Shift in Monocyte Apoptosis with Increasing Viral Load and Change in Apoptosis-Related ISG/Bcl2 Family Gene Expression in Chronically HIV-1-Infected Subjects

Although monocytes and macrophages are targets of HIV-1-mediated immunopathology, the impact of high viremia on activation-induced monocyte apoptosis relative to monocyte and macrophage activation changes remains undetermined. In this study, we determined constitutive and oxidative stress-induced mo...

Full description

Saved in:
Bibliographic Details
Published inJournal of virology Vol. 89; no. 1; pp. 799 - 810
Main Authors Patro, Sean C., Pal, Sharmistha, Bi, Yingtao, Lynn, Kenneth, Mounzer, Karam C., Kostman, Jay R., Davuluri, Ramana V., Montaner, Luis J.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although monocytes and macrophages are targets of HIV-1-mediated immunopathology, the impact of high viremia on activation-induced monocyte apoptosis relative to monocyte and macrophage activation changes remains undetermined. In this study, we determined constitutive and oxidative stress-induced monocyte apoptosis in uninfected and HIV + individuals across a spectrum of viral loads ( n = 35; range, 2,243 to 1,355,998 HIV-1 RNA copies/ml) and CD4 counts (range, 26 to 801 cells/mm 3 ). Both constitutive apoptosis and oxidative stress-induced apoptosis were positively associated with viral load and negatively associated with CD4, with an elevation in apoptosis occurring in patients with more than 40,000 (4.6 log) copies/ml. As expected, expression of Rb1 and interferon-stimulated genes (ISGs), plasma soluble CD163 (sCD163) concentration, and the proportion of CD14 ++ CD16 + intermediate monocytes were elevated in viremic patients compared to those in uninfected controls. Although CD14 ++ CD16 + frequencies, sCD14, sCD163, and most ISG expression were not directly associated with a change in apoptosis, sCD14 and ISG expression showed an association with increasing viral load. Multivariable analysis of clinical values and monocyte gene expression identified changes in IFI27, IFITM2, Rb1, and Bcl2 expression as determinants of constitutive apoptosis ( P = 3.77 × 10 −5 ; adjusted R 2 = 0.5983), while changes in viral load, IFITM2, Rb1, and Bax expression were determinants of oxidative stress-induced apoptosis ( P = 5.59 × 10 −5 ; adjusted R 2 = 0.5996). Our data demonstrate differential activation states in monocytes between levels of viremia in association with differences in apoptosis that may contribute to greater monocyte turnover with high viremia. IMPORTANCE This study characterized differential monocyte activation, apoptosis, and apoptosis-related gene expression in low- versus high-level viremic HIV-1 patients, suggesting a shift in apoptosis regulation that may be associated with disease state. Using single and multivariable analysis of monocyte activation parameters and gene expression, we supported the hypothesis that monocyte apoptosis in HIV disease is a reflection of viremia and activation state with contributions from gene expression changes within the ISG and Bcl2 gene families. Understanding monocyte apoptosis response may inform HIV immunopathogenesis, retention of infected macrophages, and monocyte turnover in low- or high-viral-load states.
AbstractList Although monocytes and macrophages are targets of HIV-1-mediated immunopathology, the impact of high viremia on activation-induced monocyte apoptosis relative to monocyte and macrophage activation changes remains undetermined. In this study, we determined constitutive and oxidative stress-induced monocyte apoptosis in uninfected and HIV(+) individuals across a spectrum of viral loads (n = 35; range, 2,243 to 1,355,998 HIV-1 RNA copies/ml) and CD4 counts (range, 26 to 801 cells/mm(3)). Both constitutive apoptosis and oxidative stress-induced apoptosis were positively associated with viral load and negatively associated with CD4, with an elevation in apoptosis occurring in patients with more than 40,000 (4.6 log) copies/ml. As expected, expression of Rb1 and interferon-stimulated genes (ISGs), plasma soluble CD163 (sCD163) concentration, and the proportion of CD14(++) CD16(+) intermediate monocytes were elevated in viremic patients compared to those in uninfected controls. Although CD14(++) CD16(+) frequencies, sCD14, sCD163, and most ISG expression were not directly associated with a change in apoptosis, sCD14 and ISG expression showed an association with increasing viral load. Multivariable analysis of clinical values and monocyte gene expression identified changes in IFI27, IFITM2, Rb1, and Bcl2 expression as determinants of constitutive apoptosis (P = 3.77 × 10(-5); adjusted R(2) = 0.5983), while changes in viral load, IFITM2, Rb1, and Bax expression were determinants of oxidative stress-induced apoptosis (P = 5.59 × 10(-5); adjusted R(2) = 0.5996). Our data demonstrate differential activation states in monocytes between levels of viremia in association with differences in apoptosis that may contribute to greater monocyte turnover with high viremia. This study characterized differential monocyte activation, apoptosis, and apoptosis-related gene expression in low- versus high-level viremic HIV-1 patients, suggesting a shift in apoptosis regulation that may be associated with disease state. Using single and multivariable analysis of monocyte activation parameters and gene expression, we supported the hypothesis that monocyte apoptosis in HIV disease is a reflection of viremia and activation state with contributions from gene expression changes within the ISG and Bcl2 gene families. Understanding monocyte apoptosis response may inform HIV immunopathogenesis, retention of infected macrophages, and monocyte turnover in low- or high-viral-load states.
Although monocytes and macrophages are targets of HIV-1-mediated immunopathology, the impact of high viremia on activation-induced monocyte apoptosis relative to monocyte and macrophage activation changes remains undetermined. In this study, we determined constitutive and oxidative stress-induced monocyte apoptosis in uninfected and HIV+ individuals across a spectrum of viral loads (n = 35; range, 2,243 to 1,355,998 HIV-1 RNA copies/ml) and CD4 counts (range, 26 to 801 cells/mm super(3)). Both constitutive apoptosis and oxidative stress-induced apoptosis were positively associated with viral load and negatively associated with CD4, with an elevation in apoptosis occurring in patients with more than 40,000 (4.6 log) copies/ml. As expected, expression of Rb1 and interferon-stimulated genes (ISGs), plasma soluble CD163 (sCD163) concentration, and the proportion of CD14++ CD16+ intermediate monocytes were elevated in viremic patients compared to those in uninfected controls. Although CD14++ CD16+ frequencies, sCD14, sCD163, and most ISG expression were not directly associated with a change in apoptosis, sCD14 and ISG expression showed an association with increasing viral load. Multivariable analysis of clinical values and monocyte gene expression identified changes in IFI27, IFITM2, Rb1, and Bcl2 expression as determinants of constitutive apoptosis (P = 3.77 x 10 super(-5); adjusted R2 = 0.5983), while changes in viral load, IFITM2, Rb1, and Bax expression were determinants of oxidative stress-induced apoptosis (P = 5.59 x 10 super(-5); adjusted R2 = 0.5996). Our data demonstrate differential activation states in monocytes between levels of viremia in association with differences in apoptosis that may contribute to greater monocyte turnover with high viremia. IMPORTANCE This study characterized differential monocyte activation, apoptosis, and apoptosis-related gene expression in low- versus high-level viremic HIV-1 patients, suggesting a shift in apoptosis regulation that may be associated with disease state. Using single and multivariable analysis of monocyte activation parameters and gene expression, we supported the hypothesis that monocyte apoptosis in HIV disease is a reflection of viremia and activation state with contributions from gene expression changes within the ISG and Bcl2 gene families. Understanding monocyte apoptosis response may inform HIV immunopathogenesis, retention of infected macrophages, and monocyte turnover in low- or high-viral-load states.
Although monocytes and macrophages are targets of HIV-1-mediated immunopathology, the impact of high viremia on activation-induced monocyte apoptosis relative to monocyte and macrophage activation changes remains undetermined. In this study, we determined constitutive and oxidative stress-induced monocyte apoptosis in uninfected and HIV + individuals across a spectrum of viral loads ( n = 35; range, 2,243 to 1,355,998 HIV-1 RNA copies/ml) and CD4 counts (range, 26 to 801 cells/mm 3 ). Both constitutive apoptosis and oxidative stress-induced apoptosis were positively associated with viral load and negatively associated with CD4, with an elevation in apoptosis occurring in patients with more than 40,000 (4.6 log) copies/ml. As expected, expression of Rb1 and interferon-stimulated genes (ISGs), plasma soluble CD163 (sCD163) concentration, and the proportion of CD14 ++ CD16 + intermediate monocytes were elevated in viremic patients compared to those in uninfected controls. Although CD14 ++ CD16 + frequencies, sCD14, sCD163, and most ISG expression were not directly associated with a change in apoptosis, sCD14 and ISG expression showed an association with increasing viral load. Multivariable analysis of clinical values and monocyte gene expression identified changes in IFI27, IFITM2, Rb1, and Bcl2 expression as determinants of constitutive apoptosis ( P = 3.77 × 10 −5 ; adjusted R 2 = 0.5983), while changes in viral load, IFITM2, Rb1, and Bax expression were determinants of oxidative stress-induced apoptosis ( P = 5.59 × 10 −5 ; adjusted R 2 = 0.5996). Our data demonstrate differential activation states in monocytes between levels of viremia in association with differences in apoptosis that may contribute to greater monocyte turnover with high viremia. IMPORTANCE This study characterized differential monocyte activation, apoptosis, and apoptosis-related gene expression in low- versus high-level viremic HIV-1 patients, suggesting a shift in apoptosis regulation that may be associated with disease state. Using single and multivariable analysis of monocyte activation parameters and gene expression, we supported the hypothesis that monocyte apoptosis in HIV disease is a reflection of viremia and activation state with contributions from gene expression changes within the ISG and Bcl2 gene families. Understanding monocyte apoptosis response may inform HIV immunopathogenesis, retention of infected macrophages, and monocyte turnover in low- or high-viral-load states.
Although monocytes and macrophages are targets of HIV-1-mediated immunopathology, the impact of high viremia on activation-induced monocyte apoptosis relative to monocyte and macrophage activation changes remains undetermined. In this study, we determined constitutive and oxidative stress-induced monocyte apoptosis in uninfected and HIV(+) individuals across a spectrum of viral loads (n = 35; range, 2,243 to 1,355,998 HIV-1 RNA copies/ml) and CD4 counts (range, 26 to 801 cells/mm(3)). Both constitutive apoptosis and oxidative stress-induced apoptosis were positively associated with viral load and negatively associated with CD4, with an elevation in apoptosis occurring in patients with more than 40,000 (4.6 log) copies/ml. As expected, expression of Rb1 and interferon-stimulated genes (ISGs), plasma soluble CD163 (sCD163) concentration, and the proportion of CD14(++) CD16(+) intermediate monocytes were elevated in viremic patients compared to those in uninfected controls. Although CD14(++) CD16(+) frequencies, sCD14, sCD163, and most ISG expression were not directly associated with a change in apoptosis, sCD14 and ISG expression showed an association with increasing viral load. Multivariable analysis of clinical values and monocyte gene expression identified changes in IFI27, IFITM2, Rb1, and Bcl2 expression as determinants of constitutive apoptosis (P = 3.77 × 10(-5); adjusted R(2) = 0.5983), while changes in viral load, IFITM2, Rb1, and Bax expression were determinants of oxidative stress-induced apoptosis (P = 5.59 × 10(-5); adjusted R(2) = 0.5996). Our data demonstrate differential activation states in monocytes between levels of viremia in association with differences in apoptosis that may contribute to greater monocyte turnover with high viremia.UNLABELLEDAlthough monocytes and macrophages are targets of HIV-1-mediated immunopathology, the impact of high viremia on activation-induced monocyte apoptosis relative to monocyte and macrophage activation changes remains undetermined. In this study, we determined constitutive and oxidative stress-induced monocyte apoptosis in uninfected and HIV(+) individuals across a spectrum of viral loads (n = 35; range, 2,243 to 1,355,998 HIV-1 RNA copies/ml) and CD4 counts (range, 26 to 801 cells/mm(3)). Both constitutive apoptosis and oxidative stress-induced apoptosis were positively associated with viral load and negatively associated with CD4, with an elevation in apoptosis occurring in patients with more than 40,000 (4.6 log) copies/ml. As expected, expression of Rb1 and interferon-stimulated genes (ISGs), plasma soluble CD163 (sCD163) concentration, and the proportion of CD14(++) CD16(+) intermediate monocytes were elevated in viremic patients compared to those in uninfected controls. Although CD14(++) CD16(+) frequencies, sCD14, sCD163, and most ISG expression were not directly associated with a change in apoptosis, sCD14 and ISG expression showed an association with increasing viral load. Multivariable analysis of clinical values and monocyte gene expression identified changes in IFI27, IFITM2, Rb1, and Bcl2 expression as determinants of constitutive apoptosis (P = 3.77 × 10(-5); adjusted R(2) = 0.5983), while changes in viral load, IFITM2, Rb1, and Bax expression were determinants of oxidative stress-induced apoptosis (P = 5.59 × 10(-5); adjusted R(2) = 0.5996). Our data demonstrate differential activation states in monocytes between levels of viremia in association with differences in apoptosis that may contribute to greater monocyte turnover with high viremia.This study characterized differential monocyte activation, apoptosis, and apoptosis-related gene expression in low- versus high-level viremic HIV-1 patients, suggesting a shift in apoptosis regulation that may be associated with disease state. Using single and multivariable analysis of monocyte activation parameters and gene expression, we supported the hypothesis that monocyte apoptosis in HIV disease is a reflection of viremia and activation state with contributions from gene expression changes within the ISG and Bcl2 gene families. Understanding monocyte apoptosis response may inform HIV immunopathogenesis, retention of infected macrophages, and monocyte turnover in low- or high-viral-load states.IMPORTANCEThis study characterized differential monocyte activation, apoptosis, and apoptosis-related gene expression in low- versus high-level viremic HIV-1 patients, suggesting a shift in apoptosis regulation that may be associated with disease state. Using single and multivariable analysis of monocyte activation parameters and gene expression, we supported the hypothesis that monocyte apoptosis in HIV disease is a reflection of viremia and activation state with contributions from gene expression changes within the ISG and Bcl2 gene families. Understanding monocyte apoptosis response may inform HIV immunopathogenesis, retention of infected macrophages, and monocyte turnover in low- or high-viral-load states.
Author Montaner, Luis J.
Davuluri, Ramana V.
Pal, Sharmistha
Lynn, Kenneth
Bi, Yingtao
Kostman, Jay R.
Patro, Sean C.
Mounzer, Karam C.
Author_xml – sequence: 1
  givenname: Sean C.
  surname: Patro
  fullname: Patro, Sean C.
  organization: The Wistar Institute, HIV Immunopathogenesis Laboratory, Philadelphia, Pennsylvania, USA, University of Pennsylvania Perelman School of Medicine, Department of Microbiology, Philadelphia, Pennsylvania, USA
– sequence: 2
  givenname: Sharmistha
  surname: Pal
  fullname: Pal, Sharmistha
  organization: The Wistar Institute, Center for Systems and Computational Biology, Philadelphia, Pennsylvania, USA
– sequence: 3
  givenname: Yingtao
  surname: Bi
  fullname: Bi, Yingtao
  organization: The Wistar Institute, Center for Systems and Computational Biology, Philadelphia, Pennsylvania, USA
– sequence: 4
  givenname: Kenneth
  surname: Lynn
  fullname: Lynn, Kenneth
  organization: UPENN-Presbyterian Medical Center, Philadelphia, Pennsylvania, USA
– sequence: 5
  givenname: Karam C.
  surname: Mounzer
  fullname: Mounzer, Karam C.
  organization: Philadelphia FIGHT, The Jonathan Lax Treatment Center, Philadelphia, Pennsylvania, USA
– sequence: 6
  givenname: Jay R.
  surname: Kostman
  fullname: Kostman, Jay R.
  organization: UPENN-Presbyterian Medical Center, Philadelphia, Pennsylvania, USA
– sequence: 7
  givenname: Ramana V.
  surname: Davuluri
  fullname: Davuluri, Ramana V.
  organization: The Wistar Institute, Center for Systems and Computational Biology, Philadelphia, Pennsylvania, USA
– sequence: 8
  givenname: Luis J.
  surname: Montaner
  fullname: Montaner, Luis J.
  organization: The Wistar Institute, HIV Immunopathogenesis Laboratory, Philadelphia, Pennsylvania, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25355877$$D View this record in MEDLINE/PubMed
BookMark eNqNks1uEzEUhS1URNPCjjXykgXT2h4749kglahNBwUhEYjYWbbHzria2NOxA-RheFcc2kYFsWDjH93vHN2re07AkQ_eAPASozOMCT9_v2rOECk5KTB9AiYY1bxgDNMjMEGIkIKV_OsxOInxBiFM6ZQ-A8eElYzxqpqAn8vO2QSdhx-CD3qXDLwYwpBCdBF-d6mDjdejkdH5NVy5UfZwEWQLpW_hrJN-bfbag6T4ZHqZTAub5fz8ne4JvJIb1-_g3HgDL38Mo4nRBb8XzboxeKdln8vXzarAReOt0Xv1cqtu8is-B0-t7KN5cX-fgi9Xl59n18Xi47yZXSwKTXGVCtUqRRnXtG4NIhZXdWs5rwk3amrzaRlHpa4lUqrilbSGE4SlVpVVNn_b8hS8vfMdtmpjWm18ypOKYXQbOe5EkE78WfGuE-vwTdASYUzrbPD63mAMt1sTk9i4qE3fS2_CNgo8ZXRalbRG_4GWVV0zUlcZffW4rUM_D-vLwJs7QI8hxtHYA4KR2KdD5HSI3-kQmGac_IVrl2TK-8hDuf7fol8utr-F
CitedBy_id crossref_primary_10_1089_acm_2015_0350
crossref_primary_10_1038_s41598_019_50642_x
crossref_primary_10_1097_COH_0000000000000242
crossref_primary_10_1126_scisignal_aab0808
crossref_primary_10_1371_journal_ppat_1009785
crossref_primary_10_1002_eji_201646904
crossref_primary_10_1111_boc_201600034
crossref_primary_10_1189_jlb_5AB0915_406R
crossref_primary_10_15212_ZOONOSES_2024_0016
crossref_primary_10_1016_j_jinf_2017_09_016
crossref_primary_10_1080_07853890_2021_1995624
crossref_primary_10_1128_mBio_01037_20
crossref_primary_10_1097_COH_0000000000000910
crossref_primary_10_3892_or_2015_4419
crossref_primary_10_1016_j_trsl_2021_07_006
crossref_primary_10_4049_jimmunol_1501194
Cites_doi 10.4049/jimmunol.178.10.6581
10.1371/journal.pone.0001967
10.1054/bjoc.2000.1411
10.1038/nrm2434
10.1038/nrm2308
10.1093/infdis/jiq118
10.1093/infdis/jir520
10.1097/QAD.0b013e3283471f10
10.1189/jlb.0306157
10.1111/j.1474-9726.2012.00851.x
10.1038/nm1511
10.1371/journal.ppat.1000842
10.1371/journal.pone.0021275
10.1097/QAD.0b013e32833ac623
10.1189/jlb.0110051
10.4049/jimmunol.177.4.2304
10.1007/s00262-004-0645-2
10.1182/blood.V96.9.2951
10.1097/QAD.0b013e328349f022
10.1016/j.jinf.2012.06.008
10.1189/jlb.0209082
10.1371/journal.pone.0005397
10.1007/s11010-010-0709-x
10.1371/journal.pone.0041153
10.1016/j.molcel.2010.01.025
10.1016/j.clim.2008.05.009
10.1089/107999004772719864
10.1007/s10495-006-5879-3
10.4049/jimmunol.174.4.2196
10.1046/j.1365-2249.2000.01201.x
10.1038/nm.2106
10.1089/jir.2010.0105
10.1038/cddis.2010.77
10.1071/SH11028
10.1002/jlb.52.1.111
10.1128/JVI.76.2.707-716.2002
10.1007/s10495-008-0190-0
10.1016/S0140-6736(96)10178-1
10.4049/jimmunol.1200458
10.1189/jlb.1111552
10.1093/infdis/jir507
10.1097/COH.0b013e328324bbec
10.1146/annurev.biochem.73.011303.073706
10.1128/JVI.00324-06
10.1371/journal.ppat.1002087
10.1371/journal.ppat.0030134
10.1172/JCI31122
10.1016/j.jmb.2013.12.003
10.1093/infdis/jit547
10.1093/infdis/jir214
10.1182/blood-2009-02-204263
10.1371/journal.pone.0019968
10.1074/jbc.M007369200
10.1097/00002030-199807000-00008
10.1074/jbc.275.15.11418
10.1128/JVI.01531-10
10.1016/j.cell.2009.12.017
10.1002/ijc.24669
10.1089/AID.2013.0268
10.1074/jbc.M212033200
10.1371/journal.pone.0018291
10.1128/JVI.77.21.11708-11717.2003
10.1016/j.jneuroim.2004.08.039
10.1097/QAD.0b013e3283013d42
10.1189/jlb.0610371
10.1128/JVI.02379-12
10.1371/journal.pone.0055279
10.1159/000100565
10.1371/journal.pone.0055776
10.1007/s11481-011-9330-3
10.1097/QAD.0b013e3282f4de23
10.1016/j.bbamcr.2004.10.011
10.4049/jimmunol.0801450
10.1182/blood-2004-08-3058
10.1128/JVI.01118-10
ContentType Journal Article
Copyright Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology
Copyright_xml – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved.
– notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
7U9
8FD
FR3
H94
P64
RC3
5PM
DOI 10.1128/JVI.02382-14
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Immunology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE
Genetics Abstracts

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Monocyte Apoptosis and Gene Expression in HIV-1
EISSN 1098-5514
EndPage 810
ExternalDocumentID PMC4301149
25355877
10_1128_JVI_02382_14
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NLM NIH HHS
  grantid: R01 LM011297
– fundername: NIAID NIH HHS
  grantid: P30AI045008
– fundername: NCI NIH HHS
  grantid: P30 CA010815
– fundername: NIAID NIH HHS
  grantid: P30 AI045008
– fundername: NCI NIH HHS
  grantid: P30CA010815
– fundername: NIAID NIH HHS
  grantid: R01 AI073219
GroupedDBID ---
-~X
.55
.GJ
0R~
18M
29L
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
6TJ
85S
AAFWJ
AAGFI
AAYJJ
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
ADXHL
AENEX
AFFNX
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CITATION
CS3
D0S
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
MVM
N9A
O9-
OHT
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
VH1
W2D
W8F
WH7
WOQ
X7M
Y6R
YQT
ZGI
ZXP
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RHF
UCJ
7X8
7T5
7U9
8FD
FR3
H94
P64
RC3
5PM
ID FETCH-LOGICAL-c417t-bdbb458c49de02f179df88928eb6f28ef5803c9a0bb787afe8201acb7fbf7afd3
ISSN 0022-538X
1098-5514
IngestDate Thu Aug 21 14:10:41 EDT 2025
Thu Jul 10 18:12:43 EDT 2025
Fri Jul 11 02:10:22 EDT 2025
Wed Feb 19 02:42:06 EST 2025
Tue Jul 01 01:02:35 EDT 2025
Thu Apr 24 23:12:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Copyright © 2015, American Society for Microbiology. All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c417t-bdbb458c49de02f179df88928eb6f28ef5803c9a0bb787afe8201acb7fbf7afd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Patro SC, Pal S, Bi Y, Lynn K, Mounzer KC, Kostman JR, Davuluri RV, Montaner LJ. 2015. Shift in monocyte apoptosis with increasing viral load and change in apoptosis-related ISG/Bcl2 family gene expression in chronically HIV-1-infected subjects. J Virol 89:799–810. doi:10.1128/JVI.02382-14.
OpenAccessLink https://jvi.asm.org/content/jvi/89/1/799.full.pdf
PMID 25355877
PQID 1637995297
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4301149
proquest_miscellaneous_1654673490
proquest_miscellaneous_1637995297
pubmed_primary_25355877
crossref_primary_10_1128_JVI_02382_14
crossref_citationtrail_10_1128_JVI_02382_14
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of virology
PublicationTitleAlternate J Virol
PublicationYear 2015
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_75_2
e_1_3_3_71_2
e_1_3_3_77_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
Haupt Y (e_1_3_3_50_2) 1995; 10
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_73_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_74_2
e_1_3_3_76_2
e_1_3_3_70_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
23365694 - PLoS One. 2013;8(1):e55279
16887991 - J Immunol. 2006 Aug 15;177(4):2304-13
18650129 - Clin Immunol. 2008 Oct;129(1):132-44
21917896 - J Infect Dis. 2011 Oct 15;204(8):1227-36
22127030 - Sex Health. 2011 Dec;8(4):453-64
17005663 - J Virol. 2006 Dec;80(23):11486-97
23449791 - J Virol. 2013 May;87(9):5170-81
21505304 - AIDS. 2011 Jun 1;25(9):1207-17
24326250 - J Mol Biol. 2014 Mar 20;426(6):1161-77
14557656 - J Virol. 2003 Nov;77(21):11708-17
18525259 - AIDS. 2008 Jun 19;22(10):1137-44
7731711 - Oncogene. 1995 Apr 20;10(8):1563-71
21917895 - J Infect Dis. 2011 Oct 15;204(8):1217-26
18097445 - Nat Rev Mol Cell Biol. 2008 Jan;9(1):47-59
21625498 - PLoS One. 2011;6(5):e19968
26041838 - J Virol. 2015 Jul;89(13):6970
21210296 - Mol Cell Biochem. 2011 May;351(1-2):41-58
20495440 - AIDS. 2010 Jun 19;24(10):1415-23
10993652 - Br J Cancer. 2000 Oct;83(8):1039-46
21483669 - PLoS One. 2011;6(4):e18291
20939681 - J Interferon Cytokine Res. 2011 Jan;31(1):173-81
9619803 - AIDS. 1998 May 7;12(7):719-27
17356300 - Intervirology. 2007;50(3):224-8
19383966 - Blood. 2009 Oct 1;114(14):2917-25
15189137 - Annu Rev Biochem. 2004;73:87-106
15843035 - Biochim Biophys Acta. 2005 Apr 15;1743(3):215-22
24133185 - J Infect Dis. 2014 Mar 1;209(5):739-48
14980080 - J Interferon Cytokine Res. 2004 Jan;24(1):1-19
24524407 - AIDS Res Hum Retroviruses. 2014 Jul;30(7):685-94
20419144 - PLoS Pathog. 2010 Apr;6(4):e1000842
10753958 - J Biol Chem. 2000 Apr 14;275(15):11418-24
21731690 - PLoS One. 2011;6(6):e21275
21177806 - J Virol. 2011 Mar;85(5):2126-37
18317010 - AIDS. 2008 Mar 12;22(5):655-8
20159550 - Mol Cell. 2010 Feb 12;37(3):299-310
16940334 - J Leukoc Biol. 2006 Nov;80(5):1031-43
17115046 - Nat Med. 2006 Dec;12(12):1365-71
18568041 - Nat Rev Mol Cell Biol. 2008 Jul;9(7):532-42
18330707 - Apoptosis. 2008 Apr;13(4):562-72
21628670 - J Infect Dis. 2011 Jul 1;204(1):154-63
21731488 - PLoS Pathog. 2011 Jun;7(6):e1002087
15699152 - J Immunol. 2005 Feb 15;174(4):2196-204
21252259 - J Infect Dis. 2011 Mar 15;203(6):780-90
20884651 - J Leukoc Biol. 2011 Jan;89(1):149-58
11752161 - J Virol. 2002 Jan;76(2):707-16
22815948 - PLoS One. 2012;7(7):e41153
20064371 - Cell. 2009 Dec 24;139(7):1243-54
15685448 - Cancer Immunol Immunother. 2005 Aug;54(8):729-40
9078201 - Lancet. 1997 Mar 8;349(9053):692-5
22701041 - J Leukoc Biol. 2012 Aug;92(2):397-405
21750421 - AIDS. 2011 Sep 10;25(14):1721-6
22728172 - J Infect. 2012 Nov;65(5):431-8
19299747 - J Immunol. 2009 Apr 1;182(7):4459-70
16532269 - Apoptosis. 2006 May;11(5):673-86
12595530 - J Biol Chem. 2003 May 2;278(18):15693-701
1640166 - J Leukoc Biol. 1992 Jul;52(1):111-4
20208540 - Nat Med. 2010 Apr;16(4):452-9
10759771 - Clin Exp Immunol. 2000 Apr;120(1):107-12
11049971 - Blood. 2000 Nov 1;96(9):2951-64
15579285 - J Neuroimmunol. 2004 Dec;157(1-2):93-8
22708967 - Aging Cell. 2012 Oct;11(5):867-75
20962079 - J Virol. 2011 Jan;85(1):397-409
22167311 - J Neuroimmune Pharmacol. 2012 Jun;7(2):363-71
15585654 - Blood. 2005 Mar 15;105(6):2458-64
19404407 - PLoS One. 2009;4(4):e5397
17823654 - J Clin Invest. 2007 Oct;117(10):3107-17
19544527 - Int J Cancer. 2009 Dec 15;125(12):2810-9
23437063 - PLoS One. 2013;8(2):e55776
19339947 - Curr Opin HIV AIDS. 2009 Mar;4(2):96-103
22745371 - J Immunol. 2012 Aug 1;189(3):1491-9
21368875 - Cell Death Dis. 2010;1:e99
17907802 - PLoS Pathog. 2007 Sep 7;3(9):1281-90
10970901 - J Biol Chem. 2000 Dec 15;275(50):39702-9
18414664 - PLoS One. 2008;3(4):e1967
20551211 - J Leukoc Biol. 2010 Sep;88(3):589-96
17475889 - J Immunol. 2007 May 15;178(10):6581-9
19843579 - J Leukoc Biol. 2010 Apr;87(4):557-67
References_xml – ident: e_1_3_3_12_2
  doi: 10.4049/jimmunol.178.10.6581
– ident: e_1_3_3_27_2
  doi: 10.1371/journal.pone.0001967
– ident: e_1_3_3_51_2
  doi: 10.1054/bjoc.2000.1411
– ident: e_1_3_3_56_2
  doi: 10.1038/nrm2434
– ident: e_1_3_3_52_2
  doi: 10.1038/nrm2308
– ident: e_1_3_3_14_2
  doi: 10.1093/infdis/jiq118
– ident: e_1_3_3_16_2
  doi: 10.1093/infdis/jir520
– ident: e_1_3_3_23_2
  doi: 10.1097/QAD.0b013e3283471f10
– ident: e_1_3_3_26_2
  doi: 10.1189/jlb.0306157
– ident: e_1_3_3_75_2
  doi: 10.1111/j.1474-9726.2012.00851.x
– ident: e_1_3_3_18_2
  doi: 10.1038/nm1511
– ident: e_1_3_3_41_2
  doi: 10.1371/journal.ppat.1000842
– ident: e_1_3_3_68_2
  doi: 10.1371/journal.pone.0021275
– ident: e_1_3_3_9_2
  doi: 10.1097/QAD.0b013e32833ac623
– ident: e_1_3_3_33_2
  doi: 10.1189/jlb.0110051
– ident: e_1_3_3_76_2
  doi: 10.4049/jimmunol.177.4.2304
– ident: e_1_3_3_58_2
  doi: 10.1007/s00262-004-0645-2
– ident: e_1_3_3_4_2
  doi: 10.1182/blood.V96.9.2951
– ident: e_1_3_3_8_2
  doi: 10.1097/QAD.0b013e328349f022
– ident: e_1_3_3_48_2
  doi: 10.1016/j.jinf.2012.06.008
– ident: e_1_3_3_47_2
  doi: 10.1189/jlb.0209082
– ident: e_1_3_3_38_2
  doi: 10.1371/journal.pone.0005397
– ident: e_1_3_3_54_2
  doi: 10.1007/s11010-010-0709-x
– ident: e_1_3_3_6_2
  doi: 10.1371/journal.pone.0041153
– volume: 10
  start-page: 1563
  year: 1995
  ident: e_1_3_3_50_2
  article-title: p53-mediated apoptosis in HeLa cells can be overcome by excess pRB
  publication-title: Oncogene
– ident: e_1_3_3_53_2
  doi: 10.1016/j.molcel.2010.01.025
– ident: e_1_3_3_21_2
  doi: 10.1016/j.clim.2008.05.009
– ident: e_1_3_3_57_2
  doi: 10.1089/107999004772719864
– ident: e_1_3_3_46_2
  doi: 10.1007/s10495-006-5879-3
– ident: e_1_3_3_5_2
  doi: 10.4049/jimmunol.174.4.2196
– ident: e_1_3_3_22_2
  doi: 10.1046/j.1365-2249.2000.01201.x
– ident: e_1_3_3_28_2
  doi: 10.1038/nm.2106
– ident: e_1_3_3_63_2
  doi: 10.1089/jir.2010.0105
– ident: e_1_3_3_40_2
  doi: 10.1038/cddis.2010.77
– ident: e_1_3_3_74_2
  doi: 10.1071/SH11028
– ident: e_1_3_3_37_2
  doi: 10.1002/jlb.52.1.111
– ident: e_1_3_3_24_2
  doi: 10.1128/JVI.76.2.707-716.2002
– ident: e_1_3_3_60_2
  doi: 10.1007/s10495-008-0190-0
– ident: e_1_3_3_11_2
  doi: 10.1016/S0140-6736(96)10178-1
– ident: e_1_3_3_71_2
  doi: 10.4049/jimmunol.1200458
– ident: e_1_3_3_34_2
  doi: 10.1189/jlb.1111552
– ident: e_1_3_3_67_2
  doi: 10.1093/infdis/jir507
– ident: e_1_3_3_2_2
  doi: 10.1097/COH.0b013e328324bbec
– ident: e_1_3_3_55_2
  doi: 10.1146/annurev.biochem.73.011303.073706
– ident: e_1_3_3_20_2
  doi: 10.1128/JVI.00324-06
– ident: e_1_3_3_31_2
  doi: 10.1371/journal.ppat.1002087
– ident: e_1_3_3_32_2
  doi: 10.1371/journal.ppat.0030134
– ident: e_1_3_3_59_2
  doi: 10.1172/JCI31122
– ident: e_1_3_3_66_2
  doi: 10.1016/j.jmb.2013.12.003
– ident: e_1_3_3_77_2
  doi: 10.1093/infdis/jit547
– ident: e_1_3_3_17_2
  doi: 10.1093/infdis/jir214
– ident: e_1_3_3_42_2
  doi: 10.1182/blood-2009-02-204263
– ident: e_1_3_3_70_2
  doi: 10.1371/journal.pone.0019968
– ident: e_1_3_3_43_2
  doi: 10.1074/jbc.M007369200
– ident: e_1_3_3_25_2
  doi: 10.1097/00002030-199807000-00008
– ident: e_1_3_3_44_2
  doi: 10.1074/jbc.275.15.11418
– ident: e_1_3_3_64_2
  doi: 10.1128/JVI.01531-10
– ident: e_1_3_3_62_2
  doi: 10.1016/j.cell.2009.12.017
– ident: e_1_3_3_61_2
  doi: 10.1002/ijc.24669
– ident: e_1_3_3_49_2
  doi: 10.1089/AID.2013.0268
– ident: e_1_3_3_65_2
  doi: 10.1074/jbc.M212033200
– ident: e_1_3_3_35_2
  doi: 10.1371/journal.pone.0018291
– ident: e_1_3_3_3_2
  doi: 10.1128/JVI.77.21.11708-11717.2003
– ident: e_1_3_3_10_2
  doi: 10.1016/j.jneuroim.2004.08.039
– ident: e_1_3_3_36_2
  doi: 10.1097/QAD.0b013e3283013d42
– ident: e_1_3_3_69_2
  doi: 10.1189/jlb.0610371
– ident: e_1_3_3_72_2
  doi: 10.1128/JVI.02379-12
– ident: e_1_3_3_15_2
  doi: 10.1371/journal.pone.0055279
– ident: e_1_3_3_30_2
  doi: 10.1159/000100565
– ident: e_1_3_3_7_2
  doi: 10.1371/journal.pone.0055776
– ident: e_1_3_3_13_2
  doi: 10.1007/s11481-011-9330-3
– ident: e_1_3_3_29_2
  doi: 10.1097/QAD.0b013e3282f4de23
– ident: e_1_3_3_45_2
  doi: 10.1016/j.bbamcr.2004.10.011
– ident: e_1_3_3_19_2
  doi: 10.4049/jimmunol.0801450
– ident: e_1_3_3_39_2
  doi: 10.1182/blood-2004-08-3058
– ident: e_1_3_3_73_2
  doi: 10.1128/JVI.01118-10
– reference: 23449791 - J Virol. 2013 May;87(9):5170-81
– reference: 20159550 - Mol Cell. 2010 Feb 12;37(3):299-310
– reference: 10759771 - Clin Exp Immunol. 2000 Apr;120(1):107-12
– reference: 1640166 - J Leukoc Biol. 1992 Jul;52(1):111-4
– reference: 15579285 - J Neuroimmunol. 2004 Dec;157(1-2):93-8
– reference: 21252259 - J Infect Dis. 2011 Mar 15;203(6):780-90
– reference: 10993652 - Br J Cancer. 2000 Oct;83(8):1039-46
– reference: 11049971 - Blood. 2000 Nov 1;96(9):2951-64
– reference: 21625498 - PLoS One. 2011;6(5):e19968
– reference: 22167311 - J Neuroimmune Pharmacol. 2012 Jun;7(2):363-71
– reference: 19544527 - Int J Cancer. 2009 Dec 15;125(12):2810-9
– reference: 10970901 - J Biol Chem. 2000 Dec 15;275(50):39702-9
– reference: 16887991 - J Immunol. 2006 Aug 15;177(4):2304-13
– reference: 22728172 - J Infect. 2012 Nov;65(5):431-8
– reference: 23437063 - PLoS One. 2013;8(2):e55776
– reference: 21368875 - Cell Death Dis. 2010;1:e99
– reference: 15189137 - Annu Rev Biochem. 2004;73:87-106
– reference: 23365694 - PLoS One. 2013;8(1):e55279
– reference: 19404407 - PLoS One. 2009;4(4):e5397
– reference: 17823654 - J Clin Invest. 2007 Oct;117(10):3107-17
– reference: 21177806 - J Virol. 2011 Mar;85(5):2126-37
– reference: 12595530 - J Biol Chem. 2003 May 2;278(18):15693-701
– reference: 26041838 - J Virol. 2015 Jul;89(13):6970
– reference: 17907802 - PLoS Pathog. 2007 Sep 7;3(9):1281-90
– reference: 7731711 - Oncogene. 1995 Apr 20;10(8):1563-71
– reference: 21917896 - J Infect Dis. 2011 Oct 15;204(8):1227-36
– reference: 20208540 - Nat Med. 2010 Apr;16(4):452-9
– reference: 18650129 - Clin Immunol. 2008 Oct;129(1):132-44
– reference: 9619803 - AIDS. 1998 May 7;12(7):719-27
– reference: 20419144 - PLoS Pathog. 2010 Apr;6(4):e1000842
– reference: 9078201 - Lancet. 1997 Mar 8;349(9053):692-5
– reference: 19339947 - Curr Opin HIV AIDS. 2009 Mar;4(2):96-103
– reference: 24133185 - J Infect Dis. 2014 Mar 1;209(5):739-48
– reference: 24326250 - J Mol Biol. 2014 Mar 20;426(6):1161-77
– reference: 17475889 - J Immunol. 2007 May 15;178(10):6581-9
– reference: 21917895 - J Infect Dis. 2011 Oct 15;204(8):1217-26
– reference: 21483669 - PLoS One. 2011;6(4):e18291
– reference: 24524407 - AIDS Res Hum Retroviruses. 2014 Jul;30(7):685-94
– reference: 21731690 - PLoS One. 2011;6(6):e21275
– reference: 22815948 - PLoS One. 2012;7(7):e41153
– reference: 14980080 - J Interferon Cytokine Res. 2004 Jan;24(1):1-19
– reference: 18317010 - AIDS. 2008 Mar 12;22(5):655-8
– reference: 18097445 - Nat Rev Mol Cell Biol. 2008 Jan;9(1):47-59
– reference: 22745371 - J Immunol. 2012 Aug 1;189(3):1491-9
– reference: 20495440 - AIDS. 2010 Jun 19;24(10):1415-23
– reference: 18525259 - AIDS. 2008 Jun 19;22(10):1137-44
– reference: 18330707 - Apoptosis. 2008 Apr;13(4):562-72
– reference: 21731488 - PLoS Pathog. 2011 Jun;7(6):e1002087
– reference: 21210296 - Mol Cell Biochem. 2011 May;351(1-2):41-58
– reference: 17115046 - Nat Med. 2006 Dec;12(12):1365-71
– reference: 15685448 - Cancer Immunol Immunother. 2005 Aug;54(8):729-40
– reference: 15843035 - Biochim Biophys Acta. 2005 Apr 15;1743(3):215-22
– reference: 19383966 - Blood. 2009 Oct 1;114(14):2917-25
– reference: 22127030 - Sex Health. 2011 Dec;8(4):453-64
– reference: 21750421 - AIDS. 2011 Sep 10;25(14):1721-6
– reference: 15585654 - Blood. 2005 Mar 15;105(6):2458-64
– reference: 21628670 - J Infect Dis. 2011 Jul 1;204(1):154-63
– reference: 20939681 - J Interferon Cytokine Res. 2011 Jan;31(1):173-81
– reference: 17356300 - Intervirology. 2007;50(3):224-8
– reference: 18568041 - Nat Rev Mol Cell Biol. 2008 Jul;9(7):532-42
– reference: 21505304 - AIDS. 2011 Jun 1;25(9):1207-17
– reference: 22701041 - J Leukoc Biol. 2012 Aug;92(2):397-405
– reference: 16940334 - J Leukoc Biol. 2006 Nov;80(5):1031-43
– reference: 17005663 - J Virol. 2006 Dec;80(23):11486-97
– reference: 19299747 - J Immunol. 2009 Apr 1;182(7):4459-70
– reference: 20064371 - Cell. 2009 Dec 24;139(7):1243-54
– reference: 20551211 - J Leukoc Biol. 2010 Sep;88(3):589-96
– reference: 20884651 - J Leukoc Biol. 2011 Jan;89(1):149-58
– reference: 11752161 - J Virol. 2002 Jan;76(2):707-16
– reference: 18414664 - PLoS One. 2008;3(4):e1967
– reference: 15699152 - J Immunol. 2005 Feb 15;174(4):2196-204
– reference: 19843579 - J Leukoc Biol. 2010 Apr;87(4):557-67
– reference: 16532269 - Apoptosis. 2006 May;11(5):673-86
– reference: 22708967 - Aging Cell. 2012 Oct;11(5):867-75
– reference: 20962079 - J Virol. 2011 Jan;85(1):397-409
– reference: 14557656 - J Virol. 2003 Nov;77(21):11708-17
– reference: 10753958 - J Biol Chem. 2000 Apr 14;275(15):11418-24
SSID ssj0014464
Score 2.2447877
Snippet Although monocytes and macrophages are targets of HIV-1-mediated immunopathology, the impact of high viremia on activation-induced monocyte apoptosis relative...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 799
SubjectTerms Adult
Aged, 80 and over
Apoptosis
Chronic Disease
Female
Gene Expression Profiling
HIV Infections - immunology
HIV Infections - virology
HIV-1 - immunology
Human immunodeficiency virus
Human immunodeficiency virus 1
Humans
Male
Middle Aged
Monocytes - immunology
Monocytes - physiology
Pathogenesis and Immunity
Proto-Oncogene Proteins c-bcl-2 - biosynthesis
Retinoblastoma Protein - biosynthesis
Viral Load
Young Adult
Title Shift in Monocyte Apoptosis with Increasing Viral Load and Change in Apoptosis-Related ISG/Bcl2 Family Gene Expression in Chronically HIV-1-Infected Subjects
URI https://www.ncbi.nlm.nih.gov/pubmed/25355877
https://www.proquest.com/docview/1637995297
https://www.proquest.com/docview/1654673490
https://pubmed.ncbi.nlm.nih.gov/PMC4301149
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLaqISReEHfGTUaCJ5QudZwleUQT0IzBS7eqPEWxY6uVqmTa0ofyX_gv_DTOseNc1g0NXqLWsZOm57P9nZNzIeRdICRs6vnEE0UgPS5AYU0mwcRD8hpEvgZ9G4OTv30_nJ7x40W4GI1-97yWNrUYy5_XxpX8j1ShDeSKUbL_INn2otAAn0G-cAQJw_FWMp4tV9qk-IeZWcltrYBUVud1hUlGjIEVZj86naM5YL7CUPyTKje5WZuoAmPtcEM84xgHBDSdfUGnbblmri4GJqfGrMjWadY4RzZZdfM1nJ6mc9ARU-PXhQR2I9C6c3kD8cXIur4tH6sEGIPtDN8KHI27dmOexpTSCMZlZzowHgg_0Pc_r1zjydYy8SbQqG_NmIQ9a0YXXQCL8MLuT3ZRxpynyOz6q7YtPDRAp12CI1twye3m1ml2d6NgGPxwPE_HSFqY11x8kI_7yj7Zei8avYnFGYzOzOgMK6nfYaCoGKU-_dq-xwJlm7t89fhULvSCxQf9ew9J0Y6mc9Vht8eATh-Q-40E6UeLw4dkpMpH5K4tZrp9TH4ZNNJVSR0aaQstimikHRqpQSNFNFJAI7VoxLE7aKSAxgPEIrVYpIhF2mERB_WwSIdYpA6LT8jZ50-nR1OvKf7hST6Jalg7hOBhLHlSKJ9p2DcKHccJi5U41HDUYewHMsl9IWDPybVCKptLEWmh4WsRPCV7ZVWq54QKYFw8UTIUivOoAEImtFYCub8Itfb3yQf372eyyYyPBVrW2XWS3ifv297nNiPMDf3eOkFmMEvwPVxeqmpzmYEKhGkYWRL9rU8IFCbgCfy6Z1b47d1YiDURIhgdDWDRdsCU8cMz5WppUsdzYwBJXtzyGV6Se90kfUX26ouNeg0kvBZvDM7_AF31378
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shift+in+Monocyte+Apoptosis+with+Increasing+Viral+Load+and+Change+in+Apoptosis-Related+ISG%2FBcl2+Family+Gene+Expression+in+Chronically+HIV-1-Infected+Subjects&rft.jtitle=Journal+of+virology&rft.au=Patro%2C+Sean+C.&rft.au=Pal%2C+Sharmistha&rft.au=Bi%2C+Yingtao&rft.au=Lynn%2C+Kenneth&rft.date=2015-01-01&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=89&rft.issue=1&rft.spage=799&rft.epage=810&rft_id=info:doi/10.1128%2FJVI.02382-14&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_JVI_02382_14
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon