Seizure Prediction Using Directed Transfer Function and Convolution Neural Network on Intracranial EEG
Automatic seizure prediction promotes the development of closed-loop treatment system on intractable epilepsy. In this study, by considering the specific information exchange between EEG channels from the perspective of whole brain activities, the convolution neural network (CNN) and the directed tr...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 12; pp. 2711 - 2720 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1534-4320 1558-0210 1558-0210 |
DOI | 10.1109/TNSRE.2020.3035836 |
Cover
Abstract | Automatic seizure prediction promotes the development of closed-loop treatment system on intractable epilepsy. In this study, by considering the specific information exchange between EEG channels from the perspective of whole brain activities, the convolution neural network (CNN) and the directed transfer function (DTF) were merged to present a novel method for patient-specific seizure prediction. Firstly, the intracranial electroencephalogram (iEEG) signals were segmented and the information flow features of iEEG signals were calculated by using the DTF algorithm. Then, these features were reconstructed as the channel-frequency maps according to channel pairs and the frequency of information flow. Finally, these maps were fed into the CNN model and the outputs were post-processed by the moving average approach to predict the epileptic seizures. By the evaluation of cross-validation method, the proposed algorithm achieved the averaged sensitivity of 90.8%, the averaged false prediction rate of 0.08 per hour. Compared to the random predictor and other existing algorithms tested on the Freiburg EEG dataset, our proposed method achieved better performance for seizure prediction in all patients. These results demonstrated that the proposed algorithm could provide an robust seizure prediction solution by using deep learning to capture the brain network changes of iEEG signals from epileptic patients. |
---|---|
AbstractList | Automatic seizure prediction promotes the development of closed-loop treatment system on intractable epilepsy. In this study, by considering the specific information exchange between EEG channels from the perspective of whole brain activities, the convolution neural network (CNN) and the directed transfer function (DTF) were merged to present a novel method for patient-specific seizure prediction. Firstly, the intracranial electroencephalogram (iEEG) signals were segmented and the information flow features of iEEG signals were calculated by using the DTF algorithm. Then, these features were reconstructed as the channel-frequency maps according to channel pairs and the frequency of information flow. Finally, these maps were fed into the CNN model and the outputs were post-processed by the moving average approach to predict the epileptic seizures. By the evaluation of cross-validation method, the proposed algorithm achieved the averaged sensitivity of 90.8%, the averaged false prediction rate of 0.08 per hour. Compared to the random predictor and other existing algorithms tested on the Freiburg EEG dataset, our proposed method achieved better performance for seizure prediction in all patients. These results demonstrated that the proposed algorithm could provide an robust seizure prediction solution by using deep learning to capture the brain network changes of iEEG signals from epileptic patients. Automatic seizure prediction promotes the development of closed-loop treatment system on intractable epilepsy. In this study, by considering the specific information exchange between EEG channels from the perspective of whole brain activities, the convolution neural network (CNN) and the directed transfer function (DTF) were merged to present a novel method for patient-specific seizure prediction. Firstly, the intracranial electroencephalogram (iEEG) signals were segmented and the information flow features of iEEG signals were calculated by using the DTF algorithm. Then, these features were reconstructed as the channel-frequency maps according to channel pairs and the frequency of information flow. Finally, these maps were fed into the CNN model and the outputs were post-processed by the moving average approach to predict the epileptic seizures. By the evaluation of cross-validation method, the proposed algorithm achieved the averaged sensitivity of 90.8%, the averaged false prediction rate of 0.08 per hour. Compared to the random predictor and other existing algorithms tested on the Freiburg EEG dataset, our proposed method achieved better performance for seizure prediction in all patients. These results demonstrated that the proposed algorithm could provide an robust seizure prediction solution by using deep learning to capture the brain network changes of iEEG signals from epileptic patients.Automatic seizure prediction promotes the development of closed-loop treatment system on intractable epilepsy. In this study, by considering the specific information exchange between EEG channels from the perspective of whole brain activities, the convolution neural network (CNN) and the directed transfer function (DTF) were merged to present a novel method for patient-specific seizure prediction. Firstly, the intracranial electroencephalogram (iEEG) signals were segmented and the information flow features of iEEG signals were calculated by using the DTF algorithm. Then, these features were reconstructed as the channel-frequency maps according to channel pairs and the frequency of information flow. Finally, these maps were fed into the CNN model and the outputs were post-processed by the moving average approach to predict the epileptic seizures. By the evaluation of cross-validation method, the proposed algorithm achieved the averaged sensitivity of 90.8%, the averaged false prediction rate of 0.08 per hour. Compared to the random predictor and other existing algorithms tested on the Freiburg EEG dataset, our proposed method achieved better performance for seizure prediction in all patients. These results demonstrated that the proposed algorithm could provide an robust seizure prediction solution by using deep learning to capture the brain network changes of iEEG signals from epileptic patients. |
Author | Du, Changwang Wang, Maode Zhang, Junhao Wang, Dong Tao, Yi Li, Kuo Liu, Zhian Wang, Gang Cao, Zehong Yan, Xiangguo |
Author_xml | – sequence: 1 givenname: Gang orcidid: 0000-0001-5859-3724 surname: Wang fullname: Wang, Gang email: ggwang@xjtu.edu.cn organization: Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, China – sequence: 2 givenname: Dong surname: Wang fullname: Wang, Dong organization: Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, China – sequence: 3 givenname: Changwang surname: Du fullname: Du, Changwang organization: Department of Neurosurgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China – sequence: 4 givenname: Kuo surname: Li fullname: Li, Kuo organization: Department of Neurosurgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China – sequence: 5 givenname: Junhao surname: Zhang fullname: Zhang, Junhao organization: Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, China – sequence: 6 givenname: Zhian surname: Liu fullname: Liu, Zhian organization: Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, China – sequence: 7 givenname: Yi surname: Tao fullname: Tao, Yi organization: Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, China – sequence: 8 givenname: Maode surname: Wang fullname: Wang, Maode organization: Department of Neurosurgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China – sequence: 9 givenname: Zehong surname: Cao fullname: Cao, Zehong organization: School of Information and Communication Technology, University of Tasmania, Hobart, TAS, Australia – sequence: 10 givenname: Xiangguo surname: Yan fullname: Yan, Xiangguo email: xgyan@xjtu.edu.cn organization: Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33147147$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV1rFDEUhoNU7If-AQUZ8KY3s-ZrksylbLe1UKrY7XXIJCeSOpvUZEaxv95sd-tFL4TAyTk87-HwvsfoIKYICL0leEEI7j-ur2--rRYUU7xgmHWKiRfoiHSdajEl-GD7Z7zljOJDdFzKHcZEik6-QoeMES7rO0L-BsLDnKH5msEFO4UUm9sS4vfmLGSwE7hmnU0sHnJzPscdYKJrlin-SuP82F_DnM1Yy_Q75R9NnVzGKRtbhaHOV6uL1-ilN2OBN_t6gm7PV-vl5_bqy8Xl8tNVazmRUzsMPe8V74zFghPWW4FxP5C-90bxgTivnPCDF0pKYjrBCDjwzgvGnbKMCHaCTnd773P6OUOZ9CYUC-NoIqS5aMo72UvMFK7oh2foXZpzrNdVSjHacUlppd7vqXnYgNP3OWxM_qOfHKyA2gE2p1IyeG3DZLa2VAfCqAnW27D0Y1h6G5beh1Wl9Jn0aft_Re92ogAA_wR9Pblaxv4CusefOQ |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1109_TNSRE_2023_3260845 crossref_primary_10_1007_s11517_024_03132_w crossref_primary_10_1088_1741_2552_ad9ad0 crossref_primary_10_1142_S0129065721500222 crossref_primary_10_1016_j_cmpb_2021_106335 crossref_primary_10_1109_JBHI_2024_3438829 crossref_primary_10_1016_j_bspc_2021_103300 crossref_primary_10_1109_TCDS_2022_3212019 crossref_primary_10_1088_1741_2552_acae09 crossref_primary_10_1109_TNSRE_2021_3113293 crossref_primary_10_1109_TNSRE_2021_3064665 crossref_primary_10_3389_fneur_2022_1016224 crossref_primary_10_1109_TBCAS_2024_3442250 crossref_primary_10_1109_LSENS_2023_3330327 crossref_primary_10_1016_j_neuroscience_2021_11_017 crossref_primary_10_1038_s41598_024_77216_w crossref_primary_10_1109_TNSRE_2022_3217929 crossref_primary_10_3389_fnins_2024_1340164 crossref_primary_10_1016_j_compbiomed_2024_108510 crossref_primary_10_1109_ACCESS_2021_3083519 crossref_primary_10_1109_TNNLS_2023_3252569 crossref_primary_10_3389_fnins_2022_967116 crossref_primary_10_1109_JBHI_2023_3282251 crossref_primary_10_1016_j_neunet_2022_03_014 crossref_primary_10_1142_S0129065724500412 crossref_primary_10_3390_biomedicines10071551 crossref_primary_10_1109_TNSRE_2021_3132944 crossref_primary_10_1109_TNSRE_2022_3182705 crossref_primary_10_1016_j_compbiomed_2024_109257 crossref_primary_10_1142_S0129065723500144 crossref_primary_10_1109_TNSRE_2022_3222095 crossref_primary_10_1142_S0129065721500489 crossref_primary_10_2196_55986 crossref_primary_10_1038_s41582_024_00965_9 crossref_primary_10_1109_TNSRE_2023_3322275 crossref_primary_10_1016_j_mejo_2023_105810 crossref_primary_10_1109_TNSRE_2023_3235390 crossref_primary_10_1016_j_compbiomed_2022_106053 crossref_primary_10_1016_j_neunet_2022_09_016 crossref_primary_10_1007_s40846_024_00917_0 crossref_primary_10_3390_diagnostics13213382 crossref_primary_10_1109_JBHI_2024_3423766 crossref_primary_10_1016_j_bspc_2024_106447 crossref_primary_10_1016_j_neuri_2024_100168 crossref_primary_10_1007_s11571_022_09843_w crossref_primary_10_3390_s23010423 crossref_primary_10_1109_TNSRE_2025_3534121 crossref_primary_10_1016_j_inffus_2023_03_022 crossref_primary_10_1109_TNSRE_2023_3244045 crossref_primary_10_1109_JTEHM_2022_3144037 crossref_primary_10_1016_j_bspc_2022_103769 crossref_primary_10_3389_fnins_2021_729403 |
Cites_doi | 10.1109/ACCESS.2018.2867008 10.1016/j.clinph.2004.07.032 10.1371/journal.pone.0068910 10.1016/j.clinph.2007.07.017 10.1007/s11571-019-09534-z 10.3389/fnins.2017.00379 10.1016/j.neuroimage.2017.12.052 10.1109/TNSRE.2017.2721116 10.1016/j.clinph.2012.01.014 10.1016/j.clinph.2009.09.002 10.1111/j.1528-1167.2011.03138.x 10.1109/TBME.2018.2809798 10.1109/TBME.2013.2297332 10.1016/S1525-5050(03)00105-7 10.1155/2013/459346 10.1214/aos/1176344136 10.1016/j.clinph.2014.05.022 10.1109/TBME.2017.2785401 10.1613/jair.953 10.1109/TNSRE.2019.2943707 10.1109/JBHI.2015.2424074 10.1111/j.1528-1167.2009.02067.x 10.1016/j.clinph.2013.10.051 10.1109/TPAMI.2005.159 10.1016/S0920-1211(03)00002-0 10.1145/382043.382304 10.1016/j.clinph.2014.02.017 10.1109/TKDE.2008.239 10.1109/TNNLS.2018.2789927 10.1007/PL00007990 10.1109/JBHI.2019.2933046 10.1109/TBCAS.2015.2477264 10.1111/j.1528-1167.2008.01656.x 10.1097/WNP.0b013e31820512ee 10.1016/j.neunet.2018.04.018 10.1016/j.pneurobio.2014.06.004 10.1016/j.clinph.2017.04.026 10.1145/3065386 10.1109/TBME.2003.810708 10.1109/TSMCB.2008.2007853 10.1016/j.physd.2004.02.013 10.1109/TSMC.2017.2705582 10.1016/j.clinph.2013.09.047 10.1007/BF00198091 10.1142/S0129065717500435 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TNSRE.2020.3035836 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 2720 |
ExternalDocumentID | 33147147 10_1109_TNSRE_2020_3035836 9248064 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities of China grantid: xjj2017122 funderid: 10.13039/501100012226 – fundername: National Natural Science Foundation of China grantid: 32071372; 31571000; 61471291; 81201162 funderid: 10.13039/501100001809 – fundername: Natural Science Basic Research Program of Shaanxi through the Program grantid: 2020JM-037 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c417t-bb949845ac064139c6009b199fa84b1df8d6fbf68771a5631edefdf634d8c3163 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Thu Jul 10 23:58:14 EDT 2025 Mon Jul 14 08:24:50 EDT 2025 Thu Apr 03 06:56:15 EDT 2025 Tue Jul 01 00:43:22 EDT 2025 Thu Apr 24 23:04:30 EDT 2025 Wed Aug 27 02:51:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-bb949845ac064139c6009b199fa84b1df8d6fbf68771a5631edefdf634d8c3163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5859-3724 |
PMID | 33147147 |
PQID | 2483254722 |
PQPubID | 85423 |
PageCount | 10 |
ParticipantIDs | ieee_primary_9248064 proquest_journals_2483254722 crossref_citationtrail_10_1109_TNSRE_2020_3035836 proquest_miscellaneous_2457970380 pubmed_primary_33147147 crossref_primary_10_1109_TNSRE_2020_3035836 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref37 aarabi (ref12) 2012; 123 ref36 ref14 ref31 ref30 ref33 ref11 ref10 ref2 ref1 ref39 ref17 ref38 ref16 jacobs (ref43) 2008; 49 ref18 schelter (ref34) 2006; 16 liu (ref44) 2009; 39 kingma (ref32) 2015 zheng (ref15) 2014; 125 pourbabaee (ref19) 2018; 48 ref46 ref24 ref45 ref23 ref48 ref26 ref25 hejazi (ref28) 2019; 13 ref20 ref42 ref41 ref22 defferrard (ref47) 2016 ref21 ref27 park (ref9) 2011; 52 ref29 ref8 ref7 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref6 doi: 10.1109/ACCESS.2018.2867008 – ident: ref37 doi: 10.1016/j.clinph.2004.07.032 – ident: ref35 doi: 10.1371/journal.pone.0068910 – volume: 16 year: 2006 ident: ref34 article-title: Testing statistical significance of multivariate time series analysis techniques for epileptic seizure prediction publication-title: Chaos Interdiscipl J Nonlinear Sci – ident: ref36 doi: 10.1016/j.clinph.2007.07.017 – volume: 13 start-page: 461 year: 2019 ident: ref28 article-title: Prediction of epilepsy seizure from multi-channel electroencephalogram by effective connectivity analysis using granger causality and directed transfer function methods publication-title: Cognit Neurodyn doi: 10.1007/s11571-019-09534-z – ident: ref20 doi: 10.3389/fnins.2017.00379 – ident: ref48 doi: 10.1016/j.neuroimage.2017.12.052 – ident: ref17 doi: 10.1109/TNSRE.2017.2721116 – volume: 123 start-page: 1111 year: 2012 ident: ref12 article-title: A rule-based seizure prediction method for focal neocortical epilepsy publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2012.01.014 – ident: ref21 doi: 10.1016/j.clinph.2009.09.002 – volume: 52 start-page: 1761 year: 2011 ident: ref9 article-title: Seizure prediction with spectral power of EEG using cost-sensitive support vector machines publication-title: Epilepsia doi: 10.1111/j.1528-1167.2011.03138.x – ident: ref42 doi: 10.1109/TBME.2018.2809798 – ident: ref39 doi: 10.1109/TBME.2013.2297332 – ident: ref1 doi: 10.1016/S1525-5050(03)00105-7 – ident: ref4 doi: 10.1155/2013/459346 – ident: ref29 doi: 10.1214/aos/1176344136 – ident: ref10 doi: 10.1016/j.clinph.2014.05.022 – ident: ref23 doi: 10.1109/TBME.2017.2785401 – ident: ref46 doi: 10.1613/jair.953 – ident: ref24 doi: 10.1109/TNSRE.2019.2943707 – ident: ref7 doi: 10.1109/JBHI.2015.2424074 – ident: ref41 doi: 10.1111/j.1528-1167.2009.02067.x – start-page: 1 year: 2015 ident: ref32 article-title: Adam: A method for stochastic optimization publication-title: Proc 3rd Int Conf Learn Represent – ident: ref3 doi: 10.1016/j.clinph.2013.10.051 – ident: ref40 doi: 10.1109/TPAMI.2005.159 – ident: ref33 doi: 10.1016/S0920-1211(03)00002-0 – ident: ref30 doi: 10.1145/382043.382304 – ident: ref14 doi: 10.1016/j.clinph.2014.02.017 – ident: ref45 doi: 10.1109/TKDE.2008.239 – ident: ref18 doi: 10.1109/TNNLS.2018.2789927 – ident: ref27 doi: 10.1007/PL00007990 – ident: ref25 doi: 10.1109/JBHI.2019.2933046 – ident: ref11 doi: 10.1109/TBCAS.2015.2477264 – volume: 49 start-page: 1893 year: 2008 ident: ref43 article-title: Interictal high-frequency oscillations (80-500 Hz) are an indicator of seizure onset areas independent of spikes in the human epileptic brain publication-title: Epilepsia doi: 10.1111/j.1528-1167.2008.01656.x – ident: ref38 doi: 10.1097/WNP.0b013e31820512ee – ident: ref22 doi: 10.1016/j.neunet.2018.04.018 – ident: ref16 doi: 10.1016/j.pneurobio.2014.06.004 – ident: ref5 doi: 10.1016/j.clinph.2017.04.026 – ident: ref31 doi: 10.1145/3065386 – start-page: 1 year: 2016 ident: ref47 article-title: Convolutional neural networks on graphs with fast localized spectral filtering publication-title: Proc 30th Conf Neural Inf Process Syst – ident: ref2 doi: 10.1109/TBME.2003.810708 – volume: 39 start-page: 539 year: 2009 ident: ref44 article-title: Exploratory undersampling for class-imbalance learning publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2008.2007853 – ident: ref13 doi: 10.1016/j.physd.2004.02.013 – volume: 48 start-page: 2095 year: 2018 ident: ref19 article-title: Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.2017.2705582 – volume: 125 start-page: 1104 year: 2014 ident: ref15 article-title: Epileptic seizure prediction using phase synchronization based on bivariate empirical mode decomposition publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2013.09.047 – ident: ref26 doi: 10.1007/BF00198091 – ident: ref8 doi: 10.1142/S0129065717500435 |
SSID | ssj0017657 |
Score | 2.5519705 |
Snippet | Automatic seizure prediction promotes the development of closed-loop treatment system on intractable epilepsy. In this study, by considering the specific... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2711 |
SubjectTerms | Algorithms Artificial neural networks Biological neural networks Brain Brain modeling Convolution convolution neural networks Convulsions & seizures Deep learning directed transfer function EEG Electroencephalography Epilepsy Feature extraction Flow mapping Information flow Information transfer Intracranial electroencephalogram (iEEG) Machine learning Neural networks Prediction algorithms Predictions Robustness (mathematics) seizure prediction Seizures Transfer functions |
Title | Seizure Prediction Using Directed Transfer Function and Convolution Neural Network on Intracranial EEG |
URI | https://ieeexplore.ieee.org/document/9248064 https://www.ncbi.nlm.nih.gov/pubmed/33147147 https://www.proquest.com/docview/2483254722 https://www.proquest.com/docview/2457970380 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtQwcNT2xAUo5RFokZGAC2SbxE5iH1G1S0HqCrVbqbfIdsYSospWy4ZDv56xnUQFAeIW2ePY1ow9M54XwOsKbStMKVOZO0yF80ZCTYqrEHQTWiMLnfng5LNldXopPl-VVzvwfoqFQcTgfIYz_xls-e3a9v6p7Jh0BUksdBd2icxirNZkMairkNWTDrBIBS-yMUAmU8er5cX5nFTBgjTUjJeS-7pFnOe0Gl9V5Q4_CgVW_i5rBp6zeABn42qjq8m3Wb81M3v7WyLH_93OQ7g_CJ_sQ6SWfdjB7hG8uZtomK1ilgH2lp3_ksP7ANwFfr3tN8i-bLxxxzey4HDA4rWJLQuMz-GGLYhbBgDdtexk3f0YCJz5XCA0yzI6nzNq-eRfly0NpIPA5vOPj-FyMV-dnKZDlYbUirzepsYooaQotaW9kDxpSYRSJlfKaSlM3jrZVs64StZ1rsuK59iia13FRSstJ3HwCex16w6fAauE1ZnOsMy1EMpoWSOXSEKerWVluUsgH3HV2GH7vpLGdRNUmUw1AdWNR3UzoDqBd9OYm5jA45_QBx5PE-SAogQOR5JohjP-vaEuTup1XRQJvJq66XR6k4vucN17mLJWdKnKLIGnkZSmf48U-PzPc76Ae35l0XXmEPa2mx6PSADampeB8n8C3mb_ww |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9QwzBrjAV7Gx_goDAgS8AK9tU2apo9ouuMGuxPabtLeqiR1JMTUQ8eVh_16nPRDAwHirUqcJpHt2I4dG-CVRFsLk6tYpQ5j4byTUJPhKgSdhNaoTCf-cfJiKefn4uNFfrED78a3MIgYgs9w4j-DL79e29ZflR2SraBIhN6AmyT3Rd691hp9BoUMeT2JhUUseJYMT2SS8nC1PDudkjGYkY2a8FxxX7mI85TW4-uqXJNIocTK37XNIHVmd2AxrLcLNvk6abdmYq9-S-X4vxu6C3u9-sned_RyD3awuQ-vr6caZqsuzwB7w05_yeK9D-4Mv1y1G2SfN9694xtZCDlg3cGJNQuiz-GGzUheBgDd1Oxo3fzoSZz5bCA0y7ILP2fUcuzvly0NJFZg0-mHB3A-m66O5nFfpyG2Ii22sTGlKJXItaW9kEZpSYkqTVqWTith0tqpWjrjpCqKVOeSp1ijq53kolaWk0L4EHabdYOPgUlhdaITzFMtRGm0KpArJDXPFkpa7iJIB1xVtt--r6VxWQVjJimrgOrKo7rqUR3B23HMty6Fxz-h9z2eRsgeRREcDCRR9Vz-vaIuTgZ2kWURvBy7iT-900U3uG49TF6UdKyqJIJHHSmN_x4o8Mmf53wBt-arxUl1crz89BRu-1V2gTQHsLvdtPiM1KGteR644CdlBwMf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seizure+Prediction+Using+Directed+Transfer+Function+and+Convolution+Neural+Network+on+Intracranial+EEG&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Wang%2C+Gang&rft.au=Wang%2C+Dong&rft.au=Du%2C+Changwang&rft.au=Li%2C+Kuo&rft.date=2020-12-01&rft.eissn=1558-0210&rft.volume=28&rft.issue=12&rft.spage=2711&rft_id=info:doi/10.1109%2FTNSRE.2020.3035836&rft_id=info%3Apmid%2F33147147&rft.externalDocID=33147147 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |