Renormalization of twist-two operators in covariant gauge to three loops in QCD

A bstract The leading short-distance contributions to hadronic hard-scattering cross sections in the operator product expansion are described by twist-two quark and gluon operators. The anomalous dimensions of these operators determine the splitting functions that govern the scale evolution of parto...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2023; no. 4; pp. 41 - 62
Main Authors Gehrmann, Thomas, von Manteuffel, Andreas, Yang, Tong-Zhi
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 11.04.2023
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract The leading short-distance contributions to hadronic hard-scattering cross sections in the operator product expansion are described by twist-two quark and gluon operators. The anomalous dimensions of these operators determine the splitting functions that govern the scale evolution of parton distribution functions. In massless QCD, these anomalous dimensions can be determined through the calculation of off-shell operator matrix elements, typically performed in a covariant gauge, where the physical operators mix with gauge-variant operators of the same quantum numbers. We derive a new method to systematically extract the counterterm Feynman rules resulting from these gauge-variant operators. As a first application of the new method, we rederive the unpolarized three-loop singlet anomalous dimensions, independently confirming previous results obtained with other methods. Employing a general covariant gauge, we observe the explicit cancellation of the gauge parameter dependence in these results.
AbstractList The leading short-distance contributions to hadronic hard-scattering cross sections in the operator product expansion are described by twist-two quark and gluon operators. The anomalous dimensions of these operators determine the splitting functions that govern the scale evolution of parton distribution functions. In massless QCD, these anomalous dimensions can be determined through the calculation of off-shell operator matrix elements, typically performed in a covariant gauge, where the physical operators mix with gauge-variant operators of the same quantum numbers. We derive a new method to systematically extract the counterterm Feynman rules resulting from these gauge-variant operators. As a first application of the new method, we rederive the unpolarized three-loop singlet anomalous dimensions, independently confirming previous results obtained with other methods. Employing a general covariant gauge, we observe the explicit cancellation of the gauge parameter dependence in these results.
Abstract The leading short-distance contributions to hadronic hard-scattering cross sections in the operator product expansion are described by twist-two quark and gluon operators. The anomalous dimensions of these operators determine the splitting functions that govern the scale evolution of parton distribution functions. In massless QCD, these anomalous dimensions can be determined through the calculation of off-shell operator matrix elements, typically performed in a covariant gauge, where the physical operators mix with gauge-variant operators of the same quantum numbers. We derive a new method to systematically extract the counterterm Feynman rules resulting from these gauge-variant operators. As a first application of the new method, we rederive the unpolarized three-loop singlet anomalous dimensions, independently confirming previous results obtained with other methods. Employing a general covariant gauge, we observe the explicit cancellation of the gauge parameter dependence in these results.
A bstract The leading short-distance contributions to hadronic hard-scattering cross sections in the operator product expansion are described by twist-two quark and gluon operators. The anomalous dimensions of these operators determine the splitting functions that govern the scale evolution of parton distribution functions. In massless QCD, these anomalous dimensions can be determined through the calculation of off-shell operator matrix elements, typically performed in a covariant gauge, where the physical operators mix with gauge-variant operators of the same quantum numbers. We derive a new method to systematically extract the counterterm Feynman rules resulting from these gauge-variant operators. As a first application of the new method, we rederive the unpolarized three-loop singlet anomalous dimensions, independently confirming previous results obtained with other methods. Employing a general covariant gauge, we observe the explicit cancellation of the gauge parameter dependence in these results.
ArticleNumber 41
Author Yang, Tong-Zhi
Gehrmann, Thomas
von Manteuffel, Andreas
Author_xml – sequence: 1
  givenname: Thomas
  surname: Gehrmann
  fullname: Gehrmann, Thomas
  organization: Physik-Institut, Universität Zürich
– sequence: 2
  givenname: Andreas
  surname: von Manteuffel
  fullname: von Manteuffel, Andreas
  organization: Department of Physics and Astronomy, Michigan State University
– sequence: 3
  givenname: Tong-Zhi
  orcidid: 0000-0001-5003-5517
  surname: Yang
  fullname: Yang, Tong-Zhi
  email: toyang@physik.uzh.ch
  organization: Physik-Institut, Universität Zürich, Department of Physics and Astronomy, Michigan State University
BookMark eNp1kc1PGzEQxa0qSJDAuVdLvcBhie398PpYBdqAkKAVPVuzXjt1tOwE2yFq_3qWLKgVEqcZjd7v6WnelEx67C0hnzk754zJ-fXy8o4Vp4KJ_IwV_BM54kyorC6kmvy3H5JpjGvGeMkVOyK3P22P4QE6_xeSx56io2nnY8rSDilubICEIVLfU4NPEDz0ia5gu7I0IU2_g7W0Q9zsFT8WF8fkwEEX7cnrnJFf3y7vF8vs5vb71eLrTWYKLlNmGuVkUTqwxrXOltC2NRMAHHhpyloyaaqmzYXj3BmorMzrEpRxojBctlWTz8jV6NsirPUm-AcIfzSC1_sDhpWGkLzprC4rLqscKqOapmikBals1QojBDDDm2Lw-jJ6bQI-bm1Meo3b0A_xtZBK5UxUtRhU5agyAWMM1mnj0_5nKYDvNGf6pQc99qBfetBDDwM3f8e9pf2YYCMRB2W_suFfno-QZ2nOm9w
CitedBy_id crossref_primary_10_1103_PhysRevD_108_034027
crossref_primary_10_1140_epjc_s10052_024_13071_3
Cites_doi 10.1007/JHEP09(2020)143
10.1007/JHEP01(2022)193
10.1016/j.physletb.2021.136853
10.1088/1126-6708/2004/09/042
10.1016/0550-3213(74)90598-7
10.1016/0370-2693(93)91441-O
10.1007/JHEP10(2017)041
10.1007/s002880050138
10.1103/PhysRev.179.1499
10.1016/0550-3213(92)90593-Z
10.1103/PhysRevD.58.094020
10.1063/1.3629472
10.1016/j.nuclphysb.2023.116114
10.1016/j.nuclphysb.2011.11.005
10.1007/JHEP07(2019)031
10.1103/PhysRevD.50.4117
10.1103/PhysRevD.57.6701
10.1016/j.nuclphysb.2022.115794
10.1016/j.nuclphysb.2004.04.024
10.1103/PhysRevLett.124.092001
10.1016/0370-1573(74)90044-1
10.1016/0003-4916(76)90225-6
10.1007/JHEP09(2020)146
10.1103/PhysRevD.12.467
10.1016/j.nuclphysb.2014.10.008
10.1016/0370-2693(80)90358-5
10.1016/j.nuclphysb.2019.114753
10.1142/S0217751X00002159
10.1007/JHEP05(2018)028
10.1016/j.cpc.2021.108024
10.1103/PhysRevLett.110.251601
10.1142/S0217751X99001032
10.1007/JHEP05(2022)177
10.1016/j.cpc.2021.108058
10.1016/j.nuclphysb.2012.06.007
10.1016/0550-3213(80)90207-2
10.1063/1.4900836
10.1006/jcph.1993.1074
10.1016/j.nuclphysb.2021.115542
10.1016/j.physrep.2021.03.006
10.1007/JHEP02(2023)073
10.1016/0370-2693(80)90636-X
10.1063/1.1471366
10.1007/JHEP12(2016)030
10.1016/0550-3213(77)90384-4
10.1103/PhysRev.185.1975
10.1103/PhysRevD.12.482
10.1016/j.physletb.2015.03.029
10.1016/j.cpc.2012.03.025
10.1016/j.nuclphysb.2014.07.010
10.1016/j.cpc.2021.108174
10.1103/PhysRev.179.1547
10.1016/0550-3213(81)90199-1
10.1016/j.nuclphysb.2014.10.016
10.1007/JHEP04(2017)006
10.1016/j.nuclphysb.2004.03.030
10.1103/PhysRevD.12.3159
10.1007/JHEP12(2022)134
10.1063/1.4811117
10.1016/j.cpc.2016.06.008
10.1016/0550-3213(79)90094-4
10.1007/JHEP12(2020)054
10.1103/PhysRevD.54.2023
10.1016/0550-3213(80)90003-6
10.1103/PhysRevLett.125.172001
10.1016/j.cpc.2017.09.014
10.1103/PhysRevD.60.014018
10.1088/1742-6596/2438/1/012140
10.1103/PhysRevLett.33.244
10.1103/PhysRevD.9.980
10.1016/S0550-3213(00)00223-6
10.1016/j.cpc.2019.106877
10.1016/j.nuclphysb.2010.05.004
10.1142/S0217751X00000367
10.1016/0550-3213(74)90093-5
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP04(2023)041
DatabaseName Springer Nature OA/Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 62
ExternalDocumentID oai_doaj_org_article_561763a6c9bb4b7ea79e6d2c22a0c1b4
10_1007_JHEP04_2023_041
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AMVHM
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c417t-cb9f745faecfdfe5add802aa1a15c58707c6bd32f11fca6e7385a9cf24c17d6b3
IEDL.DBID BENPR
ISSN 1029-8479
IngestDate Wed Aug 27 01:21:50 EDT 2025
Fri Jul 25 06:13:02 EDT 2025
Tue Jul 01 01:00:47 EDT 2025
Thu Apr 24 22:50:36 EDT 2025
Fri Feb 21 02:42:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Renormalization and Regularization
Deep Inelastic Scattering or Small-x Physics
Higher-Order Perturbative Calculations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-cb9f745faecfdfe5add802aa1a15c58707c6bd32f11fca6e7385a9cf24c17d6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5003-5517
OpenAccessLink https://www.proquest.com/docview/2799302682?pq-origsite=%requestingapplication%
PQID 2799302682
PQPubID 2034718
PageCount 62
ParticipantIDs doaj_primary_oai_doaj_org_article_561763a6c9bb4b7ea79e6d2c22a0c1b4
proquest_journals_2799302682
crossref_citationtrail_10_1007_JHEP04_2023_041
crossref_primary_10_1007_JHEP04_2023_041
springer_journals_10_1007_JHEP04_2023_041
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-11
PublicationDateYYYYMMDD 2023-04-11
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-11
  day: 11
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References MistlbergerBHiggs boson production at hadron colliders at N3LO in QCDJHEP2018050282018JHEP...05..028M[arXiv:1802.00833] [INSPIRE]
J. Blümlein and S. Kurth, Harmonic sums and Mellin transforms up to two loop order, Phys. Rev. D60 (1999) 014018 [hep-ph/9810241] [INSPIRE].
J. Ablinger et al., The unpolarized and polarized single-mass three-loop heavy flavor operator matrix elements Agg,Qand ∆Agg,Q, JHEP12 (2022) 134 [arXiv:2211.05462] [INSPIRE].
S. Moch, P. Uwer and S. Weinzierl, Nested sums, expansion of transcendental functions and multiscale multiloop integrals, J. Math. Phys.43 (2002) 3363 [hep-ph/0110083] [INSPIRE].
K.G. Wilson, Nonlagrangian models of current algebra, Phys. Rev.179 (1969) 1499 [INSPIRE].
S. Moch, J.A.M. Vermaseren and A. Vogt, The Three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys. B688 (2004) 101 [hep-ph/0403192] [INSPIRE].
Kluberg-SternHZuberJBWard Identities and Some Clues to the Renormalization of Gauge Invariant OperatorsPhys. Rev. D1975124671975PhRvD..12..467K[INSPIRE]
ChetyrkinKGTkachovFVIntegration by Parts: The Algorithm to Calculate beta Functions in 4 LoopsNucl. Phys. B19811921591981NuPhB.192..159C[INSPIRE]
I. Bierenbaum et al., Oαs2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ O\left({\alpha}_s^2\right) $$\end{document}polarized heavy flavor corrections to deep-inelastic scattering at Q2 ≫ m2, Nucl. Phys. B988 (2023) 116114 [arXiv:2211.15337] [INSPIRE].
AltarelliGParisiGAsymptotic Freedom in Parton LanguageNucl. Phys. B19771262981977NuPhB.126..298A[INSPIRE]
R.K. Ellis and W. Vogelsang, The Evolution of parton distributions beyond leading order: The Singlet case, hep-ph/9602356 [INSPIRE].
BoehmJIBP reduction coefficients made simpleJHEP2020120542020JHEP...12..054B4239398[arXiv:2008.13194] [INSPIRE]
FalcioniGHerzogFRenormalization of gluonic leading-twist operators in covariant gaugesJHEP2022051772022JHEP...05..177F443115207613613[arXiv:2203.11181] [INSPIRE]
BlümleinJMarquardPSchneiderCSchönwaldKThe three-loop polarized singlet anomalous dimensions from off-shell operator matrix elementsJHEP2022011932022JHEP...01..193B440330707605218[arXiv:2111.12401] [INSPIRE]
J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].
J. Ablinger, A Computer Algebra Toolbox for Harmonic Sums Related to Particle Physics, MSc Thesis, Johannes Kepler University of Linz, AUSTRIA (2009) [arXiv:1011.1176] [INSPIRE].
A. Bassetto, G. Heinrich, Z. Kunszt and W. Vogelsang, The Light cone gauge and the calculation of the two loop splitting functions, Phys. Rev. D58 (1998) 094020 [hep-ph/9805283] [INSPIRE].
FloratosEGRossDASachrajdaCTHigher Order Effects in Asymptotically Free Gauge Theories. II. Flavor Singlet Wilson Operators and Coefficient FunctionsNucl. Phys. B19791524931979NuPhB.152..493F[INSPIRE]
Gonzalez-ArroyoALopezCSecond Order Contributions to the Structure Functions in Deep Inelastic Scattering. III. The Singlet CaseNucl. Phys. B19801664291980NuPhB.166..429G[INSPIRE]
A. von Manteuffel and C. Studerus, Reduze 2 — Distributed Feynman Integral Reduction, arXiv:1201.4330 [INSPIRE].
J.C. Collins and R.J. Scalise, The Renormalization of composite operators in Yang-Mills theories using general covariant gauge, Phys. Rev. D50 (1994) 4117 [hep-ph/9403231] [INSPIRE].
NogueiraPAutomatic Feynman graph generationJ. Comput. Phys.19931052791993JCoPh.105..279N12104080782.68091[INSPIRE]
von ManteuffelASchabingerRMA novel approach to integration by parts reductionPhys. Lett. B20157441012015PhLB..744..101V33418681330.81151[arXiv:1406.4513] [INSPIRE]
JonesDRTTwo Loop Diagrams in Yang-Mills TheoryNucl. Phys. B1974755311974NuPhB..75..531J[INSPIRE]
Kluberg-SternHZuberJBRenormalization of Nonabelian Gauge Theories in a Background Field Gauge. II. Gauge Invariant OperatorsPhys. Rev. D19751231591975PhRvD..12.3159K[INSPIRE]
R.N. Lee, Libra: A package for transformation of differential systems for multiloop integrals, Comput. Phys. Commun.267 (2021) 108058 [arXiv:2012.00279] [INSPIRE].
J. Ablinger, J. Blümlein and C. Schneider, Analytic and Algorithmic Aspects of Generalized Harmonic Sums and Polylogarithms, J. Math. Phys.54 (2013) 082301 [arXiv:1302.0378] [INSPIRE].
J. Ablinger, J. Blümlein and C. Schneider, Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials, J. Math. Phys.52 (2011) 102301 [arXiv:1105.6063] [INSPIRE].
DokshitzerYLCalculation of the Structure Functions for Deep Inelastic Scattering and e+e−Annihilation by Perturbation Theory in Quantum ChromodynamicsSov. Phys. JETP1977466411977JETP...46..641D[INSPIRE]
S. Moch et al., Low moments of the four-loop splitting functions in QCD, Phys. Lett. B825 (2022) 136853 [arXiv:2111.15561] [INSPIRE].
M.-X. Luo, T.-Z. Yang, H.X. Zhu and Y.J. Zhu, Quark Transverse Parton Distribution at the Next-to-Next-to-Next-to-Leading Order, Phys. Rev. Lett.124 (2020) 092001 [arXiv:1912.05778] [INSPIRE].
D.J. Gross and F. Wilczek, Asymptotically free gauge theories. 2, Phys. Rev. D9 (1974) 980 [INSPIRE].
GribovVNLipatovLNDeep inelastic e p scattering in perturbation theorySov. J. Nucl. Phys.197215438[INSPIRE]
J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
HeinrichGCollider Physics at the Precision FrontierPhys. Rept.202192212021PhR...922....1H42719011509.81614[arXiv:2009.00516] [INSPIRE]
PeraroTScattering amplitudes over finite fields and multivariate functional reconstructionJHEP2016120302016JHEP...12..030P36011571390.81631[arXiv:1608.01902] [INSPIRE]
Y. Frishman, Light cone and short distances, Phys. Rept.13 (1974) 1 [INSPIRE].
DixonJATaylorJCRenormalization of wilson operators in gauge theoriesNucl. Phys. B1974785521974NuPhB..78..552D[INSPIRE]
J. Ablinger, Computer Algebra Algorithms for Special Functions in Particle Physics, Ph.D. Thesis, Johannes Kepler University of Linz, AUSTRIA (2012) [arXiv:1305.0687] [INSPIRE].
HambergRvan NeervenWLThe Correct renormalization of the gluon operator in a covariant gaugeNucl. Phys. B19923791431992NuPhB.379..143H[INSPIRE]
J.D. Bjorken and E.A. Paschos, Inelastic Electron Proton and γ-Proton Scattering, and the Structure of the Nucleon, Phys. Rev.185 (1969) 1975 [INSPIRE].
Kluberg-SternHZuberJBRenormalization of Nonabelian Gauge Theories in a Background Field Gauge. I. Green FunctionsPhys. Rev. D1975124821975PhRvD..12..482K[INSPIRE]
JoglekarSDLeeBWGeneral Theory of Renormalization of Gauge Invariant OperatorsAnnals Phys.1976971601976AnPhy..97..160J428960[INSPIRE]
CaswellWEAsymptotic Behavior of Nonabelian Gauge Theories to Two Loop OrderPhys. Rev. Lett.1974332441974PhRvL..33..244C[INSPIRE]
J. Klappert, F. Lange, P. Maierhöfer and J. Usovitsch, Integral reduction with Kira 2.0 and finite field methods, Comput. Phys. Commun.266 (2021) 108024 [arXiv:2008.06494] [INSPIRE].
J. Blümlein, P. Marquard, C. Schneider and K. Schönwald, The two-loop massless off-shell QCD operator matrix elements to finite terms, Nucl. Phys. B980 (2022) 115794 [arXiv:2202.03216] [INSPIRE].
BaranowskiDBeam functions for N-jettiness at N3LO in perturbative QCDJHEP2023020732023JHEP...02..073B[arXiv:2211.05722] [INSPIRE]
E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A15 (2000) 725 [hep-ph/9905237] [INSPIRE].
S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A15 (2000) 5087 [hep-ph/0102033] [INSPIRE].
EbertMAMistlbergerBVitaGTransverse momentum dependent PDFs at N3LOJHEP2020091462020JHEP...09..146E[arXiv:2006.05329] [INSPIRE]
BaikovPAChetyrkinKGFour Loop Massless Propagators: An Algebraic Evaluation of All Master IntegralsNucl. Phys. B20108371862010NuPhB.837..186B26523201206.81087[arXiv:1004.1153] [INSPIRE]
EbertMAMistlbergerBVitaGN-jettiness beam functions at N3LOJHEP2020091432020JHEP...09..143E[arXiv:2006.03056] [INSPIRE]
AblingerJThe package HarmonicSums: Computer Algebra and Analytic aspects of Nested SumsPoS2014LL2014019[arXiv:1407.6180] [INSPIRE]
A. Behring et al., The Polarized Three-Loop Anomalous Dimensions from On-Shell Massive Operator Matrix Elements, Nucl. Phys. B948 (2019) 114753 [arXiv:1908.03779] [INSPIRE].
LuoM-XYangT-ZZhuHXZhuYJUnpolarized quark and gluon TMD PDFs and FFs at N3LOJHEP2021061152021JHEP...06..115L[arXiv:2012.03256] [INSPIRE]
MochSFour-Loop Non-Singlet Splitting Functions in the Planar Limit and BeyondJHEP2017100412017JHEP...10..041M[arXiv:1707.08315] [INSPIRE]
LeeRNSmirnovAVSmirnovVAMaster Integrals for Four-Loop Massless Propagators up to Transcendentality Weight TwelveNucl. Phys. B2012856952012NuPhB.856...95L1246.81057[arXiv:1108.0732] [INSPIRE]
MochSVermaserenJAMVogtAThe Three-Loop Splitting Functions in QCD: The Helicity-Dependent CaseNucl. Phys. B20148893512014NuPhB.889..351M32803731326.81272[arXiv:1409.5131] [INSPIRE]
A. Vogt, S. Moch and J.A.M. Vermaseren, The Three-loop splitting functions in QCD: The Singlet case, Nucl. Phys. B691 (2004) 129 [hep-ph/0404111] [INSPIRE].
J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider, Iterated Binomial Sums and their Associated Iterated Integrals, J. Math. Phys.55 (2014) 112301 [arXiv:1407.1822] [INSPIRE].
T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B580 (2000) 485 [hep-ph/9912329] [INSPIRE].
TarasovOVVladimirovAAZharkovAYThe Gell-Mann-Low Function of QCD in the Three Loop ApproximationPhys. Lett. B1980934291980PhLB...93..429T[INSPIRE]
J.A.M. Vermaseren, Harmonic sums, Mellin transforms and integrals, Int. J. Mod. Phys. A14 (1999) 2037 [hep-ph/9806280] [INSPIRE].
LeeRNReducing differential equations for multiloop master integralsJHEP2015041082015JHEP...04..108L33512611388.81109[arXiv:1411.0911] [INSPIRE]
MeyerCAlgorithmic transformation of multi-loop master integrals to a canonical basis with CANONICAComput. Phys. Commun.20182222952018CoPhC.222..295M07693052[arXiv:1705.06252] [INSPIRE]
C. Duhr, F. Dulat and
20646_CR73
20646_CR76
20646_CR33
20646_CR34
20646_CR78
20646_CR35
20646_CR79
G Altarelli (20646_CR6) 1977; 126
20646_CR36
20646_CR37
20646_CR38
A von Manteuffel (20646_CR74) 2015; 744
SD Joglekar (20646_CR18) 1976; 97
20646_CR39
G Curci (20646_CR41) 1980; 175
V Shtabovenko (20646_CR50) 2016; 207
YL Dokshitzer (20646_CR7) 1977; 46
J Ablinger (20646_CR70) 2014; LL2014
20646_CR3
20646_CR2
20646_CR1
J Boehm (20646_CR77) 2020; 12
20646_CR71
20646_CR72
20646_CR62
H Kluberg-Stern (20646_CR13) 1975; 12
20646_CR21
20646_CR65
20646_CR66
20646_CR67
20646_CR5
20646_CR24
PA Baikov (20646_CR63) 2010; 837
RN Lee (20646_CR64) 2012; 856
20646_CR68
20646_CR4
20646_CR25
20646_CR69
WE Caswell (20646_CR86) 1974; 33
J Ablinger (20646_CR32) 2014; 886
A Gonzalez-Arroyo (20646_CR17) 1980; 166
G Heinrich (20646_CR9) 2021; 922
G Falcioni (20646_CR30) 2022; 05
S Moch (20646_CR22) 2014; 889
MA Ebert (20646_CR26) 2020; 09
KG Chetyrkin (20646_CR47) 1981; 192
20646_CR51
20646_CR52
C Meyer (20646_CR60) 2017; 04
J Blümlein (20646_CR40) 2022; 01
20646_CR53
20646_CR10
20646_CR54
20646_CR11
EG Floratos (20646_CR16) 1979; 152
20646_CR55
J Ablinger (20646_CR31) 2014; 890
20646_CR56
20646_CR57
20646_CR58
S Moch (20646_CR85) 2017; 10
H Kluberg-Stern (20646_CR19) 1975; 12
H Kluberg-Stern (20646_CR20) 1975; 12
M-X Luo (20646_CR28) 2021; 06
P Nogueira (20646_CR45) 1993; 105
T Peraro (20646_CR82) 2019; 07
OV Tarasov (20646_CR88) 1980; 93
JA Dixon (20646_CR12) 1974; 78
20646_CR84
MA Ebert (20646_CR27) 2020; 09
20646_CR43
20646_CR44
DRT Jones (20646_CR87) 1974; 75
20646_CR89
20646_CR46
W Furmanski (20646_CR42) 1980; 97
20646_CR48
20646_CR49
T Peraro (20646_CR75) 2016; 12
R Hamberg (20646_CR14) 1992; 379
VN Gribov (20646_CR8) 1972; 15
J Ablinger (20646_CR15) 2012; 864
C Meyer (20646_CR59) 2018; 222
D Baranowski (20646_CR29) 2023; 02
RN Lee (20646_CR61) 2015; 04
20646_CR80
B Mistlberger (20646_CR23) 2018; 05
20646_CR81
20646_CR83
References_xml – reference: S. Moch, J.A.M. Vermaseren and A. Vogt, The Three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys. B688 (2004) 101 [hep-ph/0403192] [INSPIRE].
– reference: J. Blümlein and S. Kurth, Harmonic sums and Mellin transforms up to two loop order, Phys. Rev. D60 (1999) 014018 [hep-ph/9810241] [INSPIRE].
– reference: T. Gehrmann, A. von Manteuffel and T.-Z. Yang, Renormalization of twist-two operators in QCD and its application to singlet splitting functions, PoSLL2022 (2022) 063 [arXiv:2207.10108] [INSPIRE].
– reference: EbertMAMistlbergerBVitaGTransverse momentum dependent PDFs at N3LOJHEP2020091462020JHEP...09..146E[arXiv:2006.05329] [INSPIRE]
– reference: ChetyrkinKGTkachovFVIntegration by Parts: The Algorithm to Calculate beta Functions in 4 LoopsNucl. Phys. B19811921591981NuPhB.192..159C[INSPIRE]
– reference: J. Blümlein, P. Marquard, C. Schneider and K. Schönwald, The two-loop massless off-shell QCD operator matrix elements to finite terms, Nucl. Phys. B980 (2022) 115794 [arXiv:2202.03216] [INSPIRE].
– reference: MochSVermaserenJAMVogtAThe Three-Loop Splitting Functions in QCD: The Helicity-Dependent CaseNucl. Phys. B20148893512014NuPhB.889..351M32803731326.81272[arXiv:1409.5131] [INSPIRE]
– reference: FalcioniGHerzogFRenormalization of gluonic leading-twist operators in covariant gaugesJHEP2022051772022JHEP...05..177F443115207613613[arXiv:2203.11181] [INSPIRE]
– reference: AblingerJThe 3-loop pure singlet heavy flavor contributions to the structure function F2(x, Q2) and the anomalous dimensionNucl. Phys. B2014890482015NuPhB.890...48A3292405[arXiv:1409.1135] [INSPIRE]
– reference: G. Falcioni and F. Herzog, private communication.
– reference: LuoM-XYangT-ZZhuHXZhuYJUnpolarized quark and gluon TMD PDFs and FFs at N3LOJHEP2021061152021JHEP...06..115L[arXiv:2012.03256] [INSPIRE]
– reference: PeraroTScattering amplitudes over finite fields and multivariate functional reconstructionJHEP2016120302016JHEP...12..030P36011571390.81631[arXiv:1608.01902] [INSPIRE]
– reference: DokshitzerYLCalculation of the Structure Functions for Deep Inelastic Scattering and e+e−Annihilation by Perturbation Theory in Quantum ChromodynamicsSov. Phys. JETP1977466411977JETP...46..641D[INSPIRE]
– reference: BlümleinJMarquardPSchneiderCSchönwaldKThe three-loop polarized singlet anomalous dimensions from off-shell operator matrix elementsJHEP2022011932022JHEP...01..193B440330707605218[arXiv:2111.12401] [INSPIRE]
– reference: D.J. Gross and F. Wilczek, Asymptotically free gauge theories. 2, Phys. Rev. D9 (1974) 980 [INSPIRE].
– reference: MistlbergerBHiggs boson production at hadron colliders at N3LO in QCDJHEP2018050282018JHEP...05..028M[arXiv:1802.00833] [INSPIRE]
– reference: A. Vogt, S. Moch and J.A.M. Vermaseren, The Three-loop splitting functions in QCD: The Singlet case, Nucl. Phys. B691 (2004) 129 [hep-ph/0404111] [INSPIRE].
– reference: F. Feng, Apart: A Generalized Mathematica Apart Function, Comput. Phys. Commun.183 (2012) 2158 [arXiv:1204.2314] [INSPIRE].
– reference: CaswellWEAsymptotic Behavior of Nonabelian Gauge Theories to Two Loop OrderPhys. Rev. Lett.1974332441974PhRvL..33..244C[INSPIRE]
– reference: BoehmJIBP reduction coefficients made simpleJHEP2020120542020JHEP...12..054B4239398[arXiv:2008.13194] [INSPIRE]
– reference: W. Vogelsang, A Rederivation of the spin dependent next-to-leading order splitting functions, Phys. Rev. D54 (1996) 2023 [hep-ph/9512218] [INSPIRE].
– reference: T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B580 (2000) 485 [hep-ph/9912329] [INSPIRE].
– reference: MeyerCAlgorithmic transformation of multi-loop master integrals to a canonical basis with CANONICAComput. Phys. Commun.20182222952018CoPhC.222..295M07693052[arXiv:1705.06252] [INSPIRE]
– reference: S. Moch, P. Uwer and S. Weinzierl, Nested sums, expansion of transcendental functions and multiscale multiloop integrals, J. Math. Phys.43 (2002) 3363 [hep-ph/0110083] [INSPIRE].
– reference: A.V. Smirnov and F.S. Chuharev, FIRE6: Feynman Integral REduction with Modular Arithmetic, Comput. Phys. Commun.247 (2020) 106877 [arXiv:1901.07808] [INSPIRE].
– reference: AltarelliGParisiGAsymptotic Freedom in Parton LanguageNucl. Phys. B19771262981977NuPhB.126..298A[INSPIRE]
– reference: J. Ablinger et al., The unpolarized and polarized single-mass three-loop heavy flavor operator matrix elements Agg,Qand ∆Agg,Q, JHEP12 (2022) 134 [arXiv:2211.05462] [INSPIRE].
– reference: J.A.M. Vermaseren, Harmonic sums, Mellin transforms and integrals, Int. J. Mod. Phys. A14 (1999) 2037 [hep-ph/9806280] [INSPIRE].
– reference: J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].
– reference: M. Heller and A. von Manteuffel, MultivariateApart: Generalized partial fractions, Comput. Phys. Commun.271 (2022) 108174 [arXiv:2101.08283] [INSPIRE].
– reference: R. Mertig and W.L. van Neerven, The Calculation of the two loop spin splitting functionsPij1x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {P}_{ij}^{(1)}(x) $$\end{document}, Z. Phys. C70 (1996) 637 [hep-ph/9506451] [INSPIRE].
– reference: PeraroTFiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphsJHEP2019070312019JHEP...07..031P3991819[arXiv:1905.08019] [INSPIRE]
– reference: S. Moch et al., Low moments of the four-loop splitting functions in QCD, Phys. Lett. B825 (2022) 136853 [arXiv:2111.15561] [INSPIRE].
– reference: S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A15 (2000) 5087 [hep-ph/0102033] [INSPIRE].
– reference: CurciGFurmanskiWPetronzioREvolution of Parton Densities Beyond Leading Order: The Nonsinglet CaseNucl. Phys. B1980175271980NuPhB.175...27C[INSPIRE]
– reference: J. Ablinger et al., The three-loop splitting functionsPqg2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {P}_{qg}^{(2)} $$\end{document}andPgg2NF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {P}_{gg}^{\left(2,{N}_F\right)} $$\end{document}, Nucl. Phys. B922 (2017) 1 [arXiv:1705.01508] [INSPIRE].
– reference: V. Shtabovenko, FeynCalc goes multiloop, J. Phys. Conf. Ser.2438 (2023) 012140 [arXiv:2112.14132] [INSPIRE].
– reference: von ManteuffelASchabingerRMA novel approach to integration by parts reductionPhys. Lett. B20157441012015PhLB..744..101V33418681330.81151[arXiv:1406.4513] [INSPIRE]
– reference: J. Ablinger, Computer Algebra Algorithms for Special Functions in Particle Physics, Ph.D. Thesis, Johannes Kepler University of Linz, AUSTRIA (2012) [arXiv:1305.0687] [INSPIRE].
– reference: JoglekarSDLeeBWGeneral Theory of Renormalization of Gauge Invariant OperatorsAnnals Phys.1976971601976AnPhy..97..160J428960[INSPIRE]
– reference: DixonJATaylorJCRenormalization of wilson operators in gauge theoriesNucl. Phys. B1974785521974NuPhB..78..552D[INSPIRE]
– reference: Gonzalez-ArroyoALopezCSecond Order Contributions to the Structure Functions in Deep Inelastic Scattering. III. The Singlet CaseNucl. Phys. B19801664291980NuPhB.166..429G[INSPIRE]
– reference: AblingerJThe 3-Loop Non-Singlet Heavy Flavor Contributions and Anomalous Dimensions for the Structure Function F2(x, Q2) and TransversityNucl. Phys. B20148867332014NuPhB.886..733A32468641325.81168[arXiv:1406.4654] [INSPIRE]
– reference: GribovVNLipatovLNDeep inelastic e p scattering in perturbation theorySov. J. Nucl. Phys.197215438[INSPIRE]
– reference: Kluberg-SternHZuberJBRenormalization of Nonabelian Gauge Theories in a Background Field Gauge. II. Gauge Invariant OperatorsPhys. Rev. D19751231591975PhRvD..12.3159K[INSPIRE]
– reference: MochSFour-Loop Non-Singlet Splitting Functions in the Planar Limit and BeyondJHEP2017100412017JHEP...10..041M[arXiv:1707.08315] [INSPIRE]
– reference: J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider, Iterated Binomial Sums and their Associated Iterated Integrals, J. Math. Phys.55 (2014) 112301 [arXiv:1407.1822] [INSPIRE].
– reference: AblingerJThe package HarmonicSums: Computer Algebra and Analytic aspects of Nested SumsPoS2014LL2014019[arXiv:1407.6180] [INSPIRE]
– reference: TarasovOVVladimirovAAZharkovAYThe Gell-Mann-Low Function of QCD in the Three Loop ApproximationPhys. Lett. B1980934291980PhLB...93..429T[INSPIRE]
– reference: R.K. Ellis and W. Vogelsang, The Evolution of parton distributions beyond leading order: The Singlet case, hep-ph/9602356 [INSPIRE].
– reference: M.-X. Luo, T.-Z. Yang, H.X. Zhu and Y.J. Zhu, Quark Transverse Parton Distribution at the Next-to-Next-to-Next-to-Leading Order, Phys. Rev. Lett.124 (2020) 092001 [arXiv:1912.05778] [INSPIRE].
– reference: BaranowskiDBeam functions for N-jettiness at N3LO in perturbative QCDJHEP2023020732023JHEP...02..073B[arXiv:2211.05722] [INSPIRE]
– reference: J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
– reference: R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
– reference: J. Ablinger, J. Blümlein and C. Schneider, Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials, J. Math. Phys.52 (2011) 102301 [arXiv:1105.6063] [INSPIRE].
– reference: NogueiraPAutomatic Feynman graph generationJ. Comput. Phys.19931052791993JCoPh.105..279N12104080782.68091[INSPIRE]
– reference: AblingerJMassive 3-loop Ladder Diagrams for Quarkonic Local Operator Matrix ElementsNucl. Phys. B2012864522012NuPhB.864...52A29509791262.81184[arXiv:1206.2252] [INSPIRE]
– reference: MeyerCTransforming differential equations of multi-loop Feynman integrals into canonical formJHEP2017040062017JHEP...04..006M3657762[arXiv:1611.01087] [INSPIRE]
– reference: Kluberg-SternHZuberJBWard Identities and Some Clues to the Renormalization of Gauge Invariant OperatorsPhys. Rev. D1975124671975PhRvD..12..467K[INSPIRE]
– reference: A. Behring et al., The Polarized Three-Loop Anomalous Dimensions from On-Shell Massive Operator Matrix Elements, Nucl. Phys. B948 (2019) 114753 [arXiv:1908.03779] [INSPIRE].
– reference: FurmanskiWPetronzioRSinglet Parton Densities Beyond Leading OrderPhys. Lett. B1980974371980PhLB...97..437F[INSPIRE]
– reference: C. Duhr, F. Dulat and B. Mistlberger, Drell-Yan Cross Section to Third Order in the Strong Coupling Constant, Phys. Rev. Lett.125 (2020) 172001 [arXiv:2001.07717] [INSPIRE].
– reference: J. Ablinger, J. Blümlein and C. Schneider, Analytic and Algorithmic Aspects of Generalized Harmonic Sums and Polylogarithms, J. Math. Phys.54 (2013) 082301 [arXiv:1302.0378] [INSPIRE].
– reference: J.D. Bjorken and E.A. Paschos, Inelastic Electron Proton and γ-Proton Scattering, and the Structure of the Nucleon, Phys. Rev.185 (1969) 1975 [INSPIRE].
– reference: EbertMAMistlbergerBVitaGN-jettiness beam functions at N3LOJHEP2020091432020JHEP...09..143E[arXiv:2006.03056] [INSPIRE]
– reference: T.G. Birthwright, E.W.N. Glover and P. Marquard, Master integrals for massless two-loop vertex diagrams with three offshell legs, JHEP09 (2004) 042 [hep-ph/0407343] [INSPIRE].
– reference: HambergRvan NeervenWLThe Correct renormalization of the gluon operator in a covariant gaugeNucl. Phys. B19923791431992NuPhB.379..143H[INSPIRE]
– reference: FloratosEGRossDASachrajdaCTHigher Order Effects in Asymptotically Free Gauge Theories. II. Flavor Singlet Wilson Operators and Coefficient FunctionsNucl. Phys. B19791524931979NuPhB.152..493F[INSPIRE]
– reference: LeeRNReducing differential equations for multiloop master integralsJHEP2015041082015JHEP...04..108L33512611388.81109[arXiv:1411.0911] [INSPIRE]
– reference: R.N. Lee, Libra: A package for transformation of differential systems for multiloop integrals, Comput. Phys. Commun.267 (2021) 108058 [arXiv:2012.00279] [INSPIRE].
– reference: BaikovPAChetyrkinKGFour Loop Massless Propagators: An Algebraic Evaluation of All Master IntegralsNucl. Phys. B20108371862010NuPhB.837..186B26523201206.81087[arXiv:1004.1153] [INSPIRE]
– reference: I. Bierenbaum et al., Oαs2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ O\left({\alpha}_s^2\right) $$\end{document}polarized heavy flavor corrections to deep-inelastic scattering at Q2 ≫ m2, Nucl. Phys. B988 (2023) 116114 [arXiv:2211.15337] [INSPIRE].
– reference: S.A. Larin and J.A.M. Vermaseren, The Three loop QCD Beta function and anomalous dimensions, Phys. Lett. B303 (1993) 334 [hep-ph/9302208] [INSPIRE].
– reference: Kluberg-SternHZuberJBRenormalization of Nonabelian Gauge Theories in a Background Field Gauge. I. Green FunctionsPhys. Rev. D1975124821975PhRvD..12..482K[INSPIRE]
– reference: K.G. Wilson, Nonlagrangian models of current algebra, Phys. Rev.179 (1969) 1499 [INSPIRE].
– reference: J. Blümlein, P. Marquard, C. Schneider and K. Schönwald, The three-loop unpolarized and polarized non-singlet anomalous dimensions from off shell operator matrix elements, Nucl. Phys. B971 (2021) 115542 [arXiv:2107.06267] [INSPIRE].
– reference: Y. Matiounine, J. Smith and W.L. van Neerven, Two loop operator matrix elements calculated up to finite terms, Phys. Rev. D57 (1998) 6701 [hep-ph/9801224] [INSPIRE].
– reference: JonesDRTTwo Loop Diagrams in Yang-Mills TheoryNucl. Phys. B1974755311974NuPhB..75..531J[INSPIRE]
– reference: LeeRNSmirnovAVSmirnovVAMaster Integrals for Four-Loop Massless Propagators up to Transcendentality Weight TwelveNucl. Phys. B2012856952012NuPhB.856...95L1246.81057[arXiv:1108.0732] [INSPIRE]
– reference: J. Klappert, F. Lange, P. Maierhöfer and J. Usovitsch, Integral reduction with Kira 2.0 and finite field methods, Comput. Phys. Commun.266 (2021) 108024 [arXiv:2008.06494] [INSPIRE].
– reference: E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A15 (2000) 725 [hep-ph/9905237] [INSPIRE].
– reference: J.C. Collins and R.J. Scalise, The Renormalization of composite operators in Yang-Mills theories using general covariant gauge, Phys. Rev. D50 (1994) 4117 [hep-ph/9403231] [INSPIRE].
– reference: HeinrichGCollider Physics at the Precision FrontierPhys. Rept.202192212021PhR...922....1H42719011509.81614[arXiv:2009.00516] [INSPIRE]
– reference: J.D. Bjorken, Asymptotic Sum Rules at Infinite Momentum, Phys. Rev.179 (1969) 1547 [INSPIRE].
– reference: A. von Manteuffel and C. Studerus, Reduze 2 — Distributed Feynman Integral Reduction, arXiv:1201.4330 [INSPIRE].
– reference: Y. Frishman, Light cone and short distances, Phys. Rept.13 (1974) 1 [INSPIRE].
– reference: J. Ablinger, A Computer Algebra Toolbox for Harmonic Sums Related to Particle Physics, MSc Thesis, Johannes Kepler University of Linz, AUSTRIA (2009) [arXiv:1011.1176] [INSPIRE].
– reference: ShtabovenkoVMertigROrellanaFNew Developments in FeynCalc 9.0Comput. Phys. Commun.20162074322016CoPhC.207..432S1375.68227[arXiv:1601.01167] [INSPIRE]
– reference: A. Bassetto, G. Heinrich, Z. Kunszt and W. Vogelsang, The Light cone gauge and the calculation of the two loop splitting functions, Phys. Rev. D58 (1998) 094020 [hep-ph/9805283] [INSPIRE].
– volume: 09
  start-page: 143
  year: 2020
  ident: 20646_CR27
  publication-title: JHEP
  doi: 10.1007/JHEP09(2020)143
– volume: 01
  start-page: 193
  year: 2022
  ident: 20646_CR40
  publication-title: JHEP
  doi: 10.1007/JHEP01(2022)193
– ident: 20646_CR46
  doi: 10.1016/j.physletb.2021.136853
– ident: 20646_CR80
  doi: 10.1088/1126-6708/2004/09/042
– volume: 78
  start-page: 552
  year: 1974
  ident: 20646_CR12
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(74)90598-7
– ident: 20646_CR89
  doi: 10.1016/0370-2693(93)91441-O
– volume: 10
  start-page: 041
  year: 2017
  ident: 20646_CR85
  publication-title: JHEP
  doi: 10.1007/JHEP10(2017)041
– ident: 20646_CR38
  doi: 10.1007/s002880050138
– ident: 20646_CR1
  doi: 10.1103/PhysRev.179.1499
– volume: 379
  start-page: 143
  year: 1992
  ident: 20646_CR14
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(92)90593-Z
– ident: 20646_CR44
  doi: 10.1103/PhysRevD.58.094020
– ident: 20646_CR36
– ident: 20646_CR71
  doi: 10.1063/1.3629472
– ident: 20646_CR35
  doi: 10.1016/j.nuclphysb.2023.116114
– volume: 856
  start-page: 95
  year: 2012
  ident: 20646_CR64
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2011.11.005
– ident: 20646_CR69
– volume: 07
  start-page: 031
  year: 2019
  ident: 20646_CR82
  publication-title: JHEP
  doi: 10.1007/JHEP07(2019)031
– ident: 20646_CR84
– ident: 20646_CR21
  doi: 10.1103/PhysRevD.50.4117
– ident: 20646_CR79
  doi: 10.1103/PhysRevD.57.6701
– ident: 20646_CR78
  doi: 10.1016/j.nuclphysb.2022.115794
– ident: 20646_CR11
  doi: 10.1016/j.nuclphysb.2004.04.024
– ident: 20646_CR25
  doi: 10.1103/PhysRevLett.124.092001
– ident: 20646_CR2
  doi: 10.1016/0370-1573(74)90044-1
– volume: 06
  start-page: 115
  year: 2021
  ident: 20646_CR28
  publication-title: JHEP
– ident: 20646_CR49
– volume: 97
  start-page: 160
  year: 1976
  ident: 20646_CR18
  publication-title: Annals Phys.
  doi: 10.1016/0003-4916(76)90225-6
– volume: 09
  start-page: 146
  year: 2020
  ident: 20646_CR26
  publication-title: JHEP
  doi: 10.1007/JHEP09(2020)146
– volume: 12
  start-page: 467
  year: 1975
  ident: 20646_CR13
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.12.467
– volume: 15
  start-page: 438
  year: 1972
  ident: 20646_CR8
  publication-title: Sov. J. Nucl. Phys.
– volume: 890
  start-page: 48
  year: 2014
  ident: 20646_CR31
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2014.10.008
– volume: 93
  start-page: 429
  year: 1980
  ident: 20646_CR88
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(80)90358-5
– ident: 20646_CR33
  doi: 10.1016/j.nuclphysb.2019.114753
– ident: 20646_CR56
  doi: 10.1142/S0217751X00002159
– volume: 05
  start-page: 028
  year: 2018
  ident: 20646_CR23
  publication-title: JHEP
  doi: 10.1007/JHEP05(2018)028
– volume: LL2014
  start-page: 019
  year: 2014
  ident: 20646_CR70
  publication-title: PoS
– ident: 20646_CR55
  doi: 10.1016/j.cpc.2021.108024
– ident: 20646_CR58
  doi: 10.1103/PhysRevLett.110.251601
– ident: 20646_CR66
  doi: 10.1142/S0217751X99001032
– ident: 20646_CR83
– volume: 46
  start-page: 641
  year: 1977
  ident: 20646_CR7
  publication-title: Sov. Phys. JETP
– volume: 05
  start-page: 177
  year: 2022
  ident: 20646_CR30
  publication-title: JHEP
  doi: 10.1007/JHEP05(2022)177
– ident: 20646_CR62
  doi: 10.1016/j.cpc.2021.108058
– volume: 864
  start-page: 52
  year: 2012
  ident: 20646_CR15
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2012.06.007
– volume: 166
  start-page: 429
  year: 1980
  ident: 20646_CR17
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(80)90207-2
– ident: 20646_CR73
  doi: 10.1063/1.4900836
– volume: 105
  start-page: 279
  year: 1993
  ident: 20646_CR45
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1993.1074
– ident: 20646_CR48
– ident: 20646_CR37
  doi: 10.1016/j.nuclphysb.2021.115542
– volume: 922
  start-page: 1
  year: 2021
  ident: 20646_CR9
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2021.03.006
– volume: 02
  start-page: 073
  year: 2023
  ident: 20646_CR29
  publication-title: JHEP
  doi: 10.1007/JHEP02(2023)073
– volume: 97
  start-page: 437
  year: 1980
  ident: 20646_CR42
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(80)90636-X
– ident: 20646_CR81
  doi: 10.1063/1.1471366
– volume: 12
  start-page: 030
  year: 2016
  ident: 20646_CR75
  publication-title: JHEP
  doi: 10.1007/JHEP12(2016)030
– volume: 126
  start-page: 298
  year: 1977
  ident: 20646_CR6
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(77)90384-4
– ident: 20646_CR5
  doi: 10.1103/PhysRev.185.1975
– volume: 12
  start-page: 482
  year: 1975
  ident: 20646_CR19
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.12.482
– volume: 744
  start-page: 101
  year: 2015
  ident: 20646_CR74
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2015.03.029
– ident: 20646_CR52
  doi: 10.1016/j.cpc.2012.03.025
– volume: 886
  start-page: 733
  year: 2014
  ident: 20646_CR32
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2014.07.010
– ident: 20646_CR76
  doi: 10.1016/j.cpc.2021.108174
– ident: 20646_CR4
  doi: 10.1103/PhysRev.179.1547
– volume: 192
  start-page: 159
  year: 1981
  ident: 20646_CR47
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(81)90199-1
– volume: 889
  start-page: 351
  year: 2014
  ident: 20646_CR22
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2014.10.016
– volume: 04
  start-page: 006
  year: 2017
  ident: 20646_CR60
  publication-title: JHEP
  doi: 10.1007/JHEP04(2017)006
– ident: 20646_CR10
  doi: 10.1016/j.nuclphysb.2004.03.030
– volume: 12
  start-page: 3159
  year: 1975
  ident: 20646_CR20
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.12.3159
– ident: 20646_CR34
  doi: 10.1007/JHEP12(2022)134
– ident: 20646_CR72
  doi: 10.1063/1.4811117
– volume: 207
  start-page: 432
  year: 2016
  ident: 20646_CR50
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2016.06.008
– ident: 20646_CR53
– volume: 152
  start-page: 493
  year: 1979
  ident: 20646_CR16
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(79)90094-4
– volume: 12
  start-page: 054
  year: 2020
  ident: 20646_CR77
  publication-title: JHEP
  doi: 10.1007/JHEP12(2020)054
– ident: 20646_CR39
  doi: 10.1103/PhysRevD.54.2023
– volume: 175
  start-page: 27
  year: 1980
  ident: 20646_CR41
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(80)90003-6
– ident: 20646_CR24
  doi: 10.1103/PhysRevLett.125.172001
– volume: 222
  start-page: 295
  year: 2018
  ident: 20646_CR59
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2017.09.014
– ident: 20646_CR67
  doi: 10.1103/PhysRevD.60.014018
– ident: 20646_CR43
– ident: 20646_CR51
  doi: 10.1088/1742-6596/2438/1/012140
– volume: 33
  start-page: 244
  year: 1974
  ident: 20646_CR86
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.33.244
– ident: 20646_CR3
  doi: 10.1103/PhysRevD.9.980
– ident: 20646_CR57
  doi: 10.1016/S0550-3213(00)00223-6
– ident: 20646_CR68
– volume: 04
  start-page: 108
  year: 2015
  ident: 20646_CR61
  publication-title: JHEP
– ident: 20646_CR54
  doi: 10.1016/j.cpc.2019.106877
– volume: 837
  start-page: 186
  year: 2010
  ident: 20646_CR63
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2010.05.004
– ident: 20646_CR65
  doi: 10.1142/S0217751X00000367
– volume: 75
  start-page: 531
  year: 1974
  ident: 20646_CR87
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(74)90093-5
SSID ssj0015190
Score 2.484026
Snippet A bstract The leading short-distance contributions to hadronic hard-scattering cross sections in the operator product expansion are described by twist-two...
The leading short-distance contributions to hadronic hard-scattering cross sections in the operator product expansion are described by twist-two quark and...
Abstract The leading short-distance contributions to hadronic hard-scattering cross sections in the operator product expansion are described by twist-two quark...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 41
SubjectTerms Classical and Quantum Gravitation
Deep Inelastic Scattering or Small-x Physics
Distribution functions
Elementary Particles
Gluons
High energy physics
Higher-Order Perturbative Calculations
Mathematical analysis
Operators (mathematics)
Partons
Physics
Physics and Astronomy
Quantum chromodynamics
Quantum Field Theories
Quantum Field Theory
Quantum numbers
Quantum Physics
Quarks
Regular Article - Theoretical Physics
Relativity Theory
Renormalization and Regularization
Scattering cross sections
String Theory
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64vcvCgh2qTJun2qKuyCD5R8FbSSSLC0i5uV_--k7RVVxAvXtukhO9LMjOd5BtC9mUislhyiLhjGKAwx6LMCJzLRifM-HAs_O-4ulbDR3H5JJ--lfryZ8IaeeAGuGO077gEtIKsKESRWp1mVhkOnOsYWBGUQNHmdcFUmz9AvyTuhHzi9PhyeH4biwNfKvwwFmzGBgWp_hn_8kdKNFiai2Wy1LqI9KQZ2gqZs-UqWQhHNWGyRm7ubekdzVF7g5JWjtbvyFZUv1e0GtuQOJ_Ql5JC9YahMGJHn_X02dK6ojVyZ-moqsahxd3gbJ08Xpw_DIZRWxYhAsHSOoIic6mQTltwxlmJO1Q_5lozzSRIXH8pqMIkHnwHWlmvV6MzcFwAS40qkg0yX1al3SQ0kQkYqWxfOSHQmPUVGH-X1uIuYBD3HjnqgMqh1Qz3pStGead23CCbe2RzRLZHDj47jBu5jN-bnnrkP5t5nevwANnPW_bzv9jvkZ2Ot7xdfJOcp-h0YWzZ5z1y2HH59fqX8Wz9x3i2yaL_nk83MbZD5uvXqd1Fr6Uu9sIE_QCkeuct
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Journals Complete - Open Access
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iCF7EJ64vcvCgh0qTJun2qKuyCD5R8FbSSbIIS7O4Vf--k2yrqHjwFtoJlG9mki-dzAwhBzITRSo5JNwxPKAwx5LCCLRlozNmwnEs_u-4ulbDR3H5JJ_mCOtyYeJt9y4kGVfqLtntcnh-m4rD0O77KA2p6gsSx8GoByHBoQ0cICFJuwo-vyd923xijf5vxPJHLDRuMRcrZLnlhvRkpsxVMmfrNbIY72jCdJ3c3Ns6MMxxmzpJvaPNO6opad499RMbI-ZT-lxT8G94BkbQ6Ei_jixtPG1QaZaOvZ9EibvB2QZ5vDh_GAyTth9CAoLlTQJV4XIhnbbgjLMSl6Z-yrVmmkmQ6Hg5qMpkAXUHWtlQqEYX4LgAlhtVZZtkvva13SI0kxkYqWxfOSFwF-srMCGJ1qL7G5arHjnugCqhLRYeelaMy67M8QzZMiBbIrI9cvg5YTKrk_G36GlA_lMsFLiOD_zLqGz9pURahyufVlBUlahyq_PCKsOBc50Cq0SP7HZ6K1uvm5Y8R7aFNtHnPXLU6fLr9R_fs_0P2R2yFIYhnMTYLplvXl7tHrKSptqPdvgBe_DZpQ
  priority: 102
  providerName: Springer Nature
Title Renormalization of twist-two operators in covariant gauge to three loops in QCD
URI https://link.springer.com/article/10.1007/JHEP04(2023)041
https://www.proquest.com/docview/2799302682
https://doaj.org/article/561763a6c9bb4b7ea79e6d2c22a0c1b4
Volume 2023
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFLcGaNIuE_vSyqDyYQc4ZMSOP5ITgtKuQhpjaJW4RY4_KqQqLjSMf3_PrlPEJHaxlOQlit6z36f9ewh95QWrck51Rh2BAIU4klWGwVw2qiAmhGMx3_HjUkxn7OKG36SE2yptq-x1YlTUxuuQIz-mEiwpBAwlPVneZaFrVKiuphYaW2gHVHAJwdfO2fjy6npTRwD_JO8BfXJ5fDEdX-XsMLQMP8oZeWaLImT_Mz_zn9JotDiTXfQ2uYr4dC3bd-iVbd-j13HLpl59QD-vbRsczkU6SYm9w90jSC3rHj32SxsL6Ct822Lt_0BIDDzEc_Uwt7jzuAMZWrzwfhkpfo3OP6LZZPx7NM1Se4RMMyK7TDeVk4w7ZbUzznLQVGVOlSKKcM1hHUotGlMEITithA24NarSjjJNpBFN8Qltt761nxEueKENF7YUjjEwaqXQJpyptaANDJFigL71jKp1wg4PLSwWdY96vOZsHThbA2cH6HDzwnINm_Ey6Vng_IYs4F3HG_5-XqflU4OXB4pQCV01DWukVbKywlBNqco1adgA7fdyq9MiXNVPU2aAjnpZPj1-4X_2_v-pL-hNoAwFJUL20XZ3_2APwC_pmiHaKiffh2kKwtWIsjCK0TBG-jDO6OlfokzkIw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMsFPABpPYQGjuOnRwQgrbL9slDrdRb6vixQlrFSzdlxZ_iNzL2JlsVqdx6TWzLmvnm5bFnAN7kGS_TnOmEOYoBCnU0KQ1HLBuVURPCsXjecXgkRid87zQ_XYE__VuYcK2y14lRURuvwxn5JpNoSTFgKNiH6c8kdI0K2dW-hcYCFvv29xxDttn73W3k71vGhjvHW6Ok6yqQaE5lm-i6dJLnTlntjLM5CniRMqWoornOEb5Si9pkYe9OK2FDuRdVase4ptKIOsN1b8FtnmVlkKhi-HmZtUBvKO3LB6Vyc2-08zXl66FB-UbK6RXLFxsEXPFq_0nERvs2fAD3O8eUfFwg6SGs2OYR3IkXRPXsMXz5bpvg3k66d5vEO9LOESNJO_fET21M18_Ij4Zo_wsDcOQYGauLsSWtJy0ixpKJ99M44tvW9hM4uRGyPYXVxjf2GZAsz7TJhS2E4xxNaCG0CS94LeoeQ6UYwLueUJXuKpWHhhmTqq-xvKBsFShbIWUHsL6cMF0U6bh-6KdA-eWwUF07fvDn46oT1gp9SlS7SuiyrnktrZKlFYZpxlSqac0HsNbzrepEflZdAnQAGz0vL39fs5_n_1_qNdwdHR8eVAe7R_sv4F6YFVJZlK7Bant-YV-iR9TWryIMCZzdNO7_AlmfHgM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEJ-iMMAPIG0PobHj2M0DQmxt1W1QysSkvWWOPyqkKi5rRsW_xl_HOU06DWm87TWxreTu5_vwne8A3qYJz-KU6Yg5ig4KdTTKDEcsG5VQE9yx-rzjy0SMT_nRWXq2BX_auzAhrbKVibWgNl6HM_Iek6hJ0WHos55r0iKmg9HHxc8odJAKkda2ncYaIsf29wrdt-WHwwHy-h1jo-H3g3HUdBiINKeyinSROclTp6x2xtkUN3s_ZkpRRVOdIpSlFoVJwn84rYQNpV9Uph3jmkojigTXvQPbEr2iuAPb-8PJ9GQTw0DbKG6LCcWydzQeTmO-G9qV78WcXtODdbuAazbuP2HZWtuNHsKDxkwln9a4egRbtnwMd-t0Ub18Al9PbBmM3Xlzi5N4R6oVIiaqVp74ha2D90vyoyTa_0J3HPlHZupyZknlSYX4sWTu_aIe8e1g8BROb4Vwz6BT-tI-B5KkiTapsH3hOEeF2hfahPu8FiWRoVJ04X1LqFw3dctD-4x53lZcXlM2D5TNkbJd2N1MWKxLdtw8dD9QfjMs1NquH_iLWd5s3RwtTBTCSuisKHghrZKZFYZpxlSsacG7sNPyLW8EwDK_gmsX9lpeXr2-4Xte_H-pN3APMZ9_Ppwcv4T7YVKIa1G6A53q4tK-QvOoKl43OCRwftvQ_wtF-COV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Renormalization+of+twist-two+operators+in+covariant+gauge+to+three+loops+in+QCD&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Gehrmann%2C+Thomas&rft.au=von+Manteuffel%2C+Andreas&rft.au=Yang%2C+Tong-Zhi&rft.date=2023-04-11&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2023&rft.issue=4&rft.spage=41&rft_id=info:doi/10.1007%2FJHEP04%282023%29041&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon