Selective maintenance scheduling under stochastic maintenance quality with multiple maintenance actions

Many systems are required to perform a series of missions with finite breaks between any two consecutive missions. To improve the probability of system successfully completing the next mission, maintenance action is carried out on components during the breaks. In this work, a selective maintenance m...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of production research Vol. 56; no. 23; pp. 7160 - 7178
Main Authors Duan, Chaoqun, Deng, Chao, Gharaei, Abolfazl, Wu, Jun, Wang, Bingran
Format Journal Article
LanguageEnglish
Published London Taylor & Francis 02.12.2018
Taylor & Francis LLC
Subjects
Online AccessGet full text
ISSN0020-7543
1366-588X
DOI10.1080/00207543.2018.1436789

Cover

Loading…
Abstract Many systems are required to perform a series of missions with finite breaks between any two consecutive missions. To improve the probability of system successfully completing the next mission, maintenance action is carried out on components during the breaks. In this work, a selective maintenance model with stochastic maintenance quality for multi-component systems is investigated. At each scheduled break, a set of maintenance actions with different degrees of impact are available for each component. The impact of a maintenance action is assumed to be random and follow an identified probability distribution. The corresponding maintenance cost and time are modelled based on the expected impact of the maintenance action. The objective of selective maintenance scheduling is to find the cost-optimal maintenance action for each component at every scheduled break subject to reliability and duration constraints. A simulated annealing algorithm is used to solve the complicated optimisation problem where both multiple maintenance actions and stochastic quality model are taken into account. Two illustrative numerical examples and a real case study have been solved to demonstrate the performance of the proposed approach. A comparison with deterministic maintenance shows the importance of considering the proposed stochastic quality in selective maintenance scheduling.
AbstractList Many systems are required to perform a series of missions with finite breaks between any two consecutive missions. To improve the probability of system successfully completing the next mission, maintenance action is carried out on components during the breaks. In this work, a selective maintenance model with stochastic maintenance quality for multi-component systems is investigated. At each scheduled break, a set of maintenance actions with different degrees of impact are available for each component. The impact of a maintenance action is assumed to be random and follow an identified probability distribution. The corresponding maintenance cost and time are modelled based on the expected impact of the maintenance action. The objective of selective maintenance scheduling is to find the cost-optimal maintenance action for each component at every scheduled break subject to reliability and duration constraints. A simulated annealing algorithm is used to solve the complicated optimisation problem where both multiple maintenance actions and stochastic quality model are taken into account. Two illustrative numerical examples and a real case study have been solved to demonstrate the performance of the proposed approach. A comparison with deterministic maintenance shows the importance of considering the proposed stochastic quality in selective maintenance scheduling.
Many systems are required to perform a series of missions with finite breaks between any two consecutive missions. To improve the probability of system successfully completing the next mission, maintenance action is carried out on components during the breaks. In this work, a selective maintenance model with stochastic maintenance quality for multi-component systems is investigated. At each scheduled break, a set of maintenance actions with different degrees of impact are available for each component. The impact of a maintenance action is assumed to be random and follow an identified probability distribution. The corresponding maintenance cost and time are modelled based on the expected impact of the maintenance action. The objective of selective maintenance scheduling is to find the cost-optimal maintenance action for each component at every scheduled break subject to reliability and duration constraints. A simulated annealing algorithm is used to solve the complicated optimisation problem where both multiple maintenance actions and stochastic quality model are taken into account. Two illustrative numerical examples and a real case study have been solved to demonstrate the performance of the proposed approach. A comparison with deterministic maintenance shows the importance of considering the proposed stochastic quality in selective maintenance scheduling.
Author Wu, Jun
Duan, Chaoqun
Gharaei, Abolfazl
Deng, Chao
Wang, Bingran
Author_xml – sequence: 1
  givenname: Chaoqun
  surname: Duan
  fullname: Duan, Chaoqun
  email: duancq@mie.utoronto.ca
  organization: Department of Mechanical and Industrial Engineering, University of Toronto
– sequence: 2
  givenname: Chao
  surname: Deng
  fullname: Deng, Chao
  email: dengchao@mail.hust.edu.cn
  organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology
– sequence: 3
  givenname: Abolfazl
  surname: Gharaei
  fullname: Gharaei, Abolfazl
  organization: Department of Mechanical and Industrial Engineering, University of Toronto
– sequence: 4
  givenname: Jun
  orcidid: 0000-0002-8657-5475
  surname: Wu
  fullname: Wu, Jun
  organization: School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology
– sequence: 5
  givenname: Bingran
  surname: Wang
  fullname: Wang, Bingran
  organization: Division of Engineering Science, University of Toronto
BookMark eNqFkE1LxDAQhoMouH78BKHguWvSpG2KF0X8AsGDCt7CbDp1I9lkTVJl_70tux7Wg85lLs_7DvMckF3nHRJywuiUUUnPKC1oXQo-LSiTUyZ4Vctmh0wYr6q8lPJ1l0xGJh-hfXIQ4zsdppRiQt6e0KJO5hOzBRiX0IHTmEU9x7a3xr1lvWsxZDF5PYeYjN7iPnqwJq2yL5Pm2aK3ySztdhMM5d7FI7LXgY14vNmH5OXm-vnqLn94vL2_unzItWB1ynXRQqtngvECOkZrWXLdFbMOZrRBbLqyEQAV40LLGYoCBTayLDUCB92wFvkhOV33LoP_6DEm9e774IaTqmAVk3VNq3qgyjWlg48xYKeWwSwgrBSjanSqfpyq0anaOB1y579y2iQYH0wBjP03fbFOG9f5sIAvH2yrEqysD10YbJmo-N8V3zmGlTs
CitedBy_id crossref_primary_10_1080_00207543_2019_1624855
crossref_primary_10_1177_1748006X19868891
crossref_primary_10_1080_23311916_2021_1930493
crossref_primary_10_1016_j_knosys_2020_105982
crossref_primary_10_1108_IJDI_01_2023_0001
crossref_primary_10_1080_00207543_2018_1488087
crossref_primary_10_1080_23311975_2020_1826718
crossref_primary_10_1016_j_jclepro_2019_117894
crossref_primary_10_1080_23311916_2021_1920565
crossref_primary_10_1016_j_jclepro_2020_121809
crossref_primary_10_1016_j_cie_2019_106200
crossref_primary_10_33889_IJMEMS_2021_6_1_016
crossref_primary_10_1080_23302674_2021_1941394
crossref_primary_10_1016_j_ejor_2020_08_015
crossref_primary_10_1080_23302674_2021_1962428
crossref_primary_10_1016_j_cie_2021_107380
crossref_primary_10_1016_j_ifacol_2024_09_072
crossref_primary_10_1016_j_jclepro_2020_120376
crossref_primary_10_1016_j_jclepro_2020_122554
crossref_primary_10_1016_j_knosys_2020_106612
crossref_primary_10_1016_j_knosys_2020_105522
crossref_primary_10_1016_j_cie_2019_06_023
crossref_primary_10_1016_j_ress_2023_109624
crossref_primary_10_1080_23302674_2021_1958023
crossref_primary_10_1016_j_cie_2019_106103
crossref_primary_10_1016_j_cie_2023_109110
crossref_primary_10_1007_s10479_022_04549_y
crossref_primary_10_1080_00207543_2023_2270689
crossref_primary_10_1016_j_jclepro_2020_121233
crossref_primary_10_1016_j_jclepro_2020_120025
crossref_primary_10_1080_00207543_2018_1505060
crossref_primary_10_1007_s10479_022_04793_2
crossref_primary_10_1016_j_knosys_2020_105630
crossref_primary_10_1080_23322039_2021_1922179
crossref_primary_10_1016_j_knosys_2022_108664
crossref_primary_10_1016_j_jclepro_2020_121231
crossref_primary_10_1016_j_trc_2022_103608
crossref_primary_10_1080_00401706_2023_2241523
crossref_primary_10_1109_TR_2021_3111737
crossref_primary_10_1109_ACCESS_2021_3139946
crossref_primary_10_1007_s10878_023_01002_z
crossref_primary_10_1016_j_knosys_2020_105746
crossref_primary_10_1016_j_asej_2024_102978
crossref_primary_10_1016_j_jclepro_2019_117745
crossref_primary_10_1080_23311975_2020_1760477
crossref_primary_10_1016_j_jclepro_2019_06_156
crossref_primary_10_1016_j_jclepro_2019_118279
crossref_primary_10_1016_j_ress_2022_108480
crossref_primary_10_1016_j_jclepro_2019_04_167
crossref_primary_10_1016_j_knosys_2020_106352
crossref_primary_10_1016_j_jclepro_2020_120510
crossref_primary_10_1016_j_asoc_2020_106811
crossref_primary_10_1016_j_ijpe_2020_107899
crossref_primary_10_1016_j_jclepro_2019_06_329
crossref_primary_10_1016_j_jclepro_2020_120641
crossref_primary_10_1016_j_jclepro_2020_122268
crossref_primary_10_1016_j_procs_2022_01_342
crossref_primary_10_1051_ro_2020123
crossref_primary_10_1007_s10479_021_03990_9
crossref_primary_10_1080_00207543_2022_2077670
crossref_primary_10_1088_1361_6501_ad0685
crossref_primary_10_1080_23302674_2019_1574364
crossref_primary_10_1016_j_apenergy_2022_118927
crossref_primary_10_1080_00207543_2022_2127163
crossref_primary_10_1016_j_cie_2023_109082
crossref_primary_10_1016_j_knosys_2019_105094
crossref_primary_10_1007_s12065_022_00762_7
crossref_primary_10_1002_bsd2_200
crossref_primary_10_1016_j_jclepro_2020_122707
crossref_primary_10_1155_2020_1307170
crossref_primary_10_1007_s10845_020_01585_y
crossref_primary_10_1016_j_ress_2023_109330
crossref_primary_10_1016_j_jclepro_2020_122235
crossref_primary_10_1016_j_jclepro_2020_124890
crossref_primary_10_1016_j_knosys_2021_107189
crossref_primary_10_1016_j_cie_2019_05_025
crossref_primary_10_1016_j_ress_2022_108977
crossref_primary_10_1016_j_ress_2020_106871
crossref_primary_10_1016_j_ress_2020_106994
crossref_primary_10_1016_j_resourpol_2023_103822
crossref_primary_10_1177_1748006X211066660
crossref_primary_10_1016_j_oceaneng_2020_108180
crossref_primary_10_1016_j_knosys_2020_106484
crossref_primary_10_1038_s41598_020_73167_0
crossref_primary_10_1016_j_cie_2019_04_008
crossref_primary_10_1016_j_jclepro_2020_122360
crossref_primary_10_1016_j_cie_2024_110020
crossref_primary_10_1016_j_jclepro_2020_123454
crossref_primary_10_1155_2020_8815983
crossref_primary_10_1016_j_oceaneng_2020_108067
crossref_primary_10_1080_23302674_2019_1585595
crossref_primary_10_1016_j_knosys_2020_105709
crossref_primary_10_1016_j_ress_2021_107690
crossref_primary_10_1016_j_oceaneng_2021_109062
crossref_primary_10_1080_00207543_2024_2349257
crossref_primary_10_3390_sym11050652
crossref_primary_10_1016_j_cie_2020_106293
crossref_primary_10_1016_j_knosys_2019_06_021
crossref_primary_10_1016_j_orp_2020_100158
crossref_primary_10_1016_j_eswa_2021_114576
crossref_primary_10_1016_j_knosys_2020_106556
crossref_primary_10_1080_00207543_2019_1641237
crossref_primary_10_1016_j_jclepro_2019_01_141
crossref_primary_10_1016_j_knosys_2021_107486
crossref_primary_10_1016_j_cie_2019_106040
crossref_primary_10_1016_j_jclepro_2021_127230
crossref_primary_10_1080_23311975_2022_2155003
crossref_primary_10_1016_j_knosys_2020_106427
crossref_primary_10_1016_j_cie_2019_07_018
crossref_primary_10_1016_j_cie_2020_106287
crossref_primary_10_1061_JTEPBS_0000592
crossref_primary_10_1016_j_eswa_2022_116808
crossref_primary_10_1016_j_cie_2020_106286
crossref_primary_10_1016_j_cie_2024_110448
crossref_primary_10_1016_j_cie_2024_110685
crossref_primary_10_1016_j_knosys_2020_106546
crossref_primary_10_1108_JQME_10_2020_0109
crossref_primary_10_1002_qre_3108
crossref_primary_10_1007_s10479_020_03876_2
crossref_primary_10_1016_j_jclepro_2020_122627
crossref_primary_10_1016_j_cie_2020_106274
crossref_primary_10_1016_j_cie_2019_106033
crossref_primary_10_1016_j_eswa_2023_123068
crossref_primary_10_1080_2331205X_2021_2012888
crossref_primary_10_1016_j_cie_2019_07_002
crossref_primary_10_1016_j_jclepro_2019_02_167
crossref_primary_10_1016_j_jclepro_2020_120774
crossref_primary_10_1016_j_jclepro_2020_121982
crossref_primary_10_1080_23311975_2020_1870807
crossref_primary_10_1016_j_eswa_2020_114515
crossref_primary_10_1016_j_jclepro_2020_121744
crossref_primary_10_1108_BIJ_02_2022_0084
crossref_primary_10_1080_23302674_2021_1914767
crossref_primary_10_1016_j_knosys_2020_105486
crossref_primary_10_1016_j_jclepro_2020_122156
crossref_primary_10_1080_23311975_2021_1930500
crossref_primary_10_1016_j_cie_2019_106062
crossref_primary_10_1080_0951192X_2022_2025623
crossref_primary_10_1016_j_cie_2019_106180
crossref_primary_10_1080_00207543_2023_2202280
crossref_primary_10_1016_j_jclepro_2020_121747
crossref_primary_10_3390_su162310269
crossref_primary_10_1109_TR_2024_3389015
crossref_primary_10_1007_s10489_021_02670_2
crossref_primary_10_1016_j_knosys_2020_106560
crossref_primary_10_1016_j_jclepro_2020_120784
crossref_primary_10_1016_j_knosys_2020_106684
crossref_primary_10_1016_j_cie_2019_106055
crossref_primary_10_1016_j_compchemeng_2020_106876
crossref_primary_10_1016_j_jclepro_2020_122654
crossref_primary_10_1016_j_cam_2020_113195
crossref_primary_10_1007_s10479_021_04361_0
crossref_primary_10_1016_j_cie_2019_106239
crossref_primary_10_1016_j_apm_2025_115979
crossref_primary_10_1016_j_jclepro_2020_122770
crossref_primary_10_1016_j_apenergy_2022_119284
crossref_primary_10_1007_s10479_020_03720_7
crossref_primary_10_1080_23302674_2019_1701727
crossref_primary_10_1016_j_jclepro_2018_11_187
crossref_primary_10_1016_j_cie_2019_106000
crossref_primary_10_1016_j_knosys_2019_104966
crossref_primary_10_1016_j_ifacol_2022_09_555
crossref_primary_10_1007_s10845_019_01521_9
crossref_primary_10_1016_j_cie_2019_106229
crossref_primary_10_1016_j_cie_2019_06_019
crossref_primary_10_1016_j_jclepro_2020_123073
crossref_primary_10_1080_17524032_2023_2253499
crossref_primary_10_1016_j_knosys_2020_105530
crossref_primary_10_1080_23302674_2019_1656296
crossref_primary_10_1016_j_cie_2019_106237
crossref_primary_10_3390_en13174346
crossref_primary_10_1016_j_knosys_2021_107467
crossref_primary_10_3233_JIFS_221567
crossref_primary_10_1016_j_jclepro_2020_120333
crossref_primary_10_1016_j_jclepro_2020_122757
crossref_primary_10_1007_s00521_022_08179_0
crossref_primary_10_1016_j_knosys_2021_106811
crossref_primary_10_1016_j_knosys_2020_106651
crossref_primary_10_1080_00207543_2023_2240433
crossref_primary_10_1016_j_cie_2019_106141
crossref_primary_10_1016_j_cie_2019_106027
crossref_primary_10_1016_j_ejor_2019_09_047
crossref_primary_10_1016_j_ress_2023_109383
crossref_primary_10_1016_j_cie_2019_07_033
crossref_primary_10_1016_j_aei_2023_102090
crossref_primary_10_1016_j_ress_2024_110551
crossref_primary_10_1080_00207543_2019_1696491
crossref_primary_10_1016_j_jclepro_2019_118193
crossref_primary_10_1016_j_jclepro_2020_123293
crossref_primary_10_1016_j_ijpe_2022_108720
crossref_primary_10_1016_j_jclepro_2019_05_049
crossref_primary_10_1109_ACCESS_2022_3142859
crossref_primary_10_1016_j_wasman_2021_02_012
crossref_primary_10_1080_23302674_2019_1646835
crossref_primary_10_3390_app13158600
crossref_primary_10_1016_j_cie_2020_106335
crossref_primary_10_1016_j_cie_2019_106014
crossref_primary_10_1016_j_ress_2022_108681
crossref_primary_10_1080_23311975_2021_1906052
Cites_doi 10.1080/0740817X.2012.761371
10.1016/j.cie.2010.06.009
10.1080/00207543.2016.1146417
10.1016/j.cie.2011.01.008
10.1115/1.4035962
10.1080/00207541003620386
10.1016/j.ress.2003.11.011
10.1080/00207543.2010.492798
10.1016/j.ejor.2006.06.050
10.1016/j.ress.2013.09.003
10.1016/j.ress.2014.01.010
10.1016/j.cie.2016.10.008
10.1002/qre.1111
10.1080/00207543.2017.1290295
10.1016/j.cie.2010.04.013
10.1108/13552510110397412
10.1016/j.ress.2005.03.012
10.1016/j.ress.2016.01.026
10.1016/j.ress.2015.11.010
10.1016/j.cie.2009.02.013
10.1214/ss/1177011077
10.1007/s00170-017-0100-0
10.1016/j.ress.2012.12.009
10.1016/j.ress.2016.09.001
10.1016/j.ejor.2014.08.004
10.1080/00207543.2011.636924
10.1016/j.epsr.2011.01.013
10.1016/j.ress.2016.05.017
10.1016/j.cie.2012.01.014
10.1016/j.ejor.2015.02.050
10.1016/j.cie.2017.03.021
10.1080/15732470802658920
10.1016/S0377-2217(96)00099-9
10.1016/j.ress.2013.08.007
10.1016/S0377-2217(00)00222-8
10.1016/j.ress.2016.10.005
10.1109/TR.1979.5220624
10.1016/j.ress.2016.08.009
10.1057/jors.1979.78
10.1080/00207543.2013.775524
10.1080/00207540701636348
10.1016/j.cie.2015.02.005
10.1080/00207543.2011.613868
10.1287/opre.5.2.266
10.1016/S0305-0548(99)00101-X
10.1109/TASE.2016.2618767
ContentType Journal Article
Copyright 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
2018 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
– notice: 2018 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1080/00207543.2018.1436789
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1366-588X
EndPage 7178
ExternalDocumentID 10_1080_00207543_2018_1436789
1436789
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29J
2DF
30N
4.4
5GY
5VS
8VB
A8Z
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACTIO
ADCVX
ADGTB
ADXPE
AEGXH
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AHQJS
AIAGR
AIJEM
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBD
EBE
EBO
EBR
EBS
EBU
EJD
EMK
EPL
ESTFP
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~9
H~P
I-F
IPNFZ
J.P
K1G
KYCEM
M4Z
ML~
NA5
NX~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TH9
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7SC
8FD
F28
FR3
JQ2
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c417t-c2dadcb4132af107853cf2bfab09ee9f594aa6134c8be42e4e9855cea3ac91de3
ISSN 0020-7543
IngestDate Wed Aug 13 08:19:06 EDT 2025
Tue Jul 01 03:30:15 EDT 2025
Thu Apr 24 22:59:22 EDT 2025
Wed Dec 25 09:06:22 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c417t-c2dadcb4132af107853cf2bfab09ee9f594aa6134c8be42e4e9855cea3ac91de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8657-5475
OpenAccessLink https://www.tandfonline.com/doi/pdf/10.1080/00207543.2018.1436789?needAccess=true
PQID 2161877067
PQPubID 30924
PageCount 19
ParticipantIDs proquest_journals_2161877067
crossref_primary_10_1080_00207543_2018_1436789
informaworld_taylorfrancis_310_1080_00207543_2018_1436789
crossref_citationtrail_10_1080_00207543_2018_1436789
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-02
PublicationDateYYYYMMDD 2018-12-02
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-02
  day: 02
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International journal of production research
PublicationYear 2018
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References CIT0031
CIT0034
CIT0033
Liu J. (CIT0018) 2010; 59
Tsai T. R. (CIT0036) 2011; 60
Saraiva J. T. (CIT0032) 2011; 81
CIT0035
CIT0038
CIT0037
Nakagawa T. (CIT0023) 2005
CIT0039
CIT0041
CIT0040
CIT0043
CIT0042
CIT0001
CIT0045
CIT0044
Liu Y. (CIT0019) 2011; 7
Rice W. (CIT0030) 1998
CIT0003
CIT0047
CIT0002
CIT0046
CIT0005
CIT0049
CIT0004
CIT0048
CIT0007
CIT0006
CIT0009
CIT0008
CIT0050
CIT0010
Duan C. (CIT0013) 2017
CIT0012
CIT0011
Liu Y. (CIT0017) 2010; 59
CIT0014
CIT0016
CIT0015
CIT0021
CIT0020
CIT0022
CIT0025
CIT0024
CIT0027
CIT0026
CIT0029
CIT0028
References_xml – ident: CIT0026
  doi: 10.1080/0740817X.2012.761371
– volume: 59
  start-page: 530
  issue: 4
  year: 2010
  ident: CIT0018
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2010.06.009
– ident: CIT0003
  doi: 10.1080/00207543.2016.1146417
– volume: 60
  start-page: 744
  issue: 4
  year: 2011
  ident: CIT0036
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2011.01.008
– ident: CIT0047
  doi: 10.1115/1.4035962
– ident: CIT0021
  doi: 10.1080/00207541003620386
– volume: 59
  start-page: 356367
  issue: 2
  year: 2010
  ident: CIT0017
  publication-title: IEEE Transactions on Reliability
– volume-title: Maintenance Theory of Reliability
  year: 2005
  ident: CIT0023
– ident: CIT0035
  doi: 10.1016/j.ress.2003.11.011
– ident: CIT0024
  doi: 10.1080/00207543.2010.492798
– ident: CIT0027
  doi: 10.1016/j.ejor.2006.06.050
– start-page: 1
  year: 1998
  ident: CIT0030
  publication-title: Proceedings of the Seventh Industrial Engineering Research Conference
– ident: CIT0009
  doi: 10.1016/j.ress.2013.09.003
– ident: CIT0011
  doi: 10.1016/j.ress.2014.01.010
– ident: CIT0020
  doi: 10.1016/j.cie.2016.10.008
– ident: CIT0050
  doi: 10.1002/qre.1111
– ident: CIT0015
  doi: 10.1080/00207543.2017.1290295
– ident: CIT0031
  doi: 10.1016/j.cie.2010.04.013
– ident: CIT0007
  doi: 10.1108/13552510110397412
– ident: CIT0041
  doi: 10.1016/j.ress.2005.03.012
– ident: CIT0014
  doi: 10.1016/j.ress.2016.01.026
– ident: CIT0029
  doi: 10.1016/j.ress.2015.11.010
– ident: CIT0034
  doi: 10.1016/j.cie.2009.02.013
– ident: CIT0004
  doi: 10.1214/ss/1177011077
– ident: CIT0012
  doi: 10.1007/s00170-017-0100-0
– ident: CIT0025
  doi: 10.1016/j.ress.2012.12.009
– ident: CIT0045
  doi: 10.1016/j.ress.2016.09.001
– ident: CIT0044
  doi: 10.1016/j.ejor.2014.08.004
– ident: CIT0016
  doi: 10.1080/00207543.2011.636924
– volume: 81
  start-page: 1283
  issue: 7
  year: 2011
  ident: CIT0032
  publication-title: Electric Power Systems Research
  doi: 10.1016/j.epsr.2011.01.013
– start-page: 1
  year: 2017
  ident: CIT0013
  publication-title: Journal of Intelligent Manufacturing.
– ident: CIT0010
  doi: 10.1016/j.ress.2016.05.017
– ident: CIT0042
  doi: 10.1016/j.cie.2012.01.014
– ident: CIT0048
  doi: 10.1016/j.ejor.2015.02.050
– ident: CIT0049
  doi: 10.1016/j.cie.2017.03.021
– volume: 7
  start-page: 315
  issue: 4
  year: 2011
  ident: CIT0019
  publication-title: Structure and Infrastructure Engineering
  doi: 10.1080/15732470802658920
– ident: CIT0028
  doi: 10.1016/S0377-2217(96)00099-9
– ident: CIT0037
  doi: 10.1016/j.ress.2013.08.007
– ident: CIT0006
  doi: 10.1016/S0377-2217(00)00222-8
– ident: CIT0039
  doi: 10.1016/j.ress.2016.10.005
– ident: CIT0022
  doi: 10.1109/TR.1979.5220624
– ident: CIT0001
  doi: 10.1016/j.ress.2016.08.009
– ident: CIT0033
  doi: 10.1057/jors.1979.78
– ident: CIT0043
  doi: 10.1080/00207543.2013.775524
– ident: CIT0002
  doi: 10.1080/00207540701636348
– ident: CIT0038
  doi: 10.1016/j.cie.2015.02.005
– ident: CIT0040
  doi: 10.1080/00207543.2011.613868
– ident: CIT0008
  doi: 10.1287/opre.5.2.266
– ident: CIT0005
  doi: 10.1016/S0305-0548(99)00101-X
– ident: CIT0046
  doi: 10.1109/TASE.2016.2618767
SSID ssj0000584
Score 2.6016595
Snippet Many systems are required to perform a series of missions with finite breaks between any two consecutive missions. To improve the probability of system...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7160
SubjectTerms Component reliability
Computer simulation
conditional reliability
Maintenance costs
Maintenance management
Missions
multiple maintenance actions
Preventive maintenance
Probability theory
Scheduling
selective maintenance scheduling
Series (mathematics)
Simulated annealing
simulated annealing algorithm
stochastic maintenance quality
Title Selective maintenance scheduling under stochastic maintenance quality with multiple maintenance actions
URI https://www.tandfonline.com/doi/abs/10.1080/00207543.2018.1436789
https://www.proquest.com/docview/2161877067
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gKHqrxEoaAcuKGsEjve2MdVF7RCggutWnGJbMeGQ0mrNnugv6o_kfEjjgMrSrlEK8v2Zne-eB6Z-Qaht0wLQ8BPzutSCButUjmgROfgiyjKKZjojrvz0-fF-qT6eEbPZrPbJGtp08u5utlaV_I_UoUxkKutkr2HZOOmMACfQb5wBQnD9Z9k_MU1sbG5Pz-E5X3oXP4_-KugP1yZua0Qu3oH9p36Liwh82Ser6f86UOxMbEwneGLHq5TA3YaQUx4Jy49daxFUyAQioHm1UYMr_ZBDUU0rrQ_Z-xwTAOy_NHaZRgs5cW5ETcxA-R046tIujRQUTKX9JHGLq2nWlPPyjTX_rwli0VOmesuHA9kzzQegIdJcryCc1ckqhpcUbZVDQx5k7iw32cT-BioBAKKmY96b3jX_5s6jEmKZWRP9ds0dpsmbPMA7WJwTEAV7C7Xq6-no_anLDB_-x87VI1ZPvdt9zOxhyZsuX9YB87kOd5He8FXyZYeeI_RTHdP0KOEwfIp-hYhmCXAyUYIZg6C2QjBybwAwcxCMBsgOJkRIPgMnXx4f3y0zkPvjlxVZd3nCreiVRJMJCxMCXYoJcpgaYQsuNbcUF4JAaZkpZjUFdaV5oxSpQURipetJs_RTnfR6RcoAx-hJky1jC1o1SojcWuMZoXkrGjLQh-gavgHGxWI7W1_lfPmrxI8QPO47NIzu9y1gKfiaXoXUjO-_01D7lh7OMiyCY_mdYNts4q6Bnvx5X3v5RV6OD5ih2inv9ro12Ad9_JNAOQvEP-2ZQ
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1EokIE1VR52Y48IURVou9BK3SzHsUECCmrTAX49d3mUBoQ6dI7PSpx7fGfdfUfIFTfKhpAnu5GvFN5WaRe0xLiQi2gmGED0jLuz1291hvR-xEYLvTBYVok5tM2JIjJfjcaNl9FlSRy2cEOkoyFWZnGw9RA8rlgnG0y0IjTO0Ov_eGPGCyZmeB-QKbt4_tumEp8q7KV_vHUWgtq7RJcvn1eevDRnadzUX794HVf7uj2yUyBU5zpXqX2yZsYHZHuBt_CQPD1m03PAUTpvCgknkLXDOJAoQ-DC_nYHW9MmDgBL_ayQCbqyLm_k_HTwDtgpKxorK_Jui-kRGbZvBzcdt5jY4GrqR6mrg0QlOobAGCgLiSVgAW2D2KrYE8YIywRVCgAE1Tw2NDDUCM6YNipUWviJCY9Jbfw-NifEAWQYhVwnnLcYTbSNg8Raw71YcC_xPVMntPxPUhd05jhV41X6c9bT_BwlnqMszrFOmnOxj5zPY5mAWFQCmWYXKTafeiLDJbKNUmNk4RqmMsARBVEEKOF0ha0vyWZn0OvK7l3_4Yxs4aOsyCZokFo6mZlzgEppfJHZwjfbKQbJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gSAgOvBGDAT1w7dRHuiZHBEzjNSHBJG5RniABY9q6A_x67D5gA6Eddm4cpaljf07tz4ScMCtdDHGyn4ZS4m2V9kFLrA-xiE54AhA95-687bY6PXr1mFTZhKMyrRJjaFcQReS2Gg_3wLgqIw4ruMHR0RgTsxgc9RgMLl8kSy38yYdVHEH3xxgnrCRihuWATFXE8980U-5pirz0j7HOPVB7nahq7UXiyUtznKmm_vxF6zjXy22QtRKfeqeFQm2SBdvfIqsTrIXb5Ok-750DZtJ7k0g3gZwd1oMwGdwWVrd7WJg29ABW6meJPNBT44oyzg8Pb4C9Kp9xakRRazHaIb32xcNZxy_7Nfiahmnm68hIoxW4xUg6CCsBCWgXKSdVwK3lLuFUSoAPVDNlaWSp5SxJtJWx1Dw0Nt4ltf573-4RD3BhGjNtGGsl1GinIuOcZYHiLDBhYOuEVp9J6JLMHHtqvIrwm_O02EeB-yjKfayT5rfYoGDzmCXAJ3VAZPk1iit6noh4hmyjUhhRGoaRiLBBQZoCRtifY-pjsnx33hY3l93rA7KCT_IMm6hBatlwbA8BJ2XqKD8JX5YpBW0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+maintenance+scheduling+under+stochastic+maintenance+quality+with+multiple+maintenance+actions&rft.jtitle=International+journal+of+production+research&rft.au=Duan%2C+Chaoqun&rft.au=Deng%2C+Chao&rft.au=Gharaei%2C+Abolfazl&rft.au=Wu%2C+Jun&rft.date=2018-12-02&rft.issn=0020-7543&rft.eissn=1366-588X&rft.volume=56&rft.issue=23&rft.spage=7160&rft.epage=7178&rft_id=info:doi/10.1080%2F00207543.2018.1436789&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00207543_2018_1436789
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7543&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7543&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7543&client=summon