Selective maintenance scheduling under stochastic maintenance quality with multiple maintenance actions
Many systems are required to perform a series of missions with finite breaks between any two consecutive missions. To improve the probability of system successfully completing the next mission, maintenance action is carried out on components during the breaks. In this work, a selective maintenance m...
Saved in:
Published in | International journal of production research Vol. 56; no. 23; pp. 7160 - 7178 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Taylor & Francis
02.12.2018
Taylor & Francis LLC |
Subjects | |
Online Access | Get full text |
ISSN | 0020-7543 1366-588X |
DOI | 10.1080/00207543.2018.1436789 |
Cover
Loading…
Abstract | Many systems are required to perform a series of missions with finite breaks between any two consecutive missions. To improve the probability of system successfully completing the next mission, maintenance action is carried out on components during the breaks. In this work, a selective maintenance model with stochastic maintenance quality for multi-component systems is investigated. At each scheduled break, a set of maintenance actions with different degrees of impact are available for each component. The impact of a maintenance action is assumed to be random and follow an identified probability distribution. The corresponding maintenance cost and time are modelled based on the expected impact of the maintenance action. The objective of selective maintenance scheduling is to find the cost-optimal maintenance action for each component at every scheduled break subject to reliability and duration constraints. A simulated annealing algorithm is used to solve the complicated optimisation problem where both multiple maintenance actions and stochastic quality model are taken into account. Two illustrative numerical examples and a real case study have been solved to demonstrate the performance of the proposed approach. A comparison with deterministic maintenance shows the importance of considering the proposed stochastic quality in selective maintenance scheduling. |
---|---|
AbstractList | Many systems are required to perform a series of missions with finite breaks between any two consecutive missions. To improve the probability of system successfully completing the next mission, maintenance action is carried out on components during the breaks. In this work, a selective maintenance model with stochastic maintenance quality for multi-component systems is investigated. At each scheduled break, a set of maintenance actions with different degrees of impact are available for each component. The impact of a maintenance action is assumed to be random and follow an identified probability distribution. The corresponding maintenance cost and time are modelled based on the expected impact of the maintenance action. The objective of selective maintenance scheduling is to find the cost-optimal maintenance action for each component at every scheduled break subject to reliability and duration constraints. A simulated annealing algorithm is used to solve the complicated optimisation problem where both multiple maintenance actions and stochastic quality model are taken into account. Two illustrative numerical examples and a real case study have been solved to demonstrate the performance of the proposed approach. A comparison with deterministic maintenance shows the importance of considering the proposed stochastic quality in selective maintenance scheduling. Many systems are required to perform a series of missions with finite breaks between any two consecutive missions. To improve the probability of system successfully completing the next mission, maintenance action is carried out on components during the breaks. In this work, a selective maintenance model with stochastic maintenance quality for multi-component systems is investigated. At each scheduled break, a set of maintenance actions with different degrees of impact are available for each component. The impact of a maintenance action is assumed to be random and follow an identified probability distribution. The corresponding maintenance cost and time are modelled based on the expected impact of the maintenance action. The objective of selective maintenance scheduling is to find the cost-optimal maintenance action for each component at every scheduled break subject to reliability and duration constraints. A simulated annealing algorithm is used to solve the complicated optimisation problem where both multiple maintenance actions and stochastic quality model are taken into account. Two illustrative numerical examples and a real case study have been solved to demonstrate the performance of the proposed approach. A comparison with deterministic maintenance shows the importance of considering the proposed stochastic quality in selective maintenance scheduling. |
Author | Wu, Jun Duan, Chaoqun Gharaei, Abolfazl Deng, Chao Wang, Bingran |
Author_xml | – sequence: 1 givenname: Chaoqun surname: Duan fullname: Duan, Chaoqun email: duancq@mie.utoronto.ca organization: Department of Mechanical and Industrial Engineering, University of Toronto – sequence: 2 givenname: Chao surname: Deng fullname: Deng, Chao email: dengchao@mail.hust.edu.cn organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology – sequence: 3 givenname: Abolfazl surname: Gharaei fullname: Gharaei, Abolfazl organization: Department of Mechanical and Industrial Engineering, University of Toronto – sequence: 4 givenname: Jun orcidid: 0000-0002-8657-5475 surname: Wu fullname: Wu, Jun organization: School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology – sequence: 5 givenname: Bingran surname: Wang fullname: Wang, Bingran organization: Division of Engineering Science, University of Toronto |
BookMark | eNqFkE1LxDAQhoMouH78BKHguWvSpG2KF0X8AsGDCt7CbDp1I9lkTVJl_70tux7Wg85lLs_7DvMckF3nHRJywuiUUUnPKC1oXQo-LSiTUyZ4Vctmh0wYr6q8lPJ1l0xGJh-hfXIQ4zsdppRiQt6e0KJO5hOzBRiX0IHTmEU9x7a3xr1lvWsxZDF5PYeYjN7iPnqwJq2yL5Pm2aK3ySztdhMM5d7FI7LXgY14vNmH5OXm-vnqLn94vL2_unzItWB1ynXRQqtngvECOkZrWXLdFbMOZrRBbLqyEQAV40LLGYoCBTayLDUCB92wFvkhOV33LoP_6DEm9e774IaTqmAVk3VNq3qgyjWlg48xYKeWwSwgrBSjanSqfpyq0anaOB1y579y2iQYH0wBjP03fbFOG9f5sIAvH2yrEqysD10YbJmo-N8V3zmGlTs |
CitedBy_id | crossref_primary_10_1080_00207543_2019_1624855 crossref_primary_10_1177_1748006X19868891 crossref_primary_10_1080_23311916_2021_1930493 crossref_primary_10_1016_j_knosys_2020_105982 crossref_primary_10_1108_IJDI_01_2023_0001 crossref_primary_10_1080_00207543_2018_1488087 crossref_primary_10_1080_23311975_2020_1826718 crossref_primary_10_1016_j_jclepro_2019_117894 crossref_primary_10_1080_23311916_2021_1920565 crossref_primary_10_1016_j_jclepro_2020_121809 crossref_primary_10_1016_j_cie_2019_106200 crossref_primary_10_33889_IJMEMS_2021_6_1_016 crossref_primary_10_1080_23302674_2021_1941394 crossref_primary_10_1016_j_ejor_2020_08_015 crossref_primary_10_1080_23302674_2021_1962428 crossref_primary_10_1016_j_cie_2021_107380 crossref_primary_10_1016_j_ifacol_2024_09_072 crossref_primary_10_1016_j_jclepro_2020_120376 crossref_primary_10_1016_j_jclepro_2020_122554 crossref_primary_10_1016_j_knosys_2020_106612 crossref_primary_10_1016_j_knosys_2020_105522 crossref_primary_10_1016_j_cie_2019_06_023 crossref_primary_10_1016_j_ress_2023_109624 crossref_primary_10_1080_23302674_2021_1958023 crossref_primary_10_1016_j_cie_2019_106103 crossref_primary_10_1016_j_cie_2023_109110 crossref_primary_10_1007_s10479_022_04549_y crossref_primary_10_1080_00207543_2023_2270689 crossref_primary_10_1016_j_jclepro_2020_121233 crossref_primary_10_1016_j_jclepro_2020_120025 crossref_primary_10_1080_00207543_2018_1505060 crossref_primary_10_1007_s10479_022_04793_2 crossref_primary_10_1016_j_knosys_2020_105630 crossref_primary_10_1080_23322039_2021_1922179 crossref_primary_10_1016_j_knosys_2022_108664 crossref_primary_10_1016_j_jclepro_2020_121231 crossref_primary_10_1016_j_trc_2022_103608 crossref_primary_10_1080_00401706_2023_2241523 crossref_primary_10_1109_TR_2021_3111737 crossref_primary_10_1109_ACCESS_2021_3139946 crossref_primary_10_1007_s10878_023_01002_z crossref_primary_10_1016_j_knosys_2020_105746 crossref_primary_10_1016_j_asej_2024_102978 crossref_primary_10_1016_j_jclepro_2019_117745 crossref_primary_10_1080_23311975_2020_1760477 crossref_primary_10_1016_j_jclepro_2019_06_156 crossref_primary_10_1016_j_jclepro_2019_118279 crossref_primary_10_1016_j_ress_2022_108480 crossref_primary_10_1016_j_jclepro_2019_04_167 crossref_primary_10_1016_j_knosys_2020_106352 crossref_primary_10_1016_j_jclepro_2020_120510 crossref_primary_10_1016_j_asoc_2020_106811 crossref_primary_10_1016_j_ijpe_2020_107899 crossref_primary_10_1016_j_jclepro_2019_06_329 crossref_primary_10_1016_j_jclepro_2020_120641 crossref_primary_10_1016_j_jclepro_2020_122268 crossref_primary_10_1016_j_procs_2022_01_342 crossref_primary_10_1051_ro_2020123 crossref_primary_10_1007_s10479_021_03990_9 crossref_primary_10_1080_00207543_2022_2077670 crossref_primary_10_1088_1361_6501_ad0685 crossref_primary_10_1080_23302674_2019_1574364 crossref_primary_10_1016_j_apenergy_2022_118927 crossref_primary_10_1080_00207543_2022_2127163 crossref_primary_10_1016_j_cie_2023_109082 crossref_primary_10_1016_j_knosys_2019_105094 crossref_primary_10_1007_s12065_022_00762_7 crossref_primary_10_1002_bsd2_200 crossref_primary_10_1016_j_jclepro_2020_122707 crossref_primary_10_1155_2020_1307170 crossref_primary_10_1007_s10845_020_01585_y crossref_primary_10_1016_j_ress_2023_109330 crossref_primary_10_1016_j_jclepro_2020_122235 crossref_primary_10_1016_j_jclepro_2020_124890 crossref_primary_10_1016_j_knosys_2021_107189 crossref_primary_10_1016_j_cie_2019_05_025 crossref_primary_10_1016_j_ress_2022_108977 crossref_primary_10_1016_j_ress_2020_106871 crossref_primary_10_1016_j_ress_2020_106994 crossref_primary_10_1016_j_resourpol_2023_103822 crossref_primary_10_1177_1748006X211066660 crossref_primary_10_1016_j_oceaneng_2020_108180 crossref_primary_10_1016_j_knosys_2020_106484 crossref_primary_10_1038_s41598_020_73167_0 crossref_primary_10_1016_j_cie_2019_04_008 crossref_primary_10_1016_j_jclepro_2020_122360 crossref_primary_10_1016_j_cie_2024_110020 crossref_primary_10_1016_j_jclepro_2020_123454 crossref_primary_10_1155_2020_8815983 crossref_primary_10_1016_j_oceaneng_2020_108067 crossref_primary_10_1080_23302674_2019_1585595 crossref_primary_10_1016_j_knosys_2020_105709 crossref_primary_10_1016_j_ress_2021_107690 crossref_primary_10_1016_j_oceaneng_2021_109062 crossref_primary_10_1080_00207543_2024_2349257 crossref_primary_10_3390_sym11050652 crossref_primary_10_1016_j_cie_2020_106293 crossref_primary_10_1016_j_knosys_2019_06_021 crossref_primary_10_1016_j_orp_2020_100158 crossref_primary_10_1016_j_eswa_2021_114576 crossref_primary_10_1016_j_knosys_2020_106556 crossref_primary_10_1080_00207543_2019_1641237 crossref_primary_10_1016_j_jclepro_2019_01_141 crossref_primary_10_1016_j_knosys_2021_107486 crossref_primary_10_1016_j_cie_2019_106040 crossref_primary_10_1016_j_jclepro_2021_127230 crossref_primary_10_1080_23311975_2022_2155003 crossref_primary_10_1016_j_knosys_2020_106427 crossref_primary_10_1016_j_cie_2019_07_018 crossref_primary_10_1016_j_cie_2020_106287 crossref_primary_10_1061_JTEPBS_0000592 crossref_primary_10_1016_j_eswa_2022_116808 crossref_primary_10_1016_j_cie_2020_106286 crossref_primary_10_1016_j_cie_2024_110448 crossref_primary_10_1016_j_cie_2024_110685 crossref_primary_10_1016_j_knosys_2020_106546 crossref_primary_10_1108_JQME_10_2020_0109 crossref_primary_10_1002_qre_3108 crossref_primary_10_1007_s10479_020_03876_2 crossref_primary_10_1016_j_jclepro_2020_122627 crossref_primary_10_1016_j_cie_2020_106274 crossref_primary_10_1016_j_cie_2019_106033 crossref_primary_10_1016_j_eswa_2023_123068 crossref_primary_10_1080_2331205X_2021_2012888 crossref_primary_10_1016_j_cie_2019_07_002 crossref_primary_10_1016_j_jclepro_2019_02_167 crossref_primary_10_1016_j_jclepro_2020_120774 crossref_primary_10_1016_j_jclepro_2020_121982 crossref_primary_10_1080_23311975_2020_1870807 crossref_primary_10_1016_j_eswa_2020_114515 crossref_primary_10_1016_j_jclepro_2020_121744 crossref_primary_10_1108_BIJ_02_2022_0084 crossref_primary_10_1080_23302674_2021_1914767 crossref_primary_10_1016_j_knosys_2020_105486 crossref_primary_10_1016_j_jclepro_2020_122156 crossref_primary_10_1080_23311975_2021_1930500 crossref_primary_10_1016_j_cie_2019_106062 crossref_primary_10_1080_0951192X_2022_2025623 crossref_primary_10_1016_j_cie_2019_106180 crossref_primary_10_1080_00207543_2023_2202280 crossref_primary_10_1016_j_jclepro_2020_121747 crossref_primary_10_3390_su162310269 crossref_primary_10_1109_TR_2024_3389015 crossref_primary_10_1007_s10489_021_02670_2 crossref_primary_10_1016_j_knosys_2020_106560 crossref_primary_10_1016_j_jclepro_2020_120784 crossref_primary_10_1016_j_knosys_2020_106684 crossref_primary_10_1016_j_cie_2019_106055 crossref_primary_10_1016_j_compchemeng_2020_106876 crossref_primary_10_1016_j_jclepro_2020_122654 crossref_primary_10_1016_j_cam_2020_113195 crossref_primary_10_1007_s10479_021_04361_0 crossref_primary_10_1016_j_cie_2019_106239 crossref_primary_10_1016_j_apm_2025_115979 crossref_primary_10_1016_j_jclepro_2020_122770 crossref_primary_10_1016_j_apenergy_2022_119284 crossref_primary_10_1007_s10479_020_03720_7 crossref_primary_10_1080_23302674_2019_1701727 crossref_primary_10_1016_j_jclepro_2018_11_187 crossref_primary_10_1016_j_cie_2019_106000 crossref_primary_10_1016_j_knosys_2019_104966 crossref_primary_10_1016_j_ifacol_2022_09_555 crossref_primary_10_1007_s10845_019_01521_9 crossref_primary_10_1016_j_cie_2019_106229 crossref_primary_10_1016_j_cie_2019_06_019 crossref_primary_10_1016_j_jclepro_2020_123073 crossref_primary_10_1080_17524032_2023_2253499 crossref_primary_10_1016_j_knosys_2020_105530 crossref_primary_10_1080_23302674_2019_1656296 crossref_primary_10_1016_j_cie_2019_106237 crossref_primary_10_3390_en13174346 crossref_primary_10_1016_j_knosys_2021_107467 crossref_primary_10_3233_JIFS_221567 crossref_primary_10_1016_j_jclepro_2020_120333 crossref_primary_10_1016_j_jclepro_2020_122757 crossref_primary_10_1007_s00521_022_08179_0 crossref_primary_10_1016_j_knosys_2021_106811 crossref_primary_10_1016_j_knosys_2020_106651 crossref_primary_10_1080_00207543_2023_2240433 crossref_primary_10_1016_j_cie_2019_106141 crossref_primary_10_1016_j_cie_2019_106027 crossref_primary_10_1016_j_ejor_2019_09_047 crossref_primary_10_1016_j_ress_2023_109383 crossref_primary_10_1016_j_cie_2019_07_033 crossref_primary_10_1016_j_aei_2023_102090 crossref_primary_10_1016_j_ress_2024_110551 crossref_primary_10_1080_00207543_2019_1696491 crossref_primary_10_1016_j_jclepro_2019_118193 crossref_primary_10_1016_j_jclepro_2020_123293 crossref_primary_10_1016_j_ijpe_2022_108720 crossref_primary_10_1016_j_jclepro_2019_05_049 crossref_primary_10_1109_ACCESS_2022_3142859 crossref_primary_10_1016_j_wasman_2021_02_012 crossref_primary_10_1080_23302674_2019_1646835 crossref_primary_10_3390_app13158600 crossref_primary_10_1016_j_cie_2020_106335 crossref_primary_10_1016_j_cie_2019_106014 crossref_primary_10_1016_j_ress_2022_108681 crossref_primary_10_1080_23311975_2021_1906052 |
Cites_doi | 10.1080/0740817X.2012.761371 10.1016/j.cie.2010.06.009 10.1080/00207543.2016.1146417 10.1016/j.cie.2011.01.008 10.1115/1.4035962 10.1080/00207541003620386 10.1016/j.ress.2003.11.011 10.1080/00207543.2010.492798 10.1016/j.ejor.2006.06.050 10.1016/j.ress.2013.09.003 10.1016/j.ress.2014.01.010 10.1016/j.cie.2016.10.008 10.1002/qre.1111 10.1080/00207543.2017.1290295 10.1016/j.cie.2010.04.013 10.1108/13552510110397412 10.1016/j.ress.2005.03.012 10.1016/j.ress.2016.01.026 10.1016/j.ress.2015.11.010 10.1016/j.cie.2009.02.013 10.1214/ss/1177011077 10.1007/s00170-017-0100-0 10.1016/j.ress.2012.12.009 10.1016/j.ress.2016.09.001 10.1016/j.ejor.2014.08.004 10.1080/00207543.2011.636924 10.1016/j.epsr.2011.01.013 10.1016/j.ress.2016.05.017 10.1016/j.cie.2012.01.014 10.1016/j.ejor.2015.02.050 10.1016/j.cie.2017.03.021 10.1080/15732470802658920 10.1016/S0377-2217(96)00099-9 10.1016/j.ress.2013.08.007 10.1016/S0377-2217(00)00222-8 10.1016/j.ress.2016.10.005 10.1109/TR.1979.5220624 10.1016/j.ress.2016.08.009 10.1057/jors.1979.78 10.1080/00207543.2013.775524 10.1080/00207540701636348 10.1016/j.cie.2015.02.005 10.1080/00207543.2011.613868 10.1287/opre.5.2.266 10.1016/S0305-0548(99)00101-X 10.1109/TASE.2016.2618767 |
ContentType | Journal Article |
Copyright | 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 2018 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7SC 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1080/00207543.2018.1436789 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1366-588X |
EndPage | 7178 |
ExternalDocumentID | 10_1080_00207543_2018_1436789 1436789 |
Genre | Research Article |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29J 2DF 30N 4.4 5GY 5VS 8VB A8Z AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFO ACGFS ACGOD ACIWK ACNCT ACTIO ADCVX ADGTB ADXPE AEGXH AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AHQJS AIAGR AIJEM AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBD EBE EBO EBR EBS EBU EJD EMK EPL ESTFP E~A E~B GTTXZ H13 HF~ HZ~ H~9 H~P I-F IPNFZ J.P K1G KYCEM M4Z ML~ NA5 NX~ O9- P2P PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TH9 TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ZL0 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7SC 8FD F28 FR3 JQ2 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c417t-c2dadcb4132af107853cf2bfab09ee9f594aa6134c8be42e4e9855cea3ac91de3 |
ISSN | 0020-7543 |
IngestDate | Wed Aug 13 08:19:06 EDT 2025 Tue Jul 01 03:30:15 EDT 2025 Thu Apr 24 22:59:22 EDT 2025 Wed Dec 25 09:06:22 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c417t-c2dadcb4132af107853cf2bfab09ee9f594aa6134c8be42e4e9855cea3ac91de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8657-5475 |
OpenAccessLink | https://www.tandfonline.com/doi/pdf/10.1080/00207543.2018.1436789?needAccess=true |
PQID | 2161877067 |
PQPubID | 30924 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2161877067 crossref_primary_10_1080_00207543_2018_1436789 informaworld_taylorfrancis_310_1080_00207543_2018_1436789 crossref_citationtrail_10_1080_00207543_2018_1436789 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-02 |
PublicationDateYYYYMMDD | 2018-12-02 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | International journal of production research |
PublicationYear | 2018 |
Publisher | Taylor & Francis Taylor & Francis LLC |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis LLC |
References | CIT0031 CIT0034 CIT0033 Liu J. (CIT0018) 2010; 59 Tsai T. R. (CIT0036) 2011; 60 Saraiva J. T. (CIT0032) 2011; 81 CIT0035 CIT0038 CIT0037 Nakagawa T. (CIT0023) 2005 CIT0039 CIT0041 CIT0040 CIT0043 CIT0042 CIT0001 CIT0045 CIT0044 Liu Y. (CIT0019) 2011; 7 Rice W. (CIT0030) 1998 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0006 CIT0009 CIT0008 CIT0050 CIT0010 Duan C. (CIT0013) 2017 CIT0012 CIT0011 Liu Y. (CIT0017) 2010; 59 CIT0014 CIT0016 CIT0015 CIT0021 CIT0020 CIT0022 CIT0025 CIT0024 CIT0027 CIT0026 CIT0029 CIT0028 |
References_xml | – ident: CIT0026 doi: 10.1080/0740817X.2012.761371 – volume: 59 start-page: 530 issue: 4 year: 2010 ident: CIT0018 publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2010.06.009 – ident: CIT0003 doi: 10.1080/00207543.2016.1146417 – volume: 60 start-page: 744 issue: 4 year: 2011 ident: CIT0036 publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2011.01.008 – ident: CIT0047 doi: 10.1115/1.4035962 – ident: CIT0021 doi: 10.1080/00207541003620386 – volume: 59 start-page: 356367 issue: 2 year: 2010 ident: CIT0017 publication-title: IEEE Transactions on Reliability – volume-title: Maintenance Theory of Reliability year: 2005 ident: CIT0023 – ident: CIT0035 doi: 10.1016/j.ress.2003.11.011 – ident: CIT0024 doi: 10.1080/00207543.2010.492798 – ident: CIT0027 doi: 10.1016/j.ejor.2006.06.050 – start-page: 1 year: 1998 ident: CIT0030 publication-title: Proceedings of the Seventh Industrial Engineering Research Conference – ident: CIT0009 doi: 10.1016/j.ress.2013.09.003 – ident: CIT0011 doi: 10.1016/j.ress.2014.01.010 – ident: CIT0020 doi: 10.1016/j.cie.2016.10.008 – ident: CIT0050 doi: 10.1002/qre.1111 – ident: CIT0015 doi: 10.1080/00207543.2017.1290295 – ident: CIT0031 doi: 10.1016/j.cie.2010.04.013 – ident: CIT0007 doi: 10.1108/13552510110397412 – ident: CIT0041 doi: 10.1016/j.ress.2005.03.012 – ident: CIT0014 doi: 10.1016/j.ress.2016.01.026 – ident: CIT0029 doi: 10.1016/j.ress.2015.11.010 – ident: CIT0034 doi: 10.1016/j.cie.2009.02.013 – ident: CIT0004 doi: 10.1214/ss/1177011077 – ident: CIT0012 doi: 10.1007/s00170-017-0100-0 – ident: CIT0025 doi: 10.1016/j.ress.2012.12.009 – ident: CIT0045 doi: 10.1016/j.ress.2016.09.001 – ident: CIT0044 doi: 10.1016/j.ejor.2014.08.004 – ident: CIT0016 doi: 10.1080/00207543.2011.636924 – volume: 81 start-page: 1283 issue: 7 year: 2011 ident: CIT0032 publication-title: Electric Power Systems Research doi: 10.1016/j.epsr.2011.01.013 – start-page: 1 year: 2017 ident: CIT0013 publication-title: Journal of Intelligent Manufacturing. – ident: CIT0010 doi: 10.1016/j.ress.2016.05.017 – ident: CIT0042 doi: 10.1016/j.cie.2012.01.014 – ident: CIT0048 doi: 10.1016/j.ejor.2015.02.050 – ident: CIT0049 doi: 10.1016/j.cie.2017.03.021 – volume: 7 start-page: 315 issue: 4 year: 2011 ident: CIT0019 publication-title: Structure and Infrastructure Engineering doi: 10.1080/15732470802658920 – ident: CIT0028 doi: 10.1016/S0377-2217(96)00099-9 – ident: CIT0037 doi: 10.1016/j.ress.2013.08.007 – ident: CIT0006 doi: 10.1016/S0377-2217(00)00222-8 – ident: CIT0039 doi: 10.1016/j.ress.2016.10.005 – ident: CIT0022 doi: 10.1109/TR.1979.5220624 – ident: CIT0001 doi: 10.1016/j.ress.2016.08.009 – ident: CIT0033 doi: 10.1057/jors.1979.78 – ident: CIT0043 doi: 10.1080/00207543.2013.775524 – ident: CIT0002 doi: 10.1080/00207540701636348 – ident: CIT0038 doi: 10.1016/j.cie.2015.02.005 – ident: CIT0040 doi: 10.1080/00207543.2011.613868 – ident: CIT0008 doi: 10.1287/opre.5.2.266 – ident: CIT0005 doi: 10.1016/S0305-0548(99)00101-X – ident: CIT0046 doi: 10.1109/TASE.2016.2618767 |
SSID | ssj0000584 |
Score | 2.6016595 |
Snippet | Many systems are required to perform a series of missions with finite breaks between any two consecutive missions. To improve the probability of system... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7160 |
SubjectTerms | Component reliability Computer simulation conditional reliability Maintenance costs Maintenance management Missions multiple maintenance actions Preventive maintenance Probability theory Scheduling selective maintenance scheduling Series (mathematics) Simulated annealing simulated annealing algorithm stochastic maintenance quality |
Title | Selective maintenance scheduling under stochastic maintenance quality with multiple maintenance actions |
URI | https://www.tandfonline.com/doi/abs/10.1080/00207543.2018.1436789 https://www.proquest.com/docview/2161877067 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gKHqrxEoaAcuKGsEjve2MdVF7RCggutWnGJbMeGQ0mrNnugv6o_kfEjjgMrSrlEK8v2Zne-eB6Z-Qaht0wLQ8BPzutSCButUjmgROfgiyjKKZjojrvz0-fF-qT6eEbPZrPbJGtp08u5utlaV_I_UoUxkKutkr2HZOOmMACfQb5wBQnD9Z9k_MU1sbG5Pz-E5X3oXP4_-KugP1yZua0Qu3oH9p36Liwh82Ser6f86UOxMbEwneGLHq5TA3YaQUx4Jy49daxFUyAQioHm1UYMr_ZBDUU0rrQ_Z-xwTAOy_NHaZRgs5cW5ETcxA-R046tIujRQUTKX9JHGLq2nWlPPyjTX_rwli0VOmesuHA9kzzQegIdJcryCc1ckqhpcUbZVDQx5k7iw32cT-BioBAKKmY96b3jX_5s6jEmKZWRP9ds0dpsmbPMA7WJwTEAV7C7Xq6-no_anLDB_-x87VI1ZPvdt9zOxhyZsuX9YB87kOd5He8FXyZYeeI_RTHdP0KOEwfIp-hYhmCXAyUYIZg6C2QjBybwAwcxCMBsgOJkRIPgMnXx4f3y0zkPvjlxVZd3nCreiVRJMJCxMCXYoJcpgaYQsuNbcUF4JAaZkpZjUFdaV5oxSpQURipetJs_RTnfR6RcoAx-hJky1jC1o1SojcWuMZoXkrGjLQh-gavgHGxWI7W1_lfPmrxI8QPO47NIzu9y1gKfiaXoXUjO-_01D7lh7OMiyCY_mdYNts4q6Bnvx5X3v5RV6OD5ih2inv9ro12Ad9_JNAOQvEP-2ZQ |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1EokIE1VR52Y48IURVou9BK3SzHsUECCmrTAX49d3mUBoQ6dI7PSpx7fGfdfUfIFTfKhpAnu5GvFN5WaRe0xLiQi2gmGED0jLuz1291hvR-xEYLvTBYVok5tM2JIjJfjcaNl9FlSRy2cEOkoyFWZnGw9RA8rlgnG0y0IjTO0Ov_eGPGCyZmeB-QKbt4_tumEp8q7KV_vHUWgtq7RJcvn1eevDRnadzUX794HVf7uj2yUyBU5zpXqX2yZsYHZHuBt_CQPD1m03PAUTpvCgknkLXDOJAoQ-DC_nYHW9MmDgBL_ayQCbqyLm_k_HTwDtgpKxorK_Jui-kRGbZvBzcdt5jY4GrqR6mrg0QlOobAGCgLiSVgAW2D2KrYE8YIywRVCgAE1Tw2NDDUCM6YNipUWviJCY9Jbfw-NifEAWQYhVwnnLcYTbSNg8Raw71YcC_xPVMntPxPUhd05jhV41X6c9bT_BwlnqMszrFOmnOxj5zPY5mAWFQCmWYXKTafeiLDJbKNUmNk4RqmMsARBVEEKOF0ha0vyWZn0OvK7l3_4Yxs4aOsyCZokFo6mZlzgEppfJHZwjfbKQbJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gSAgOvBGDAT1w7dRHuiZHBEzjNSHBJG5RniABY9q6A_x67D5gA6Eddm4cpaljf07tz4ScMCtdDHGyn4ZS4m2V9kFLrA-xiE54AhA95-687bY6PXr1mFTZhKMyrRJjaFcQReS2Gg_3wLgqIw4ruMHR0RgTsxgc9RgMLl8kSy38yYdVHEH3xxgnrCRihuWATFXE8980U-5pirz0j7HOPVB7nahq7UXiyUtznKmm_vxF6zjXy22QtRKfeqeFQm2SBdvfIqsTrIXb5Ok-750DZtJ7k0g3gZwd1oMwGdwWVrd7WJg29ABW6meJPNBT44oyzg8Pb4C9Kp9xakRRazHaIb32xcNZxy_7Nfiahmnm68hIoxW4xUg6CCsBCWgXKSdVwK3lLuFUSoAPVDNlaWSp5SxJtJWx1Dw0Nt4ltf573-4RD3BhGjNtGGsl1GinIuOcZYHiLDBhYOuEVp9J6JLMHHtqvIrwm_O02EeB-yjKfayT5rfYoGDzmCXAJ3VAZPk1iit6noh4hmyjUhhRGoaRiLBBQZoCRtifY-pjsnx33hY3l93rA7KCT_IMm6hBatlwbA8BJ2XqKD8JX5YpBW0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+maintenance+scheduling+under+stochastic+maintenance+quality+with+multiple+maintenance+actions&rft.jtitle=International+journal+of+production+research&rft.au=Duan%2C+Chaoqun&rft.au=Deng%2C+Chao&rft.au=Gharaei%2C+Abolfazl&rft.au=Wu%2C+Jun&rft.date=2018-12-02&rft.issn=0020-7543&rft.eissn=1366-588X&rft.volume=56&rft.issue=23&rft.spage=7160&rft.epage=7178&rft_id=info:doi/10.1080%2F00207543.2018.1436789&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00207543_2018_1436789 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7543&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7543&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7543&client=summon |