Shift in Monocyte Apoptosis with Increasing Viral Load and Change in Apoptosis-Related ISG/Bcl2 Family Gene Expression in Chronically HIV-1-Infected Subjects
Although monocytes and macrophages are targets of HIV-1-mediated immunopathology, the impact of high viremia on activation-induced monocyte apoptosis relative to monocyte and macrophage activation changes remains undetermined. In this study, we determined constitutive and oxidative stress-induced mo...
Saved in:
Published in | Journal of virology Vol. 89; no. 1; pp. 799 - 810 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.01.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although monocytes and macrophages are targets of HIV-1-mediated immunopathology, the impact of high viremia on activation-induced monocyte apoptosis relative to monocyte and macrophage activation changes remains undetermined. In this study, we determined constitutive and oxidative stress-induced monocyte apoptosis in uninfected and HIV
+
individuals across a spectrum of viral loads (
n =
35; range, 2,243 to 1,355,998 HIV-1 RNA copies/ml) and CD4 counts (range, 26 to 801 cells/mm
3
). Both constitutive apoptosis and oxidative stress-induced apoptosis were positively associated with viral load and negatively associated with CD4, with an elevation in apoptosis occurring in patients with more than 40,000 (4.6 log) copies/ml. As expected, expression of Rb1 and interferon-stimulated genes (ISGs), plasma soluble CD163 (sCD163) concentration, and the proportion of CD14
++
CD16
+
intermediate monocytes were elevated in viremic patients compared to those in uninfected controls. Although CD14
++
CD16
+
frequencies, sCD14, sCD163, and most ISG expression were not directly associated with a change in apoptosis, sCD14 and ISG expression showed an association with increasing viral load. Multivariable analysis of clinical values and monocyte gene expression identified changes in IFI27, IFITM2, Rb1, and Bcl2 expression as determinants of constitutive apoptosis (
P
= 3.77 × 10
−5
; adjusted
R
2
= 0.5983), while changes in viral load, IFITM2, Rb1, and Bax expression were determinants of oxidative stress-induced apoptosis (
P
= 5.59 × 10
−5
; adjusted
R
2
= 0.5996). Our data demonstrate differential activation states in monocytes between levels of viremia in association with differences in apoptosis that may contribute to greater monocyte turnover with high viremia.
IMPORTANCE
This study characterized differential monocyte activation, apoptosis, and apoptosis-related gene expression in low- versus high-level viremic HIV-1 patients, suggesting a shift in apoptosis regulation that may be associated with disease state. Using single and multivariable analysis of monocyte activation parameters and gene expression, we supported the hypothesis that monocyte apoptosis in HIV disease is a reflection of viremia and activation state with contributions from gene expression changes within the ISG and Bcl2 gene families. Understanding monocyte apoptosis response may inform HIV immunopathogenesis, retention of infected macrophages, and monocyte turnover in low- or high-viral-load states. |
---|---|
AbstractList | Although monocytes and macrophages are targets of HIV-1-mediated immunopathology, the impact of high viremia on activation-induced monocyte apoptosis relative to monocyte and macrophage activation changes remains undetermined. In this study, we determined constitutive and oxidative stress-induced monocyte apoptosis in uninfected and HIV(+) individuals across a spectrum of viral loads (n = 35; range, 2,243 to 1,355,998 HIV-1 RNA copies/ml) and CD4 counts (range, 26 to 801 cells/mm(3)). Both constitutive apoptosis and oxidative stress-induced apoptosis were positively associated with viral load and negatively associated with CD4, with an elevation in apoptosis occurring in patients with more than 40,000 (4.6 log) copies/ml. As expected, expression of Rb1 and interferon-stimulated genes (ISGs), plasma soluble CD163 (sCD163) concentration, and the proportion of CD14(++) CD16(+) intermediate monocytes were elevated in viremic patients compared to those in uninfected controls. Although CD14(++) CD16(+) frequencies, sCD14, sCD163, and most ISG expression were not directly associated with a change in apoptosis, sCD14 and ISG expression showed an association with increasing viral load. Multivariable analysis of clinical values and monocyte gene expression identified changes in IFI27, IFITM2, Rb1, and Bcl2 expression as determinants of constitutive apoptosis (P = 3.77 × 10(-5); adjusted R(2) = 0.5983), while changes in viral load, IFITM2, Rb1, and Bax expression were determinants of oxidative stress-induced apoptosis (P = 5.59 × 10(-5); adjusted R(2) = 0.5996). Our data demonstrate differential activation states in monocytes between levels of viremia in association with differences in apoptosis that may contribute to greater monocyte turnover with high viremia.
This study characterized differential monocyte activation, apoptosis, and apoptosis-related gene expression in low- versus high-level viremic HIV-1 patients, suggesting a shift in apoptosis regulation that may be associated with disease state. Using single and multivariable analysis of monocyte activation parameters and gene expression, we supported the hypothesis that monocyte apoptosis in HIV disease is a reflection of viremia and activation state with contributions from gene expression changes within the ISG and Bcl2 gene families. Understanding monocyte apoptosis response may inform HIV immunopathogenesis, retention of infected macrophages, and monocyte turnover in low- or high-viral-load states. Although monocytes and macrophages are targets of HIV-1-mediated immunopathology, the impact of high viremia on activation-induced monocyte apoptosis relative to monocyte and macrophage activation changes remains undetermined. In this study, we determined constitutive and oxidative stress-induced monocyte apoptosis in uninfected and HIV+ individuals across a spectrum of viral loads (n = 35; range, 2,243 to 1,355,998 HIV-1 RNA copies/ml) and CD4 counts (range, 26 to 801 cells/mm super(3)). Both constitutive apoptosis and oxidative stress-induced apoptosis were positively associated with viral load and negatively associated with CD4, with an elevation in apoptosis occurring in patients with more than 40,000 (4.6 log) copies/ml. As expected, expression of Rb1 and interferon-stimulated genes (ISGs), plasma soluble CD163 (sCD163) concentration, and the proportion of CD14++ CD16+ intermediate monocytes were elevated in viremic patients compared to those in uninfected controls. Although CD14++ CD16+ frequencies, sCD14, sCD163, and most ISG expression were not directly associated with a change in apoptosis, sCD14 and ISG expression showed an association with increasing viral load. Multivariable analysis of clinical values and monocyte gene expression identified changes in IFI27, IFITM2, Rb1, and Bcl2 expression as determinants of constitutive apoptosis (P = 3.77 x 10 super(-5); adjusted R2 = 0.5983), while changes in viral load, IFITM2, Rb1, and Bax expression were determinants of oxidative stress-induced apoptosis (P = 5.59 x 10 super(-5); adjusted R2 = 0.5996). Our data demonstrate differential activation states in monocytes between levels of viremia in association with differences in apoptosis that may contribute to greater monocyte turnover with high viremia. IMPORTANCE This study characterized differential monocyte activation, apoptosis, and apoptosis-related gene expression in low- versus high-level viremic HIV-1 patients, suggesting a shift in apoptosis regulation that may be associated with disease state. Using single and multivariable analysis of monocyte activation parameters and gene expression, we supported the hypothesis that monocyte apoptosis in HIV disease is a reflection of viremia and activation state with contributions from gene expression changes within the ISG and Bcl2 gene families. Understanding monocyte apoptosis response may inform HIV immunopathogenesis, retention of infected macrophages, and monocyte turnover in low- or high-viral-load states. Although monocytes and macrophages are targets of HIV-1-mediated immunopathology, the impact of high viremia on activation-induced monocyte apoptosis relative to monocyte and macrophage activation changes remains undetermined. In this study, we determined constitutive and oxidative stress-induced monocyte apoptosis in uninfected and HIV + individuals across a spectrum of viral loads ( n = 35; range, 2,243 to 1,355,998 HIV-1 RNA copies/ml) and CD4 counts (range, 26 to 801 cells/mm 3 ). Both constitutive apoptosis and oxidative stress-induced apoptosis were positively associated with viral load and negatively associated with CD4, with an elevation in apoptosis occurring in patients with more than 40,000 (4.6 log) copies/ml. As expected, expression of Rb1 and interferon-stimulated genes (ISGs), plasma soluble CD163 (sCD163) concentration, and the proportion of CD14 ++ CD16 + intermediate monocytes were elevated in viremic patients compared to those in uninfected controls. Although CD14 ++ CD16 + frequencies, sCD14, sCD163, and most ISG expression were not directly associated with a change in apoptosis, sCD14 and ISG expression showed an association with increasing viral load. Multivariable analysis of clinical values and monocyte gene expression identified changes in IFI27, IFITM2, Rb1, and Bcl2 expression as determinants of constitutive apoptosis ( P = 3.77 × 10 −5 ; adjusted R 2 = 0.5983), while changes in viral load, IFITM2, Rb1, and Bax expression were determinants of oxidative stress-induced apoptosis ( P = 5.59 × 10 −5 ; adjusted R 2 = 0.5996). Our data demonstrate differential activation states in monocytes between levels of viremia in association with differences in apoptosis that may contribute to greater monocyte turnover with high viremia. IMPORTANCE This study characterized differential monocyte activation, apoptosis, and apoptosis-related gene expression in low- versus high-level viremic HIV-1 patients, suggesting a shift in apoptosis regulation that may be associated with disease state. Using single and multivariable analysis of monocyte activation parameters and gene expression, we supported the hypothesis that monocyte apoptosis in HIV disease is a reflection of viremia and activation state with contributions from gene expression changes within the ISG and Bcl2 gene families. Understanding monocyte apoptosis response may inform HIV immunopathogenesis, retention of infected macrophages, and monocyte turnover in low- or high-viral-load states. Although monocytes and macrophages are targets of HIV-1-mediated immunopathology, the impact of high viremia on activation-induced monocyte apoptosis relative to monocyte and macrophage activation changes remains undetermined. In this study, we determined constitutive and oxidative stress-induced monocyte apoptosis in uninfected and HIV(+) individuals across a spectrum of viral loads (n = 35; range, 2,243 to 1,355,998 HIV-1 RNA copies/ml) and CD4 counts (range, 26 to 801 cells/mm(3)). Both constitutive apoptosis and oxidative stress-induced apoptosis were positively associated with viral load and negatively associated with CD4, with an elevation in apoptosis occurring in patients with more than 40,000 (4.6 log) copies/ml. As expected, expression of Rb1 and interferon-stimulated genes (ISGs), plasma soluble CD163 (sCD163) concentration, and the proportion of CD14(++) CD16(+) intermediate monocytes were elevated in viremic patients compared to those in uninfected controls. Although CD14(++) CD16(+) frequencies, sCD14, sCD163, and most ISG expression were not directly associated with a change in apoptosis, sCD14 and ISG expression showed an association with increasing viral load. Multivariable analysis of clinical values and monocyte gene expression identified changes in IFI27, IFITM2, Rb1, and Bcl2 expression as determinants of constitutive apoptosis (P = 3.77 × 10(-5); adjusted R(2) = 0.5983), while changes in viral load, IFITM2, Rb1, and Bax expression were determinants of oxidative stress-induced apoptosis (P = 5.59 × 10(-5); adjusted R(2) = 0.5996). Our data demonstrate differential activation states in monocytes between levels of viremia in association with differences in apoptosis that may contribute to greater monocyte turnover with high viremia.UNLABELLEDAlthough monocytes and macrophages are targets of HIV-1-mediated immunopathology, the impact of high viremia on activation-induced monocyte apoptosis relative to monocyte and macrophage activation changes remains undetermined. In this study, we determined constitutive and oxidative stress-induced monocyte apoptosis in uninfected and HIV(+) individuals across a spectrum of viral loads (n = 35; range, 2,243 to 1,355,998 HIV-1 RNA copies/ml) and CD4 counts (range, 26 to 801 cells/mm(3)). Both constitutive apoptosis and oxidative stress-induced apoptosis were positively associated with viral load and negatively associated with CD4, with an elevation in apoptosis occurring in patients with more than 40,000 (4.6 log) copies/ml. As expected, expression of Rb1 and interferon-stimulated genes (ISGs), plasma soluble CD163 (sCD163) concentration, and the proportion of CD14(++) CD16(+) intermediate monocytes were elevated in viremic patients compared to those in uninfected controls. Although CD14(++) CD16(+) frequencies, sCD14, sCD163, and most ISG expression were not directly associated with a change in apoptosis, sCD14 and ISG expression showed an association with increasing viral load. Multivariable analysis of clinical values and monocyte gene expression identified changes in IFI27, IFITM2, Rb1, and Bcl2 expression as determinants of constitutive apoptosis (P = 3.77 × 10(-5); adjusted R(2) = 0.5983), while changes in viral load, IFITM2, Rb1, and Bax expression were determinants of oxidative stress-induced apoptosis (P = 5.59 × 10(-5); adjusted R(2) = 0.5996). Our data demonstrate differential activation states in monocytes between levels of viremia in association with differences in apoptosis that may contribute to greater monocyte turnover with high viremia.This study characterized differential monocyte activation, apoptosis, and apoptosis-related gene expression in low- versus high-level viremic HIV-1 patients, suggesting a shift in apoptosis regulation that may be associated with disease state. Using single and multivariable analysis of monocyte activation parameters and gene expression, we supported the hypothesis that monocyte apoptosis in HIV disease is a reflection of viremia and activation state with contributions from gene expression changes within the ISG and Bcl2 gene families. Understanding monocyte apoptosis response may inform HIV immunopathogenesis, retention of infected macrophages, and monocyte turnover in low- or high-viral-load states.IMPORTANCEThis study characterized differential monocyte activation, apoptosis, and apoptosis-related gene expression in low- versus high-level viremic HIV-1 patients, suggesting a shift in apoptosis regulation that may be associated with disease state. Using single and multivariable analysis of monocyte activation parameters and gene expression, we supported the hypothesis that monocyte apoptosis in HIV disease is a reflection of viremia and activation state with contributions from gene expression changes within the ISG and Bcl2 gene families. Understanding monocyte apoptosis response may inform HIV immunopathogenesis, retention of infected macrophages, and monocyte turnover in low- or high-viral-load states. |
Author | Montaner, Luis J. Davuluri, Ramana V. Pal, Sharmistha Lynn, Kenneth Bi, Yingtao Kostman, Jay R. Patro, Sean C. Mounzer, Karam C. |
Author_xml | – sequence: 1 givenname: Sean C. surname: Patro fullname: Patro, Sean C. organization: The Wistar Institute, HIV Immunopathogenesis Laboratory, Philadelphia, Pennsylvania, USA, University of Pennsylvania Perelman School of Medicine, Department of Microbiology, Philadelphia, Pennsylvania, USA – sequence: 2 givenname: Sharmistha surname: Pal fullname: Pal, Sharmistha organization: The Wistar Institute, Center for Systems and Computational Biology, Philadelphia, Pennsylvania, USA – sequence: 3 givenname: Yingtao surname: Bi fullname: Bi, Yingtao organization: The Wistar Institute, Center for Systems and Computational Biology, Philadelphia, Pennsylvania, USA – sequence: 4 givenname: Kenneth surname: Lynn fullname: Lynn, Kenneth organization: UPENN-Presbyterian Medical Center, Philadelphia, Pennsylvania, USA – sequence: 5 givenname: Karam C. surname: Mounzer fullname: Mounzer, Karam C. organization: Philadelphia FIGHT, The Jonathan Lax Treatment Center, Philadelphia, Pennsylvania, USA – sequence: 6 givenname: Jay R. surname: Kostman fullname: Kostman, Jay R. organization: UPENN-Presbyterian Medical Center, Philadelphia, Pennsylvania, USA – sequence: 7 givenname: Ramana V. surname: Davuluri fullname: Davuluri, Ramana V. organization: The Wistar Institute, Center for Systems and Computational Biology, Philadelphia, Pennsylvania, USA – sequence: 8 givenname: Luis J. surname: Montaner fullname: Montaner, Luis J. organization: The Wistar Institute, HIV Immunopathogenesis Laboratory, Philadelphia, Pennsylvania, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25355877$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1uEzEUhS1URNPCjjXykgXT2h4749kglahNBwUhEYjYWbbHzria2NOxA-RheFcc2kYFsWDjH93vHN2re07AkQ_eAPASozOMCT9_v2rOECk5KTB9AiYY1bxgDNMjMEGIkIKV_OsxOInxBiFM6ZQ-A8eElYzxqpqAn8vO2QSdhx-CD3qXDLwYwpBCdBF-d6mDjdejkdH5NVy5UfZwEWQLpW_hrJN-bfbag6T4ZHqZTAub5fz8ne4JvJIb1-_g3HgDL38Mo4nRBb8XzboxeKdln8vXzarAReOt0Xv1cqtu8is-B0-t7KN5cX-fgi9Xl59n18Xi47yZXSwKTXGVCtUqRRnXtG4NIhZXdWs5rwk3amrzaRlHpa4lUqrilbSGE4SlVpVVNn_b8hS8vfMdtmpjWm18ypOKYXQbOe5EkE78WfGuE-vwTdASYUzrbPD63mAMt1sTk9i4qE3fS2_CNgo8ZXRalbRG_4GWVV0zUlcZffW4rUM_D-vLwJs7QI8hxtHYA4KR2KdD5HSI3-kQmGac_IVrl2TK-8hDuf7fol8utr-F |
CitedBy_id | crossref_primary_10_1089_acm_2015_0350 crossref_primary_10_1038_s41598_019_50642_x crossref_primary_10_1097_COH_0000000000000242 crossref_primary_10_1126_scisignal_aab0808 crossref_primary_10_1371_journal_ppat_1009785 crossref_primary_10_1002_eji_201646904 crossref_primary_10_1111_boc_201600034 crossref_primary_10_1189_jlb_5AB0915_406R crossref_primary_10_15212_ZOONOSES_2024_0016 crossref_primary_10_1016_j_jinf_2017_09_016 crossref_primary_10_1080_07853890_2021_1995624 crossref_primary_10_1128_mBio_01037_20 crossref_primary_10_1097_COH_0000000000000910 crossref_primary_10_3892_or_2015_4419 crossref_primary_10_1016_j_trsl_2021_07_006 crossref_primary_10_4049_jimmunol_1501194 |
Cites_doi | 10.4049/jimmunol.178.10.6581 10.1371/journal.pone.0001967 10.1054/bjoc.2000.1411 10.1038/nrm2434 10.1038/nrm2308 10.1093/infdis/jiq118 10.1093/infdis/jir520 10.1097/QAD.0b013e3283471f10 10.1189/jlb.0306157 10.1111/j.1474-9726.2012.00851.x 10.1038/nm1511 10.1371/journal.ppat.1000842 10.1371/journal.pone.0021275 10.1097/QAD.0b013e32833ac623 10.1189/jlb.0110051 10.4049/jimmunol.177.4.2304 10.1007/s00262-004-0645-2 10.1182/blood.V96.9.2951 10.1097/QAD.0b013e328349f022 10.1016/j.jinf.2012.06.008 10.1189/jlb.0209082 10.1371/journal.pone.0005397 10.1007/s11010-010-0709-x 10.1371/journal.pone.0041153 10.1016/j.molcel.2010.01.025 10.1016/j.clim.2008.05.009 10.1089/107999004772719864 10.1007/s10495-006-5879-3 10.4049/jimmunol.174.4.2196 10.1046/j.1365-2249.2000.01201.x 10.1038/nm.2106 10.1089/jir.2010.0105 10.1038/cddis.2010.77 10.1071/SH11028 10.1002/jlb.52.1.111 10.1128/JVI.76.2.707-716.2002 10.1007/s10495-008-0190-0 10.1016/S0140-6736(96)10178-1 10.4049/jimmunol.1200458 10.1189/jlb.1111552 10.1093/infdis/jir507 10.1097/COH.0b013e328324bbec 10.1146/annurev.biochem.73.011303.073706 10.1128/JVI.00324-06 10.1371/journal.ppat.1002087 10.1371/journal.ppat.0030134 10.1172/JCI31122 10.1016/j.jmb.2013.12.003 10.1093/infdis/jit547 10.1093/infdis/jir214 10.1182/blood-2009-02-204263 10.1371/journal.pone.0019968 10.1074/jbc.M007369200 10.1097/00002030-199807000-00008 10.1074/jbc.275.15.11418 10.1128/JVI.01531-10 10.1016/j.cell.2009.12.017 10.1002/ijc.24669 10.1089/AID.2013.0268 10.1074/jbc.M212033200 10.1371/journal.pone.0018291 10.1128/JVI.77.21.11708-11717.2003 10.1016/j.jneuroim.2004.08.039 10.1097/QAD.0b013e3283013d42 10.1189/jlb.0610371 10.1128/JVI.02379-12 10.1371/journal.pone.0055279 10.1159/000100565 10.1371/journal.pone.0055776 10.1007/s11481-011-9330-3 10.1097/QAD.0b013e3282f4de23 10.1016/j.bbamcr.2004.10.011 10.4049/jimmunol.0801450 10.1182/blood-2004-08-3058 10.1128/JVI.01118-10 |
ContentType | Journal Article |
Copyright | Copyright © 2015, American Society for Microbiology. All Rights Reserved. Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7T5 7U9 8FD FR3 H94 P64 RC3 5PM |
DOI | 10.1128/JVI.02382-14 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Immunology Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Virology and AIDS Abstracts Technology Research Database AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE Genetics Abstracts CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Monocyte Apoptosis and Gene Expression in HIV-1 |
EISSN | 1098-5514 |
EndPage | 810 |
ExternalDocumentID | PMC4301149 25355877 10_1128_JVI_02382_14 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NLM NIH HHS grantid: R01 LM011297 – fundername: NIAID NIH HHS grantid: P30AI045008 – fundername: NCI NIH HHS grantid: P30 CA010815 – fundername: NIAID NIH HHS grantid: P30 AI045008 – fundername: NCI NIH HHS grantid: P30CA010815 – fundername: NIAID NIH HHS grantid: R01 AI073219 |
GroupedDBID | --- -~X .55 .GJ 0R~ 18M 29L 2WC 39C 3O- 4.4 41~ 53G 5GY 5RE 5VS 6TJ 85S AAFWJ AAGFI AAYJJ AAYXX ABPPZ ACGFO ACNCT ADBBV ADXHL AENEX AFFNX AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CITATION CS3 D0S DIK E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 MVM N9A O9- OHT OK1 P2P RHI RNS RPM RSF TR2 UPT VH1 W2D W8F WH7 WOQ X7M Y6R YQT ZGI ZXP ~02 ~KM CGR CUY CVF ECM EIF NPM PKN RHF UCJ 7X8 7T5 7U9 8FD FR3 H94 P64 RC3 5PM |
ID | FETCH-LOGICAL-c417t-bdbb458c49de02f179df88928eb6f28ef5803c9a0bb787afe8201acb7fbf7afd3 |
ISSN | 0022-538X 1098-5514 |
IngestDate | Thu Aug 21 14:10:41 EDT 2025 Thu Jul 10 18:12:43 EDT 2025 Fri Jul 11 02:10:22 EDT 2025 Wed Feb 19 02:42:06 EST 2025 Tue Jul 01 01:02:35 EDT 2025 Thu Apr 24 23:12:01 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Copyright © 2015, American Society for Microbiology. All Rights Reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c417t-bdbb458c49de02f179df88928eb6f28ef5803c9a0bb787afe8201acb7fbf7afd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Citation Patro SC, Pal S, Bi Y, Lynn K, Mounzer KC, Kostman JR, Davuluri RV, Montaner LJ. 2015. Shift in monocyte apoptosis with increasing viral load and change in apoptosis-related ISG/Bcl2 family gene expression in chronically HIV-1-infected subjects. J Virol 89:799–810. doi:10.1128/JVI.02382-14. |
OpenAccessLink | https://jvi.asm.org/content/jvi/89/1/799.full.pdf |
PMID | 25355877 |
PQID | 1637995297 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4301149 proquest_miscellaneous_1654673490 proquest_miscellaneous_1637995297 pubmed_primary_25355877 crossref_primary_10_1128_JVI_02382_14 crossref_citationtrail_10_1128_JVI_02382_14 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of virology |
PublicationTitleAlternate | J Virol |
PublicationYear | 2015 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_3_75_2 e_1_3_3_71_2 e_1_3_3_77_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 Haupt Y (e_1_3_3_50_2) 1995; 10 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_73_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_74_2 e_1_3_3_76_2 e_1_3_3_70_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_62_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 23365694 - PLoS One. 2013;8(1):e55279 16887991 - J Immunol. 2006 Aug 15;177(4):2304-13 18650129 - Clin Immunol. 2008 Oct;129(1):132-44 21917896 - J Infect Dis. 2011 Oct 15;204(8):1227-36 22127030 - Sex Health. 2011 Dec;8(4):453-64 17005663 - J Virol. 2006 Dec;80(23):11486-97 23449791 - J Virol. 2013 May;87(9):5170-81 21505304 - AIDS. 2011 Jun 1;25(9):1207-17 24326250 - J Mol Biol. 2014 Mar 20;426(6):1161-77 14557656 - J Virol. 2003 Nov;77(21):11708-17 18525259 - AIDS. 2008 Jun 19;22(10):1137-44 7731711 - Oncogene. 1995 Apr 20;10(8):1563-71 21917895 - J Infect Dis. 2011 Oct 15;204(8):1217-26 18097445 - Nat Rev Mol Cell Biol. 2008 Jan;9(1):47-59 21625498 - PLoS One. 2011;6(5):e19968 26041838 - J Virol. 2015 Jul;89(13):6970 21210296 - Mol Cell Biochem. 2011 May;351(1-2):41-58 20495440 - AIDS. 2010 Jun 19;24(10):1415-23 10993652 - Br J Cancer. 2000 Oct;83(8):1039-46 21483669 - PLoS One. 2011;6(4):e18291 20939681 - J Interferon Cytokine Res. 2011 Jan;31(1):173-81 9619803 - AIDS. 1998 May 7;12(7):719-27 17356300 - Intervirology. 2007;50(3):224-8 19383966 - Blood. 2009 Oct 1;114(14):2917-25 15189137 - Annu Rev Biochem. 2004;73:87-106 15843035 - Biochim Biophys Acta. 2005 Apr 15;1743(3):215-22 24133185 - J Infect Dis. 2014 Mar 1;209(5):739-48 14980080 - J Interferon Cytokine Res. 2004 Jan;24(1):1-19 24524407 - AIDS Res Hum Retroviruses. 2014 Jul;30(7):685-94 20419144 - PLoS Pathog. 2010 Apr;6(4):e1000842 10753958 - J Biol Chem. 2000 Apr 14;275(15):11418-24 21731690 - PLoS One. 2011;6(6):e21275 21177806 - J Virol. 2011 Mar;85(5):2126-37 18317010 - AIDS. 2008 Mar 12;22(5):655-8 20159550 - Mol Cell. 2010 Feb 12;37(3):299-310 16940334 - J Leukoc Biol. 2006 Nov;80(5):1031-43 17115046 - Nat Med. 2006 Dec;12(12):1365-71 18568041 - Nat Rev Mol Cell Biol. 2008 Jul;9(7):532-42 18330707 - Apoptosis. 2008 Apr;13(4):562-72 21628670 - J Infect Dis. 2011 Jul 1;204(1):154-63 21731488 - PLoS Pathog. 2011 Jun;7(6):e1002087 15699152 - J Immunol. 2005 Feb 15;174(4):2196-204 21252259 - J Infect Dis. 2011 Mar 15;203(6):780-90 20884651 - J Leukoc Biol. 2011 Jan;89(1):149-58 11752161 - J Virol. 2002 Jan;76(2):707-16 22815948 - PLoS One. 2012;7(7):e41153 20064371 - Cell. 2009 Dec 24;139(7):1243-54 15685448 - Cancer Immunol Immunother. 2005 Aug;54(8):729-40 9078201 - Lancet. 1997 Mar 8;349(9053):692-5 22701041 - J Leukoc Biol. 2012 Aug;92(2):397-405 21750421 - AIDS. 2011 Sep 10;25(14):1721-6 22728172 - J Infect. 2012 Nov;65(5):431-8 19299747 - J Immunol. 2009 Apr 1;182(7):4459-70 16532269 - Apoptosis. 2006 May;11(5):673-86 12595530 - J Biol Chem. 2003 May 2;278(18):15693-701 1640166 - J Leukoc Biol. 1992 Jul;52(1):111-4 20208540 - Nat Med. 2010 Apr;16(4):452-9 10759771 - Clin Exp Immunol. 2000 Apr;120(1):107-12 11049971 - Blood. 2000 Nov 1;96(9):2951-64 15579285 - J Neuroimmunol. 2004 Dec;157(1-2):93-8 22708967 - Aging Cell. 2012 Oct;11(5):867-75 20962079 - J Virol. 2011 Jan;85(1):397-409 22167311 - J Neuroimmune Pharmacol. 2012 Jun;7(2):363-71 15585654 - Blood. 2005 Mar 15;105(6):2458-64 19404407 - PLoS One. 2009;4(4):e5397 17823654 - J Clin Invest. 2007 Oct;117(10):3107-17 19544527 - Int J Cancer. 2009 Dec 15;125(12):2810-9 23437063 - PLoS One. 2013;8(2):e55776 19339947 - Curr Opin HIV AIDS. 2009 Mar;4(2):96-103 22745371 - J Immunol. 2012 Aug 1;189(3):1491-9 21368875 - Cell Death Dis. 2010;1:e99 17907802 - PLoS Pathog. 2007 Sep 7;3(9):1281-90 10970901 - J Biol Chem. 2000 Dec 15;275(50):39702-9 18414664 - PLoS One. 2008;3(4):e1967 20551211 - J Leukoc Biol. 2010 Sep;88(3):589-96 17475889 - J Immunol. 2007 May 15;178(10):6581-9 19843579 - J Leukoc Biol. 2010 Apr;87(4):557-67 |
References_xml | – ident: e_1_3_3_12_2 doi: 10.4049/jimmunol.178.10.6581 – ident: e_1_3_3_27_2 doi: 10.1371/journal.pone.0001967 – ident: e_1_3_3_51_2 doi: 10.1054/bjoc.2000.1411 – ident: e_1_3_3_56_2 doi: 10.1038/nrm2434 – ident: e_1_3_3_52_2 doi: 10.1038/nrm2308 – ident: e_1_3_3_14_2 doi: 10.1093/infdis/jiq118 – ident: e_1_3_3_16_2 doi: 10.1093/infdis/jir520 – ident: e_1_3_3_23_2 doi: 10.1097/QAD.0b013e3283471f10 – ident: e_1_3_3_26_2 doi: 10.1189/jlb.0306157 – ident: e_1_3_3_75_2 doi: 10.1111/j.1474-9726.2012.00851.x – ident: e_1_3_3_18_2 doi: 10.1038/nm1511 – ident: e_1_3_3_41_2 doi: 10.1371/journal.ppat.1000842 – ident: e_1_3_3_68_2 doi: 10.1371/journal.pone.0021275 – ident: e_1_3_3_9_2 doi: 10.1097/QAD.0b013e32833ac623 – ident: e_1_3_3_33_2 doi: 10.1189/jlb.0110051 – ident: e_1_3_3_76_2 doi: 10.4049/jimmunol.177.4.2304 – ident: e_1_3_3_58_2 doi: 10.1007/s00262-004-0645-2 – ident: e_1_3_3_4_2 doi: 10.1182/blood.V96.9.2951 – ident: e_1_3_3_8_2 doi: 10.1097/QAD.0b013e328349f022 – ident: e_1_3_3_48_2 doi: 10.1016/j.jinf.2012.06.008 – ident: e_1_3_3_47_2 doi: 10.1189/jlb.0209082 – ident: e_1_3_3_38_2 doi: 10.1371/journal.pone.0005397 – ident: e_1_3_3_54_2 doi: 10.1007/s11010-010-0709-x – ident: e_1_3_3_6_2 doi: 10.1371/journal.pone.0041153 – volume: 10 start-page: 1563 year: 1995 ident: e_1_3_3_50_2 article-title: p53-mediated apoptosis in HeLa cells can be overcome by excess pRB publication-title: Oncogene – ident: e_1_3_3_53_2 doi: 10.1016/j.molcel.2010.01.025 – ident: e_1_3_3_21_2 doi: 10.1016/j.clim.2008.05.009 – ident: e_1_3_3_57_2 doi: 10.1089/107999004772719864 – ident: e_1_3_3_46_2 doi: 10.1007/s10495-006-5879-3 – ident: e_1_3_3_5_2 doi: 10.4049/jimmunol.174.4.2196 – ident: e_1_3_3_22_2 doi: 10.1046/j.1365-2249.2000.01201.x – ident: e_1_3_3_28_2 doi: 10.1038/nm.2106 – ident: e_1_3_3_63_2 doi: 10.1089/jir.2010.0105 – ident: e_1_3_3_40_2 doi: 10.1038/cddis.2010.77 – ident: e_1_3_3_74_2 doi: 10.1071/SH11028 – ident: e_1_3_3_37_2 doi: 10.1002/jlb.52.1.111 – ident: e_1_3_3_24_2 doi: 10.1128/JVI.76.2.707-716.2002 – ident: e_1_3_3_60_2 doi: 10.1007/s10495-008-0190-0 – ident: e_1_3_3_11_2 doi: 10.1016/S0140-6736(96)10178-1 – ident: e_1_3_3_71_2 doi: 10.4049/jimmunol.1200458 – ident: e_1_3_3_34_2 doi: 10.1189/jlb.1111552 – ident: e_1_3_3_67_2 doi: 10.1093/infdis/jir507 – ident: e_1_3_3_2_2 doi: 10.1097/COH.0b013e328324bbec – ident: e_1_3_3_55_2 doi: 10.1146/annurev.biochem.73.011303.073706 – ident: e_1_3_3_20_2 doi: 10.1128/JVI.00324-06 – ident: e_1_3_3_31_2 doi: 10.1371/journal.ppat.1002087 – ident: e_1_3_3_32_2 doi: 10.1371/journal.ppat.0030134 – ident: e_1_3_3_59_2 doi: 10.1172/JCI31122 – ident: e_1_3_3_66_2 doi: 10.1016/j.jmb.2013.12.003 – ident: e_1_3_3_77_2 doi: 10.1093/infdis/jit547 – ident: e_1_3_3_17_2 doi: 10.1093/infdis/jir214 – ident: e_1_3_3_42_2 doi: 10.1182/blood-2009-02-204263 – ident: e_1_3_3_70_2 doi: 10.1371/journal.pone.0019968 – ident: e_1_3_3_43_2 doi: 10.1074/jbc.M007369200 – ident: e_1_3_3_25_2 doi: 10.1097/00002030-199807000-00008 – ident: e_1_3_3_44_2 doi: 10.1074/jbc.275.15.11418 – ident: e_1_3_3_64_2 doi: 10.1128/JVI.01531-10 – ident: e_1_3_3_62_2 doi: 10.1016/j.cell.2009.12.017 – ident: e_1_3_3_61_2 doi: 10.1002/ijc.24669 – ident: e_1_3_3_49_2 doi: 10.1089/AID.2013.0268 – ident: e_1_3_3_65_2 doi: 10.1074/jbc.M212033200 – ident: e_1_3_3_35_2 doi: 10.1371/journal.pone.0018291 – ident: e_1_3_3_3_2 doi: 10.1128/JVI.77.21.11708-11717.2003 – ident: e_1_3_3_10_2 doi: 10.1016/j.jneuroim.2004.08.039 – ident: e_1_3_3_36_2 doi: 10.1097/QAD.0b013e3283013d42 – ident: e_1_3_3_69_2 doi: 10.1189/jlb.0610371 – ident: e_1_3_3_72_2 doi: 10.1128/JVI.02379-12 – ident: e_1_3_3_15_2 doi: 10.1371/journal.pone.0055279 – ident: e_1_3_3_30_2 doi: 10.1159/000100565 – ident: e_1_3_3_7_2 doi: 10.1371/journal.pone.0055776 – ident: e_1_3_3_13_2 doi: 10.1007/s11481-011-9330-3 – ident: e_1_3_3_29_2 doi: 10.1097/QAD.0b013e3282f4de23 – ident: e_1_3_3_45_2 doi: 10.1016/j.bbamcr.2004.10.011 – ident: e_1_3_3_19_2 doi: 10.4049/jimmunol.0801450 – ident: e_1_3_3_39_2 doi: 10.1182/blood-2004-08-3058 – ident: e_1_3_3_73_2 doi: 10.1128/JVI.01118-10 – reference: 23449791 - J Virol. 2013 May;87(9):5170-81 – reference: 20159550 - Mol Cell. 2010 Feb 12;37(3):299-310 – reference: 10759771 - Clin Exp Immunol. 2000 Apr;120(1):107-12 – reference: 1640166 - J Leukoc Biol. 1992 Jul;52(1):111-4 – reference: 15579285 - J Neuroimmunol. 2004 Dec;157(1-2):93-8 – reference: 21252259 - J Infect Dis. 2011 Mar 15;203(6):780-90 – reference: 10993652 - Br J Cancer. 2000 Oct;83(8):1039-46 – reference: 11049971 - Blood. 2000 Nov 1;96(9):2951-64 – reference: 21625498 - PLoS One. 2011;6(5):e19968 – reference: 22167311 - J Neuroimmune Pharmacol. 2012 Jun;7(2):363-71 – reference: 19544527 - Int J Cancer. 2009 Dec 15;125(12):2810-9 – reference: 10970901 - J Biol Chem. 2000 Dec 15;275(50):39702-9 – reference: 16887991 - J Immunol. 2006 Aug 15;177(4):2304-13 – reference: 22728172 - J Infect. 2012 Nov;65(5):431-8 – reference: 23437063 - PLoS One. 2013;8(2):e55776 – reference: 21368875 - Cell Death Dis. 2010;1:e99 – reference: 15189137 - Annu Rev Biochem. 2004;73:87-106 – reference: 23365694 - PLoS One. 2013;8(1):e55279 – reference: 19404407 - PLoS One. 2009;4(4):e5397 – reference: 17823654 - J Clin Invest. 2007 Oct;117(10):3107-17 – reference: 21177806 - J Virol. 2011 Mar;85(5):2126-37 – reference: 12595530 - J Biol Chem. 2003 May 2;278(18):15693-701 – reference: 26041838 - J Virol. 2015 Jul;89(13):6970 – reference: 17907802 - PLoS Pathog. 2007 Sep 7;3(9):1281-90 – reference: 7731711 - Oncogene. 1995 Apr 20;10(8):1563-71 – reference: 21917896 - J Infect Dis. 2011 Oct 15;204(8):1227-36 – reference: 20208540 - Nat Med. 2010 Apr;16(4):452-9 – reference: 18650129 - Clin Immunol. 2008 Oct;129(1):132-44 – reference: 9619803 - AIDS. 1998 May 7;12(7):719-27 – reference: 20419144 - PLoS Pathog. 2010 Apr;6(4):e1000842 – reference: 9078201 - Lancet. 1997 Mar 8;349(9053):692-5 – reference: 19339947 - Curr Opin HIV AIDS. 2009 Mar;4(2):96-103 – reference: 24133185 - J Infect Dis. 2014 Mar 1;209(5):739-48 – reference: 24326250 - J Mol Biol. 2014 Mar 20;426(6):1161-77 – reference: 17475889 - J Immunol. 2007 May 15;178(10):6581-9 – reference: 21917895 - J Infect Dis. 2011 Oct 15;204(8):1217-26 – reference: 21483669 - PLoS One. 2011;6(4):e18291 – reference: 24524407 - AIDS Res Hum Retroviruses. 2014 Jul;30(7):685-94 – reference: 21731690 - PLoS One. 2011;6(6):e21275 – reference: 22815948 - PLoS One. 2012;7(7):e41153 – reference: 14980080 - J Interferon Cytokine Res. 2004 Jan;24(1):1-19 – reference: 18317010 - AIDS. 2008 Mar 12;22(5):655-8 – reference: 18097445 - Nat Rev Mol Cell Biol. 2008 Jan;9(1):47-59 – reference: 22745371 - J Immunol. 2012 Aug 1;189(3):1491-9 – reference: 20495440 - AIDS. 2010 Jun 19;24(10):1415-23 – reference: 18525259 - AIDS. 2008 Jun 19;22(10):1137-44 – reference: 18330707 - Apoptosis. 2008 Apr;13(4):562-72 – reference: 21731488 - PLoS Pathog. 2011 Jun;7(6):e1002087 – reference: 21210296 - Mol Cell Biochem. 2011 May;351(1-2):41-58 – reference: 17115046 - Nat Med. 2006 Dec;12(12):1365-71 – reference: 15685448 - Cancer Immunol Immunother. 2005 Aug;54(8):729-40 – reference: 15843035 - Biochim Biophys Acta. 2005 Apr 15;1743(3):215-22 – reference: 19383966 - Blood. 2009 Oct 1;114(14):2917-25 – reference: 22127030 - Sex Health. 2011 Dec;8(4):453-64 – reference: 21750421 - AIDS. 2011 Sep 10;25(14):1721-6 – reference: 15585654 - Blood. 2005 Mar 15;105(6):2458-64 – reference: 21628670 - J Infect Dis. 2011 Jul 1;204(1):154-63 – reference: 20939681 - J Interferon Cytokine Res. 2011 Jan;31(1):173-81 – reference: 17356300 - Intervirology. 2007;50(3):224-8 – reference: 18568041 - Nat Rev Mol Cell Biol. 2008 Jul;9(7):532-42 – reference: 21505304 - AIDS. 2011 Jun 1;25(9):1207-17 – reference: 22701041 - J Leukoc Biol. 2012 Aug;92(2):397-405 – reference: 16940334 - J Leukoc Biol. 2006 Nov;80(5):1031-43 – reference: 17005663 - J Virol. 2006 Dec;80(23):11486-97 – reference: 19299747 - J Immunol. 2009 Apr 1;182(7):4459-70 – reference: 20064371 - Cell. 2009 Dec 24;139(7):1243-54 – reference: 20551211 - J Leukoc Biol. 2010 Sep;88(3):589-96 – reference: 20884651 - J Leukoc Biol. 2011 Jan;89(1):149-58 – reference: 11752161 - J Virol. 2002 Jan;76(2):707-16 – reference: 18414664 - PLoS One. 2008;3(4):e1967 – reference: 15699152 - J Immunol. 2005 Feb 15;174(4):2196-204 – reference: 19843579 - J Leukoc Biol. 2010 Apr;87(4):557-67 – reference: 16532269 - Apoptosis. 2006 May;11(5):673-86 – reference: 22708967 - Aging Cell. 2012 Oct;11(5):867-75 – reference: 20962079 - J Virol. 2011 Jan;85(1):397-409 – reference: 14557656 - J Virol. 2003 Nov;77(21):11708-17 – reference: 10753958 - J Biol Chem. 2000 Apr 14;275(15):11418-24 |
SSID | ssj0014464 |
Score | 2.2447877 |
Snippet | Although monocytes and macrophages are targets of HIV-1-mediated immunopathology, the impact of high viremia on activation-induced monocyte apoptosis relative... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 799 |
SubjectTerms | Adult Aged, 80 and over Apoptosis Chronic Disease Female Gene Expression Profiling HIV Infections - immunology HIV Infections - virology HIV-1 - immunology Human immunodeficiency virus Human immunodeficiency virus 1 Humans Male Middle Aged Monocytes - immunology Monocytes - physiology Pathogenesis and Immunity Proto-Oncogene Proteins c-bcl-2 - biosynthesis Retinoblastoma Protein - biosynthesis Viral Load Young Adult |
Title | Shift in Monocyte Apoptosis with Increasing Viral Load and Change in Apoptosis-Related ISG/Bcl2 Family Gene Expression in Chronically HIV-1-Infected Subjects |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25355877 https://www.proquest.com/docview/1637995297 https://www.proquest.com/docview/1654673490 https://pubmed.ncbi.nlm.nih.gov/PMC4301149 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLaqISReEHfGTUaCJ5QudZwleUQT0IzBS7eqPEWxY6uVqmTa0ofyX_gv_DTOseNc1g0NXqLWsZOm57P9nZNzIeRdICRs6vnEE0UgPS5AYU0mwcRD8hpEvgZ9G4OTv30_nJ7x40W4GI1-97yWNrUYy5_XxpX8j1ShDeSKUbL_INn2otAAn0G-cAQJw_FWMp4tV9qk-IeZWcltrYBUVud1hUlGjIEVZj86naM5YL7CUPyTKje5WZuoAmPtcEM84xgHBDSdfUGnbblmri4GJqfGrMjWadY4RzZZdfM1nJ6mc9ARU-PXhQR2I9C6c3kD8cXIur4tH6sEGIPtDN8KHI27dmOexpTSCMZlZzowHgg_0Pc_r1zjydYy8SbQqG_NmIQ9a0YXXQCL8MLuT3ZRxpynyOz6q7YtPDRAp12CI1twye3m1ml2d6NgGPxwPE_HSFqY11x8kI_7yj7Zei8avYnFGYzOzOgMK6nfYaCoGKU-_dq-xwJlm7t89fhULvSCxQf9ew9J0Y6mc9Vht8eATh-Q-40E6UeLw4dkpMpH5K4tZrp9TH4ZNNJVSR0aaQstimikHRqpQSNFNFJAI7VoxLE7aKSAxgPEIrVYpIhF2mERB_WwSIdYpA6LT8jZ50-nR1OvKf7hST6Jalg7hOBhLHlSKJ9p2DcKHccJi5U41HDUYewHMsl9IWDPybVCKptLEWmh4WsRPCV7ZVWq54QKYFw8UTIUivOoAEImtFYCub8Itfb3yQf372eyyYyPBVrW2XWS3ifv297nNiPMDf3eOkFmMEvwPVxeqmpzmYEKhGkYWRL9rU8IFCbgCfy6Z1b47d1YiDURIhgdDWDRdsCU8cMz5WppUsdzYwBJXtzyGV6Se90kfUX26ouNeg0kvBZvDM7_AF31378 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shift+in+Monocyte+Apoptosis+with+Increasing+Viral+Load+and+Change+in+Apoptosis-Related+ISG%2FBcl2+Family+Gene+Expression+in+Chronically+HIV-1-Infected+Subjects&rft.jtitle=Journal+of+virology&rft.au=Patro%2C+Sean+C.&rft.au=Pal%2C+Sharmistha&rft.au=Bi%2C+Yingtao&rft.au=Lynn%2C+Kenneth&rft.date=2015-01-01&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=89&rft.issue=1&rft.spage=799&rft.epage=810&rft_id=info:doi/10.1128%2FJVI.02382-14&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_JVI_02382_14 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |