Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting
Hydrogen produced via water electrolysis can act as an ideal clean chemical fuel with superb gravimetric energy density and high energy conversion efficiency, solving the problems of conventional fossil fuel exhaustion and environmental contamination. Transition metal sulfides (TMS) have been extens...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 9; no. 9; pp. 532 - 5363 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
09.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogen produced
via
water electrolysis can act as an ideal clean chemical fuel with superb gravimetric energy density and high energy conversion efficiency, solving the problems of conventional fossil fuel exhaustion and environmental contamination. Transition metal sulfides (TMS) have been extensively explored as effective, widely available alternatives to precious metals in overall water splitting. Herein, recent advances, covering preparation methods, intrinsic electrocatalytic performance, and optimization strategies, relating to TMS-based bifunctional electrocatalysts have been summarized systematically and comprehensively. Firstly, a general introduction to the reaction mechanisms and key parameters of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is provided. Next, the physicochemical properties of TMS and typical synthesis methods are introduced to give guidance for fabricating TMS materials with well-defined structures, controllable compositions, and excellent performance. Importantly, the intrinsic activities of TMS-based electrocatalysts and several strategies for improving their bifunctional electrocatalytic performance during water electrolysis are discussed in detail. Finally, perspectives covering the challenges and opportunities related to the further development of TMS-based materials with high activity and long-term durability for overall water splitting are given. The aim herein is to provide guidelines for the design and fabrication of TMS-based bifunctional electrocatalysts with excellent performance and to accelerate their large-scale practical application in water electrolysis.
This review summarizes recent advances relating to transition metal sulfide (TMS)-based bifunctional electrocatalysts, providing guidelines for the design and fabrication of TMS-based catalysts for practical application in water electrolysis. |
---|---|
AbstractList | Hydrogen produced via water electrolysis can act as an ideal clean chemical fuel with superb gravimetric energy density and high energy conversion efficiency, solving the problems of conventional fossil fuel exhaustion and environmental contamination. Transition metal sulfides (TMS) have been extensively explored as effective, widely available alternatives to precious metals in overall water splitting. Herein, recent advances, covering preparation methods, intrinsic electrocatalytic performance, and optimization strategies, relating to TMS-based bifunctional electrocatalysts have been summarized systematically and comprehensively. Firstly, a general introduction to the reaction mechanisms and key parameters of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is provided. Next, the physicochemical properties of TMS and typical synthesis methods are introduced to give guidance for fabricating TMS materials with well-defined structures, controllable compositions, and excellent performance. Importantly, the intrinsic activities of TMS-based electrocatalysts and several strategies for improving their bifunctional electrocatalytic performance during water electrolysis are discussed in detail. Finally, perspectives covering the challenges and opportunities related to the further development of TMS-based materials with high activity and long-term durability for overall water splitting are given. The aim herein is to provide guidelines for the design and fabrication of TMS-based bifunctional electrocatalysts with excellent performance and to accelerate their large-scale practical application in water electrolysis. Hydrogen produced via water electrolysis can act as an ideal clean chemical fuel with superb gravimetric energy density and high energy conversion efficiency, solving the problems of conventional fossil fuel exhaustion and environmental contamination. Transition metal sulfides (TMS) have been extensively explored as effective, widely available alternatives to precious metals in overall water splitting. Herein, recent advances, covering preparation methods, intrinsic electrocatalytic performance, and optimization strategies, relating to TMS-based bifunctional electrocatalysts have been summarized systematically and comprehensively. Firstly, a general introduction to the reaction mechanisms and key parameters of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is provided. Next, the physicochemical properties of TMS and typical synthesis methods are introduced to give guidance for fabricating TMS materials with well-defined structures, controllable compositions, and excellent performance. Importantly, the intrinsic activities of TMS-based electrocatalysts and several strategies for improving their bifunctional electrocatalytic performance during water electrolysis are discussed in detail. Finally, perspectives covering the challenges and opportunities related to the further development of TMS-based materials with high activity and long-term durability for overall water splitting are given. The aim herein is to provide guidelines for the design and fabrication of TMS-based bifunctional electrocatalysts with excellent performance and to accelerate their large-scale practical application in water electrolysis. Hydrogen produced via water electrolysis can act as an ideal clean chemical fuel with superb gravimetric energy density and high energy conversion efficiency, solving the problems of conventional fossil fuel exhaustion and environmental contamination. Transition metal sulfides (TMS) have been extensively explored as effective, widely available alternatives to precious metals in overall water splitting. Herein, recent advances, covering preparation methods, intrinsic electrocatalytic performance, and optimization strategies, relating to TMS-based bifunctional electrocatalysts have been summarized systematically and comprehensively. Firstly, a general introduction to the reaction mechanisms and key parameters of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is provided. Next, the physicochemical properties of TMS and typical synthesis methods are introduced to give guidance for fabricating TMS materials with well-defined structures, controllable compositions, and excellent performance. Importantly, the intrinsic activities of TMS-based electrocatalysts and several strategies for improving their bifunctional electrocatalytic performance during water electrolysis are discussed in detail. Finally, perspectives covering the challenges and opportunities related to the further development of TMS-based materials with high activity and long-term durability for overall water splitting are given. The aim herein is to provide guidelines for the design and fabrication of TMS-based bifunctional electrocatalysts with excellent performance and to accelerate their large-scale practical application in water electrolysis. This review summarizes recent advances relating to transition metal sulfide (TMS)-based bifunctional electrocatalysts, providing guidelines for the design and fabrication of TMS-based catalysts for practical application in water electrolysis. |
Author | Wang, Min He, Yijia Zhang, Li Zhu, Hongwei |
AuthorAffiliation | Key Laboratory of Photochemical Conversion and Optoelectronic Materials Chinese Academy of Sciences China Ship Information Center School of Materials Science and Engineering Tsinghua University State Key Lab of New Ceramics and Fine Processing Technical Institute of Physics and Chemistry |
AuthorAffiliation_xml | – name: Key Laboratory of Photochemical Conversion and Optoelectronic Materials – name: China Ship Information Center – name: Technical Institute of Physics and Chemistry – name: Chinese Academy of Sciences – name: State Key Lab of New Ceramics and Fine Processing – name: School of Materials Science and Engineering – name: Tsinghua University |
Author_xml | – sequence: 1 givenname: Min surname: Wang fullname: Wang, Min – sequence: 2 givenname: Li surname: Zhang fullname: Zhang, Li – sequence: 3 givenname: Yijia surname: He fullname: He, Yijia – sequence: 4 givenname: Hongwei surname: Zhu fullname: Zhu, Hongwei |
BookMark | eNpt0UFLHTEQB_BQLNRaL70LAS9F2JrsZjfJUdTagiCInpfZZFaieckzySp-e_P6ioI0lwTymwyZ_1eyE2JAQr5z9pOzTh9bVoC3vG_xE9ltWc8aKfSw83ZW6gvZz_me1aUYG7TeJQ_XaDAUCvYJgsFMXaAlQciuuBiaFRbwTV787Cw2E2S0dHLzEszmGjxFj6akaKC6l1wynWOi8QkTeE-foWCiee1dKS7cfSOfZ_AZ9__te-T21_nN6e_m8uriz-nJZWMEl6V2sYxLMUklpwFn3lqLKJgArQCNZEK0trOThsEKiX0vVDcPXEjFO6MYDN0e-bF9d53i44K5jCuXDXoPAeOSx7bvuZYbX-nhB3ofl1Q_VpXQmnHRKlUV2yqTYs4J59G4ApsJ1FE5P3I2bgIYz9jNyd8AzmvJ0YeSdXIrSC__xwdbnLJ5c-9pdq_TYZND |
CitedBy_id | crossref_primary_10_1016_j_ccr_2024_216237 crossref_primary_10_1021_acs_energyfuels_2c03097 crossref_primary_10_1039_D4RA03196B crossref_primary_10_1002_smtd_202300011 crossref_primary_10_1021_acsmaterialslett_3c01235 crossref_primary_10_1007_s10934_024_01715_4 crossref_primary_10_2139_ssrn_4145228 crossref_primary_10_1002_cctc_202401749 crossref_primary_10_1016_j_cej_2022_141188 crossref_primary_10_1039_D1QI00902H crossref_primary_10_1016_j_colsurfa_2023_131228 crossref_primary_10_1016_j_ijhydene_2023_01_308 crossref_primary_10_1039_D4TA01168F crossref_primary_10_1016_j_ijhydene_2023_03_036 crossref_primary_10_2139_ssrn_4182537 crossref_primary_10_3390_nano14010023 crossref_primary_10_1016_j_ijhydene_2024_05_046 crossref_primary_10_1016_j_cej_2023_141458 crossref_primary_10_1039_D2CY01981G crossref_primary_10_1002_cnma_202200036 crossref_primary_10_1016_j_jcis_2023_08_087 crossref_primary_10_1002_celc_202200822 crossref_primary_10_1002_ejic_202200230 crossref_primary_10_1039_D3QI00093A crossref_primary_10_1016_j_apcatb_2023_123007 crossref_primary_10_1016_j_cclet_2023_108900 crossref_primary_10_1016_j_mtnano_2022_100272 crossref_primary_10_1039_D3MH00366C crossref_primary_10_1016_j_jallcom_2024_174525 crossref_primary_10_1016_j_jelechem_2022_116573 crossref_primary_10_1021_acs_jpcc_3c00605 crossref_primary_10_1002_ange_202310163 crossref_primary_10_1038_s41524_021_00654_x crossref_primary_10_1039_D4CY00066H crossref_primary_10_1016_j_electacta_2023_142179 crossref_primary_10_1016_j_fmre_2021_12_008 crossref_primary_10_1016_j_ijhydene_2022_01_162 crossref_primary_10_1016_j_ijhydene_2023_10_122 crossref_primary_10_1016_j_ijhydene_2023_12_059 crossref_primary_10_1016_j_electacta_2021_139554 crossref_primary_10_1039_D2TA05494A crossref_primary_10_1016_j_ijhydene_2024_03_218 crossref_primary_10_1016_j_ijhydene_2024_05_065 crossref_primary_10_1039_D1TA07186F crossref_primary_10_1016_j_apsusc_2021_151450 crossref_primary_10_1039_D2DT03530H crossref_primary_10_1016_j_matlet_2024_136958 crossref_primary_10_1039_D3SE00679D crossref_primary_10_1016_j_ijhydene_2024_04_149 crossref_primary_10_1016_S1872_2067_23_64427_4 crossref_primary_10_1021_acsanm_2c00363 crossref_primary_10_1016_j_ijhydene_2024_12_006 crossref_primary_10_1007_s10904_024_03528_z crossref_primary_10_1039_D4TA06197G crossref_primary_10_1016_j_electacta_2024_144891 crossref_primary_10_1021_acs_energyfuels_3c04915 crossref_primary_10_1039_D1NR07438E crossref_primary_10_1002_adfm_202306100 crossref_primary_10_1039_D3DT01469J crossref_primary_10_1016_j_est_2023_110293 crossref_primary_10_1002_ejic_202400603 crossref_primary_10_1016_j_jallcom_2021_162614 crossref_primary_10_1016_j_ijhydene_2024_06_161 crossref_primary_10_1016_j_electacta_2022_141095 crossref_primary_10_1002_adsu_202400957 crossref_primary_10_1016_j_colsurfa_2021_127689 crossref_primary_10_1016_j_ijhydene_2022_03_052 crossref_primary_10_1016_j_jallcom_2023_168952 crossref_primary_10_1016_j_jcis_2022_04_150 crossref_primary_10_3390_nano13030546 crossref_primary_10_1039_D3NR00938F crossref_primary_10_1002_smtd_202200459 crossref_primary_10_1016_j_seppur_2023_126057 crossref_primary_10_1016_j_ijhydene_2024_12_389 crossref_primary_10_1016_j_fuel_2024_132111 crossref_primary_10_1016_j_jiec_2022_11_054 crossref_primary_10_3390_nano14010016 crossref_primary_10_1016_j_cej_2024_153909 crossref_primary_10_1016_j_electacta_2023_143342 crossref_primary_10_1016_j_jallcom_2024_174590 crossref_primary_10_1016_j_matre_2022_100140 crossref_primary_10_1021_acsanm_3c04241 crossref_primary_10_1016_j_cclet_2022_03_071 crossref_primary_10_1039_D4NJ03576C crossref_primary_10_1016_j_jcis_2022_03_018 crossref_primary_10_1021_acssuschemeng_3c06742 crossref_primary_10_1002_ece2_91 crossref_primary_10_1016_j_apcatb_2022_121193 crossref_primary_10_1016_j_ijhydene_2023_04_051 crossref_primary_10_1016_j_ijhydene_2023_11_082 crossref_primary_10_1002_aenm_202101937 crossref_primary_10_1080_16583655_2023_2231132 crossref_primary_10_1016_j_apsusc_2022_153173 crossref_primary_10_1021_acs_jpcc_2c06509 crossref_primary_10_1039_D2DT01236G crossref_primary_10_1016_j_ijhydene_2024_11_254 crossref_primary_10_1016_j_apmate_2022_01_003 crossref_primary_10_1016_j_ijhydene_2024_04_345 crossref_primary_10_1002_smll_202104245 crossref_primary_10_1142_S0217984924502002 crossref_primary_10_1016_j_fuel_2024_132652 crossref_primary_10_3390_batteries9010046 crossref_primary_10_1007_s42341_025_00590_3 crossref_primary_10_1016_j_ccr_2024_216190 crossref_primary_10_1002_metm_11 crossref_primary_10_1039_D4MA00410H crossref_primary_10_1021_acs_energyfuels_4c05182 crossref_primary_10_1038_s41524_024_01386_4 crossref_primary_10_1016_j_colcom_2023_100729 crossref_primary_10_1007_s11244_021_01474_5 crossref_primary_10_1021_acs_chemrev_3c00712 crossref_primary_10_1039_D1DT02183D crossref_primary_10_2139_ssrn_4049704 crossref_primary_10_2139_ssrn_4049705 crossref_primary_10_1021_acsengineeringau_3c00014 crossref_primary_10_1016_j_ijhydene_2022_11_039 crossref_primary_10_2139_ssrn_3972158 crossref_primary_10_1016_j_nanoen_2025_110881 crossref_primary_10_1016_j_jechem_2023_06_022 crossref_primary_10_1021_acs_energyfuels_1c02087 crossref_primary_10_1016_j_jece_2023_109614 crossref_primary_10_1016_j_renene_2023_119801 crossref_primary_10_1039_D1TA08224H crossref_primary_10_1016_j_jcis_2024_03_041 crossref_primary_10_1016_S1872_2067_23_64581_4 crossref_primary_10_1002_admi_202201478 crossref_primary_10_1016_j_ijhydene_2022_11_121 crossref_primary_10_1016_j_jechem_2024_01_010 crossref_primary_10_1039_D1DT01855H crossref_primary_10_1016_j_jre_2022_01_013 crossref_primary_10_1016_j_cej_2023_141289 crossref_primary_10_1002_inf2_12639 crossref_primary_10_1016_j_ccr_2022_214555 crossref_primary_10_1111_ijac_14262 crossref_primary_10_1016_j_ijhydene_2024_06_141 crossref_primary_10_1002_smll_202407845 crossref_primary_10_1039_D2TA04817E crossref_primary_10_1016_j_cej_2021_132259 crossref_primary_10_1002_admi_202201486 crossref_primary_10_1021_acsaelm_2c01493 crossref_primary_10_1002_cctc_202201580 crossref_primary_10_1016_j_ijhydene_2025_01_248 crossref_primary_10_1016_j_electacta_2023_143670 crossref_primary_10_1039_D1EE02798K crossref_primary_10_1021_acs_inorgchem_2c04354 crossref_primary_10_1016_j_rser_2023_113348 crossref_primary_10_1039_D1TA05946G crossref_primary_10_1002_cssc_202301926 crossref_primary_10_1021_acsanm_1c00769 crossref_primary_10_1016_j_apsusc_2024_160920 crossref_primary_10_1021_acsami_2c05977 crossref_primary_10_1016_j_apsusc_2021_151720 crossref_primary_10_1016_j_colsurfa_2024_134176 crossref_primary_10_1039_D3TA01819A crossref_primary_10_1021_acssuschemeng_3c04412 crossref_primary_10_1016_j_ijhydene_2025_01_137 crossref_primary_10_1002_cctc_202300731 crossref_primary_10_1016_j_jcis_2023_05_071 crossref_primary_10_1016_j_apcatb_2022_122355 crossref_primary_10_1039_D3TA05328H crossref_primary_10_1021_acsaem_2c00402 crossref_primary_10_1039_D4NJ04465G crossref_primary_10_1016_j_cej_2024_155832 crossref_primary_10_1016_j_jcat_2024_115675 crossref_primary_10_1039_D4TA02891K crossref_primary_10_1016_j_jcis_2022_08_102 crossref_primary_10_1039_D4NR01191K crossref_primary_10_1039_D3YA00188A crossref_primary_10_1039_D2TA00504B crossref_primary_10_1016_j_jcat_2022_10_023 crossref_primary_10_1016_j_mtsust_2024_100836 crossref_primary_10_1002_cctc_202401773 crossref_primary_10_1016_j_xcrp_2024_102369 crossref_primary_10_1039_D1SC06015E crossref_primary_10_1007_s40843_021_1953_5 crossref_primary_10_1021_acs_energyfuels_4c00811 crossref_primary_10_1021_acsaem_3c00987 crossref_primary_10_1039_D3DT02586A crossref_primary_10_1039_D3CC04685K crossref_primary_10_1016_j_mcat_2024_114196 crossref_primary_10_1016_j_susmat_2023_e00645 crossref_primary_10_1039_D1SE00423A crossref_primary_10_1016_j_jhazmat_2022_130657 crossref_primary_10_1039_D2DT00032F crossref_primary_10_1039_D2TA08209H crossref_primary_10_1016_j_jcis_2021_08_035 crossref_primary_10_1016_j_jcis_2023_03_176 crossref_primary_10_1002_chem_202500003 crossref_primary_10_1039_D2QI02582E crossref_primary_10_1016_j_jmst_2023_10_002 crossref_primary_10_1021_acsomega_2c01423 crossref_primary_10_1021_acsami_2c18820 crossref_primary_10_1007_s10973_024_13610_w crossref_primary_10_1016_j_apcatb_2023_122600 crossref_primary_10_1016_j_jelechem_2025_119034 crossref_primary_10_2139_ssrn_4164967 crossref_primary_10_1016_j_ccr_2022_214505 crossref_primary_10_1002_ente_202200655 crossref_primary_10_1016_j_est_2023_109127 crossref_primary_10_1016_j_ijhydene_2024_12_458 crossref_primary_10_1039_D4TA06710J crossref_primary_10_1002_advs_202300342 crossref_primary_10_1002_cssc_202101771 crossref_primary_10_1016_j_ccr_2022_214864 crossref_primary_10_1002_smll_202406431 crossref_primary_10_1016_j_ijhydene_2022_10_138 crossref_primary_10_1007_s11814_024_00183_5 crossref_primary_10_1016_j_jallcom_2024_175952 crossref_primary_10_1021_acsmaterialslett_3c00022 crossref_primary_10_1016_j_susmat_2023_e00787 crossref_primary_10_1039_D2SE01074G crossref_primary_10_1016_j_mtcomm_2024_110758 crossref_primary_10_3390_en16031124 crossref_primary_10_1021_acsaenm_2c00134 crossref_primary_10_1016_j_jcis_2024_06_096 crossref_primary_10_1039_D3DT00065F crossref_primary_10_1088_1361_6463_ac6d27 crossref_primary_10_26599_NR_2025_94907102 crossref_primary_10_1021_acsami_4c04342 crossref_primary_10_1016_j_jiec_2024_12_037 crossref_primary_10_1016_j_ijhydene_2023_06_245 crossref_primary_10_1016_j_jcis_2022_10_061 crossref_primary_10_1039_D4CY00328D crossref_primary_10_1016_j_jelechem_2024_118649 crossref_primary_10_1016_j_jcis_2022_08_009 crossref_primary_10_1016_j_ijhydene_2024_10_184 crossref_primary_10_1016_j_ijhydene_2021_04_194 crossref_primary_10_1016_j_ijhydene_2023_07_291 crossref_primary_10_1021_acsmaterialsau_1c00079 crossref_primary_10_1007_s11581_023_05190_w crossref_primary_10_1016_j_jcis_2024_03_201 crossref_primary_10_1021_acssuschemeng_1c05509 crossref_primary_10_1016_j_jics_2025_101646 crossref_primary_10_1002_cey2_485 crossref_primary_10_1039_D4SE00202D crossref_primary_10_1016_j_jiec_2023_09_035 crossref_primary_10_1016_j_jcis_2023_09_117 crossref_primary_10_1021_acs_energyfuels_3c03186 crossref_primary_10_1088_1742_6596_2459_1_012004 crossref_primary_10_1002_adfm_202208170 crossref_primary_10_1016_j_jallcom_2023_169474 crossref_primary_10_1021_acsanm_3c03629 crossref_primary_10_1039_D4QI01789G crossref_primary_10_1039_D1TA10519A crossref_primary_10_1016_j_fuel_2023_130256 crossref_primary_10_1039_D1TA05581J crossref_primary_10_1016_j_jallcom_2025_178510 crossref_primary_10_1039_D3QI01686B crossref_primary_10_1515_zpch_2024_0818 crossref_primary_10_1021_acs_chemrev_3c00332 crossref_primary_10_1016_j_diamond_2024_111364 crossref_primary_10_1016_j_electacta_2022_141596 crossref_primary_10_1021_acs_langmuir_4c01793 crossref_primary_10_1016_j_ijhydene_2023_07_030 crossref_primary_10_1016_j_cej_2024_157628 crossref_primary_10_1002_adfm_202310288 crossref_primary_10_1016_j_nanoen_2022_107117 crossref_primary_10_1021_acs_energyfuels_3c05226 crossref_primary_10_1002_smll_202305965 crossref_primary_10_1021_acscatal_2c01847 crossref_primary_10_1002_adma_202306097 crossref_primary_10_1002_cssc_202400896 crossref_primary_10_1002_smll_202302698 crossref_primary_10_1016_j_ijhydene_2025_02_383 crossref_primary_10_1557_s43578_024_01290_z crossref_primary_10_1039_D2QI00722C crossref_primary_10_1016_j_apsusc_2023_157287 crossref_primary_10_1039_D3SE00169E crossref_primary_10_1021_acsanm_4c02251 crossref_primary_10_1016_S1872_2067_24_60038_0 crossref_primary_10_3390_nano12030339 crossref_primary_10_1039_D1TA09932A crossref_primary_10_1016_j_apsusc_2022_154969 crossref_primary_10_1039_D4NR03486D crossref_primary_10_1021_acsami_2c06010 crossref_primary_10_1021_acs_energyfuels_2c01429 crossref_primary_10_1016_j_flatc_2024_100732 crossref_primary_10_1039_D2RA07340D crossref_primary_10_1021_acsanm_4c06502 crossref_primary_10_1039_D2NJ05944D crossref_primary_10_1002_aenm_202301547 crossref_primary_10_1016_j_ijhydene_2024_02_094 crossref_primary_10_1016_j_mtcomm_2025_112131 crossref_primary_10_3390_molecules29081805 crossref_primary_10_1039_D1DT03072H crossref_primary_10_34133_energymatadv_0006 crossref_primary_10_1016_j_ijhydene_2024_01_292 crossref_primary_10_1007_s42864_023_00212_6 crossref_primary_10_1016_j_ccr_2024_215920 crossref_primary_10_1007_s12613_022_2443_2 crossref_primary_10_1039_D3NJ04507B crossref_primary_10_1016_j_jallcom_2024_173938 crossref_primary_10_1016_j_ijhydene_2025_02_246 crossref_primary_10_3390_catal12020222 crossref_primary_10_1016_j_carbon_2024_118816 crossref_primary_10_1016_j_electacta_2022_141444 crossref_primary_10_1016_j_ijhydene_2025_02_008 crossref_primary_10_1016_j_ijhydene_2024_03_093 crossref_primary_10_1016_j_jallcom_2023_172530 crossref_primary_10_1039_D4NR01196A crossref_primary_10_1002_cey2_575 crossref_primary_10_1016_j_ijhydene_2024_03_098 crossref_primary_10_1016_j_jssc_2024_124681 crossref_primary_10_1016_j_jpcs_2023_111520 crossref_primary_10_1016_j_ijhydene_2022_12_133 crossref_primary_10_1039_D2DT01098D crossref_primary_10_1016_j_cej_2023_144348 crossref_primary_10_3390_nano13162302 crossref_primary_10_1002_smll_202102078 crossref_primary_10_1016_j_jssc_2024_124699 crossref_primary_10_1016_j_ijhydene_2022_12_241 crossref_primary_10_1021_acs_jpcc_3c06622 crossref_primary_10_1002_adfm_202312425 crossref_primary_10_1039_D2DT01822E crossref_primary_10_1039_D3CP01738A crossref_primary_10_3390_inorganics11110424 crossref_primary_10_1016_j_jallcom_2022_165719 crossref_primary_10_1021_acsanm_4c01126 crossref_primary_10_1016_j_jallcom_2023_169979 crossref_primary_10_1016_j_molliq_2025_126988 crossref_primary_10_1039_D2SE01470J crossref_primary_10_1016_j_ijhydene_2022_07_163 crossref_primary_10_1039_D1TA03809E crossref_primary_10_1002_adsu_202400465 crossref_primary_10_1016_j_ijhydene_2022_06_241 crossref_primary_10_1016_j_ijhydene_2022_09_200 crossref_primary_10_1016_j_mtnano_2023_100387 crossref_primary_10_1016_j_nanoen_2023_108439 crossref_primary_10_1016_j_ijhydene_2024_03_275 crossref_primary_10_1039_D3CC06015B crossref_primary_10_1016_j_mtnano_2021_100146 crossref_primary_10_1007_s40843_022_2001_7 crossref_primary_10_1007_s40843_021_1895_2 crossref_primary_10_1016_j_surfin_2023_103360 crossref_primary_10_1002_adsu_202300193 crossref_primary_10_1016_j_cej_2023_148126 crossref_primary_10_1021_acs_cgd_2c00168 crossref_primary_10_1002_asia_202400220 crossref_primary_10_1016_j_fuel_2024_130919 crossref_primary_10_1016_j_jallcom_2023_168994 crossref_primary_10_1039_D2TA00120A crossref_primary_10_1016_j_ijhydene_2022_07_146 crossref_primary_10_1039_D4YA00578C crossref_primary_10_1021_acsaenm_3c00732 crossref_primary_10_1016_j_ijhydene_2023_08_109 crossref_primary_10_3390_molecules28135010 crossref_primary_10_1016_j_apcatb_2021_120935 crossref_primary_10_1016_j_apsusc_2022_154473 crossref_primary_10_1021_acscatal_2c05942 crossref_primary_10_1016_j_jechem_2023_02_011 crossref_primary_10_1039_D3GC01828H crossref_primary_10_1016_j_ijhydene_2024_02_201 crossref_primary_10_1016_j_jallcom_2023_169630 crossref_primary_10_1016_j_apcatb_2023_123295 crossref_primary_10_1016_j_est_2024_112293 crossref_primary_10_1016_j_reactfunctpolym_2023_105734 crossref_primary_10_1038_s41598_025_87104_6 crossref_primary_10_1021_acsami_3c11947 crossref_primary_10_3390_nano14171445 crossref_primary_10_1002_advs_202203678 crossref_primary_10_1039_D4NR01440E crossref_primary_10_1016_j_ijhydene_2024_03_065 crossref_primary_10_1016_j_jallcom_2023_170842 crossref_primary_10_1016_j_inoche_2023_111939 crossref_primary_10_1016_j_matchemphys_2024_129594 crossref_primary_10_1002_smll_202406070 crossref_primary_10_1016_j_jcis_2024_09_110 crossref_primary_10_1016_j_seppur_2022_122005 crossref_primary_10_1002_cssc_202400714 crossref_primary_10_1002_advs_202401975 crossref_primary_10_1002_asia_202400314 crossref_primary_10_1021_acs_inorgchem_3c02418 crossref_primary_10_1016_j_ijhydene_2022_07_242 crossref_primary_10_1016_j_jallcom_2023_169655 crossref_primary_10_1016_j_jcis_2024_01_060 crossref_primary_10_1039_D4TA01999G crossref_primary_10_1016_j_ijhydene_2024_03_351 crossref_primary_10_1039_D2CC02423C crossref_primary_10_1016_j_jcis_2023_07_012 crossref_primary_10_1016_j_jsamd_2024_100843 crossref_primary_10_1016_j_ijhydene_2022_08_216 crossref_primary_10_1002_smtd_202200181 crossref_primary_10_1007_s12209_024_00389_y crossref_primary_10_1021_acs_jpcc_4c08178 crossref_primary_10_1002_anie_202310163 crossref_primary_10_1016_j_jallcom_2022_168056 crossref_primary_10_1021_acs_iecr_3c00224 crossref_primary_10_1016_j_ijhydene_2022_09_254 crossref_primary_10_1039_D4CC01842G crossref_primary_10_3390_surfaces6040033 crossref_primary_10_1016_j_watres_2023_121063 crossref_primary_10_1039_D1QI01465J crossref_primary_10_3390_molecules27165053 crossref_primary_10_1002_cssc_202201892 crossref_primary_10_1016_j_cej_2025_161095 crossref_primary_10_1016_j_ccr_2024_215765 crossref_primary_10_1016_j_jallcom_2021_160388 crossref_primary_10_1002_eem2_12441 crossref_primary_10_1021_acsaem_3c01058 crossref_primary_10_1039_D3DT03056C crossref_primary_10_1039_D3DT01071F crossref_primary_10_1039_D3EE00142C crossref_primary_10_1016_j_jssc_2023_124445 crossref_primary_10_1016_j_est_2024_111164 crossref_primary_10_1002_eem2_12556 crossref_primary_10_1039_D4CP01792G crossref_primary_10_1016_j_renene_2022_06_003 crossref_primary_10_1016_j_jelechem_2024_118108 crossref_primary_10_1149_1945_7111_ad6b4b crossref_primary_10_1021_acs_inorgchem_3c01436 crossref_primary_10_1021_acsomega_2c05116 crossref_primary_10_1016_j_ijhydene_2024_11_098 crossref_primary_10_1002_celc_202400154 crossref_primary_10_3390_hydrogen5040041 crossref_primary_10_1016_j_electacta_2023_143079 crossref_primary_10_1016_j_matre_2022_100092 crossref_primary_10_1016_j_jcis_2024_01_072 crossref_primary_10_1016_j_apcatb_2024_124415 crossref_primary_10_1016_j_mtener_2024_101492 crossref_primary_10_1016_j_ijhydene_2024_03_263 crossref_primary_10_1002_ijch_202100055 crossref_primary_10_1039_D1TA06308A crossref_primary_10_1016_j_ensm_2021_06_043 |
Cites_doi | 10.1039/C5CC00803D 10.1002/adfm.201600566 10.1016/j.carbon.2019.12.072 10.1002/adfm.201805298 10.1039/C8TA03862G 10.1016/j.electacta.2017.11.055 10.1126/science.1194975 10.1016/j.jcat.2020.03.012 10.1002/adfm.201807031 10.1016/j.electacta.2019.06.060 10.1016/j.electacta.2018.01.150 10.1021/acsanm.9b00985 10.1002/aenm.201301875 10.1021/acsaem.8b00665 10.1016/j.jcat.2020.01.015 10.1021/acsami.9b14350 10.1002/smll.201905000 10.1016/j.mattod.2019.05.021 10.1038/s41467-018-04888-0 10.1016/j.electacta.2018.02.131 10.1021/acssuschemeng.9b04739 10.1016/j.ijhydene.2017.05.195 10.1103/PhysRevB.83.235311 10.1021/ja201269b 10.1021/acsenergylett.8b01840 10.1016/j.scib.2018.07.008 10.1016/j.apcatb.2019.04.072 10.1039/C7NR06186B 10.1002/slct.202000026 10.1021/acsami.8b14603 10.1016/j.mtphys.2018.11.007 10.1039/C8TA01928B 10.1016/j.apcatb.2019.04.067 10.1002/aenm.201701592 10.1016/j.apsusc.2019.01.167 10.1016/j.apcatb.2020.119165 10.1002/ange.201309474 10.1016/j.jpowsour.2019.01.090 10.1039/C8QM00259B 10.1016/j.apsusc.2019.04.165 10.1021/acscatal.8b00413 10.1039/C8QI01104D 10.1016/j.jallcom.2019.153542 10.1016/j.electacta.2018.05.182 10.1038/nchem.1589 10.1021/acssuschemeng.9b04882 10.1016/j.physleta.2020.126368 10.1002/anie.201602237 10.1038/nmat4564 10.1021/acscatal.6b02479 10.1039/C7TA08518D 10.1021/jacs.5b08186 10.1016/j.ijhydene.2019.09.003 10.1021/jp506288w 10.1039/C8CS00664D 10.1007/BF01024844 10.1021/acscatal.9b01503 10.1021/acsami.8b17961 10.1021/acsenergylett.7b00270 10.1016/j.apcatb.2019.02.014 10.1039/C7NR09424H 10.1021/acs.chemrev.5b00287 10.1016/j.ijhydene.2019.11.217 10.1021/acssuschemeng.8b05611 10.1039/D0CC03053H 10.1021/acsaem.9b00428 10.1002/advs.201700772 10.1021/acssuschemeng.8b05462 10.1016/j.apcatb.2019.117911 10.1016/j.jpowsour.2019.226857 10.1002/adma.201807001 10.3847/1538-4357/aac6ce 10.1002/smll.201600332 10.1016/j.jpowsour.2019.02.098 10.1039/C5CC08064A 10.1002/adma.201807134 10.1039/C6TA07904K 10.1002/celc.201801343 10.1002/celc.201901201 10.1002/slct.201803665 10.1007/s12274-019-2304-0 10.1021/nn5016242 10.1016/j.cej.2017.10.074 10.1016/j.jcat.2016.10.001 10.1016/j.jallcom.2019.03.313 10.1039/C7TA10790K 10.1039/C9TA03819A 10.1039/C7TA10584C 10.1021/acsnano.5b06653 10.1021/ja408329q 10.1039/C7TA04438K 10.1021/acssuschemeng.8b04397 10.1038/s41598-018-35831-4 10.1039/C9TA10547F 10.1021/acssuschemeng.7b04663 10.1039/C7TA10048E 10.1039/C8DT02927J 10.1002/adfm.201602236 10.1039/C9NR06083A 10.1126/science.aad4998 10.1016/j.elecom.2015.02.017 10.1039/C9NR04529E 10.1039/C4EE01303D 10.1021/acs.nanolett.7b01030 10.1039/C8TA10686J 10.1021/acscatal.8b00668 10.1016/j.carbon.2019.01.065 10.1039/C8TA01387J 10.1021/acs.chemrev.7b00618 10.1016/j.apcatb.2019.117899 10.1016/j.jelechem.2006.11.008 10.1039/C9NR07564J 10.1016/j.jpowsour.2019.226887 10.1002/smll.202000081 10.1016/j.electacta.2019.135537 10.1021/acsami.6b13984 10.1039/C9EE01202H 10.1002/adma.201801450 10.1039/C8NR05494K 10.1016/j.jechem.2017.10.004 10.1021/acs.accounts.7b00187 10.1038/nenergy.2017.127 10.1039/C5CY01111F 10.1016/j.electacta.2019.135534 10.1021/acssuschemeng.8b05378 10.1016/j.electacta.2017.11.080 10.1039/C8NR02402B 10.3389/fchem.2018.00569 10.1016/j.electacta.2019.134942 10.1016/j.ijhydene.2018.12.031 10.1016/j.jallcom.2020.154299 10.1021/acscatal.9b05445 10.1016/j.ijhydene.2019.06.003 10.1021/acscentsci.7b00502 10.1016/j.electacta.2020.135957 10.1021/ja407115p 10.1039/C6CP08176B 10.1002/adfm.201606585 10.1039/C8TA01266K 10.1016/j.jmst.2019.08.042 10.1021/nn305833u 10.1016/j.jpowsour.2018.08.088 10.1002/advs.201900246 10.1016/j.jcis.2019.08.093 10.1021/ar4002312 10.1002/adma.201602502 10.1039/C9TA10860B 10.1002/ente.201900063 10.1039/C9CC06244K 10.1021/cm5044864 10.1039/C8CC00766G 10.1039/C6TA09853C 10.1002/adma.201501969 10.1021/acsnano.7b06501 10.1039/C8TA03304H 10.1038/nmat3313 10.1039/C9NJ05023J 10.1002/aenm.201903137 10.1016/j.cej.2020.124556 10.1016/j.jpowsour.2018.04.061 10.1039/C8NR09902B 10.1039/C7CS00705A 10.1002/admi.201500669 10.1021/ja404523s 10.1016/j.jallcom.2019.01.012 10.1007/s10008-019-04362-x 10.1021/acsenergylett.8b00134 10.1002/aenm.201903891 10.1021/jacs.9b04492 10.1016/S0925-8388(02)01037-X 10.1021/acs.chemmater.5b00664 10.1002/adma.201502075 10.1039/C6TA05110C 10.1039/C8CP00443A 10.1039/C9DT02201E 10.1021/acsami.8b06166 10.1021/acsami.7b11192 10.1021/acscatal.7b00792 10.1002/chem.201804492 10.1002/celc.201900507 10.1038/s41467-017-01089-z 10.1039/C9CC01235D 10.1002/eem2.12052 10.1016/j.nanoen.2017.03.024 10.1039/C7NR03182C 10.1002/adma.201606200 10.1002/smll.201700264 10.1021/acssuschemeng.8b01978 10.1021/acscatal.6b01211 10.1021/acs.energyfuels.0c03084 10.1021/acssuschemeng.8b02155 10.1039/c2cs35387c 10.1039/C5CP06475A 10.1039/C8NR07787H 10.1039/C9QI00554D 10.1039/C8NR04218G 10.1016/j.jcis.2019.10.099 10.1039/C4CS00448E 10.1126/science.1141483 10.1039/C5EE00751H 10.1039/D0TA02337J 10.1002/adma.201803151 10.1016/j.apcatb.2020.119281 10.1016/j.apcatb.2019.01.082 10.1016/j.apsusc.2018.02.076 10.1002/smll.201803639 10.1186/s40580-015-0048-4 10.1039/C7NH00079K 10.1021/acsami.8b04386 10.1016/j.jechem.2019.11.011 10.1016/j.apcatb.2019.01.094 10.1021/jacs.6b01502 10.1039/C6CS00328A 10.1002/asia.201901137 10.1021/acsenergylett.7b00679 10.1021/acsami.9b04528 10.1016/j.jcis.2017.09.076 10.1016/j.nanoen.2018.03.012 10.1038/ncomms15377 10.1021/nl2045364 10.1002/adma.201506402 10.1039/C9TA05601G 10.1016/j.nanoen.2019.02.006 10.1039/D0TA05865C 10.1039/c3ee42413h 10.1021/acsnano.7b05050 10.1039/C5TA02974K 10.1039/C9TA07868A 10.1002/advs.201700464 10.1021/acsomega.8b00989 10.1002/adma.201503270 10.1039/C6TA05618K 10.1021/acsami.7b16430 10.1016/j.ijhydene.2019.05.157 10.1016/j.chempr.2018.02.023 10.1021/acsami.7b16791 10.1038/ncomms10672 10.1039/C9TA01903K 10.1021/acsami.8b09361 10.1021/acscatal.6b03192 10.1002/smll.201801070 10.1021/acsami.7b07465 10.1039/C7TA00816C 10.1016/j.jallcom.2020.153965 10.1002/adfm.201601315 10.1039/C7TA08166A 10.1021/acsnano.0c03916 10.1039/C9TA07210A 10.1039/C7RA07667C 10.1002/smll.201604161 10.1016/j.ijhydene.2020.03.045 10.1021/acscatal.6b02650 10.1021/acsami.8b04223 10.1016/j.jallcom.2019.153346 10.1039/C0DT01107J 10.1021/jacs.7b07044 10.1039/C7CS00811B 10.1002/celc.201700965 10.1021/acsenergylett.6b00084 10.1039/C9DT00957D 10.1021/acsami.7b06377 10.1016/j.ijhydene.2018.07.098 10.1002/aenm.201903120 10.1039/C0JM03121F 10.1016/j.nanoen.2018.06.048 10.1002/adma.201806682 10.1021/acssuschemeng.9b06959 10.1021/acs.inorgchem.9b01814 10.1038/nmat4481 10.1002/chem.201903628 10.1016/j.apcatb.2018.11.003 10.1002/adma.201705538 10.1002/adma.201701584 10.1039/C7CP06316D 10.1002/smll.201901993 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/d0ta12152e |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database CrossRef AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 5363 |
ExternalDocumentID | 10_1039_D0TA12152E d0ta12152e |
GroupedDBID | 0-7 0R 705 AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGSTE ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- GNO HZ H~N J3I JG O-G O9- R7C RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ 0R~ AAJAE AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c417t-bad0174b787b6ef12ddee404a98aec70442d3db9a6d47e55483f6147813c80a63 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Fri Jul 11 10:51:35 EDT 2025 Mon Jun 30 12:10:36 EDT 2025 Tue Jul 01 01:13:03 EDT 2025 Thu Apr 24 22:58:17 EDT 2025 Sat Jan 08 03:48:16 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c417t-bad0174b787b6ef12ddee404a98aec70442d3db9a6d47e55483f6147813c80a63 |
Notes | Min Wang is a PhD candidate at the School of Materials Science and Engineering, Tsinghua University, China. She received her B.S. degree in Materials Science and Engineering from Jilin University in 2016. Her research focuses on advanced nanomaterials related to electrocatalysis for energy conversion. Hongwei Zhu is a Professor at the School of Materials Science and Engineering, Tsinghua University, China. He received his B.S. degree in Mechanical Engineering (1998) and his PhD degree in Materials Processing Engineering (2003) from Tsinghua University. After postdoctoral studies in Japan and the USA, he began his independent career as a faculty member at Tsinghua University (2008 to present). His current research interests involve low-dimensional materials and materials informatics. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7337-1983 0000-0002-0832-8946 |
PQID | 2499014288 |
PQPubID | 2047523 |
PageCount | 44 |
ParticipantIDs | crossref_citationtrail_10_1039_D0TA12152E proquest_miscellaneous_2551977813 proquest_journals_2499014288 rsc_primary_d0ta12152e crossref_primary_10_1039_D0TA12152E |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210309 |
PublicationDateYYYYMMDD | 2021-03-09 |
PublicationDate_xml | – month: 3 year: 2021 text: 20210309 day: 9 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Chandrasekaran (D0TA12152E/cit2/1) 2019; 48 Li (D0TA12152E/cit143/1) 2017; 9 Bhat (D0TA12152E/cit267/1) 2020; 5 Xie (D0TA12152E/cit101/1) 2019; 31 Feng (D0TA12152E/cit17/1) 2020; 10 Huang (D0TA12152E/cit64/1) 2013; 42 Chen (D0TA12152E/cit51/1) 2017; 5 Zequine (D0TA12152E/cit213/1) 2019; 784 Wang (D0TA12152E/cit188/1) 2019; 436 Liang (D0TA12152E/cit211/1) 2019; 25 Liu (D0TA12152E/cit252/1) 2020; 8 Tsai (D0TA12152E/cit279/1) 2019; 2 Yuan (D0TA12152E/cit73/1) 2015; 27 Xie (D0TA12152E/cit42/1) 2013; 135 Xue (D0TA12152E/cit184/1) 2019; 48 Ma (D0TA12152E/cit278/1) 2019; 7 Wu (D0TA12152E/cit236/1) 2020; 46 Souleymen (D0TA12152E/cit191/1) 2018; 6 Anantharaj (D0TA12152E/cit14/1) 2016; 6 Yang (D0TA12152E/cit97/1) 2019; 141 Yang (D0TA12152E/cit183/1) 2019; 55 Miao (D0TA12152E/cit81/1) 2017; 139 Shi (D0TA12152E/cit110/1) 2019; 7 Pham (D0TA12152E/cit103/1) 2016; 28 Deng (D0TA12152E/cit253/1) 2019; 11 Wang (D0TA12152E/cit175/1) 2017; 9 Zeng (D0TA12152E/cit271/1) 2018; 51 Guo (D0TA12152E/cit19/1) 2019; 31 Miao (D0TA12152E/cit235/1) 2017; 7 Wei (D0TA12152E/cit92/1) 2019; 4 Zhao (D0TA12152E/cit255/1) 2019; 7 Najafi (D0TA12152E/cit86/1) 2019; 7 Qin (D0TA12152E/cit180/1) 2019; 7 Gong (D0TA12152E/cit219/1) 2019; 4 Lei (D0TA12152E/cit200/1) 2020; 385 Jia (D0TA12152E/cit246/1) 2019; 484 An (D0TA12152E/cit260/1) 2019; 29 Acevedo (D0TA12152E/cit79/1) 2012; 12 Kim (D0TA12152E/cit76/1) 2020; 16 Kuang (D0TA12152E/cit169/1) 2019; 254 Xu (D0TA12152E/cit107/1) 2019; 11 Wang (D0TA12152E/cit248/1) 2019; 6 Jaramillo (D0TA12152E/cit52/1) 2007; 317 Lv (D0TA12152E/cit254/1) 2019; 7 Zhong (D0TA12152E/cit273/1) 2018; 269 Zhao (D0TA12152E/cit61/1) 2016; 10 Sivanantham (D0TA12152E/cit137/1) 2016; 26 Wang (D0TA12152E/cit127/1) 2019; 420 Guo (D0TA12152E/cit251/1) 2019; 6 Ma (D0TA12152E/cit262/1) 2018; 260 Zheng (D0TA12152E/cit111/1) 2019; 11 Du (D0TA12152E/cit196/1) 2019; 7 Xiong (D0TA12152E/cit104/1) 2018; 30 Shit (D0TA12152E/cit265/1) 2018; 10 Yang (D0TA12152E/cit161/1) 2017; 7 Li (D0TA12152E/cit201/1) 2020; 390 Fan (D0TA12152E/cit224/1) 2019; 7 Liu (D0TA12152E/cit226/1) 2017; 29 Li (D0TA12152E/cit119/1) 2018; 14 Yang (D0TA12152E/cit193/1) 2018; 281 Chen (D0TA12152E/cit228/1) 2020; 560 Hou (D0TA12152E/cit95/1) 2018; 8 Guo (D0TA12152E/cit240/1) 2017; 42 Li (D0TA12152E/cit41/1) 2016; 15 Yao (D0TA12152E/cit133/1) 2019; 15 Ren (D0TA12152E/cit238/1) 2018; 10 Zheng (D0TA12152E/cit261/1) 2017; 9 Faber (D0TA12152E/cit80/1) 2014; 118 Lau (D0TA12152E/cit40/1) 2019; 9 Tang (D0TA12152E/cit220/1) 2018; 10 Li (D0TA12152E/cit140/1) 2020; 340 Gao (D0TA12152E/cit187/1) 2020; 44 Lu (D0TA12152E/cit15/1) 2016; 28 Tong (D0TA12152E/cit131/1) 2017; 19 Du (D0TA12152E/cit274/1) 2018; 6 Li (D0TA12152E/cit7/1) 2020; 10 Chia (D0TA12152E/cit34/1) 2015; 115 Samad (D0TA12152E/cit74/1) 2015; 27 Lin (D0TA12152E/cit121/1) 2018; 401 Chen (D0TA12152E/cit205/1) 2019; 12 Zhu (D0TA12152E/cit217/1) 2018; 6 Darband (D0TA12152E/cit227/1) 2019; 11 Li (D0TA12152E/cit85/1) 2016; 28 Zhu (D0TA12152E/cit120/1) 2015; 27 Feng (D0TA12152E/cit142/1) 2015; 137 Yu (D0TA12152E/cit218/1) 2018; 5 Zhang (D0TA12152E/cit206/1) 2018; 6 Yang (D0TA12152E/cit156/1) 2019; 436 Subbaraman (D0TA12152E/cit53/1) 2012; 11 Tang (D0TA12152E/cit6/1) 2020; 278 Li (D0TA12152E/cit58/1) 2020; 14 Kang (D0TA12152E/cit10/1) 2019; 29 Zhang (D0TA12152E/cit18/1) 2020; 821 Fan (D0TA12152E/cit62/1) 2016; 138 Zhu (D0TA12152E/cit114/1) 2016; 52 Li (D0TA12152E/cit162/1) 2018; 1 Ambrosi (D0TA12152E/cit66/1) 2015; 54 Dong (D0TA12152E/cit68/1) 2011; 40 Du (D0TA12152E/cit264/1) 2019; 44 Hu (D0TA12152E/cit158/1) 2019; 416 Li (D0TA12152E/cit117/1) 2018; 47 Deng (D0TA12152E/cit102/1) 2015; 8 Jing (D0TA12152E/cit124/1) 2018; 6 Xiao (D0TA12152E/cit272/1) 2018; 10 Zhang (D0TA12152E/cit8/1) 2018; 8 Jirkovsky (D0TA12152E/cit4/1) 2016; 15 Zhu (D0TA12152E/cit39/1) 2018; 47 Cui (D0TA12152E/cit153/1) 2017; 5 Yuan (D0TA12152E/cit71/1) 2017; 13 Du (D0TA12152E/cit263/1) 2019; 253 You (D0TA12152E/cit147/1) 2019; 31 Lou (D0TA12152E/cit136/1) 2018; 8 Han (D0TA12152E/cit56/1) 2015; 2 Du (D0TA12152E/cit214/1) 2019; 14 Shang (D0TA12152E/cit100/1) 2018; 10 Luo (D0TA12152E/cit270/1) 2020; 10 Jin (D0TA12152E/cit54/1) 2017; 2 Hao (D0TA12152E/cit132/1) 2017; 7 Chen (D0TA12152E/cit148/1) 2016; 18 Du (D0TA12152E/cit197/1) 2020; 824 Hui (D0TA12152E/cit216/1) 2018; 10 Czioska (D0TA12152E/cit212/1) 2018; 6 Xue (D0TA12152E/cit106/1) 2019; 58 Ning (D0TA12152E/cit225/1) 2018; 265 Li (D0TA12152E/cit182/1) 2017; 8 Hu (D0TA12152E/cit277/1) 2018; 30 Islam (D0TA12152E/cit167/1) 2018; 3 Yan (D0TA12152E/cit90/1) 2016; 12 Mahmood (D0TA12152E/cit22/1) 2018; 5 Wang (D0TA12152E/cit98/1) 2018; 4 Han (D0TA12152E/cit35/1) 2018; 118 Mabayoje (D0TA12152E/cit55/1) 2016; 1 Tiwari (D0TA12152E/cit241/1) 2019; 2 Huang (D0TA12152E/cit165/1) 2019; 327 Li (D0TA12152E/cit192/1) 2019; 6 Zeng (D0TA12152E/cit243/1) 2019; 7 Guan (D0TA12152E/cit145/1) 2017; 2 Zhang (D0TA12152E/cit256/1) 2019; 257 Hu (D0TA12152E/cit13/1) 2019; 12 Hu (D0TA12152E/cit215/1) 2018; 6 Xin (D0TA12152E/cit122/1) 2019; 55 Li (D0TA12152E/cit209/1) 2018; 10 Ren (D0TA12152E/cit239/1) 2017; 26 Chia (D0TA12152E/cit16/1) 2016; 4 Shit (D0TA12152E/cit166/1) 2019; 6 Du (D0TA12152E/cit195/1) 2019; 44 Sun (D0TA12152E/cit47/1) 2011; 83 Shit (D0TA12152E/cit186/1) 2019; 7 Muthurasu (D0TA12152E/cit179/1) 2020; 334 Tang (D0TA12152E/cit199/1) 2019; 11 Lukowski (D0TA12152E/cit36/1) 2013; 135 Ma (D0TA12152E/cit115/1) 2018; 10 Liu (D0TA12152E/cit96/1) 2018; 6 Liu (D0TA12152E/cit134/1) 2017; 11 Zhu (D0TA12152E/cit257/1) 2019; 7 Yao (D0TA12152E/cit190/1) 2018; 2 Pan (D0TA12152E/cit105/1) 2020; 8 He (D0TA12152E/cit160/1) 2019; 12 Han (D0TA12152E/cit65/1) 2003; 351 Zeng (D0TA12152E/cit112/1) 2018; 6 Zou (D0TA12152E/cit185/1) 2018; 4 Deng (D0TA12152E/cit203/1) 2018; 5 Zhu (D0TA12152E/cit152/1) 2020; 160 Shan (D0TA12152E/cit149/1) 2020; 384 Zhang (D0TA12152E/cit89/1) 2019; 11 Li (D0TA12152E/cit118/1) 2018; 9 Wang (D0TA12152E/cit11/1) 2020; 819 Chen (D0TA12152E/cit44/1) 2016; 4 Liu (D0TA12152E/cit45/1) 2018; 260 Gao (D0TA12152E/cit48/1) 2017; 50 Wu (D0TA12152E/cit245/1) 2018; 441 Wang (D0TA12152E/cit208/1) 2018; 63 Wang (D0TA12152E/cit141/1) 2020; 10 Zhang (D0TA12152E/cit144/1) 2017; 7 Zhang (D0TA12152E/cit189/1) 2020; 332 Liu (D0TA12152E/cit168/1) 2019; 247 Li (D0TA12152E/cit29/1) 2020; 34 Zhu (D0TA12152E/cit194/1) 2018; 509 Zhang (D0TA12152E/cit221/1) 2018; 10 Zhu (D0TA12152E/cit171/1) 2019; 7 Ma (D0TA12152E/cit222/1) 2018; 5 Gong (D0TA12152E/cit269/1) 2019; 476 Lin (D0TA12152E/cit151/1) 2019; 6 Luo (D0TA12152E/cit67/1) 2017; 9 Xu (D0TA12152E/cit275/1) 2020; 45 Liu (D0TA12152E/cit229/1) 2019; 11 Du (D0TA12152E/cit198/1) 2020; 383 Zhang (D0TA12152E/cit93/1) 2016; 55 Che (D0TA12152E/cit230/1) 2019; 246 Liu (D0TA12152E/cit130/1) 2019; 9 Gong (D0TA12152E/cit247/1) 2019; 48 Seh (D0TA12152E/cit1/1) 2017; 355 Li (D0TA12152E/cit155/1) 2018; 20 Wu (D0TA12152E/cit259/1) 2017; 35 Zeng (D0TA12152E/cit27/1) 2015; 3 Lv (D0TA12152E/cit128/1) 2017; 13 Ambrosi (D0TA12152E/cit37/1) 2015; 51 Hou (D0TA12152E/cit232/1) 2017; 17 Varrla (D0TA12152E/cit60/1) 2015; 27 Chen (D0TA12152E/cit135/1) 2017; 29 Ji (D0TA12152E/cit99/1) 2017; 5 Song (D0TA12152E/cit250/1) 2020; 827 Zhang (D0TA12152E/cit150/1) 2017; 2 Peng (D0TA12152E/cit94/1) 2017; 5 Qin (D0TA12152E/cit163/1) 2019; 15 Luo (D0TA12152E/cit126/1) 2018; 10 Huang (D0TA12152E/cit210/1) 2019; 556 Wang (D0TA12152E/cit72/1) 2011; 21 Huang (D0TA12152E/cit207/1) 2017; 27 McCrory (D0TA12152E/cit28/1) 2013; 135 Wu (D0TA12152E/cit91/1) 2016; 3 Zhao (D0TA12152E/cit157/1) 2019; 7 Wang (D0TA12152E/cit78/1) 2019; 7 Lin (D0TA12152E/cit87/1) 2014; 4 Tan (D0TA12152E/cit159/1) 2019; 11 Gong (D0TA12152E/cit138/1) 2018; 43 Sun (D0TA12152E/cit21/1) 2019 Zou (D0TA12152E/cit20/1) 2015; 44 Zhang (D0TA12152E/cit164/1) 2019; 44 Ray (D0TA12152E/cit204/1) 2017; 9 Acevedo (D0TA12152E/cit82/1) 2013; 7 Li (D0TA12152E/cit123/1) 2018; 6 Guo (D0TA12152E/cit129/1) 2020; 8 Yan (D0TA12152E/cit223/1) 2018; 334 Jian (D0TA12152E/cit244/1) 2018; 10 Liu (D0TA12152E/cit46/1) 2017; 2 Wang (D0TA12152E/cit31/1) 2019; 3 Fronzi (D0TA12152E/cit116/1) 2018; 3 Dai (D0TA12152E/cit202/1) 2017; 11 Xiong (D0TA12152E/cit233/1) 2019; 791 Xiong (D0TA12152E/cit69/1) 2018; 54 Joo (D0TA12152E/cit3/1) 2019; 37 Guo (D0TA12152E/cit173/1) 2018; 47 Zhang (D0TA12152E/cit113/1) 2018; 10 Yu (D0TA12152E/cit12/1) 2018; 7 Prasannachandran (D0TA12152E/cit176/1) 2020; 56 Coleman (D0TA12152E/cit59/1) 2011; 331 Buckley (D0TA12152E/cit49/1) 1991; 21 Ambrosi (D0TA12152E/cit33/1) 2018; 47 Huang (D0TA12152E/cit154/1) 2018; 6 Liu (D0TA12152E/cit25/1) 2020; 276 Suen (D0TA12152E/cit24/1) 2017; 46 Jin (D0TA12152E/cit5/1) 2019; 6 Wu (D0TA12152E/cit231/1) 2019; 23 Ren (D0TA12152E/cit276/1) 2019; 318 Kong (D0TA12152E/cit38/1) 2013; 6 Geng (D0TA12152E/cit84/1) 2016; 7 Jiang (D0TA12152E/cit109/1) 2016; 6 McCrory (D0TA12152E/cit30/1) 2013; 135 Ding (D0TA12152E/cit242/1) 2019; 44 Tang (D0TA12152E/cit88/1) 2016; 6 Yoon (D0TA12152E/cit170/1) 2016; 26 Chhowalla (D0TA12152E/cit32/1) 2013; 5 Yang (D0TA12152E/cit268/1) 2019; 257 Zhu (D0TA12152E/cit237/1) 2016; 4 Qua (D0TA12152E/cit266/1) 2018; 390 Shi (D0TA12152E/cit75/1) 2017; 8 Yu (D0TA12152E/cit139/1) 2017; 5 Wu (D0TA12152E/cit181/1) 2018; 30 Muthurasu (D0TA12152E/cit174/1) 2019; 248 Sun (D0TA12152E/cit43/1) 2019; 58 Ganesan (D0TA12152E/cit172/1) 2020; 45 Xu (D0TA12152E/cit177/1) 2019; 25 Ojha (D0TA12152E/cit23/1) 2018; 20 Rossmeisl (D0TA12152E/cit26/1) 2007; 607 Dong (D0TA12152E/cit50/1) 2019; 243 Li (D0TA12152E/cit70/1) 2011; 133 Song (D0TA12152E/cit77/1) 2014; 126 Wu (D0TA12152E/cit125/1) 2016; 26 Bara (D0TA12152E/cit83/1) 2016; 344 Li (D0TA12152E/cit57/1) 2014; 47 Zhai (D0TA12152E/cit178/1) 2018; 6 Li (D0TA12152E/cit234/1) 2019; 145 Qu (D0TA12152E/cit258/1) 2017; 9 Yan (D0TA12152E/cit146/1) 2020; 42 Liu (D0TA12152E/cit63/1) 2014; 8 Kwon (D0TA12152E/cit108/1) 2020; 16 Varcoe (D0TA12152E/cit9/1) 2014; 7 Zhu (D0TA12152E/cit249/1) 2018; 6 |
References_xml | – volume: 51 start-page: 8450 year: 2015 ident: D0TA12152E/cit37/1 publication-title: Chem. Commun. doi: 10.1039/C5CC00803D – volume: 26 start-page: 4661 year: 2016 ident: D0TA12152E/cit137/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600566 – volume: 160 start-page: 133 year: 2020 ident: D0TA12152E/cit152/1 publication-title: Carbon doi: 10.1016/j.carbon.2019.12.072 – volume: 29 start-page: 1805298 year: 2019 ident: D0TA12152E/cit260/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201805298 – volume: 6 start-page: 14207 year: 2018 ident: D0TA12152E/cit124/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03862G – volume: 260 start-page: 82 year: 2018 ident: D0TA12152E/cit262/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.11.055 – volume: 331 start-page: 568 year: 2011 ident: D0TA12152E/cit59/1 publication-title: Science doi: 10.1126/science.1194975 – volume: 385 start-page: 129 year: 2020 ident: D0TA12152E/cit200/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2020.03.012 – volume: 29 start-page: 1807031 year: 2019 ident: D0TA12152E/cit10/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201807031 – volume: 318 start-page: 42 year: 2019 ident: D0TA12152E/cit276/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.06.060 – volume: 265 start-page: 19 year: 2018 ident: D0TA12152E/cit225/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.01.150 – volume: 2 start-page: 5061 year: 2019 ident: D0TA12152E/cit241/1 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b00985 – volume: 4 start-page: 1301875 year: 2014 ident: D0TA12152E/cit87/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201301875 – volume: 1 start-page: 3929 year: 2018 ident: D0TA12152E/cit162/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00665 – volume: 383 start-page: 103 year: 2020 ident: D0TA12152E/cit198/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2020.01.015 – volume: 12 start-page: 2225 year: 2019 ident: D0TA12152E/cit160/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b14350 – volume: 16 start-page: 1905000 year: 2020 ident: D0TA12152E/cit76/1 publication-title: Small doi: 10.1002/smll.201905000 – volume: 31 start-page: 47 year: 2019 ident: D0TA12152E/cit101/1 publication-title: Mater. Today doi: 10.1016/j.mattod.2019.05.021 – volume: 9 start-page: 2452 year: 2018 ident: D0TA12152E/cit118/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04888-0 – volume: 269 start-page: 55 year: 2018 ident: D0TA12152E/cit273/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.02.131 – volume: 7 start-page: 16917 year: 2019 ident: D0TA12152E/cit196/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b04739 – volume: 42 start-page: 17038 year: 2017 ident: D0TA12152E/cit240/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.05.195 – volume: 83 start-page: 235311 year: 2011 ident: D0TA12152E/cit47/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.83.235311 – volume: 133 start-page: 7296 year: 2011 ident: D0TA12152E/cit70/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja201269b – volume: 4 start-page: 368 year: 2019 ident: D0TA12152E/cit92/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01840 – volume: 63 start-page: 1130 year: 2018 ident: D0TA12152E/cit208/1 publication-title: Sci. Bull. doi: 10.1016/j.scib.2018.07.008 – volume: 254 start-page: 15 year: 2019 ident: D0TA12152E/cit169/1 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.04.072 – volume: 9 start-page: 17349 year: 2017 ident: D0TA12152E/cit175/1 publication-title: Nanoscale doi: 10.1039/C7NR06186B – volume: 5 start-page: 2455 year: 2020 ident: D0TA12152E/cit267/1 publication-title: ChemistrySelect doi: 10.1002/slct.202000026 – volume: 10 start-page: 40568 year: 2018 ident: D0TA12152E/cit244/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b14603 – volume: 7 start-page: 121 year: 2018 ident: D0TA12152E/cit12/1 publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2018.11.007 – volume: 6 start-page: 8233 year: 2018 ident: D0TA12152E/cit123/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01928B – volume: 253 start-page: 246 year: 2019 ident: D0TA12152E/cit263/1 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.04.067 – volume: 8 start-page: 1701592 year: 2018 ident: D0TA12152E/cit136/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701592 – volume: 476 start-page: 840 year: 2019 ident: D0TA12152E/cit269/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.01.167 – volume: 276 start-page: 119281 year: 2020 ident: D0TA12152E/cit25/1 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.119165 – volume: 126 start-page: 1290 year: 2014 ident: D0TA12152E/cit77/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201309474 – volume: 416 start-page: 95 year: 2019 ident: D0TA12152E/cit158/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.01.090 – volume: 2 start-page: 1732 year: 2018 ident: D0TA12152E/cit190/1 publication-title: Mater. Chem. Front. doi: 10.1039/C8QM00259B – volume: 484 start-page: 1052 year: 2019 ident: D0TA12152E/cit246/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.04.165 – volume: 8 start-page: 5431 year: 2018 ident: D0TA12152E/cit8/1 publication-title: ACS Catal. doi: 10.1021/acscatal.8b00413 – volume: 6 start-page: 443 year: 2019 ident: D0TA12152E/cit251/1 publication-title: Inorg. Chem. Front. doi: 10.1039/C8QI01104D – volume: 821 start-page: 153542 year: 2020 ident: D0TA12152E/cit18/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.153542 – volume: 281 start-page: 198 year: 2018 ident: D0TA12152E/cit193/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.05.182 – volume: 5 start-page: 263 year: 2013 ident: D0TA12152E/cit32/1 publication-title: Nat. Chem. doi: 10.1038/nchem.1589 – volume: 7 start-page: 18015 year: 2019 ident: D0TA12152E/cit186/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b04882 – volume: 384 start-page: 126368 year: 2020 ident: D0TA12152E/cit149/1 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2020.126368 – volume: 55 start-page: 6702 year: 2016 ident: D0TA12152E/cit93/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201602237 – volume: 15 start-page: 364 year: 2016 ident: D0TA12152E/cit41/1 publication-title: Nat. Mater. doi: 10.1038/nmat4564 – volume: 6 start-page: 8069 year: 2016 ident: D0TA12152E/cit14/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b02479 – volume: 5 start-page: 23361 year: 2017 ident: D0TA12152E/cit94/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA08518D – volume: 137 start-page: 14023 year: 2015 ident: D0TA12152E/cit142/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08186 – volume: 44 start-page: 27765 year: 2019 ident: D0TA12152E/cit195/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.09.003 – volume: 118 start-page: 21347 year: 2014 ident: D0TA12152E/cit80/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp506288w – volume: 11 start-page: 12 year: 2019 ident: D0TA12152E/cit253/1 publication-title: Nanomicro Lett. – volume: 48 start-page: 4178 year: 2019 ident: D0TA12152E/cit2/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00664D – volume: 21 start-page: 575 year: 1991 ident: D0TA12152E/cit49/1 publication-title: J. Appl. Electrochem. doi: 10.1007/BF01024844 – volume: 9 start-page: 7527 year: 2019 ident: D0TA12152E/cit40/1 publication-title: ACS Catal. doi: 10.1021/acscatal.9b01503 – volume: 11 start-page: 3880 year: 2019 ident: D0TA12152E/cit159/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b17961 – volume: 2 start-page: 1022 year: 2017 ident: D0TA12152E/cit150/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00270 – volume: 248 start-page: 202 year: 2019 ident: D0TA12152E/cit174/1 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.02.014 – volume: 10 start-page: 4816 year: 2018 ident: D0TA12152E/cit115/1 publication-title: Nanoscale doi: 10.1039/C7NR09424H – volume: 115 start-page: 11941 year: 2015 ident: D0TA12152E/cit34/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00287 – volume: 45 start-page: 2546 year: 2020 ident: D0TA12152E/cit275/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.11.217 – volume: 7 start-page: 2610 year: 2019 ident: D0TA12152E/cit157/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b05611 – volume: 56 start-page: 8623 year: 2020 ident: D0TA12152E/cit176/1 publication-title: Chem. Commun. doi: 10.1039/D0CC03053H – volume: 2 start-page: 3708 year: 2019 ident: D0TA12152E/cit279/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b00428 – volume: 5 start-page: 1700772 year: 2018 ident: D0TA12152E/cit203/1 publication-title: Adv. Sci. doi: 10.1002/advs.201700772 – volume: 5 start-page: 701396 year: 2018 ident: D0TA12152E/cit218/1 publication-title: Adv. Mater. Interfaces – volume: 7 start-page: 2899 year: 2019 ident: D0TA12152E/cit171/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b05462 – volume: 257 start-page: 117911 year: 2019 ident: D0TA12152E/cit268/1 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.117911 – volume: 436 start-page: 226857 year: 2019 ident: D0TA12152E/cit188/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.226857 – volume: 31 start-page: 1807001 year: 2019 ident: D0TA12152E/cit147/1 publication-title: Adv. Mater. doi: 10.1002/adma.201807001 – volume: 10 start-page: 6 year: 2018 ident: D0TA12152E/cit209/1 publication-title: Nanomicro Lett. doi: 10.3847/1538-4357/aac6ce – volume: 12 start-page: 2975 year: 2016 ident: D0TA12152E/cit90/1 publication-title: Small doi: 10.1002/smll.201600332 – volume: 420 start-page: 108 year: 2019 ident: D0TA12152E/cit127/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.02.098 – volume: 52 start-page: 1486 year: 2016 ident: D0TA12152E/cit114/1 publication-title: Chem. Commun. doi: 10.1039/C5CC08064A – volume: 31 start-page: 1807134 year: 2019 ident: D0TA12152E/cit19/1 publication-title: Adv. Mater. doi: 10.1002/adma.201807134 – volume: 4 start-page: 18060 year: 2016 ident: D0TA12152E/cit44/1 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07904K – volume: 6 start-page: 430 year: 2019 ident: D0TA12152E/cit166/1 publication-title: ChemElectroChem doi: 10.1002/celc.201801343 – volume: 6 start-page: 4550 year: 2019 ident: D0TA12152E/cit248/1 publication-title: ChemElectroChem doi: 10.1002/celc.201901201 – volume: 4 start-page: 1180 year: 2019 ident: D0TA12152E/cit219/1 publication-title: ChemistrySelect doi: 10.1002/slct.201803665 – volume: 12 start-page: 2259 year: 2019 ident: D0TA12152E/cit205/1 publication-title: Nano Res. doi: 10.1007/s12274-019-2304-0 – volume: 8 start-page: 6902 year: 2014 ident: D0TA12152E/cit63/1 publication-title: ACS Nano doi: 10.1021/nn5016242 – volume: 334 start-page: 922 year: 2018 ident: D0TA12152E/cit223/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.10.074 – volume: 344 start-page: 591 year: 2016 ident: D0TA12152E/cit83/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2016.10.001 – volume: 791 start-page: 328 year: 2019 ident: D0TA12152E/cit233/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.03.313 – volume: 6 start-page: 4485 year: 2018 ident: D0TA12152E/cit112/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10790K – volume: 7 start-page: 23787 year: 2019 ident: D0TA12152E/cit110/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA03819A – volume: 6 start-page: 4346 year: 2018 ident: D0TA12152E/cit249/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10584C – volume: 10 start-page: 2159 year: 2016 ident: D0TA12152E/cit61/1 publication-title: ACS Nano doi: 10.1021/acsnano.5b06653 – volume: 135 start-page: 17881 year: 2013 ident: D0TA12152E/cit42/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja408329q – volume: 5 start-page: 15838 year: 2017 ident: D0TA12152E/cit139/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA04438K – volume: 6 start-page: 15954 year: 2018 ident: D0TA12152E/cit154/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b04397 – volume: 9 start-page: 1951 year: 2019 ident: D0TA12152E/cit130/1 publication-title: Sci. Rep. doi: 10.1038/s41598-018-35831-4 – volume: 7 start-page: 27594 year: 2019 ident: D0TA12152E/cit180/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA10547F – volume: 6 start-page: 5011 year: 2018 ident: D0TA12152E/cit217/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b04663 – volume: 6 start-page: 2067 year: 2018 ident: D0TA12152E/cit96/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10048E – volume: 47 start-page: 14917 year: 2018 ident: D0TA12152E/cit117/1 publication-title: Dalton Trans. doi: 10.1039/C8DT02927J – volume: 26 start-page: 7386 year: 2016 ident: D0TA12152E/cit170/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201602236 – volume: 11 start-page: 20228 year: 2019 ident: D0TA12152E/cit107/1 publication-title: Nanoscale doi: 10.1039/C9NR06083A – volume: 355 start-page: 4998 year: 2017 ident: D0TA12152E/cit1/1 publication-title: Science doi: 10.1126/science.aad4998 – volume: 54 start-page: 36 year: 2015 ident: D0TA12152E/cit66/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2015.02.017 – volume: 11 start-page: 16621 year: 2019 ident: D0TA12152E/cit227/1 publication-title: Nanoscale doi: 10.1039/C9NR04529E – volume: 7 start-page: 3135 year: 2014 ident: D0TA12152E/cit9/1 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01303D – volume: 17 start-page: 4202 year: 2017 ident: D0TA12152E/cit232/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01030 – volume: 7 start-page: 1196 year: 2019 ident: D0TA12152E/cit254/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA10686J – volume: 8 start-page: 4612 year: 2018 ident: D0TA12152E/cit95/1 publication-title: ACS Catal. doi: 10.1021/acscatal.8b00668 – volume: 145 start-page: 521 year: 2019 ident: D0TA12152E/cit234/1 publication-title: Carbon doi: 10.1016/j.carbon.2019.01.065 – volume: 6 start-page: 6938 year: 2018 ident: D0TA12152E/cit274/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01387J – volume: 118 start-page: 6297 year: 2018 ident: D0TA12152E/cit35/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00618 – volume: 257 start-page: 117899 year: 2019 ident: D0TA12152E/cit256/1 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.117899 – volume: 607 start-page: 83 year: 2007 ident: D0TA12152E/cit26/1 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2006.11.008 – volume: 11 start-page: 22255 year: 2019 ident: D0TA12152E/cit89/1 publication-title: Nanoscale doi: 10.1039/C9NR07564J – volume: 436 start-page: 226887 year: 2019 ident: D0TA12152E/cit156/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.226887 – volume: 16 start-page: 2000081 year: 2020 ident: D0TA12152E/cit108/1 publication-title: Small doi: 10.1002/smll.202000081 – volume: 334 start-page: 135537 year: 2020 ident: D0TA12152E/cit179/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.135537 – volume: 9 start-page: 2500 year: 2017 ident: D0TA12152E/cit67/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b13984 – volume: 12 start-page: 2620 year: 2019 ident: D0TA12152E/cit13/1 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01202H – volume: 30 start-page: 1801450 year: 2018 ident: D0TA12152E/cit104/1 publication-title: Adv. Mater. doi: 10.1002/adma.201801450 – volume: 10 start-page: 17347 year: 2018 ident: D0TA12152E/cit238/1 publication-title: Nanoscale doi: 10.1039/C8NR05494K – volume: 26 start-page: 1217 year: 2017 ident: D0TA12152E/cit239/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2017.10.004 – volume: 50 start-page: 2194 year: 2017 ident: D0TA12152E/cit48/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00187 – volume: 2 start-page: 17127 year: 2017 ident: D0TA12152E/cit46/1 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.127 – volume: 6 start-page: 1077 year: 2016 ident: D0TA12152E/cit109/1 publication-title: Catal. Sci. Technol. doi: 10.1039/C5CY01111F – volume: 332 start-page: 135534 year: 2020 ident: D0TA12152E/cit189/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.135534 – volume: 7 start-page: 1622 year: 2019 ident: D0TA12152E/cit224/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b05378 – volume: 260 start-page: 24 year: 2018 ident: D0TA12152E/cit45/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.11.080 – volume: 10 start-page: 10459 year: 2018 ident: D0TA12152E/cit220/1 publication-title: Nanoscale doi: 10.1039/C8NR02402B – volume: 6 start-page: 569 year: 2018 ident: D0TA12152E/cit206/1 publication-title: Front. Chem. doi: 10.3389/fchem.2018.00569 – volume: 327 start-page: 134942 year: 2019 ident: D0TA12152E/cit165/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.134942 – volume: 44 start-page: 2832 year: 2019 ident: D0TA12152E/cit242/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.12.031 – volume: 827 start-page: 154299 year: 2020 ident: D0TA12152E/cit250/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.154299 – volume: 10 start-page: 4019 year: 2020 ident: D0TA12152E/cit17/1 publication-title: ACS Catal. doi: 10.1021/acscatal.9b05445 – volume: 44 start-page: 19953 year: 2019 ident: D0TA12152E/cit264/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.06.003 – volume: 4 start-page: 112 year: 2018 ident: D0TA12152E/cit98/1 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00502 – volume: 340 start-page: 135957 year: 2020 ident: D0TA12152E/cit140/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.135957 – volume: 135 start-page: 16977 year: 2013 ident: D0TA12152E/cit30/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407115p – volume: 19 start-page: 4821 year: 2017 ident: D0TA12152E/cit131/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP08176B – volume: 27 start-page: 1606585 year: 2017 ident: D0TA12152E/cit207/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201606585 – volume: 6 start-page: 7592 year: 2018 ident: D0TA12152E/cit191/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01266K – start-page: 1806326 year: 2019 ident: D0TA12152E/cit21/1 publication-title: Adv. Mater. – volume: 42 start-page: 10 year: 2020 ident: D0TA12152E/cit146/1 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2019.08.042 – volume: 7 start-page: 1731 issue: 2 year: 2013 ident: D0TA12152E/cit82/1 publication-title: ACS Nano doi: 10.1021/nn305833u – volume: 401 start-page: 329 year: 2018 ident: D0TA12152E/cit121/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.08.088 – volume: 6 start-page: 1900246 year: 2019 ident: D0TA12152E/cit151/1 publication-title: Adv. Sci. doi: 10.1002/advs.201900246 – volume: 556 start-page: 401 year: 2019 ident: D0TA12152E/cit210/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.08.093 – volume: 47 start-page: 1067 year: 2014 ident: D0TA12152E/cit57/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar4002312 – volume: 28 start-page: 8945 year: 2016 ident: D0TA12152E/cit85/1 publication-title: Adv. Mater. doi: 10.1002/adma.201602502 – volume: 7 start-page: 26975 year: 2019 ident: D0TA12152E/cit257/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA10860B – volume: 7 start-page: 1900063 year: 2019 ident: D0TA12152E/cit278/1 publication-title: Energy Technol. doi: 10.1002/ente.201900063 – volume: 55 start-page: 14343 year: 2019 ident: D0TA12152E/cit183/1 publication-title: Chem. Commun. doi: 10.1039/C9CC06244K – volume: 27 start-page: 1129 year: 2015 ident: D0TA12152E/cit60/1 publication-title: Chem. Mater. doi: 10.1021/cm5044864 – volume: 54 start-page: 3859 year: 2018 ident: D0TA12152E/cit69/1 publication-title: Chem. Commun. doi: 10.1039/C8CC00766G – volume: 5 start-page: 1595 year: 2017 ident: D0TA12152E/cit153/1 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09853C – volume: 135 start-page: 16977 year: 2013 ident: D0TA12152E/cit28/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407115p – volume: 27 start-page: 4752 year: 2015 ident: D0TA12152E/cit120/1 publication-title: Adv. Mater. doi: 10.1002/adma.201501969 – volume: 11 start-page: 11574 year: 2017 ident: D0TA12152E/cit134/1 publication-title: ACS Nano doi: 10.1021/acsnano.7b06501 – volume: 6 start-page: 9833 year: 2018 ident: D0TA12152E/cit178/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03304H – volume: 11 start-page: 550 year: 2012 ident: D0TA12152E/cit53/1 publication-title: Nat. Mater. doi: 10.1038/nmat3313 – volume: 44 start-page: 1711 year: 2020 ident: D0TA12152E/cit187/1 publication-title: New J. Chem. doi: 10.1039/C9NJ05023J – volume: 10 start-page: 1903137 year: 2020 ident: D0TA12152E/cit141/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903137 – volume: 390 start-page: 124556 year: 2020 ident: D0TA12152E/cit201/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124556 – volume: 390 start-page: 224 year: 2018 ident: D0TA12152E/cit266/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.04.061 – volume: 11 start-page: 5646 year: 2019 ident: D0TA12152E/cit111/1 publication-title: Nanoscale doi: 10.1039/C8NR09902B – volume: 47 start-page: 4332 year: 2018 ident: D0TA12152E/cit39/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00705A – volume: 3 start-page: 1500669 year: 2016 ident: D0TA12152E/cit91/1 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201500669 – volume: 135 start-page: 10274 year: 2013 ident: D0TA12152E/cit36/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja404523s – volume: 784 start-page: 1 year: 2019 ident: D0TA12152E/cit213/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.01.012 – volume: 23 start-page: 2627 year: 2019 ident: D0TA12152E/cit231/1 publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-019-04362-x – volume: 3 start-page: 952 year: 2018 ident: D0TA12152E/cit167/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00134 – volume: 10 start-page: 1903891 year: 2020 ident: D0TA12152E/cit270/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903891 – volume: 141 start-page: 10417 year: 2019 ident: D0TA12152E/cit97/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b04492 – volume: 351 start-page: 273 year: 2003 ident: D0TA12152E/cit65/1 publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(02)01037-X – volume: 27 start-page: 3108 year: 2015 ident: D0TA12152E/cit74/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b00664 – volume: 27 start-page: 5605 year: 2015 ident: D0TA12152E/cit73/1 publication-title: Adv. Mater. doi: 10.1002/adma.201502075 – volume: 4 start-page: 14241 year: 2016 ident: D0TA12152E/cit16/1 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA05110C – volume: 20 start-page: 11649 year: 2018 ident: D0TA12152E/cit155/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP00443A – volume: 48 start-page: 12186 year: 2019 ident: D0TA12152E/cit184/1 publication-title: Dalton Trans. doi: 10.1039/C9DT02201E – volume: 10 start-page: 22291 year: 2018 ident: D0TA12152E/cit126/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b06166 – volume: 9 start-page: 37739 year: 2017 ident: D0TA12152E/cit204/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b11192 – volume: 7 start-page: 4214 year: 2017 ident: D0TA12152E/cit132/1 publication-title: ACS Catal. doi: 10.1021/acscatal.7b00792 – volume: 25 start-page: 621 year: 2019 ident: D0TA12152E/cit211/1 publication-title: Chemistry doi: 10.1002/chem.201804492 – volume: 6 start-page: 3244 year: 2019 ident: D0TA12152E/cit5/1 publication-title: ChemElectroChem doi: 10.1002/celc.201900507 – volume: 8 start-page: 958 year: 2017 ident: D0TA12152E/cit75/1 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01089-z – volume: 55 start-page: 3781 year: 2019 ident: D0TA12152E/cit122/1 publication-title: Chem. Commun. doi: 10.1039/C9CC01235D – volume: 3 start-page: 12 year: 2019 ident: D0TA12152E/cit31/1 publication-title: Energy. Environ. Mater. doi: 10.1002/eem2.12052 – volume: 35 start-page: 161 year: 2017 ident: D0TA12152E/cit259/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.03.024 – volume: 9 start-page: 9230 year: 2017 ident: D0TA12152E/cit143/1 publication-title: Nanoscale doi: 10.1039/C7NR03182C – volume: 29 start-page: 1606200 year: 2017 ident: D0TA12152E/cit226/1 publication-title: Adv. Mater. doi: 10.1002/adma.201606200 – volume: 13 start-page: 1700264 year: 2017 ident: D0TA12152E/cit128/1 publication-title: Small doi: 10.1002/smll.201700264 – volume: 6 start-page: 11724 year: 2018 ident: D0TA12152E/cit215/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b01978 – volume: 6 start-page: 4953 year: 2016 ident: D0TA12152E/cit88/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b01211 – volume: 34 start-page: 13491 year: 2020 ident: D0TA12152E/cit29/1 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.0c03084 – volume: 6 start-page: 11877 year: 2018 ident: D0TA12152E/cit212/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b02155 – volume: 42 start-page: 1934 year: 2013 ident: D0TA12152E/cit64/1 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35387c – volume: 18 start-page: 9388 year: 2016 ident: D0TA12152E/cit148/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP06475A – volume: 11 start-page: 2202 year: 2019 ident: D0TA12152E/cit199/1 publication-title: Nanoscale doi: 10.1039/C8NR07787H – volume: 6 start-page: 2090 year: 2019 ident: D0TA12152E/cit192/1 publication-title: Inorg. Chem. Front. doi: 10.1039/C9QI00554D – volume: 10 start-page: 12330 year: 2018 ident: D0TA12152E/cit100/1 publication-title: Nanoscale doi: 10.1039/C8NR04218G – volume: 560 start-page: 426 year: 2020 ident: D0TA12152E/cit228/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.10.099 – volume: 44 start-page: 5148 year: 2015 ident: D0TA12152E/cit20/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00448E – volume: 317 start-page: 100 year: 2007 ident: D0TA12152E/cit52/1 publication-title: Science doi: 10.1126/science.1141483 – volume: 8 start-page: 1594 year: 2015 ident: D0TA12152E/cit102/1 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE00751H – volume: 8 start-page: 9239 year: 2020 ident: D0TA12152E/cit129/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA02337J – volume: 30 start-page: 1803151 year: 2018 ident: D0TA12152E/cit181/1 publication-title: Adv. Mater. doi: 10.1002/adma.201803151 – volume: 278 start-page: 119281 year: 2020 ident: D0TA12152E/cit6/1 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.119281 – volume: 246 start-page: 337 year: 2019 ident: D0TA12152E/cit230/1 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.01.082 – volume: 441 start-page: 1024 year: 2018 ident: D0TA12152E/cit245/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.02.076 – volume: 15 start-page: 1803639 year: 2019 ident: D0TA12152E/cit163/1 publication-title: Small doi: 10.1002/smll.201803639 – volume: 2 start-page: 17 year: 2015 ident: D0TA12152E/cit56/1 publication-title: Nano Converg. doi: 10.1186/s40580-015-0048-4 – volume: 2 start-page: 342 year: 2017 ident: D0TA12152E/cit145/1 publication-title: Nanoscale Horiz. doi: 10.1039/C7NH00079K – volume: 10 start-page: 27723 year: 2018 ident: D0TA12152E/cit221/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b04386 – volume: 46 start-page: 178 year: 2020 ident: D0TA12152E/cit236/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2019.11.011 – volume: 247 start-page: 107 year: 2019 ident: D0TA12152E/cit168/1 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.01.094 – volume: 138 start-page: 5143 year: 2016 ident: D0TA12152E/cit62/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b01502 – volume: 46 start-page: 337 year: 2017 ident: D0TA12152E/cit24/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00328A – volume: 14 start-page: 3386 year: 2019 ident: D0TA12152E/cit214/1 publication-title: Chem. Asian J. doi: 10.1002/asia.201901137 – volume: 2 start-page: 1937 year: 2017 ident: D0TA12152E/cit54/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00679 – volume: 11 start-page: 27667 year: 2019 ident: D0TA12152E/cit229/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b04528 – volume: 509 start-page: 522 year: 2018 ident: D0TA12152E/cit194/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.09.076 – volume: 47 start-page: 494 year: 2018 ident: D0TA12152E/cit173/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.03.012 – volume: 8 start-page: 15377 year: 2017 ident: D0TA12152E/cit182/1 publication-title: Nat. Commun. doi: 10.1038/ncomms15377 – volume: 12 start-page: 1977 year: 2012 ident: D0TA12152E/cit79/1 publication-title: Nano Lett. doi: 10.1021/nl2045364 – volume: 28 start-page: 9024 year: 2016 ident: D0TA12152E/cit103/1 publication-title: Adv. Mater. doi: 10.1002/adma.201506402 – volume: 7 start-page: 16793 year: 2019 ident: D0TA12152E/cit243/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA05601G – volume: 58 start-page: 862 year: 2019 ident: D0TA12152E/cit43/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.006 – volume: 8 start-page: 19654 year: 2020 ident: D0TA12152E/cit105/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA05865C – volume: 6 start-page: 3553 year: 2013 ident: D0TA12152E/cit38/1 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee42413h – volume: 11 start-page: 11031 year: 2017 ident: D0TA12152E/cit202/1 publication-title: ACS Nano doi: 10.1021/acsnano.7b05050 – volume: 3 start-page: 14942 year: 2015 ident: D0TA12152E/cit27/1 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA02974K – volume: 7 start-page: 22405 year: 2019 ident: D0TA12152E/cit78/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA07868A – volume: 5 start-page: 1700464 year: 2018 ident: D0TA12152E/cit22/1 publication-title: Adv. Sci. doi: 10.1002/advs.201700464 – volume: 3 start-page: 12215 year: 2018 ident: D0TA12152E/cit116/1 publication-title: ACS Omega doi: 10.1021/acsomega.8b00989 – volume: 28 start-page: 1917 year: 2016 ident: D0TA12152E/cit15/1 publication-title: Adv. Mater. doi: 10.1002/adma.201503270 – volume: 4 start-page: 13916 year: 2016 ident: D0TA12152E/cit237/1 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA05618K – volume: 10 start-page: 4689 year: 2018 ident: D0TA12152E/cit272/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b16430 – volume: 44 start-page: 17900 year: 2019 ident: D0TA12152E/cit164/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.05.157 – volume: 4 start-page: 1139 year: 2018 ident: D0TA12152E/cit185/1 publication-title: Chem doi: 10.1016/j.chempr.2018.02.023 – volume: 10 start-page: 1771 year: 2018 ident: D0TA12152E/cit216/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b16791 – volume: 7 start-page: 10672 year: 2016 ident: D0TA12152E/cit84/1 publication-title: Nat. Commun. doi: 10.1038/ncomms10672 – volume: 7 start-page: 8117 year: 2019 ident: D0TA12152E/cit255/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01903K – volume: 10 start-page: 31330 year: 2018 ident: D0TA12152E/cit113/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b09361 – volume: 7 start-page: 2357 year: 2017 ident: D0TA12152E/cit161/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b03192 – volume: 14 start-page: 1801070 year: 2018 ident: D0TA12152E/cit119/1 publication-title: Small doi: 10.1002/smll.201801070 – volume: 9 start-page: 26066 year: 2017 ident: D0TA12152E/cit261/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b07465 – volume: 5 start-page: 8187 year: 2017 ident: D0TA12152E/cit51/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00816C – volume: 824 start-page: 153965 year: 2020 ident: D0TA12152E/cit197/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.153965 – volume: 26 start-page: 4839 year: 2016 ident: D0TA12152E/cit125/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201601315 – volume: 5 start-page: 23898 year: 2017 ident: D0TA12152E/cit99/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA08166A – volume: 14 start-page: 10976 year: 2020 ident: D0TA12152E/cit58/1 publication-title: ACS Nano doi: 10.1021/acsnano.0c03916 – volume: 7 start-page: 25593 year: 2019 ident: D0TA12152E/cit86/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA07210A – volume: 7 start-page: 46286 year: 2017 ident: D0TA12152E/cit144/1 publication-title: RSC Adv. doi: 10.1039/C7RA07667C – volume: 13 start-page: 1604161 year: 2017 ident: D0TA12152E/cit71/1 publication-title: Small doi: 10.1002/smll.201604161 – volume: 45 start-page: 13290 year: 2020 ident: D0TA12152E/cit172/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.03.045 – volume: 7 start-page: 819 year: 2017 ident: D0TA12152E/cit235/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b02650 – volume: 10 start-page: 27712 year: 2018 ident: D0TA12152E/cit265/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b04223 – volume: 819 start-page: 153346 year: 2020 ident: D0TA12152E/cit11/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.153346 – volume: 40 start-page: 243 year: 2011 ident: D0TA12152E/cit68/1 publication-title: Dalton Trans. doi: 10.1039/C0DT01107J – volume: 139 start-page: 13604 year: 2017 ident: D0TA12152E/cit81/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07044 – volume: 47 start-page: 7213 year: 2018 ident: D0TA12152E/cit33/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00811B – volume: 5 start-page: 335 year: 2018 ident: D0TA12152E/cit222/1 publication-title: ChemElectroChem doi: 10.1002/celc.201700965 – volume: 1 start-page: 195 year: 2016 ident: D0TA12152E/cit55/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00084 – volume: 48 start-page: 6718 year: 2019 ident: D0TA12152E/cit247/1 publication-title: Dalton Trans. doi: 10.1039/C9DT00957D – volume: 9 start-page: 29660 year: 2017 ident: D0TA12152E/cit258/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b06377 – volume: 43 start-page: 17259 year: 2018 ident: D0TA12152E/cit138/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.07.098 – volume: 10 start-page: 1903120 year: 2020 ident: D0TA12152E/cit7/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903120 – volume: 21 start-page: 327 year: 2011 ident: D0TA12152E/cit72/1 publication-title: J. Mater. Chem. doi: 10.1039/C0JM03121F – volume: 51 start-page: 26 year: 2018 ident: D0TA12152E/cit271/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.048 – volume: 37 start-page: 1806682 year: 2019 ident: D0TA12152E/cit3/1 publication-title: Adv. Mater. doi: 10.1002/adma.201806682 – volume: 8 start-page: 6222 year: 2020 ident: D0TA12152E/cit252/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b06959 – volume: 58 start-page: 11202 year: 2019 ident: D0TA12152E/cit106/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b01814 – volume: 15 start-page: 197 year: 2016 ident: D0TA12152E/cit4/1 publication-title: Nat. Mater. doi: 10.1038/nmat4481 – volume: 25 start-page: 16074 year: 2019 ident: D0TA12152E/cit177/1 publication-title: Chem.–Eur J. doi: 10.1002/chem.201903628 – volume: 243 start-page: 693 year: 2019 ident: D0TA12152E/cit50/1 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.11.003 – volume: 30 start-page: 1705538 year: 2018 ident: D0TA12152E/cit277/1 publication-title: Adv. Mater. doi: 10.1002/adma.201705538 – volume: 29 start-page: 1701584 year: 2017 ident: D0TA12152E/cit135/1 publication-title: Adv. Mater. doi: 10.1002/adma.201701584 – volume: 20 start-page: 6777 year: 2018 ident: D0TA12152E/cit23/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP06316D – volume: 15 start-page: 1901993 year: 2019 ident: D0TA12152E/cit133/1 publication-title: Small doi: 10.1002/smll.201901993 |
SSID | ssj0000800699 |
Score | 2.6989443 |
SecondaryResourceType | review_article |
Snippet | Hydrogen produced
via
water electrolysis can act as an ideal clean chemical fuel with superb gravimetric energy density and high energy conversion efficiency,... Hydrogen produced via water electrolysis can act as an ideal clean chemical fuel with superb gravimetric energy density and high energy conversion efficiency,... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 532 |
SubjectTerms | Chemical fuels Clean energy Contamination durability Electrocatalysts Electrolysis Energy conversion Energy conversion efficiency energy density Fabrication Flux density Fossil fuels Gravimetry hydrogen Hydrogen evolution reactions hydrogen production Metal sulfides Metals Optimization Oxygen evolution reactions oxygen production Physicochemical properties pollution Reaction mechanisms Splitting Sulfides Transition metals Water splitting |
Title | Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting |
URI | https://www.proquest.com/docview/2499014288 https://www.proquest.com/docview/2551977813 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa27QUOFa-KpQUZwQWtUpLYeR1XsFVB23LJSnuLEsdGgTaLuokq-Gf8O2bsOAlQKuASrRLLm2S-zIzH38wQ8jJOIsWKQjqejJkD6y_uJEIGjijzUIHFVYxh7vDZeXi64u_XwXoy-T5iLbVNcSy-3ZhX8j9ShXMgV8yS_QfJ9pPCCfgN8oUjSBiOfyVj8Pk0Rdzs42tma4O2R9OwnEsJjrWzbS9UVUoHzRU4mxUasi7-17XA0RGcr9tGV2aYIaUTt6uvcyyfuAUfVTOj_-DEXuIofNCZsJ3jjmdzkwRkr-ii4ibFUEfpbcoWsnJHAX2jdM6qHq19LHtZDRFbbTKqT1U-jGq1-dzUH69lNQ5i-IbFNahKEyqxPFXNQ-nueVCHvhu4WPnUaGs5Pmd64lp9noxgm4x0M7bAGNn5gBnN-psNcRmWYC3dJsfKG74cLKVlB5x_yE5Wy2WWLtbpDtnzYYUCKnZvvkjfLfsAH7rioe5f2t-5LY_LktfD9D87RMMqZ-fKtqDRrk56j-x34qVzA7j7ZCLrB-TuqHLlQ_LZQI9a6NGqprdDj46hR3-FHgWQ0A56VEOP9tB7RFYni_TNqdP17XAE96IGZi1Bz_MCbEERSuX5YEIld3mexLkUkcu5X7KySPKw5JEEfzZmCrzEKPaYiN08ZAdkt97U8jGhHlOlCGXElSt4iCUPAqniogRVIjzF2ZS8si8vE11Re-ytcpFpcgVLsrduOtcvejElL_qxX0wplxtHHVkZZN2nvs18jtvHsFKPp-R5fxkQirtreS03LYwJMAccH2JKDkB2_X8Mon5y-9yH5M7wbRyR3eaqlU_B5W2KZx24fgAJm7XL |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+transition-metal-sulfide-based+bifunctional+electrocatalysts+for+overall+water+splitting&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Wang%2C+Min&rft.au=Zhang%2C+Li&rft.au=He%2C+Yijia&rft.au=Zhu%2C+Hongwei&rft.date=2021-03-09&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=9&rft.issue=9&rft.spage=5320&rft.epage=5363&rft_id=info:doi/10.1039%2Fd0ta12152e&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |