariant gauge, where the physical operators mix with gauge-variant operators of the same quantum numbers. We derive a new method to systematically extract the counterterm Feynman rules resulting from these gauge-variant operators. As a first application of the new method, we rederive the unpolarized three-loop singlet anomalous dimensions, independently confirming previous results obtained with other methods. Employing a general covariant gauge, we observe the explicit cancellation of the gauge parameter dependence in these results. |
ArticleNumber | 41 |
Author | Yang, Tong-Zhi Gehrmann, Thomas von Manteuffel, Andreas |
Author_xml | – sequence: 1 givenname: Thomas surname: Gehrmann fullname: Gehrmann, Thomas organization: Physik-Institut, Universität Zürich – sequence: 2 givenname: Andreas surname: von Manteuffel fullname: von Manteuffel, Andreas organization: Department of Physics and Astronomy, Michigan State University – sequence: 3 givenname: Tong-Zhi orcidid: 0000-0001-5003-5517 surname: Yang fullname: Yang, Tong-Zhi email: toyang@physik.uzh.ch organization: Physik-Institut, Universität Zürich, Department of Physics and Astronomy, Michigan State University |
BookMark | eNp1kc1PGzEQxa0qSJDAuVdLvcBhie398PpYBdqAkKAVPVuzXjt1tOwE2yFq_3qWLKgVEqcZjd7v6WnelEx67C0hnzk754zJ-fXy8o4Vp4KJ_IwV_BM54kyorC6kmvy3H5JpjGvGeMkVOyK3P22P4QE6_xeSx56io2nnY8rSDilubICEIVLfU4NPEDz0ia5gu7I0IU2_g7W0Q9zsFT8WF8fkwEEX7cnrnJFf3y7vF8vs5vb71eLrTWYKLlNmGuVkUTqwxrXOltC2NRMAHHhpyloyaaqmzYXj3BmorMzrEpRxojBctlWTz8jV6NsirPUm-AcIfzSC1_sDhpWGkLzprC4rLqscKqOapmikBals1QojBDDDm2Lw-jJ6bQI-bm1Meo3b0A_xtZBK5UxUtRhU5agyAWMM1mnj0_5nKYDvNGf6pQc99qBfetBDDwM3f8e9pf2YYCMRB2W_suFfno-QZ2nOm9w |
CitedBy_id | crossref_primary_10_1103_PhysRevD_108_034027 crossref_primary_10_1140_epjc_s10052_024_13071_3 |
Cites_doi | 10.1007/JHEP09(2020)143 10.1007/JHEP01(2022)193 10.1016/j.physletb.2021.136853 10.1088/1126-6708/2004/09/042 10.1016/0550-3213(74)90598-7 10.1016/0370-2693(93)91441-O 10.1007/JHEP10(2017)041 10.1007/s002880050138 10.1103/PhysRev.179.1499 10.1016/0550-3213(92)90593-Z 10.1103/PhysRevD.58.094020 10.1063/1.3629472 10.1016/j.nuclphysb.2023.116114 10.1016/j.nuclphysb.2011.11.005 10.1007/JHEP07(2019)031 10.1103/PhysRevD.50.4117 10.1103/PhysRevD.57.6701 10.1016/j.nuclphysb.2022.115794 10.1016/j.nuclphysb.2004.04.024 10.1103/PhysRevLett.124.092001 10.1016/0370-1573(74)90044-1 10.1016/0003-4916(76)90225-6 10.1007/JHEP09(2020)146 10.1103/PhysRevD.12.467 10.1016/j.nuclphysb.2014.10.008 10.1016/0370-2693(80)90358-5 10.1016/j.nuclphysb.2019.114753 10.1142/S0217751X00002159 10.1007/JHEP05(2018)028 10.1016/j.cpc.2021.108024 10.1103/PhysRevLett.110.251601 10.1142/S0217751X99001032 10.1007/JHEP05(2022)177 10.1016/j.cpc.2021.108058 10.1016/j.nuclphysb.2012.06.007 10.1016/0550-3213(80)90207-2 10.1063/1.4900836 10.1006/jcph.1993.1074 10.1016/j.nuclphysb.2021.115542 10.1016/j.physrep.2021.03.006 10.1007/JHEP02(2023)073 10.1016/0370-2693(80)90636-X 10.1063/1.1471366 10.1007/JHEP12(2016)030 10.1016/0550-3213(77)90384-4 10.1103/PhysRev.185.1975 10.1103/PhysRevD.12.482 10.1016/j.physletb.2015.03.029 10.1016/j.cpc.2012.03.025 10.1016/j.nuclphysb.2014.07.010 10.1016/j.cpc.2021.108174 10.1103/PhysRev.179.1547 10.1016/0550-3213(81)90199-1 10.1016/j.nuclphysb.2014.10.016 10.1007/JHEP04(2017)006 10.1016/j.nuclphysb.2004.03.030 10.1103/PhysRevD.12.3159 10.1007/JHEP12(2022)134 10.1063/1.4811117 10.1016/j.cpc.2016.06.008 10.1016/0550-3213(79)90094-4 10.1007/JHEP12(2020)054 10.1103/PhysRevD.54.2023 10.1016/0550-3213(80)90003-6 10.1103/PhysRevLett.125.172001 10.1016/j.cpc.2017.09.014 10.1103/PhysRevD.60.014018 10.1088/1742-6596/2438/1/012140 10.1103/PhysRevLett.33.244 10.1103/PhysRevD.9.980 10.1016/S0550-3213(00)00223-6 10.1016/j.cpc.2019.106877 10.1016/j.nuclphysb.2010.05.004 10.1142/S0217751X00000367 10.1016/0550-3213(74)90093-5 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/JHEP04(2023)041 |
DatabaseName | Springer Nature OA/Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 62 |
ExternalDocumentID | oai_doaj_org_article_561763a6c9bb4b7ea79e6d2c22a0c1b4 10_1007_JHEP04_2023_041 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX AMVHM CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c417t-cb9f745faecfdfe5add802aa1a15c58707c6bd32f11fca6e7385a9cf24c17d6b3 |
IEDL.DBID | BENPR |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:21:50 EDT 2025 Fri Jul 25 06:13:02 EDT 2025 Tue Jul 01 01:00:47 EDT 2025 Thu Apr 24 22:50:36 EDT 2025 Fri Feb 21 02:42:48 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Renormalization and Regularization Deep Inelastic Scattering or Small-x Physics Higher-Order Perturbative Calculations |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-cb9f745faecfdfe5add802aa1a15c58707c6bd32f11fca6e7385a9cf24c17d6b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5003-5517 |
OpenAccessLink | https://www.proquest.com/docview/2799302682?pq-origsite=%requestingapplication% |
PQID | 2799302682 |
PQPubID | 2034718 |
PageCount | 62 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_561763a6c9bb4b7ea79e6d2c22a0c1b4 proquest_journals_2799302682 crossref_citationtrail_10_1007_JHEP04_2023_041 crossref_primary_10_1007_JHEP04_2023_041 springer_journals_10_1007_JHEP04_2023_041 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-11 |
PublicationDateYYYYMMDD | 2023-04-11 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | MistlbergerBHiggs boson production at hadron colliders at N3LO in QCDJHEP2018050282018JHEP...05..028M[arXiv:1802.00833] [INSPIRE] J. Blümlein and S. Kurth, Harmonic sums and Mellin transforms up to two loop order, Phys. Rev. D60 (1999) 014018 [hep-ph/9810241] [INSPIRE]. J. Ablinger et al., The unpolarized and polarized single-mass three-loop heavy flavor operator matrix elements Agg,Qand ∆Agg,Q, JHEP12 (2022) 134 [arXiv:2211.05462] [INSPIRE]. S. Moch, P. Uwer and S. Weinzierl, Nested sums, expansion of transcendental functions and multiscale multiloop integrals, J. Math. Phys.43 (2002) 3363 [hep-ph/0110083] [INSPIRE]. K.G. Wilson, Nonlagrangian models of current algebra, Phys. Rev.179 (1969) 1499 [INSPIRE]. S. Moch, J.A.M. Vermaseren and A. Vogt, The Three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys. B688 (2004) 101 [hep-ph/0403192] [INSPIRE]. Kluberg-SternHZuberJBWard Identities and Some Clues to the Renormalization of Gauge Invariant OperatorsPhys. Rev. D1975124671975PhRvD..12..467K[INSPIRE] ChetyrkinKGTkachovFVIntegration by Parts: The Algorithm to Calculate beta Functions in 4 LoopsNucl. Phys. B19811921591981NuPhB.192..159C[INSPIRE] I. Bierenbaum et al., Oαs2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ O\left({\alpha}_s^2\right) $$\end{document}polarized heavy flavor corrections to deep-inelastic scattering at Q2 ≫ m2, Nucl. Phys. B988 (2023) 116114 [arXiv:2211.15337] [INSPIRE]. AltarelliGParisiGAsymptotic Freedom in Parton LanguageNucl. Phys. B19771262981977NuPhB.126..298A[INSPIRE] R.K. Ellis and W. Vogelsang, The Evolution of parton distributions beyond leading order: The Singlet case, hep-ph/9602356 [INSPIRE]. BoehmJIBP reduction coefficients made simpleJHEP2020120542020JHEP...12..054B4239398[arXiv:2008.13194] [INSPIRE] FalcioniGHerzogFRenormalization of gluonic leading-twist operators in covariant gaugesJHEP2022051772022JHEP...05..177F443115207613613[arXiv:2203.11181] [INSPIRE] BlümleinJMarquardPSchneiderCSchönwaldKThe three-loop polarized singlet anomalous dimensions from off-shell operator matrix elementsJHEP2022011932022JHEP...01..193B440330707605218[arXiv:2111.12401] [INSPIRE] J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.110 (2013) 251601 [arXiv:1304.1806] [INSPIRE]. J. Ablinger, A Computer Algebra Toolbox for Harmonic Sums Related to Particle Physics, MSc Thesis, Johannes Kepler University of Linz, AUSTRIA (2009) [arXiv:1011.1176] [INSPIRE]. A. Bassetto, G. Heinrich, Z. Kunszt and W. Vogelsang, The Light cone gauge and the calculation of the two loop splitting functions, Phys. Rev. D58 (1998) 094020 [hep-ph/9805283] [INSPIRE]. FloratosEGRossDASachrajdaCTHigher Order Effects in Asymptotically Free Gauge Theories. II. Flavor Singlet Wilson Operators and Coefficient FunctionsNucl. Phys. B19791524931979NuPhB.152..493F[INSPIRE] Gonzalez-ArroyoALopezCSecond Order Contributions to the Structure Functions in Deep Inelastic Scattering. III. The Singlet CaseNucl. Phys. B19801664291980NuPhB.166..429G[INSPIRE] A. von Manteuffel and C. Studerus, Reduze 2 — Distributed Feynman Integral Reduction, arXiv:1201.4330 [INSPIRE]. J.C. Collins and R.J. Scalise, The Renormalization of composite operators in Yang-Mills theories using general covariant gauge, Phys. Rev. D50 (1994) 4117 [hep-ph/9403231] [INSPIRE]. NogueiraPAutomatic Feynman graph generationJ. Comput. Phys.19931052791993JCoPh.105..279N12104080782.68091[INSPIRE] von ManteuffelASchabingerRMA novel approach to integration by parts reductionPhys. Lett. B20157441012015PhLB..744..101V33418681330.81151[arXiv:1406.4513] [INSPIRE] JonesDRTTwo Loop Diagrams in Yang-Mills TheoryNucl. Phys. B1974755311974NuPhB..75..531J[INSPIRE] Kluberg-SternHZuberJBRenormalization of Nonabelian Gauge Theories in a Background Field Gauge. II. Gauge Invariant OperatorsPhys. Rev. D19751231591975PhRvD..12.3159K[INSPIRE] R.N. Lee, Libra: A package for transformation of differential systems for multiloop integrals, Comput. Phys. Commun.267 (2021) 108058 [arXiv:2012.00279] [INSPIRE]. J. Ablinger, J. Blümlein and C. Schneider, Analytic and Algorithmic Aspects of Generalized Harmonic Sums and Polylogarithms, J. Math. Phys.54 (2013) 082301 [arXiv:1302.0378] [INSPIRE]. J. Ablinger, J. Blümlein and C. Schneider, Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials, J. Math. Phys.52 (2011) 102301 [arXiv:1105.6063] [INSPIRE]. DokshitzerYLCalculation of the Structure Functions for Deep Inelastic Scattering and e+e−Annihilation by Perturbation Theory in Quantum ChromodynamicsSov. Phys. JETP1977466411977JETP...46..641D[INSPIRE] S. Moch et al., Low moments of the four-loop splitting functions in QCD, Phys. Lett. B825 (2022) 136853 [arXiv:2111.15561] [INSPIRE]. M.-X. Luo, T.-Z. Yang, H.X. Zhu and Y.J. Zhu, Quark Transverse Parton Distribution at the Next-to-Next-to-Next-to-Leading Order, Phys. Rev. Lett.124 (2020) 092001 [arXiv:1912.05778] [INSPIRE]. D.J. Gross and F. Wilczek, Asymptotically free gauge theories. 2, Phys. Rev. D9 (1974) 980 [INSPIRE]. GribovVNLipatovLNDeep inelastic e p scattering in perturbation theorySov. J. Nucl. Phys.197215438[INSPIRE] J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE]. HeinrichGCollider Physics at the Precision FrontierPhys. Rept.202192212021PhR...922....1H42719011509.81614[arXiv:2009.00516] [INSPIRE] PeraroTScattering amplitudes over finite fields and multivariate functional reconstructionJHEP2016120302016JHEP...12..030P36011571390.81631[arXiv:1608.01902] [INSPIRE] Y. Frishman, Light cone and short distances, Phys. Rept.13 (1974) 1 [INSPIRE]. DixonJATaylorJCRenormalization of wilson operators in gauge theoriesNucl. Phys. B1974785521974NuPhB..78..552D[INSPIRE] J. Ablinger, Computer Algebra Algorithms for Special Functions in Particle Physics, Ph.D. Thesis, Johannes Kepler University of Linz, AUSTRIA (2012) [arXiv:1305.0687] [INSPIRE]. HambergRvan NeervenWLThe Correct renormalization of the gluon operator in a covariant gaugeNucl. Phys. B19923791431992NuPhB.379..143H[INSPIRE] J.D. Bjorken and E.A. Paschos, Inelastic Electron Proton and γ-Proton Scattering, and the Structure of the Nucleon, Phys. Rev.185 (1969) 1975 [INSPIRE]. Kluberg-SternHZuberJBRenormalization of Nonabelian Gauge Theories in a Background Field Gauge. I. Green FunctionsPhys. Rev. D1975124821975PhRvD..12..482K[INSPIRE] JoglekarSDLeeBWGeneral Theory of Renormalization of Gauge Invariant OperatorsAnnals Phys.1976971601976AnPhy..97..160J428960[INSPIRE] CaswellWEAsymptotic Behavior of Nonabelian Gauge Theories to Two Loop OrderPhys. Rev. Lett.1974332441974PhRvL..33..244C[INSPIRE] J. Klappert, F. Lange, P. Maierhöfer and J. Usovitsch, Integral reduction with Kira 2.0 and finite field methods, Comput. Phys. Commun.266 (2021) 108024 [arXiv:2008.06494] [INSPIRE]. J. Blümlein, P. Marquard, C. Schneider and K. Schönwald, The two-loop massless off-shell QCD operator matrix elements to finite terms, Nucl. Phys. B980 (2022) 115794 [arXiv:2202.03216] [INSPIRE]. BaranowskiDBeam functions for N-jettiness at N3LO in perturbative QCDJHEP2023020732023JHEP...02..073B[arXiv:2211.05722] [INSPIRE] E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A15 (2000) 725 [hep-ph/9905237] [INSPIRE]. S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A15 (2000) 5087 [hep-ph/0102033] [INSPIRE]. EbertMAMistlbergerBVitaGTransverse momentum dependent PDFs at N3LOJHEP2020091462020JHEP...09..146E[arXiv:2006.05329] [INSPIRE] BaikovPAChetyrkinKGFour Loop Massless Propagators: An Algebraic Evaluation of All Master IntegralsNucl. Phys. B20108371862010NuPhB.837..186B26523201206.81087[arXiv:1004.1153] [INSPIRE] EbertMAMistlbergerBVitaGN-jettiness beam functions at N3LOJHEP2020091432020JHEP...09..143E[arXiv:2006.03056] [INSPIRE] AblingerJThe package HarmonicSums: Computer Algebra and Analytic aspects of Nested SumsPoS2014LL2014019[arXiv:1407.6180] [INSPIRE] A. Behring et al., The Polarized Three-Loop Anomalous Dimensions from On-Shell Massive Operator Matrix Elements, Nucl. Phys. B948 (2019) 114753 [arXiv:1908.03779] [INSPIRE]. LuoM-XYangT-ZZhuHXZhuYJUnpolarized quark and gluon TMD PDFs and FFs at N3LOJHEP2021061152021JHEP...06..115L[arXiv:2012.03256] [INSPIRE] MochSFour-Loop Non-Singlet Splitting Functions in the Planar Limit and BeyondJHEP2017100412017JHEP...10..041M[arXiv:1707.08315] [INSPIRE] LeeRNSmirnovAVSmirnovVAMaster Integrals for Four-Loop Massless Propagators up to Transcendentality Weight TwelveNucl. Phys. B2012856952012NuPhB.856...95L1246.81057[arXiv:1108.0732] [INSPIRE] MochSVermaserenJAMVogtAThe Three-Loop Splitting Functions in QCD: The Helicity-Dependent CaseNucl. Phys. B20148893512014NuPhB.889..351M32803731326.81272[arXiv:1409.5131] [INSPIRE] A. Vogt, S. Moch and J.A.M. Vermaseren, The Three-loop splitting functions in QCD: The Singlet case, Nucl. Phys. B691 (2004) 129 [hep-ph/0404111] [INSPIRE]. J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider, Iterated Binomial Sums and their Associated Iterated Integrals, J. Math. Phys.55 (2014) 112301 [arXiv:1407.1822] [INSPIRE]. T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B580 (2000) 485 [hep-ph/9912329] [INSPIRE]. TarasovOVVladimirovAAZharkovAYThe Gell-Mann-Low Function of QCD in the Three Loop ApproximationPhys. Lett. B1980934291980PhLB...93..429T[INSPIRE] J.A.M. Vermaseren, Harmonic sums, Mellin transforms and integrals, Int. J. Mod. Phys. A14 (1999) 2037 [hep-ph/9806280] [INSPIRE]. LeeRNReducing differential equations for multiloop master integralsJHEP2015041082015JHEP...04..108L33512611388.81109[arXiv:1411.0911] [INSPIRE] MeyerCAlgorithmic transformation of multi-loop master integrals to a canonical basis with CANONICAComput. Phys. Commun.20182222952018CoPhC.222..295M07693052[arXiv:1705.06252] [INSPIRE] C. Duhr, F. Dulat and 20646_CR73 20646_CR76 20646_CR33 20646_CR34 20646_CR78 20646_CR35 20646_CR79 G Altarelli (20646_CR6) 1977; 126 20646_CR36 20646_CR37 20646_CR38 A von Manteuffel (20646_CR74) 2015; 744 SD Joglekar (20646_CR18) 1976; 97 20646_CR39 G Curci (20646_CR41) 1980; 175 V Shtabovenko (20646_CR50) 2016; 207 YL Dokshitzer (20646_CR7) 1977; 46 J Ablinger (20646_CR70) 2014; LL2014 20646_CR3 20646_CR2 20646_CR1 J Boehm (20646_CR77) 2020; 12 20646_CR71 20646_CR72 20646_CR62 H Kluberg-Stern (20646_CR13) 1975; 12 20646_CR21 20646_CR65 20646_CR66 20646_CR67 20646_CR5 20646_CR24 PA Baikov (20646_CR63) 2010; 837 RN Lee (20646_CR64) 2012; 856 20646_CR68 20646_CR4 20646_CR25 20646_CR69 WE Caswell (20646_CR86) 1974; 33 J Ablinger (20646_CR32) 2014; 886 A Gonzalez-Arroyo (20646_CR17) 1980; 166 G Heinrich (20646_CR9) 2021; 922 G Falcioni (20646_CR30) 2022; 05 S Moch (20646_CR22) 2014; 889 MA Ebert (20646_CR26) 2020; 09 KG Chetyrkin (20646_CR47) 1981; 192 20646_CR51 20646_CR52 C Meyer (20646_CR60) 2017; 04 J Blümlein (20646_CR40) 2022; 01 20646_CR53 20646_CR10 20646_CR54 20646_CR11 EG Floratos (20646_CR16) 1979; 152 20646_CR55 J Ablinger (20646_CR31) 2014; 890 20646_CR56 20646_CR57 20646_CR58 S Moch (20646_CR85) 2017; 10 H Kluberg-Stern (20646_CR19) 1975; 12 H Kluberg-Stern (20646_CR20) 1975; 12 M-X Luo (20646_CR28) 2021; 06 P Nogueira (20646_CR45) 1993; 105 T Peraro (20646_CR82) 2019; 07 OV Tarasov (20646_CR88) 1980; 93 JA Dixon (20646_CR12) 1974; 78 20646_CR84 MA Ebert (20646_CR27) 2020; 09 20646_CR43 20646_CR44 DRT Jones (20646_CR87) 1974; 75 20646_CR89 20646_CR46 W Furmanski (20646_CR42) 1980; 97 20646_CR48 20646_CR49 T Peraro (20646_CR75) 2016; 12 R Hamberg (20646_CR14) 1992; 379 VN Gribov (20646_CR8) 1972; 15 J Ablinger (20646_CR15) 2012; 864 C Meyer (20646_CR59) 2018; 222 D Baranowski (20646_CR29) 2023; 02 RN Lee (20646_CR61) 2015; 04 20646_CR80 B Mistlberger (20646_CR23) 2018; 05 20646_CR81 20646_CR83 |
References_xml | – reference: S. Moch, J.A.M. Vermaseren and A. Vogt, The Three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys. B688 (2004) 101 [hep-ph/0403192] [INSPIRE]. – reference: J. Blümlein and S. Kurth, Harmonic sums and Mellin transforms up to two loop order, Phys. Rev. D60 (1999) 014018 [hep-ph/9810241] [INSPIRE]. – reference: T. Gehrmann, A. von Manteuffel and T.-Z. Yang, Renormalization of twist-two operators in QCD and its application to singlet splitting functions, PoSLL2022 (2022) 063 [arXiv:2207.10108] [INSPIRE]. – reference: EbertMAMistlbergerBVitaGTransverse momentum dependent PDFs at N3LOJHEP2020091462020JHEP...09..146E[arXiv:2006.05329] [INSPIRE] – reference: ChetyrkinKGTkachovFVIntegration by Parts: The Algorithm to Calculate beta Functions in 4 LoopsNucl. Phys. B19811921591981NuPhB.192..159C[INSPIRE] – reference: J. Blümlein, P. Marquard, C. Schneider and K. Schönwald, The two-loop massless off-shell QCD operator matrix elements to finite terms, Nucl. Phys. B980 (2022) 115794 [arXiv:2202.03216] [INSPIRE]. – reference: MochSVermaserenJAMVogtAThe Three-Loop Splitting Functions in QCD: The Helicity-Dependent CaseNucl. Phys. B20148893512014NuPhB.889..351M32803731326.81272[arXiv:1409.5131] [INSPIRE] – reference: FalcioniGHerzogFRenormalization of gluonic leading-twist operators in covariant gaugesJHEP2022051772022JHEP...05..177F443115207613613[arXiv:2203.11181] [INSPIRE] – reference: AblingerJThe 3-loop pure singlet heavy flavor contributions to the structure function F2(x, Q2) and the anomalous dimensionNucl. Phys. B2014890482015NuPhB.890...48A3292405[arXiv:1409.1135] [INSPIRE] – reference: G. Falcioni and F. Herzog, private communication. – reference: LuoM-XYangT-ZZhuHXZhuYJUnpolarized quark and gluon TMD PDFs and FFs at N3LOJHEP2021061152021JHEP...06..115L[arXiv:2012.03256] [INSPIRE] – reference: PeraroTScattering amplitudes over finite fields and multivariate functional reconstructionJHEP2016120302016JHEP...12..030P36011571390.81631[arXiv:1608.01902] [INSPIRE] – reference: DokshitzerYLCalculation of the Structure Functions for Deep Inelastic Scattering and e+e−Annihilation by Perturbation Theory in Quantum ChromodynamicsSov. Phys. JETP1977466411977JETP...46..641D[INSPIRE] – reference: BlümleinJMarquardPSchneiderCSchönwaldKThe three-loop polarized singlet anomalous dimensions from off-shell operator matrix elementsJHEP2022011932022JHEP...01..193B440330707605218[arXiv:2111.12401] [INSPIRE] – reference: D.J. Gross and F. Wilczek, Asymptotically free gauge theories. 2, Phys. Rev. D9 (1974) 980 [INSPIRE]. – reference: MistlbergerBHiggs boson production at hadron colliders at N3LO in QCDJHEP2018050282018JHEP...05..028M[arXiv:1802.00833] [INSPIRE] – reference: A. Vogt, S. Moch and J.A.M. Vermaseren, The Three-loop splitting functions in QCD: The Singlet case, Nucl. Phys. B691 (2004) 129 [hep-ph/0404111] [INSPIRE]. – reference: F. Feng, Apart: A Generalized Mathematica Apart Function, Comput. Phys. Commun.183 (2012) 2158 [arXiv:1204.2314] [INSPIRE]. – reference: CaswellWEAsymptotic Behavior of Nonabelian Gauge Theories to Two Loop OrderPhys. Rev. Lett.1974332441974PhRvL..33..244C[INSPIRE] – reference: BoehmJIBP reduction coefficients made simpleJHEP2020120542020JHEP...12..054B4239398[arXiv:2008.13194] [INSPIRE] – reference: W. Vogelsang, A Rederivation of the spin dependent next-to-leading order splitting functions, Phys. Rev. D54 (1996) 2023 [hep-ph/9512218] [INSPIRE]. – reference: T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B580 (2000) 485 [hep-ph/9912329] [INSPIRE]. – reference: MeyerCAlgorithmic transformation of multi-loop master integrals to a canonical basis with CANONICAComput. Phys. Commun.20182222952018CoPhC.222..295M07693052[arXiv:1705.06252] [INSPIRE] – reference: S. Moch, P. Uwer and S. Weinzierl, Nested sums, expansion of transcendental functions and multiscale multiloop integrals, J. Math. Phys.43 (2002) 3363 [hep-ph/0110083] [INSPIRE]. – reference: A.V. Smirnov and F.S. Chuharev, FIRE6: Feynman Integral REduction with Modular Arithmetic, Comput. Phys. Commun.247 (2020) 106877 [arXiv:1901.07808] [INSPIRE]. – reference: AltarelliGParisiGAsymptotic Freedom in Parton LanguageNucl. Phys. B19771262981977NuPhB.126..298A[INSPIRE] – reference: J. Ablinger et al., The unpolarized and polarized single-mass three-loop heavy flavor operator matrix elements Agg,Qand ∆Agg,Q, JHEP12 (2022) 134 [arXiv:2211.05462] [INSPIRE]. – reference: J.A.M. Vermaseren, Harmonic sums, Mellin transforms and integrals, Int. J. Mod. Phys. A14 (1999) 2037 [hep-ph/9806280] [INSPIRE]. – reference: J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.110 (2013) 251601 [arXiv:1304.1806] [INSPIRE]. – reference: M. Heller and A. von Manteuffel, MultivariateApart: Generalized partial fractions, Comput. Phys. Commun.271 (2022) 108174 [arXiv:2101.08283] [INSPIRE]. – reference: R. Mertig and W.L. van Neerven, The Calculation of the two loop spin splitting functionsPij1x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {P}_{ij}^{(1)}(x) $$\end{document}, Z. Phys. C70 (1996) 637 [hep-ph/9506451] [INSPIRE]. – reference: PeraroTFiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphsJHEP2019070312019JHEP...07..031P3991819[arXiv:1905.08019] [INSPIRE] – reference: S. Moch et al., Low moments of the four-loop splitting functions in QCD, Phys. Lett. B825 (2022) 136853 [arXiv:2111.15561] [INSPIRE]. – reference: S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A15 (2000) 5087 [hep-ph/0102033] [INSPIRE]. – reference: CurciGFurmanskiWPetronzioREvolution of Parton Densities Beyond Leading Order: The Nonsinglet CaseNucl. Phys. B1980175271980NuPhB.175...27C[INSPIRE] – reference: J. Ablinger et al., The three-loop splitting functionsPqg2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {P}_{qg}^{(2)} $$\end{document}andPgg2NF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {P}_{gg}^{\left(2,{N}_F\right)} $$\end{document}, Nucl. Phys. B922 (2017) 1 [arXiv:1705.01508] [INSPIRE]. – reference: V. Shtabovenko, FeynCalc goes multiloop, J. Phys. Conf. Ser.2438 (2023) 012140 [arXiv:2112.14132] [INSPIRE]. – reference: von ManteuffelASchabingerRMA novel approach to integration by parts reductionPhys. Lett. B20157441012015PhLB..744..101V33418681330.81151[arXiv:1406.4513] [INSPIRE] – reference: J. Ablinger, Computer Algebra Algorithms for Special Functions in Particle Physics, Ph.D. Thesis, Johannes Kepler University of Linz, AUSTRIA (2012) [arXiv:1305.0687] [INSPIRE]. – reference: JoglekarSDLeeBWGeneral Theory of Renormalization of Gauge Invariant OperatorsAnnals Phys.1976971601976AnPhy..97..160J428960[INSPIRE] – reference: DixonJATaylorJCRenormalization of wilson operators in gauge theoriesNucl. Phys. B1974785521974NuPhB..78..552D[INSPIRE] – reference: Gonzalez-ArroyoALopezCSecond Order Contributions to the Structure Functions in Deep Inelastic Scattering. III. The Singlet CaseNucl. Phys. B19801664291980NuPhB.166..429G[INSPIRE] – reference: AblingerJThe 3-Loop Non-Singlet Heavy Flavor Contributions and Anomalous Dimensions for the Structure Function F2(x, Q2) and TransversityNucl. Phys. B20148867332014NuPhB.886..733A32468641325.81168[arXiv:1406.4654] [INSPIRE] – reference: GribovVNLipatovLNDeep inelastic e p scattering in perturbation theorySov. J. Nucl. Phys.197215438[INSPIRE] – reference: Kluberg-SternHZuberJBRenormalization of Nonabelian Gauge Theories in a Background Field Gauge. II. Gauge Invariant OperatorsPhys. Rev. D19751231591975PhRvD..12.3159K[INSPIRE] – reference: MochSFour-Loop Non-Singlet Splitting Functions in the Planar Limit and BeyondJHEP2017100412017JHEP...10..041M[arXiv:1707.08315] [INSPIRE] – reference: J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider, Iterated Binomial Sums and their Associated Iterated Integrals, J. Math. Phys.55 (2014) 112301 [arXiv:1407.1822] [INSPIRE]. – reference: AblingerJThe package HarmonicSums: Computer Algebra and Analytic aspects of Nested SumsPoS2014LL2014019[arXiv:1407.6180] [INSPIRE] – reference: TarasovOVVladimirovAAZharkovAYThe Gell-Mann-Low Function of QCD in the Three Loop ApproximationPhys. Lett. B1980934291980PhLB...93..429T[INSPIRE] – reference: R.K. Ellis and W. Vogelsang, The Evolution of parton distributions beyond leading order: The Singlet case, hep-ph/9602356 [INSPIRE]. – reference: M.-X. Luo, T.-Z. Yang, H.X. Zhu and Y.J. Zhu, Quark Transverse Parton Distribution at the Next-to-Next-to-Next-to-Leading Order, Phys. Rev. Lett.124 (2020) 092001 [arXiv:1912.05778] [INSPIRE]. – reference: BaranowskiDBeam functions for N-jettiness at N3LO in perturbative QCDJHEP2023020732023JHEP...02..073B[arXiv:2211.05722] [INSPIRE] – reference: J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE]. – reference: R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE]. – reference: J. Ablinger, J. Blümlein and C. Schneider, Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials, J. Math. Phys.52 (2011) 102301 [arXiv:1105.6063] [INSPIRE]. – reference: NogueiraPAutomatic Feynman graph generationJ. Comput. Phys.19931052791993JCoPh.105..279N12104080782.68091[INSPIRE] – reference: AblingerJMassive 3-loop Ladder Diagrams for Quarkonic Local Operator Matrix ElementsNucl. Phys. B2012864522012NuPhB.864...52A29509791262.81184[arXiv:1206.2252] [INSPIRE] – reference: MeyerCTransforming differential equations of multi-loop Feynman integrals into canonical formJHEP2017040062017JHEP...04..006M3657762[arXiv:1611.01087] [INSPIRE] – reference: Kluberg-SternHZuberJBWard Identities and Some Clues to the Renormalization of Gauge Invariant OperatorsPhys. Rev. D1975124671975PhRvD..12..467K[INSPIRE] – reference: A. Behring et al., The Polarized Three-Loop Anomalous Dimensions from On-Shell Massive Operator Matrix Elements, Nucl. Phys. B948 (2019) 114753 [arXiv:1908.03779] [INSPIRE]. – reference: FurmanskiWPetronzioRSinglet Parton Densities Beyond Leading OrderPhys. Lett. B1980974371980PhLB...97..437F[INSPIRE] – reference: C. Duhr, F. Dulat and B. Mistlberger, Drell-Yan Cross Section to Third Order in the Strong Coupling Constant, Phys. Rev. Lett.125 (2020) 172001 [arXiv:2001.07717] [INSPIRE]. – reference: J. Ablinger, J. Blümlein and C. Schneider, Analytic and Algorithmic Aspects of Generalized Harmonic Sums and Polylogarithms, J. Math. Phys.54 (2013) 082301 [arXiv:1302.0378] [INSPIRE]. – reference: J.D. Bjorken and E.A. Paschos, Inelastic Electron Proton and γ-Proton Scattering, and the Structure of the Nucleon, Phys. Rev.185 (1969) 1975 [INSPIRE]. – reference: EbertMAMistlbergerBVitaGN-jettiness beam functions at N3LOJHEP2020091432020JHEP...09..143E[arXiv:2006.03056] [INSPIRE] – reference: T.G. Birthwright, E.W.N. Glover and P. Marquard, Master integrals for massless two-loop vertex diagrams with three offshell legs, JHEP09 (2004) 042 [hep-ph/0407343] [INSPIRE]. – reference: HambergRvan NeervenWLThe Correct renormalization of the gluon operator in a covariant gaugeNucl. Phys. B19923791431992NuPhB.379..143H[INSPIRE] – reference: FloratosEGRossDASachrajdaCTHigher Order Effects in Asymptotically Free Gauge Theories. II. Flavor Singlet Wilson Operators and Coefficient FunctionsNucl. Phys. B19791524931979NuPhB.152..493F[INSPIRE] – reference: LeeRNReducing differential equations for multiloop master integralsJHEP2015041082015JHEP...04..108L33512611388.81109[arXiv:1411.0911] [INSPIRE] – reference: R.N. Lee, Libra: A package for transformation of differential systems for multiloop integrals, Comput. Phys. Commun.267 (2021) 108058 [arXiv:2012.00279] [INSPIRE]. – reference: BaikovPAChetyrkinKGFour Loop Massless Propagators: An Algebraic Evaluation of All Master IntegralsNucl. Phys. B20108371862010NuPhB.837..186B26523201206.81087[arXiv:1004.1153] [INSPIRE] – reference: I. Bierenbaum et al., Oαs2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ O\left({\alpha}_s^2\right) $$\end{document}polarized heavy flavor corrections to deep-inelastic scattering at Q2 ≫ m2, Nucl. Phys. B988 (2023) 116114 [arXiv:2211.15337] [INSPIRE]. – reference: S.A. Larin and J.A.M. Vermaseren, The Three loop QCD Beta function and anomalous dimensions, Phys. Lett. B303 (1993) 334 [hep-ph/9302208] [INSPIRE]. – reference: Kluberg-SternHZuberJBRenormalization of Nonabelian Gauge Theories in a Background Field Gauge. I. Green FunctionsPhys. Rev. D1975124821975PhRvD..12..482K[INSPIRE] – reference: K.G. Wilson, Nonlagrangian models of current algebra, Phys. Rev.179 (1969) 1499 [INSPIRE]. – reference: J. Blümlein, P. Marquard, C. Schneider and K. Schönwald, The three-loop unpolarized and polarized non-singlet anomalous dimensions from off shell operator matrix elements, Nucl. Phys. B971 (2021) 115542 [arXiv:2107.06267] [INSPIRE]. – reference: Y. Matiounine, J. Smith and W.L. van Neerven, Two loop operator matrix elements calculated up to finite terms, Phys. Rev. D57 (1998) 6701 [hep-ph/9801224] [INSPIRE]. – reference: JonesDRTTwo Loop Diagrams in Yang-Mills TheoryNucl. Phys. B1974755311974NuPhB..75..531J[INSPIRE] – reference: LeeRNSmirnovAVSmirnovVAMaster Integrals for Four-Loop Massless Propagators up to Transcendentality Weight TwelveNucl. Phys. B2012856952012NuPhB.856...95L1246.81057[arXiv:1108.0732] [INSPIRE] – reference: J. Klappert, F. Lange, P. Maierhöfer and J. Usovitsch, Integral reduction with Kira 2.0 and finite field methods, Comput. Phys. Commun.266 (2021) 108024 [arXiv:2008.06494] [INSPIRE]. – reference: E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A15 (2000) 725 [hep-ph/9905237] [INSPIRE]. – reference: J.C. Collins and R.J. Scalise, The Renormalization of composite operators in Yang-Mills theories using general covariant gauge, Phys. Rev. D50 (1994) 4117 [hep-ph/9403231] [INSPIRE]. – reference: HeinrichGCollider Physics at the Precision FrontierPhys. Rept.202192212021PhR...922....1H42719011509.81614[arXiv:2009.00516] [INSPIRE] – reference: J.D. Bjorken, Asymptotic Sum Rules at Infinite Momentum, Phys. Rev.179 (1969) 1547 [INSPIRE]. – reference: A. von Manteuffel and C. Studerus, Reduze 2 — Distributed Feynman Integral Reduction, arXiv:1201.4330 [INSPIRE]. – reference: Y. Frishman, Light cone and short distances, Phys. Rept.13 (1974) 1 [INSPIRE]. – reference: J. Ablinger, A Computer Algebra Toolbox for Harmonic Sums Related to Particle Physics, MSc Thesis, Johannes Kepler University of Linz, AUSTRIA (2009) [arXiv:1011.1176] [INSPIRE]. – reference: ShtabovenkoVMertigROrellanaFNew Developments in FeynCalc 9.0Comput. Phys. Commun.20162074322016CoPhC.207..432S1375.68227[arXiv:1601.01167] [INSPIRE] – reference: A. Bassetto, G. Heinrich, Z. Kunszt and W. Vogelsang, The Light cone gauge and the calculation of the two loop splitting functions, Phys. Rev. D58 (1998) 094020 [hep-ph/9805283] [INSPIRE]. – volume: 09 start-page: 143 year: 2020 ident: 20646_CR27 publication-title: JHEP doi: 10.1007/JHEP09(2020)143 – volume: 01 start-page: 193 year: 2022 ident: 20646_CR40 publication-title: JHEP doi: 10.1007/JHEP01(2022)193 – ident: 20646_CR46 doi: 10.1016/j.physletb.2021.136853 – ident: 20646_CR80 doi: 10.1088/1126-6708/2004/09/042 – volume: 78 start-page: 552 year: 1974 ident: 20646_CR12 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(74)90598-7 – ident: 20646_CR89 doi: 10.1016/0370-2693(93)91441-O – volume: 10 start-page: 041 year: 2017 ident: 20646_CR85 publication-title: JHEP doi: 10.1007/JHEP10(2017)041 – ident: 20646_CR38 doi: 10.1007/s002880050138 – ident: 20646_CR1 doi: 10.1103/PhysRev.179.1499 – volume: 379 start-page: 143 year: 1992 ident: 20646_CR14 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(92)90593-Z – ident: 20646_CR44 doi: 10.1103/PhysRevD.58.094020 – ident: 20646_CR36 – ident: 20646_CR71 doi: 10.1063/1.3629472 – ident: 20646_CR35 doi: 10.1016/j.nuclphysb.2023.116114 – volume: 856 start-page: 95 year: 2012 ident: 20646_CR64 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2011.11.005 – ident: 20646_CR69 – volume: 07 start-page: 031 year: 2019 ident: 20646_CR82 publication-title: JHEP doi: 10.1007/JHEP07(2019)031 – ident: 20646_CR84 – ident: 20646_CR21 doi: 10.1103/PhysRevD.50.4117 – ident: 20646_CR79 doi: 10.1103/PhysRevD.57.6701 – ident: 20646_CR78 doi: 10.1016/j.nuclphysb.2022.115794 – ident: 20646_CR11 doi: 10.1016/j.nuclphysb.2004.04.024 – ident: 20646_CR25 doi: 10.1103/PhysRevLett.124.092001 – ident: 20646_CR2 doi: 10.1016/0370-1573(74)90044-1 – volume: 06 start-page: 115 year: 2021 ident: 20646_CR28 publication-title: JHEP – ident: 20646_CR49 – volume: 97 start-page: 160 year: 1976 ident: 20646_CR18 publication-title: Annals Phys. doi: 10.1016/0003-4916(76)90225-6 – volume: 09 start-page: 146 year: 2020 ident: 20646_CR26 publication-title: JHEP doi: 10.1007/JHEP09(2020)146 – volume: 12 start-page: 467 year: 1975 ident: 20646_CR13 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.12.467 – volume: 15 start-page: 438 year: 1972 ident: 20646_CR8 publication-title: Sov. J. Nucl. Phys. – volume: 890 start-page: 48 year: 2014 ident: 20646_CR31 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2014.10.008 – volume: 93 start-page: 429 year: 1980 ident: 20646_CR88 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(80)90358-5 – ident: 20646_CR33 doi: 10.1016/j.nuclphysb.2019.114753 – ident: 20646_CR56 doi: 10.1142/S0217751X00002159 – volume: 05 start-page: 028 year: 2018 ident: 20646_CR23 publication-title: JHEP doi: 10.1007/JHEP05(2018)028 – volume: LL2014 start-page: 019 year: 2014 ident: 20646_CR70 publication-title: PoS – ident: 20646_CR55 doi: 10.1016/j.cpc.2021.108024 – ident: 20646_CR58 doi: 10.1103/PhysRevLett.110.251601 – ident: 20646_CR66 doi: 10.1142/S0217751X99001032 – ident: 20646_CR83 – volume: 46 start-page: 641 year: 1977 ident: 20646_CR7 publication-title: Sov. Phys. JETP – volume: 05 start-page: 177 year: 2022 ident: 20646_CR30 publication-title: JHEP doi: 10.1007/JHEP05(2022)177 – ident: 20646_CR62 doi: 10.1016/j.cpc.2021.108058 – volume: 864 start-page: 52 year: 2012 ident: 20646_CR15 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2012.06.007 – volume: 166 start-page: 429 year: 1980 ident: 20646_CR17 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(80)90207-2 – ident: 20646_CR73 doi: 10.1063/1.4900836 – volume: 105 start-page: 279 year: 1993 ident: 20646_CR45 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1993.1074 – ident: 20646_CR48 – ident: 20646_CR37 doi: 10.1016/j.nuclphysb.2021.115542 – volume: 922 start-page: 1 year: 2021 ident: 20646_CR9 publication-title: Phys. Rept. doi: 10.1016/j.physrep.2021.03.006 – volume: 02 start-page: 073 year: 2023 ident: 20646_CR29 publication-title: JHEP doi: 10.1007/JHEP02(2023)073 – volume: 97 start-page: 437 year: 1980 ident: 20646_CR42 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(80)90636-X – ident: 20646_CR81 doi: 10.1063/1.1471366 – volume: 12 start-page: 030 year: 2016 ident: 20646_CR75 publication-title: JHEP doi: 10.1007/JHEP12(2016)030 – volume: 126 start-page: 298 year: 1977 ident: 20646_CR6 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(77)90384-4 – ident: 20646_CR5 doi: 10.1103/PhysRev.185.1975 – volume: 12 start-page: 482 year: 1975 ident: 20646_CR19 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.12.482 – volume: 744 start-page: 101 year: 2015 ident: 20646_CR74 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2015.03.029 – ident: 20646_CR52 doi: 10.1016/j.cpc.2012.03.025 – volume: 886 start-page: 733 year: 2014 ident: 20646_CR32 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2014.07.010 – ident: 20646_CR76 doi: 10.1016/j.cpc.2021.108174 – ident: 20646_CR4 doi: 10.1103/PhysRev.179.1547 – volume: 192 start-page: 159 year: 1981 ident: 20646_CR47 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(81)90199-1 – volume: 889 start-page: 351 year: 2014 ident: 20646_CR22 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2014.10.016 – volume: 04 start-page: 006 year: 2017 ident: 20646_CR60 publication-title: JHEP doi: 10.1007/JHEP04(2017)006 – ident: 20646_CR10 doi: 10.1016/j.nuclphysb.2004.03.030 – volume: 12 start-page: 3159 year: 1975 ident: 20646_CR20 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.12.3159 – ident: 20646_CR34 doi: 10.1007/JHEP12(2022)134 – ident: 20646_CR72 doi: 10.1063/1.4811117 – volume: 207 start-page: 432 year: 2016 ident: 20646_CR50 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2016.06.008 – ident: 20646_CR53 – volume: 152 start-page: 493 year: 1979 ident: 20646_CR16 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(79)90094-4 – volume: 12 start-page: 054 year: 2020 ident: 20646_CR77 publication-title: JHEP doi: 10.1007/JHEP12(2020)054 – ident: 20646_CR39 doi: 10.1103/PhysRevD.54.2023 – volume: 175 start-page: 27 year: 1980 ident: 20646_CR41 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(80)90003-6 – ident: 20646_CR24 doi: 10.1103/PhysRevLett.125.172001 – volume: 222 start-page: 295 year: 2018 ident: 20646_CR59 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2017.09.014 – ident: 20646_CR67 doi: 10.1103/PhysRevD.60.014018 – ident: 20646_CR43 – ident: 20646_CR51 doi: 10.1088/1742-6596/2438/1/012140 – volume: 33 start-page: 244 year: 1974 ident: 20646_CR86 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.33.244 – ident: 20646_CR3 doi: 10.1103/PhysRevD.9.980 – ident: 20646_CR57 doi: 10.1016/S0550-3213(00)00223-6 – ident: 20646_CR68 – volume: 04 start-page: 108 year: 2015 ident: 20646_CR61 publication-title: JHEP – ident: 20646_CR54 doi: 10.1016/j.cpc.2019.106877 – volume: 837 start-page: 186 year: 2010 ident: 20646_CR63 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2010.05.004 – ident: 20646_CR65 doi: 10.1142/S0217751X00000367 – volume: 75 start-page: 531 year: 1974 ident: 20646_CR87 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(74)90093-5 |
SSID | ssj0015190 |
Score | 2.484026 |
Snippet | A
bstract
The leading short-distance contributions to hadronic hard-scattering cross sections in the operator product expansion are described by twist-two... The leading short-distance contributions to hadronic hard-scattering cross sections in the operator product expansion are described by twist-two quark and... Abstract The leading short-distance contributions to hadronic hard-scattering cross sections in the operator product expansion are described by twist-two quark... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 41 |
SubjectTerms | Classical and Quantum Gravitation Deep Inelastic Scattering or Small-x Physics Distribution functions Elementary Particles Gluons High energy physics Higher-Order Perturbative Calculations Mathematical analysis Operators (mathematics) Partons Physics Physics and Astronomy Quantum chromodynamics Quantum Field Theories Quantum Field Theory Quantum numbers Quantum Physics Quarks Regular Article - Theoretical Physics Relativity Theory Renormalization and Regularization Scattering cross sections String Theory |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64vcvCgh2qTJun2qKuyCD5R8FbSSSLC0i5uV_--k7RVVxAvXtukhO9LMjOd5BtC9mUislhyiLhjGKAwx6LMCJzLRifM-HAs_O-4ulbDR3H5JJ--lfryZ8IaeeAGuGO077gEtIKsKESRWp1mVhkOnOsYWBGUQNHmdcFUmz9AvyTuhHzi9PhyeH4biwNfKvwwFmzGBgWp_hn_8kdKNFiai2Wy1LqI9KQZ2gqZs-UqWQhHNWGyRm7ubekdzVF7g5JWjtbvyFZUv1e0GtuQOJ_Ql5JC9YahMGJHn_X02dK6ojVyZ-moqsahxd3gbJ08Xpw_DIZRWxYhAsHSOoIic6mQTltwxlmJO1Q_5lozzSRIXH8pqMIkHnwHWlmvV6MzcFwAS40qkg0yX1al3SQ0kQkYqWxfOSHQmPUVGH-X1uIuYBD3HjnqgMqh1Qz3pStGead23CCbe2RzRLZHDj47jBu5jN-bnnrkP5t5nevwANnPW_bzv9jvkZ2Ot7xdfJOcp-h0YWzZ5z1y2HH59fqX8Wz9x3i2yaL_nk83MbZD5uvXqd1Fr6Uu9sIE_QCkeuct priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Journals Complete - Open Access dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iCF7EJ64vcvCgh0qTJun2qKuyCD5R8FbSSbIIS7O4Vf--k2yrqHjwFtoJlG9mki-dzAwhBzITRSo5JNwxPKAwx5LCCLRlozNmwnEs_u-4ulbDR3H5JJ_mCOtyYeJt9y4kGVfqLtntcnh-m4rD0O77KA2p6gsSx8GoByHBoQ0cICFJuwo-vyd923xijf5vxPJHLDRuMRcrZLnlhvRkpsxVMmfrNbIY72jCdJ3c3Ns6MMxxmzpJvaPNO6opad499RMbI-ZT-lxT8G94BkbQ6Ei_jixtPG1QaZaOvZ9EibvB2QZ5vDh_GAyTth9CAoLlTQJV4XIhnbbgjLMSl6Z-yrVmmkmQ6Hg5qMpkAXUHWtlQqEYX4LgAlhtVZZtkvva13SI0kxkYqWxfOSFwF-srMCGJ1qL7G5arHjnugCqhLRYeelaMy67M8QzZMiBbIrI9cvg5YTKrk_G36GlA_lMsFLiOD_zLqGz9pURahyufVlBUlahyq_PCKsOBc50Cq0SP7HZ6K1uvm5Y8R7aFNtHnPXLU6fLr9R_fs_0P2R2yFIYhnMTYLplvXl7tHrKSptqPdvgBe_DZpQ priority: 102 providerName: Springer Nature |
Title | Renormalization of twist-two operators in covariant gauge to three loops in QCD |
URI | https://link.springer.com/article/10.1007/JHEP04(2023)041 https://www.proquest.com/docview/2799302682 https://doaj.org/article/561763a6c9bb4b7ea79e6d2c22a0c1b4 |
Volume | 2023 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFLcGaNIuE_vSyqDyYQc4ZMSOP5ITgtKuQhpjaJW4RY4_KqQqLjSMf3_PrlPEJHaxlOQlit6z36f9ewh95QWrck51Rh2BAIU4klWGwVw2qiAmhGMx3_HjUkxn7OKG36SE2yptq-x1YlTUxuuQIz-mEiwpBAwlPVneZaFrVKiuphYaW2gHVHAJwdfO2fjy6npTRwD_JO8BfXJ5fDEdX-XsMLQMP8oZeWaLImT_Mz_zn9JotDiTXfQ2uYr4dC3bd-iVbd-j13HLpl59QD-vbRsczkU6SYm9w90jSC3rHj32SxsL6Ct822Lt_0BIDDzEc_Uwt7jzuAMZWrzwfhkpfo3OP6LZZPx7NM1Se4RMMyK7TDeVk4w7ZbUzznLQVGVOlSKKcM1hHUotGlMEITithA24NarSjjJNpBFN8Qltt761nxEueKENF7YUjjEwaqXQJpyptaANDJFigL71jKp1wg4PLSwWdY96vOZsHThbA2cH6HDzwnINm_Ey6Vng_IYs4F3HG_5-XqflU4OXB4pQCV01DWukVbKywlBNqco1adgA7fdyq9MiXNVPU2aAjnpZPj1-4X_2_v-pL-hNoAwFJUL20XZ3_2APwC_pmiHaKiffh2kKwtWIsjCK0TBG-jDO6OlfokzkIw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMsFPABpPYQGjuOnRwQgrbL9slDrdRb6vixQlrFSzdlxZ_iNzL2JlsVqdx6TWzLmvnm5bFnAN7kGS_TnOmEOYoBCnU0KQ1HLBuVURPCsXjecXgkRid87zQ_XYE__VuYcK2y14lRURuvwxn5JpNoSTFgKNiH6c8kdI0K2dW-hcYCFvv29xxDttn73W3k71vGhjvHW6Ok6yqQaE5lm-i6dJLnTlntjLM5CniRMqWoornOEb5Si9pkYe9OK2FDuRdVase4ptKIOsN1b8FtnmVlkKhi-HmZtUBvKO3LB6Vyc2-08zXl66FB-UbK6RXLFxsEXPFq_0nERvs2fAD3O8eUfFwg6SGs2OYR3IkXRPXsMXz5bpvg3k66d5vEO9LOESNJO_fET21M18_Ij4Zo_wsDcOQYGauLsSWtJy0ixpKJ99M44tvW9hM4uRGyPYXVxjf2GZAsz7TJhS2E4xxNaCG0CS94LeoeQ6UYwLueUJXuKpWHhhmTqq-xvKBsFShbIWUHsL6cMF0U6bh-6KdA-eWwUF07fvDn46oT1gp9SlS7SuiyrnktrZKlFYZpxlSqac0HsNbzrepEflZdAnQAGz0vL39fs5_n_1_qNdwdHR8eVAe7R_sv4F6YFVJZlK7Bant-YV-iR9TWryIMCZzdNO7_AlmfHgM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEJ-iMMAPIG0PobHj2M0DQmxt1W1QysSkvWWOPyqkKi5rRsW_xl_HOU06DWm87TWxreTu5_vwne8A3qYJz-KU6Yg5ig4KdTTKDEcsG5VQE9yx-rzjy0SMT_nRWXq2BX_auzAhrbKVibWgNl6HM_Iek6hJ0WHos55r0iKmg9HHxc8odJAKkda2ncYaIsf29wrdt-WHwwHy-h1jo-H3g3HUdBiINKeyinSROclTp6x2xtkUN3s_ZkpRRVOdIpSlFoVJwn84rYQNpV9Uph3jmkojigTXvQPbEr2iuAPb-8PJ9GQTw0DbKG6LCcWydzQeTmO-G9qV78WcXtODdbuAazbuP2HZWtuNHsKDxkwln9a4egRbtnwMd-t0Ub18Al9PbBmM3Xlzi5N4R6oVIiaqVp74ha2D90vyoyTa_0J3HPlHZupyZknlSYX4sWTu_aIe8e1g8BROb4Vwz6BT-tI-B5KkiTapsH3hOEeF2hfahPu8FiWRoVJ04X1LqFw3dctD-4x53lZcXlM2D5TNkbJd2N1MWKxLdtw8dD9QfjMs1NquH_iLWd5s3RwtTBTCSuisKHghrZKZFYZpxlSsacG7sNPyLW8EwDK_gmsX9lpeXr2-4Xte_H-pN3APMZ9_Ppwcv4T7YVKIa1G6A53q4tK-QvOoKl43OCRwftvQ_wtF-COV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Renormalization+of+twist-two+operators+in+covariant+gauge+to+three+loops+in+QCD&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Gehrmann%2C+Thomas&rft.au=von+Manteuffel%2C+Andreas&rft.au=Yang%2C+Tong-Zhi&rft.date=2023-04-11&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2023&rft.issue=4&rft.spage=41&rft_id=info:doi/10.1007%2FJHEP04%282023%29041&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |