Seizure Prediction Using Directed Transfer Function and Convolution Neural Network on Intracranial EEG

Automatic seizure prediction promotes the development of closed-loop treatment system on intractable epilepsy. In this study, by considering the specific information exchange between EEG channels from the perspective of whole brain activities, the convolution neural network (CNN) and the directed tr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 12; pp. 2711 - 2720
Main Authors Wang, Gang, Wang, Dong, Du, Changwang, Li, Kuo, Zhang, Junhao, Liu, Zhian, Tao, Yi, Wang, Maode, Cao, Zehong, Yan, Xiangguo
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2020.3035836

Cover

Abstract Automatic seizure prediction promotes the development of closed-loop treatment system on intractable epilepsy. In this study, by considering the specific information exchange between EEG channels from the perspective of whole brain activities, the convolution neural network (CNN) and the directed transfer function (DTF) were merged to present a novel method for patient-specific seizure prediction. Firstly, the intracranial electroencephalogram (iEEG) signals were segmented and the information flow features of iEEG signals were calculated by using the DTF algorithm. Then, these features were reconstructed as the channel-frequency maps according to channel pairs and the frequency of information flow. Finally, these maps were fed into the CNN model and the outputs were post-processed by the moving average approach to predict the epileptic seizures. By the evaluation of cross-validation method, the proposed algorithm achieved the averaged sensitivity of 90.8%, the averaged false prediction rate of 0.08 per hour. Compared to the random predictor and other existing algorithms tested on the Freiburg EEG dataset, our proposed method achieved better performance for seizure prediction in all patients. These results demonstrated that the proposed algorithm could provide an robust seizure prediction solution by using deep learning to capture the brain network changes of iEEG signals from epileptic patients.
AbstractList Automatic seizure prediction promotes the development of closed-loop treatment system on intractable epilepsy. In this study, by considering the specific information exchange between EEG channels from the perspective of whole brain activities, the convolution neural network (CNN) and the directed transfer function (DTF) were merged to present a novel method for patient-specific seizure prediction. Firstly, the intracranial electroencephalogram (iEEG) signals were segmented and the information flow features of iEEG signals were calculated by using the DTF algorithm. Then, these features were reconstructed as the channel-frequency maps according to channel pairs and the frequency of information flow. Finally, these maps were fed into the CNN model and the outputs were post-processed by the moving average approach to predict the epileptic seizures. By the evaluation of cross-validation method, the proposed algorithm achieved the averaged sensitivity of 90.8%, the averaged false prediction rate of 0.08 per hour. Compared to the random predictor and other existing algorithms tested on the Freiburg EEG dataset, our proposed method achieved better performance for seizure prediction in all patients. These results demonstrated that the proposed algorithm could provide an robust seizure prediction solution by using deep learning to capture the brain network changes of iEEG signals from epileptic patients.
Automatic seizure prediction promotes the development of closed-loop treatment system on intractable epilepsy. In this study, by considering the specific information exchange between EEG channels from the perspective of whole brain activities, the convolution neural network (CNN) and the directed transfer function (DTF) were merged to present a novel method for patient-specific seizure prediction. Firstly, the intracranial electroencephalogram (iEEG) signals were segmented and the information flow features of iEEG signals were calculated by using the DTF algorithm. Then, these features were reconstructed as the channel-frequency maps according to channel pairs and the frequency of information flow. Finally, these maps were fed into the CNN model and the outputs were post-processed by the moving average approach to predict the epileptic seizures. By the evaluation of cross-validation method, the proposed algorithm achieved the averaged sensitivity of 90.8%, the averaged false prediction rate of 0.08 per hour. Compared to the random predictor and other existing algorithms tested on the Freiburg EEG dataset, our proposed method achieved better performance for seizure prediction in all patients. These results demonstrated that the proposed algorithm could provide an robust seizure prediction solution by using deep learning to capture the brain network changes of iEEG signals from epileptic patients.Automatic seizure prediction promotes the development of closed-loop treatment system on intractable epilepsy. In this study, by considering the specific information exchange between EEG channels from the perspective of whole brain activities, the convolution neural network (CNN) and the directed transfer function (DTF) were merged to present a novel method for patient-specific seizure prediction. Firstly, the intracranial electroencephalogram (iEEG) signals were segmented and the information flow features of iEEG signals were calculated by using the DTF algorithm. Then, these features were reconstructed as the channel-frequency maps according to channel pairs and the frequency of information flow. Finally, these maps were fed into the CNN model and the outputs were post-processed by the moving average approach to predict the epileptic seizures. By the evaluation of cross-validation method, the proposed algorithm achieved the averaged sensitivity of 90.8%, the averaged false prediction rate of 0.08 per hour. Compared to the random predictor and other existing algorithms tested on the Freiburg EEG dataset, our proposed method achieved better performance for seizure prediction in all patients. These results demonstrated that the proposed algorithm could provide an robust seizure prediction solution by using deep learning to capture the brain network changes of iEEG signals from epileptic patients.
Author Du, Changwang
Wang, Maode
Zhang, Junhao
Wang, Dong
Tao, Yi
Li, Kuo
Liu, Zhian
Wang, Gang
Cao, Zehong
Yan, Xiangguo
Author_xml – sequence: 1
  givenname: Gang
  orcidid: 0000-0001-5859-3724
  surname: Wang
  fullname: Wang, Gang
  email: ggwang@xjtu.edu.cn
  organization: Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, China
– sequence: 2
  givenname: Dong
  surname: Wang
  fullname: Wang, Dong
  organization: Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, China
– sequence: 3
  givenname: Changwang
  surname: Du
  fullname: Du, Changwang
  organization: Department of Neurosurgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
– sequence: 4
  givenname: Kuo
  surname: Li
  fullname: Li, Kuo
  organization: Department of Neurosurgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
– sequence: 5
  givenname: Junhao
  surname: Zhang
  fullname: Zhang, Junhao
  organization: Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, China
– sequence: 6
  givenname: Zhian
  surname: Liu
  fullname: Liu, Zhian
  organization: Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, China
– sequence: 7
  givenname: Yi
  surname: Tao
  fullname: Tao, Yi
  organization: Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, China
– sequence: 8
  givenname: Maode
  surname: Wang
  fullname: Wang, Maode
  organization: Department of Neurosurgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
– sequence: 9
  givenname: Zehong
  surname: Cao
  fullname: Cao, Zehong
  organization: School of Information and Communication Technology, University of Tasmania, Hobart, TAS, Australia
– sequence: 10
  givenname: Xiangguo
  surname: Yan
  fullname: Yan, Xiangguo
  email: xgyan@xjtu.edu.cn
  organization: Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33147147$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1rFDEUhoNU7If-AQUZ8KY3s-ZrksylbLe1UKrY7XXIJCeSOpvUZEaxv95sd-tFL4TAyTk87-HwvsfoIKYICL0leEEI7j-ur2--rRYUU7xgmHWKiRfoiHSdajEl-GD7Z7zljOJDdFzKHcZEik6-QoeMES7rO0L-BsLDnKH5msEFO4UUm9sS4vfmLGSwE7hmnU0sHnJzPscdYKJrlin-SuP82F_DnM1Yy_Q75R9NnVzGKRtbhaHOV6uL1-ilN2OBN_t6gm7PV-vl5_bqy8Xl8tNVazmRUzsMPe8V74zFghPWW4FxP5C-90bxgTivnPCDF0pKYjrBCDjwzgvGnbKMCHaCTnd773P6OUOZ9CYUC-NoIqS5aMo72UvMFK7oh2foXZpzrNdVSjHacUlppd7vqXnYgNP3OWxM_qOfHKyA2gE2p1IyeG3DZLa2VAfCqAnW27D0Y1h6G5beh1Wl9Jn0aft_Re92ogAA_wR9Pblaxv4CusefOQ
CODEN ITNSB3
CitedBy_id crossref_primary_10_1109_TNSRE_2023_3260845
crossref_primary_10_1007_s11517_024_03132_w
crossref_primary_10_1088_1741_2552_ad9ad0
crossref_primary_10_1142_S0129065721500222
crossref_primary_10_1016_j_cmpb_2021_106335
crossref_primary_10_1109_JBHI_2024_3438829
crossref_primary_10_1016_j_bspc_2021_103300
crossref_primary_10_1109_TCDS_2022_3212019
crossref_primary_10_1088_1741_2552_acae09
crossref_primary_10_1109_TNSRE_2021_3113293
crossref_primary_10_1109_TNSRE_2021_3064665
crossref_primary_10_3389_fneur_2022_1016224
crossref_primary_10_1109_TBCAS_2024_3442250
crossref_primary_10_1109_LSENS_2023_3330327
crossref_primary_10_1016_j_neuroscience_2021_11_017
crossref_primary_10_1038_s41598_024_77216_w
crossref_primary_10_1109_TNSRE_2022_3217929
crossref_primary_10_3389_fnins_2024_1340164
crossref_primary_10_1016_j_compbiomed_2024_108510
crossref_primary_10_1109_ACCESS_2021_3083519
crossref_primary_10_1109_TNNLS_2023_3252569
crossref_primary_10_3389_fnins_2022_967116
crossref_primary_10_1109_JBHI_2023_3282251
crossref_primary_10_1016_j_neunet_2022_03_014
crossref_primary_10_1142_S0129065724500412
crossref_primary_10_3390_biomedicines10071551
crossref_primary_10_1109_TNSRE_2021_3132944
crossref_primary_10_1109_TNSRE_2022_3182705
crossref_primary_10_1016_j_compbiomed_2024_109257
crossref_primary_10_1142_S0129065723500144
crossref_primary_10_1109_TNSRE_2022_3222095
crossref_primary_10_1142_S0129065721500489
crossref_primary_10_2196_55986
crossref_primary_10_1038_s41582_024_00965_9
crossref_primary_10_1109_TNSRE_2023_3322275
crossref_primary_10_1016_j_mejo_2023_105810
crossref_primary_10_1109_TNSRE_2023_3235390
crossref_primary_10_1016_j_compbiomed_2022_106053
crossref_primary_10_1016_j_neunet_2022_09_016
crossref_primary_10_1007_s40846_024_00917_0
crossref_primary_10_3390_diagnostics13213382
crossref_primary_10_1109_JBHI_2024_3423766
crossref_primary_10_1016_j_bspc_2024_106447
crossref_primary_10_1016_j_neuri_2024_100168
crossref_primary_10_1007_s11571_022_09843_w
crossref_primary_10_3390_s23010423
crossref_primary_10_1109_TNSRE_2025_3534121
crossref_primary_10_1016_j_inffus_2023_03_022
crossref_primary_10_1109_TNSRE_2023_3244045
crossref_primary_10_1109_JTEHM_2022_3144037
crossref_primary_10_1016_j_bspc_2022_103769
crossref_primary_10_3389_fnins_2021_729403
Cites_doi 10.1109/ACCESS.2018.2867008
10.1016/j.clinph.2004.07.032
10.1371/journal.pone.0068910
10.1016/j.clinph.2007.07.017
10.1007/s11571-019-09534-z
10.3389/fnins.2017.00379
10.1016/j.neuroimage.2017.12.052
10.1109/TNSRE.2017.2721116
10.1016/j.clinph.2012.01.014
10.1016/j.clinph.2009.09.002
10.1111/j.1528-1167.2011.03138.x
10.1109/TBME.2018.2809798
10.1109/TBME.2013.2297332
10.1016/S1525-5050(03)00105-7
10.1155/2013/459346
10.1214/aos/1176344136
10.1016/j.clinph.2014.05.022
10.1109/TBME.2017.2785401
10.1613/jair.953
10.1109/TNSRE.2019.2943707
10.1109/JBHI.2015.2424074
10.1111/j.1528-1167.2009.02067.x
10.1016/j.clinph.2013.10.051
10.1109/TPAMI.2005.159
10.1016/S0920-1211(03)00002-0
10.1145/382043.382304
10.1016/j.clinph.2014.02.017
10.1109/TKDE.2008.239
10.1109/TNNLS.2018.2789927
10.1007/PL00007990
10.1109/JBHI.2019.2933046
10.1109/TBCAS.2015.2477264
10.1111/j.1528-1167.2008.01656.x
10.1097/WNP.0b013e31820512ee
10.1016/j.neunet.2018.04.018
10.1016/j.pneurobio.2014.06.004
10.1016/j.clinph.2017.04.026
10.1145/3065386
10.1109/TBME.2003.810708
10.1109/TSMCB.2008.2007853
10.1016/j.physd.2004.02.013
10.1109/TSMC.2017.2705582
10.1016/j.clinph.2013.09.047
10.1007/BF00198091
10.1142/S0129065717500435
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2020.3035836
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 2720
ExternalDocumentID 33147147
10_1109_TNSRE_2020_3035836
9248064
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities of China
  grantid: xjj2017122
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 32071372; 31571000; 61471291; 81201162
  funderid: 10.13039/501100001809
– fundername: Natural Science Basic Research Program of Shaanxi through the Program
  grantid: 2020JM-037
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c417t-bb949845ac064139c6009b199fa84b1df8d6fbf68771a5631edefdf634d8c3163
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Thu Jul 10 23:58:14 EDT 2025
Mon Jul 14 08:24:50 EDT 2025
Thu Apr 03 06:56:15 EDT 2025
Tue Jul 01 00:43:22 EDT 2025
Thu Apr 24 23:04:30 EDT 2025
Wed Aug 27 02:51:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-bb949845ac064139c6009b199fa84b1df8d6fbf68771a5631edefdf634d8c3163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5859-3724
PMID 33147147
PQID 2483254722
PQPubID 85423
PageCount 10
ParticipantIDs ieee_primary_9248064
proquest_journals_2483254722
crossref_citationtrail_10_1109_TNSRE_2020_3035836
proquest_miscellaneous_2457970380
pubmed_primary_33147147
crossref_primary_10_1109_TNSRE_2020_3035836
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref37
aarabi (ref12) 2012; 123
ref36
ref14
ref31
ref30
ref33
ref11
ref10
ref2
ref1
ref39
ref17
ref38
ref16
jacobs (ref43) 2008; 49
ref18
schelter (ref34) 2006; 16
liu (ref44) 2009; 39
kingma (ref32) 2015
zheng (ref15) 2014; 125
pourbabaee (ref19) 2018; 48
ref46
ref24
ref45
ref23
ref48
ref26
ref25
hejazi (ref28) 2019; 13
ref20
ref42
ref41
ref22
defferrard (ref47) 2016
ref21
ref27
park (ref9) 2011; 52
ref29
ref8
ref7
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref6
  doi: 10.1109/ACCESS.2018.2867008
– ident: ref37
  doi: 10.1016/j.clinph.2004.07.032
– ident: ref35
  doi: 10.1371/journal.pone.0068910
– volume: 16
  year: 2006
  ident: ref34
  article-title: Testing statistical significance of multivariate time series analysis techniques for epileptic seizure prediction
  publication-title: Chaos Interdiscipl J Nonlinear Sci
– ident: ref36
  doi: 10.1016/j.clinph.2007.07.017
– volume: 13
  start-page: 461
  year: 2019
  ident: ref28
  article-title: Prediction of epilepsy seizure from multi-channel electroencephalogram by effective connectivity analysis using granger causality and directed transfer function methods
  publication-title: Cognit Neurodyn
  doi: 10.1007/s11571-019-09534-z
– ident: ref20
  doi: 10.3389/fnins.2017.00379
– ident: ref48
  doi: 10.1016/j.neuroimage.2017.12.052
– ident: ref17
  doi: 10.1109/TNSRE.2017.2721116
– volume: 123
  start-page: 1111
  year: 2012
  ident: ref12
  article-title: A rule-based seizure prediction method for focal neocortical epilepsy
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2012.01.014
– ident: ref21
  doi: 10.1016/j.clinph.2009.09.002
– volume: 52
  start-page: 1761
  year: 2011
  ident: ref9
  article-title: Seizure prediction with spectral power of EEG using cost-sensitive support vector machines
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2011.03138.x
– ident: ref42
  doi: 10.1109/TBME.2018.2809798
– ident: ref39
  doi: 10.1109/TBME.2013.2297332
– ident: ref1
  doi: 10.1016/S1525-5050(03)00105-7
– ident: ref4
  doi: 10.1155/2013/459346
– ident: ref29
  doi: 10.1214/aos/1176344136
– ident: ref10
  doi: 10.1016/j.clinph.2014.05.022
– ident: ref23
  doi: 10.1109/TBME.2017.2785401
– ident: ref46
  doi: 10.1613/jair.953
– ident: ref24
  doi: 10.1109/TNSRE.2019.2943707
– ident: ref7
  doi: 10.1109/JBHI.2015.2424074
– ident: ref41
  doi: 10.1111/j.1528-1167.2009.02067.x
– start-page: 1
  year: 2015
  ident: ref32
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc 3rd Int Conf Learn Represent
– ident: ref3
  doi: 10.1016/j.clinph.2013.10.051
– ident: ref40
  doi: 10.1109/TPAMI.2005.159
– ident: ref33
  doi: 10.1016/S0920-1211(03)00002-0
– ident: ref30
  doi: 10.1145/382043.382304
– ident: ref14
  doi: 10.1016/j.clinph.2014.02.017
– ident: ref45
  doi: 10.1109/TKDE.2008.239
– ident: ref18
  doi: 10.1109/TNNLS.2018.2789927
– ident: ref27
  doi: 10.1007/PL00007990
– ident: ref25
  doi: 10.1109/JBHI.2019.2933046
– ident: ref11
  doi: 10.1109/TBCAS.2015.2477264
– volume: 49
  start-page: 1893
  year: 2008
  ident: ref43
  article-title: Interictal high-frequency oscillations (80-500 Hz) are an indicator of seizure onset areas independent of spikes in the human epileptic brain
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2008.01656.x
– ident: ref38
  doi: 10.1097/WNP.0b013e31820512ee
– ident: ref22
  doi: 10.1016/j.neunet.2018.04.018
– ident: ref16
  doi: 10.1016/j.pneurobio.2014.06.004
– ident: ref5
  doi: 10.1016/j.clinph.2017.04.026
– ident: ref31
  doi: 10.1145/3065386
– start-page: 1
  year: 2016
  ident: ref47
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Proc 30th Conf Neural Inf Process Syst
– ident: ref2
  doi: 10.1109/TBME.2003.810708
– volume: 39
  start-page: 539
  year: 2009
  ident: ref44
  article-title: Exploratory undersampling for class-imbalance learning
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2008.2007853
– ident: ref13
  doi: 10.1016/j.physd.2004.02.013
– volume: 48
  start-page: 2095
  year: 2018
  ident: ref19
  article-title: Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2017.2705582
– volume: 125
  start-page: 1104
  year: 2014
  ident: ref15
  article-title: Epileptic seizure prediction using phase synchronization based on bivariate empirical mode decomposition
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2013.09.047
– ident: ref26
  doi: 10.1007/BF00198091
– ident: ref8
  doi: 10.1142/S0129065717500435
SSID ssj0017657
Score 2.5519705
Snippet Automatic seizure prediction promotes the development of closed-loop treatment system on intractable epilepsy. In this study, by considering the specific...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2711
SubjectTerms Algorithms
Artificial neural networks
Biological neural networks
Brain
Brain modeling
Convolution
convolution neural networks
Convulsions & seizures
Deep learning
directed transfer function
EEG
Electroencephalography
Epilepsy
Feature extraction
Flow mapping
Information flow
Information transfer
Intracranial electroencephalogram (iEEG)
Machine learning
Neural networks
Prediction algorithms
Predictions
Robustness (mathematics)
seizure prediction
Seizures
Transfer functions
Title Seizure Prediction Using Directed Transfer Function and Convolution Neural Network on Intracranial EEG
URI https://ieeexplore.ieee.org/document/9248064
https://www.ncbi.nlm.nih.gov/pubmed/33147147
https://www.proquest.com/docview/2483254722
https://www.proquest.com/docview/2457970380
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtQwcNT2xAUo5RFokZGAC2SbxE5iH1G1S0HqCrVbqbfIdsYSospWy4ZDv56xnUQFAeIW2ePY1ow9M54XwOsKbStMKVOZO0yF80ZCTYqrEHQTWiMLnfng5LNldXopPl-VVzvwfoqFQcTgfIYz_xls-e3a9v6p7Jh0BUksdBd2icxirNZkMairkNWTDrBIBS-yMUAmU8er5cX5nFTBgjTUjJeS-7pFnOe0Gl9V5Q4_CgVW_i5rBp6zeABn42qjq8m3Wb81M3v7WyLH_93OQ7g_CJ_sQ6SWfdjB7hG8uZtomK1ilgH2lp3_ksP7ANwFfr3tN8i-bLxxxzey4HDA4rWJLQuMz-GGLYhbBgDdtexk3f0YCJz5XCA0yzI6nzNq-eRfly0NpIPA5vOPj-FyMV-dnKZDlYbUirzepsYooaQotaW9kDxpSYRSJlfKaSlM3jrZVs64StZ1rsuK59iia13FRSstJ3HwCex16w6fAauE1ZnOsMy1EMpoWSOXSEKerWVluUsgH3HV2GH7vpLGdRNUmUw1AdWNR3UzoDqBd9OYm5jA45_QBx5PE-SAogQOR5JohjP-vaEuTup1XRQJvJq66XR6k4vucN17mLJWdKnKLIGnkZSmf48U-PzPc76Ae35l0XXmEPa2mx6PSADampeB8n8C3mb_ww
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9QwzBrjAV7Gx_goDAgS8AK9tU2apo9ouuMGuxPabtLeqiR1JMTUQ8eVh_16nPRDAwHirUqcJpHt2I4dG-CVRFsLk6tYpQ5j4byTUJPhKgSdhNaoTCf-cfJiKefn4uNFfrED78a3MIgYgs9w4j-DL79e29ZflR2SraBIhN6AmyT3Rd691hp9BoUMeT2JhUUseJYMT2SS8nC1PDudkjGYkY2a8FxxX7mI85TW4-uqXJNIocTK37XNIHVmd2AxrLcLNvk6abdmYq9-S-X4vxu6C3u9-sned_RyD3awuQ-vr6caZqsuzwB7w05_yeK9D-4Mv1y1G2SfN9694xtZCDlg3cGJNQuiz-GGzUheBgDd1Oxo3fzoSZz5bCA0y7ILP2fUcuzvly0NJFZg0-mHB3A-m66O5nFfpyG2Ii22sTGlKJXItaW9kEZpSYkqTVqWTith0tqpWjrjpCqKVOeSp1ijq53kolaWk0L4EHabdYOPgUlhdaITzFMtRGm0KpArJDXPFkpa7iJIB1xVtt--r6VxWQVjJimrgOrKo7rqUR3B23HMty6Fxz-h9z2eRsgeRREcDCRR9Vz-vaIuTgZ2kWURvBy7iT-900U3uG49TF6UdKyqJIJHHSmN_x4o8Mmf53wBt-arxUl1crz89BRu-1V2gTQHsLvdtPiM1KGteR644CdlBwMf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seizure+Prediction+Using+Directed+Transfer+Function+and+Convolution+Neural+Network+on+Intracranial+EEG&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Wang%2C+Gang&rft.au=Wang%2C+Dong&rft.au=Du%2C+Changwang&rft.au=Li%2C+Kuo&rft.date=2020-12-01&rft.eissn=1558-0210&rft.volume=28&rft.issue=12&rft.spage=2711&rft_id=info:doi/10.1109%2FTNSRE.2020.3035836&rft_id=info%3Apmid%2F33147147&rft.externalDocID=33147147
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon