Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting

Hydrogen produced via water electrolysis can act as an ideal clean chemical fuel with superb gravimetric energy density and high energy conversion efficiency, solving the problems of conventional fossil fuel exhaustion and environmental contamination. Transition metal sulfides (TMS) have been extens...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 9; no. 9; pp. 532 - 5363
Main Authors Wang, Min, Zhang, Li, He, Yijia, Zhu, Hongwei
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 09.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogen produced via water electrolysis can act as an ideal clean chemical fuel with superb gravimetric energy density and high energy conversion efficiency, solving the problems of conventional fossil fuel exhaustion and environmental contamination. Transition metal sulfides (TMS) have been extensively explored as effective, widely available alternatives to precious metals in overall water splitting. Herein, recent advances, covering preparation methods, intrinsic electrocatalytic performance, and optimization strategies, relating to TMS-based bifunctional electrocatalysts have been summarized systematically and comprehensively. Firstly, a general introduction to the reaction mechanisms and key parameters of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is provided. Next, the physicochemical properties of TMS and typical synthesis methods are introduced to give guidance for fabricating TMS materials with well-defined structures, controllable compositions, and excellent performance. Importantly, the intrinsic activities of TMS-based electrocatalysts and several strategies for improving their bifunctional electrocatalytic performance during water electrolysis are discussed in detail. Finally, perspectives covering the challenges and opportunities related to the further development of TMS-based materials with high activity and long-term durability for overall water splitting are given. The aim herein is to provide guidelines for the design and fabrication of TMS-based bifunctional electrocatalysts with excellent performance and to accelerate their large-scale practical application in water electrolysis. This review summarizes recent advances relating to transition metal sulfide (TMS)-based bifunctional electrocatalysts, providing guidelines for the design and fabrication of TMS-based catalysts for practical application in water electrolysis.
AbstractList Hydrogen produced via water electrolysis can act as an ideal clean chemical fuel with superb gravimetric energy density and high energy conversion efficiency, solving the problems of conventional fossil fuel exhaustion and environmental contamination. Transition metal sulfides (TMS) have been extensively explored as effective, widely available alternatives to precious metals in overall water splitting. Herein, recent advances, covering preparation methods, intrinsic electrocatalytic performance, and optimization strategies, relating to TMS-based bifunctional electrocatalysts have been summarized systematically and comprehensively. Firstly, a general introduction to the reaction mechanisms and key parameters of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is provided. Next, the physicochemical properties of TMS and typical synthesis methods are introduced to give guidance for fabricating TMS materials with well-defined structures, controllable compositions, and excellent performance. Importantly, the intrinsic activities of TMS-based electrocatalysts and several strategies for improving their bifunctional electrocatalytic performance during water electrolysis are discussed in detail. Finally, perspectives covering the challenges and opportunities related to the further development of TMS-based materials with high activity and long-term durability for overall water splitting are given. The aim herein is to provide guidelines for the design and fabrication of TMS-based bifunctional electrocatalysts with excellent performance and to accelerate their large-scale practical application in water electrolysis.
Hydrogen produced via water electrolysis can act as an ideal clean chemical fuel with superb gravimetric energy density and high energy conversion efficiency, solving the problems of conventional fossil fuel exhaustion and environmental contamination. Transition metal sulfides (TMS) have been extensively explored as effective, widely available alternatives to precious metals in overall water splitting. Herein, recent advances, covering preparation methods, intrinsic electrocatalytic performance, and optimization strategies, relating to TMS-based bifunctional electrocatalysts have been summarized systematically and comprehensively. Firstly, a general introduction to the reaction mechanisms and key parameters of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is provided. Next, the physicochemical properties of TMS and typical synthesis methods are introduced to give guidance for fabricating TMS materials with well-defined structures, controllable compositions, and excellent performance. Importantly, the intrinsic activities of TMS-based electrocatalysts and several strategies for improving their bifunctional electrocatalytic performance during water electrolysis are discussed in detail. Finally, perspectives covering the challenges and opportunities related to the further development of TMS-based materials with high activity and long-term durability for overall water splitting are given. The aim herein is to provide guidelines for the design and fabrication of TMS-based bifunctional electrocatalysts with excellent performance and to accelerate their large-scale practical application in water electrolysis.
Hydrogen produced via water electrolysis can act as an ideal clean chemical fuel with superb gravimetric energy density and high energy conversion efficiency, solving the problems of conventional fossil fuel exhaustion and environmental contamination. Transition metal sulfides (TMS) have been extensively explored as effective, widely available alternatives to precious metals in overall water splitting. Herein, recent advances, covering preparation methods, intrinsic electrocatalytic performance, and optimization strategies, relating to TMS-based bifunctional electrocatalysts have been summarized systematically and comprehensively. Firstly, a general introduction to the reaction mechanisms and key parameters of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is provided. Next, the physicochemical properties of TMS and typical synthesis methods are introduced to give guidance for fabricating TMS materials with well-defined structures, controllable compositions, and excellent performance. Importantly, the intrinsic activities of TMS-based electrocatalysts and several strategies for improving their bifunctional electrocatalytic performance during water electrolysis are discussed in detail. Finally, perspectives covering the challenges and opportunities related to the further development of TMS-based materials with high activity and long-term durability for overall water splitting are given. The aim herein is to provide guidelines for the design and fabrication of TMS-based bifunctional electrocatalysts with excellent performance and to accelerate their large-scale practical application in water electrolysis. This review summarizes recent advances relating to transition metal sulfide (TMS)-based bifunctional electrocatalysts, providing guidelines for the design and fabrication of TMS-based catalysts for practical application in water electrolysis.
Author Wang, Min
He, Yijia
Zhang, Li
Zhu, Hongwei
AuthorAffiliation Key Laboratory of Photochemical Conversion and Optoelectronic Materials
Chinese Academy of Sciences
China Ship Information Center
School of Materials Science and Engineering
Tsinghua University
State Key Lab of New Ceramics and Fine Processing
Technical Institute of Physics and Chemistry
AuthorAffiliation_xml – name: Key Laboratory of Photochemical Conversion and Optoelectronic Materials
– name: China Ship Information Center
– name: Technical Institute of Physics and Chemistry
– name: Chinese Academy of Sciences
– name: State Key Lab of New Ceramics and Fine Processing
– name: School of Materials Science and Engineering
– name: Tsinghua University
Author_xml – sequence: 1
  givenname: Min
  surname: Wang
  fullname: Wang, Min
– sequence: 2
  givenname: Li
  surname: Zhang
  fullname: Zhang, Li
– sequence: 3
  givenname: Yijia
  surname: He
  fullname: He, Yijia
– sequence: 4
  givenname: Hongwei
  surname: Zhu
  fullname: Zhu, Hongwei
BookMark eNpt0UFLHTEQB_BQLNRaL70LAS9F2JrsZjfJUdTagiCInpfZZFaieckzySp-e_P6ioI0lwTymwyZ_1eyE2JAQr5z9pOzTh9bVoC3vG_xE9ltWc8aKfSw83ZW6gvZz_me1aUYG7TeJQ_XaDAUCvYJgsFMXaAlQciuuBiaFRbwTV787Cw2E2S0dHLzEszmGjxFj6akaKC6l1wynWOi8QkTeE-foWCiee1dKS7cfSOfZ_AZ9__te-T21_nN6e_m8uriz-nJZWMEl6V2sYxLMUklpwFn3lqLKJgArQCNZEK0trOThsEKiX0vVDcPXEjFO6MYDN0e-bF9d53i44K5jCuXDXoPAeOSx7bvuZYbX-nhB3ofl1Q_VpXQmnHRKlUV2yqTYs4J59G4ApsJ1FE5P3I2bgIYz9jNyd8AzmvJ0YeSdXIrSC__xwdbnLJ5c-9pdq_TYZND
CitedBy_id crossref_primary_10_1016_j_ccr_2024_216237
crossref_primary_10_1021_acs_energyfuels_2c03097
crossref_primary_10_1039_D4RA03196B
crossref_primary_10_1002_smtd_202300011
crossref_primary_10_1021_acsmaterialslett_3c01235
crossref_primary_10_1007_s10934_024_01715_4
crossref_primary_10_2139_ssrn_4145228
crossref_primary_10_1002_cctc_202401749
crossref_primary_10_1016_j_cej_2022_141188
crossref_primary_10_1039_D1QI00902H
crossref_primary_10_1016_j_colsurfa_2023_131228
crossref_primary_10_1016_j_ijhydene_2023_01_308
crossref_primary_10_1039_D4TA01168F
crossref_primary_10_1016_j_ijhydene_2023_03_036
crossref_primary_10_2139_ssrn_4182537
crossref_primary_10_3390_nano14010023
crossref_primary_10_1016_j_ijhydene_2024_05_046
crossref_primary_10_1016_j_cej_2023_141458
crossref_primary_10_1039_D2CY01981G
crossref_primary_10_1002_cnma_202200036
crossref_primary_10_1016_j_jcis_2023_08_087
crossref_primary_10_1002_celc_202200822
crossref_primary_10_1002_ejic_202200230
crossref_primary_10_1039_D3QI00093A
crossref_primary_10_1016_j_apcatb_2023_123007
crossref_primary_10_1016_j_cclet_2023_108900
crossref_primary_10_1016_j_mtnano_2022_100272
crossref_primary_10_1039_D3MH00366C
crossref_primary_10_1016_j_jallcom_2024_174525
crossref_primary_10_1016_j_jelechem_2022_116573
crossref_primary_10_1021_acs_jpcc_3c00605
crossref_primary_10_1002_ange_202310163
crossref_primary_10_1038_s41524_021_00654_x
crossref_primary_10_1039_D4CY00066H
crossref_primary_10_1016_j_electacta_2023_142179
crossref_primary_10_1016_j_fmre_2021_12_008
crossref_primary_10_1016_j_ijhydene_2022_01_162
crossref_primary_10_1016_j_ijhydene_2023_10_122
crossref_primary_10_1016_j_ijhydene_2023_12_059
crossref_primary_10_1016_j_electacta_2021_139554
crossref_primary_10_1039_D2TA05494A
crossref_primary_10_1016_j_ijhydene_2024_03_218
crossref_primary_10_1016_j_ijhydene_2024_05_065
crossref_primary_10_1039_D1TA07186F
crossref_primary_10_1016_j_apsusc_2021_151450
crossref_primary_10_1039_D2DT03530H
crossref_primary_10_1016_j_matlet_2024_136958
crossref_primary_10_1039_D3SE00679D
crossref_primary_10_1016_j_ijhydene_2024_04_149
crossref_primary_10_1016_S1872_2067_23_64427_4
crossref_primary_10_1021_acsanm_2c00363
crossref_primary_10_1016_j_ijhydene_2024_12_006
crossref_primary_10_1007_s10904_024_03528_z
crossref_primary_10_1039_D4TA06197G
crossref_primary_10_1016_j_electacta_2024_144891
crossref_primary_10_1021_acs_energyfuels_3c04915
crossref_primary_10_1039_D1NR07438E
crossref_primary_10_1002_adfm_202306100
crossref_primary_10_1039_D3DT01469J
crossref_primary_10_1016_j_est_2023_110293
crossref_primary_10_1002_ejic_202400603
crossref_primary_10_1016_j_jallcom_2021_162614
crossref_primary_10_1016_j_ijhydene_2024_06_161
crossref_primary_10_1016_j_electacta_2022_141095
crossref_primary_10_1002_adsu_202400957
crossref_primary_10_1016_j_colsurfa_2021_127689
crossref_primary_10_1016_j_ijhydene_2022_03_052
crossref_primary_10_1016_j_jallcom_2023_168952
crossref_primary_10_1016_j_jcis_2022_04_150
crossref_primary_10_3390_nano13030546
crossref_primary_10_1039_D3NR00938F
crossref_primary_10_1002_smtd_202200459
crossref_primary_10_1016_j_seppur_2023_126057
crossref_primary_10_1016_j_ijhydene_2024_12_389
crossref_primary_10_1016_j_fuel_2024_132111
crossref_primary_10_1016_j_jiec_2022_11_054
crossref_primary_10_3390_nano14010016
crossref_primary_10_1016_j_cej_2024_153909
crossref_primary_10_1016_j_electacta_2023_143342
crossref_primary_10_1016_j_jallcom_2024_174590
crossref_primary_10_1016_j_matre_2022_100140
crossref_primary_10_1021_acsanm_3c04241
crossref_primary_10_1016_j_cclet_2022_03_071
crossref_primary_10_1039_D4NJ03576C
crossref_primary_10_1016_j_jcis_2022_03_018
crossref_primary_10_1021_acssuschemeng_3c06742
crossref_primary_10_1002_ece2_91
crossref_primary_10_1016_j_apcatb_2022_121193
crossref_primary_10_1016_j_ijhydene_2023_04_051
crossref_primary_10_1016_j_ijhydene_2023_11_082
crossref_primary_10_1002_aenm_202101937
crossref_primary_10_1080_16583655_2023_2231132
crossref_primary_10_1016_j_apsusc_2022_153173
crossref_primary_10_1021_acs_jpcc_2c06509
crossref_primary_10_1039_D2DT01236G
crossref_primary_10_1016_j_ijhydene_2024_11_254
crossref_primary_10_1016_j_apmate_2022_01_003
crossref_primary_10_1016_j_ijhydene_2024_04_345
crossref_primary_10_1002_smll_202104245
crossref_primary_10_1142_S0217984924502002
crossref_primary_10_1016_j_fuel_2024_132652
crossref_primary_10_3390_batteries9010046
crossref_primary_10_1007_s42341_025_00590_3
crossref_primary_10_1016_j_ccr_2024_216190
crossref_primary_10_1002_metm_11
crossref_primary_10_1039_D4MA00410H
crossref_primary_10_1021_acs_energyfuels_4c05182
crossref_primary_10_1038_s41524_024_01386_4
crossref_primary_10_1016_j_colcom_2023_100729
crossref_primary_10_1007_s11244_021_01474_5
crossref_primary_10_1021_acs_chemrev_3c00712
crossref_primary_10_1039_D1DT02183D
crossref_primary_10_2139_ssrn_4049704
crossref_primary_10_2139_ssrn_4049705
crossref_primary_10_1021_acsengineeringau_3c00014
crossref_primary_10_1016_j_ijhydene_2022_11_039
crossref_primary_10_2139_ssrn_3972158
crossref_primary_10_1016_j_nanoen_2025_110881
crossref_primary_10_1016_j_jechem_2023_06_022
crossref_primary_10_1021_acs_energyfuels_1c02087
crossref_primary_10_1016_j_jece_2023_109614
crossref_primary_10_1016_j_renene_2023_119801
crossref_primary_10_1039_D1TA08224H
crossref_primary_10_1016_j_jcis_2024_03_041
crossref_primary_10_1016_S1872_2067_23_64581_4
crossref_primary_10_1002_admi_202201478
crossref_primary_10_1016_j_ijhydene_2022_11_121
crossref_primary_10_1016_j_jechem_2024_01_010
crossref_primary_10_1039_D1DT01855H
crossref_primary_10_1016_j_jre_2022_01_013
crossref_primary_10_1016_j_cej_2023_141289
crossref_primary_10_1002_inf2_12639
crossref_primary_10_1016_j_ccr_2022_214555
crossref_primary_10_1111_ijac_14262
crossref_primary_10_1016_j_ijhydene_2024_06_141
crossref_primary_10_1002_smll_202407845
crossref_primary_10_1039_D2TA04817E
crossref_primary_10_1016_j_cej_2021_132259
crossref_primary_10_1002_admi_202201486
crossref_primary_10_1021_acsaelm_2c01493
crossref_primary_10_1002_cctc_202201580
crossref_primary_10_1016_j_ijhydene_2025_01_248
crossref_primary_10_1016_j_electacta_2023_143670
crossref_primary_10_1039_D1EE02798K
crossref_primary_10_1021_acs_inorgchem_2c04354
crossref_primary_10_1016_j_rser_2023_113348
crossref_primary_10_1039_D1TA05946G
crossref_primary_10_1002_cssc_202301926
crossref_primary_10_1021_acsanm_1c00769
crossref_primary_10_1016_j_apsusc_2024_160920
crossref_primary_10_1021_acsami_2c05977
crossref_primary_10_1016_j_apsusc_2021_151720
crossref_primary_10_1016_j_colsurfa_2024_134176
crossref_primary_10_1039_D3TA01819A
crossref_primary_10_1021_acssuschemeng_3c04412
crossref_primary_10_1016_j_ijhydene_2025_01_137
crossref_primary_10_1002_cctc_202300731
crossref_primary_10_1016_j_jcis_2023_05_071
crossref_primary_10_1016_j_apcatb_2022_122355
crossref_primary_10_1039_D3TA05328H
crossref_primary_10_1021_acsaem_2c00402
crossref_primary_10_1039_D4NJ04465G
crossref_primary_10_1016_j_cej_2024_155832
crossref_primary_10_1016_j_jcat_2024_115675
crossref_primary_10_1039_D4TA02891K
crossref_primary_10_1016_j_jcis_2022_08_102
crossref_primary_10_1039_D4NR01191K
crossref_primary_10_1039_D3YA00188A
crossref_primary_10_1039_D2TA00504B
crossref_primary_10_1016_j_jcat_2022_10_023
crossref_primary_10_1016_j_mtsust_2024_100836
crossref_primary_10_1002_cctc_202401773
crossref_primary_10_1016_j_xcrp_2024_102369
crossref_primary_10_1039_D1SC06015E
crossref_primary_10_1007_s40843_021_1953_5
crossref_primary_10_1021_acs_energyfuels_4c00811
crossref_primary_10_1021_acsaem_3c00987
crossref_primary_10_1039_D3DT02586A
crossref_primary_10_1039_D3CC04685K
crossref_primary_10_1016_j_mcat_2024_114196
crossref_primary_10_1016_j_susmat_2023_e00645
crossref_primary_10_1039_D1SE00423A
crossref_primary_10_1016_j_jhazmat_2022_130657
crossref_primary_10_1039_D2DT00032F
crossref_primary_10_1039_D2TA08209H
crossref_primary_10_1016_j_jcis_2021_08_035
crossref_primary_10_1016_j_jcis_2023_03_176
crossref_primary_10_1002_chem_202500003
crossref_primary_10_1039_D2QI02582E
crossref_primary_10_1016_j_jmst_2023_10_002
crossref_primary_10_1021_acsomega_2c01423
crossref_primary_10_1021_acsami_2c18820
crossref_primary_10_1007_s10973_024_13610_w
crossref_primary_10_1016_j_apcatb_2023_122600
crossref_primary_10_1016_j_jelechem_2025_119034
crossref_primary_10_2139_ssrn_4164967
crossref_primary_10_1016_j_ccr_2022_214505
crossref_primary_10_1002_ente_202200655
crossref_primary_10_1016_j_est_2023_109127
crossref_primary_10_1016_j_ijhydene_2024_12_458
crossref_primary_10_1039_D4TA06710J
crossref_primary_10_1002_advs_202300342
crossref_primary_10_1002_cssc_202101771
crossref_primary_10_1016_j_ccr_2022_214864
crossref_primary_10_1002_smll_202406431
crossref_primary_10_1016_j_ijhydene_2022_10_138
crossref_primary_10_1007_s11814_024_00183_5
crossref_primary_10_1016_j_jallcom_2024_175952
crossref_primary_10_1021_acsmaterialslett_3c00022
crossref_primary_10_1016_j_susmat_2023_e00787
crossref_primary_10_1039_D2SE01074G
crossref_primary_10_1016_j_mtcomm_2024_110758
crossref_primary_10_3390_en16031124
crossref_primary_10_1021_acsaenm_2c00134
crossref_primary_10_1016_j_jcis_2024_06_096
crossref_primary_10_1039_D3DT00065F
crossref_primary_10_1088_1361_6463_ac6d27
crossref_primary_10_26599_NR_2025_94907102
crossref_primary_10_1021_acsami_4c04342
crossref_primary_10_1016_j_jiec_2024_12_037
crossref_primary_10_1016_j_ijhydene_2023_06_245
crossref_primary_10_1016_j_jcis_2022_10_061
crossref_primary_10_1039_D4CY00328D
crossref_primary_10_1016_j_jelechem_2024_118649
crossref_primary_10_1016_j_jcis_2022_08_009
crossref_primary_10_1016_j_ijhydene_2024_10_184
crossref_primary_10_1016_j_ijhydene_2021_04_194
crossref_primary_10_1016_j_ijhydene_2023_07_291
crossref_primary_10_1021_acsmaterialsau_1c00079
crossref_primary_10_1007_s11581_023_05190_w
crossref_primary_10_1016_j_jcis_2024_03_201
crossref_primary_10_1021_acssuschemeng_1c05509
crossref_primary_10_1016_j_jics_2025_101646
crossref_primary_10_1002_cey2_485
crossref_primary_10_1039_D4SE00202D
crossref_primary_10_1016_j_jiec_2023_09_035
crossref_primary_10_1016_j_jcis_2023_09_117
crossref_primary_10_1021_acs_energyfuels_3c03186
crossref_primary_10_1088_1742_6596_2459_1_012004
crossref_primary_10_1002_adfm_202208170
crossref_primary_10_1016_j_jallcom_2023_169474
crossref_primary_10_1021_acsanm_3c03629
crossref_primary_10_1039_D4QI01789G
crossref_primary_10_1039_D1TA10519A
crossref_primary_10_1016_j_fuel_2023_130256
crossref_primary_10_1039_D1TA05581J
crossref_primary_10_1016_j_jallcom_2025_178510
crossref_primary_10_1039_D3QI01686B
crossref_primary_10_1515_zpch_2024_0818
crossref_primary_10_1021_acs_chemrev_3c00332
crossref_primary_10_1016_j_diamond_2024_111364
crossref_primary_10_1016_j_electacta_2022_141596
crossref_primary_10_1021_acs_langmuir_4c01793
crossref_primary_10_1016_j_ijhydene_2023_07_030
crossref_primary_10_1016_j_cej_2024_157628
crossref_primary_10_1002_adfm_202310288
crossref_primary_10_1016_j_nanoen_2022_107117
crossref_primary_10_1021_acs_energyfuels_3c05226
crossref_primary_10_1002_smll_202305965
crossref_primary_10_1021_acscatal_2c01847
crossref_primary_10_1002_adma_202306097
crossref_primary_10_1002_cssc_202400896
crossref_primary_10_1002_smll_202302698
crossref_primary_10_1016_j_ijhydene_2025_02_383
crossref_primary_10_1557_s43578_024_01290_z
crossref_primary_10_1039_D2QI00722C
crossref_primary_10_1016_j_apsusc_2023_157287
crossref_primary_10_1039_D3SE00169E
crossref_primary_10_1021_acsanm_4c02251
crossref_primary_10_1016_S1872_2067_24_60038_0
crossref_primary_10_3390_nano12030339
crossref_primary_10_1039_D1TA09932A
crossref_primary_10_1016_j_apsusc_2022_154969
crossref_primary_10_1039_D4NR03486D
crossref_primary_10_1021_acsami_2c06010
crossref_primary_10_1021_acs_energyfuels_2c01429
crossref_primary_10_1016_j_flatc_2024_100732
crossref_primary_10_1039_D2RA07340D
crossref_primary_10_1021_acsanm_4c06502
crossref_primary_10_1039_D2NJ05944D
crossref_primary_10_1002_aenm_202301547
crossref_primary_10_1016_j_ijhydene_2024_02_094
crossref_primary_10_1016_j_mtcomm_2025_112131
crossref_primary_10_3390_molecules29081805
crossref_primary_10_1039_D1DT03072H
crossref_primary_10_34133_energymatadv_0006
crossref_primary_10_1016_j_ijhydene_2024_01_292
crossref_primary_10_1007_s42864_023_00212_6
crossref_primary_10_1016_j_ccr_2024_215920
crossref_primary_10_1007_s12613_022_2443_2
crossref_primary_10_1039_D3NJ04507B
crossref_primary_10_1016_j_jallcom_2024_173938
crossref_primary_10_1016_j_ijhydene_2025_02_246
crossref_primary_10_3390_catal12020222
crossref_primary_10_1016_j_carbon_2024_118816
crossref_primary_10_1016_j_electacta_2022_141444
crossref_primary_10_1016_j_ijhydene_2025_02_008
crossref_primary_10_1016_j_ijhydene_2024_03_093
crossref_primary_10_1016_j_jallcom_2023_172530
crossref_primary_10_1039_D4NR01196A
crossref_primary_10_1002_cey2_575
crossref_primary_10_1016_j_ijhydene_2024_03_098
crossref_primary_10_1016_j_jssc_2024_124681
crossref_primary_10_1016_j_jpcs_2023_111520
crossref_primary_10_1016_j_ijhydene_2022_12_133
crossref_primary_10_1039_D2DT01098D
crossref_primary_10_1016_j_cej_2023_144348
crossref_primary_10_3390_nano13162302
crossref_primary_10_1002_smll_202102078
crossref_primary_10_1016_j_jssc_2024_124699
crossref_primary_10_1016_j_ijhydene_2022_12_241
crossref_primary_10_1021_acs_jpcc_3c06622
crossref_primary_10_1002_adfm_202312425
crossref_primary_10_1039_D2DT01822E
crossref_primary_10_1039_D3CP01738A
crossref_primary_10_3390_inorganics11110424
crossref_primary_10_1016_j_jallcom_2022_165719
crossref_primary_10_1021_acsanm_4c01126
crossref_primary_10_1016_j_jallcom_2023_169979
crossref_primary_10_1016_j_molliq_2025_126988
crossref_primary_10_1039_D2SE01470J
crossref_primary_10_1016_j_ijhydene_2022_07_163
crossref_primary_10_1039_D1TA03809E
crossref_primary_10_1002_adsu_202400465
crossref_primary_10_1016_j_ijhydene_2022_06_241
crossref_primary_10_1016_j_ijhydene_2022_09_200
crossref_primary_10_1016_j_mtnano_2023_100387
crossref_primary_10_1016_j_nanoen_2023_108439
crossref_primary_10_1016_j_ijhydene_2024_03_275
crossref_primary_10_1039_D3CC06015B
crossref_primary_10_1016_j_mtnano_2021_100146
crossref_primary_10_1007_s40843_022_2001_7
crossref_primary_10_1007_s40843_021_1895_2
crossref_primary_10_1016_j_surfin_2023_103360
crossref_primary_10_1002_adsu_202300193
crossref_primary_10_1016_j_cej_2023_148126
crossref_primary_10_1021_acs_cgd_2c00168
crossref_primary_10_1002_asia_202400220
crossref_primary_10_1016_j_fuel_2024_130919
crossref_primary_10_1016_j_jallcom_2023_168994
crossref_primary_10_1039_D2TA00120A
crossref_primary_10_1016_j_ijhydene_2022_07_146
crossref_primary_10_1039_D4YA00578C
crossref_primary_10_1021_acsaenm_3c00732
crossref_primary_10_1016_j_ijhydene_2023_08_109
crossref_primary_10_3390_molecules28135010
crossref_primary_10_1016_j_apcatb_2021_120935
crossref_primary_10_1016_j_apsusc_2022_154473
crossref_primary_10_1021_acscatal_2c05942
crossref_primary_10_1016_j_jechem_2023_02_011
crossref_primary_10_1039_D3GC01828H
crossref_primary_10_1016_j_ijhydene_2024_02_201
crossref_primary_10_1016_j_jallcom_2023_169630
crossref_primary_10_1016_j_apcatb_2023_123295
crossref_primary_10_1016_j_est_2024_112293
crossref_primary_10_1016_j_reactfunctpolym_2023_105734
crossref_primary_10_1038_s41598_025_87104_6
crossref_primary_10_1021_acsami_3c11947
crossref_primary_10_3390_nano14171445
crossref_primary_10_1002_advs_202203678
crossref_primary_10_1039_D4NR01440E
crossref_primary_10_1016_j_ijhydene_2024_03_065
crossref_primary_10_1016_j_jallcom_2023_170842
crossref_primary_10_1016_j_inoche_2023_111939
crossref_primary_10_1016_j_matchemphys_2024_129594
crossref_primary_10_1002_smll_202406070
crossref_primary_10_1016_j_jcis_2024_09_110
crossref_primary_10_1016_j_seppur_2022_122005
crossref_primary_10_1002_cssc_202400714
crossref_primary_10_1002_advs_202401975
crossref_primary_10_1002_asia_202400314
crossref_primary_10_1021_acs_inorgchem_3c02418
crossref_primary_10_1016_j_ijhydene_2022_07_242
crossref_primary_10_1016_j_jallcom_2023_169655
crossref_primary_10_1016_j_jcis_2024_01_060
crossref_primary_10_1039_D4TA01999G
crossref_primary_10_1016_j_ijhydene_2024_03_351
crossref_primary_10_1039_D2CC02423C
crossref_primary_10_1016_j_jcis_2023_07_012
crossref_primary_10_1016_j_jsamd_2024_100843
crossref_primary_10_1016_j_ijhydene_2022_08_216
crossref_primary_10_1002_smtd_202200181
crossref_primary_10_1007_s12209_024_00389_y
crossref_primary_10_1021_acs_jpcc_4c08178
crossref_primary_10_1002_anie_202310163
crossref_primary_10_1016_j_jallcom_2022_168056
crossref_primary_10_1021_acs_iecr_3c00224
crossref_primary_10_1016_j_ijhydene_2022_09_254
crossref_primary_10_1039_D4CC01842G
crossref_primary_10_3390_surfaces6040033
crossref_primary_10_1016_j_watres_2023_121063
crossref_primary_10_1039_D1QI01465J
crossref_primary_10_3390_molecules27165053
crossref_primary_10_1002_cssc_202201892
crossref_primary_10_1016_j_cej_2025_161095
crossref_primary_10_1016_j_ccr_2024_215765
crossref_primary_10_1016_j_jallcom_2021_160388
crossref_primary_10_1002_eem2_12441
crossref_primary_10_1021_acsaem_3c01058
crossref_primary_10_1039_D3DT03056C
crossref_primary_10_1039_D3DT01071F
crossref_primary_10_1039_D3EE00142C
crossref_primary_10_1016_j_jssc_2023_124445
crossref_primary_10_1016_j_est_2024_111164
crossref_primary_10_1002_eem2_12556
crossref_primary_10_1039_D4CP01792G
crossref_primary_10_1016_j_renene_2022_06_003
crossref_primary_10_1016_j_jelechem_2024_118108
crossref_primary_10_1149_1945_7111_ad6b4b
crossref_primary_10_1021_acs_inorgchem_3c01436
crossref_primary_10_1021_acsomega_2c05116
crossref_primary_10_1016_j_ijhydene_2024_11_098
crossref_primary_10_1002_celc_202400154
crossref_primary_10_3390_hydrogen5040041
crossref_primary_10_1016_j_electacta_2023_143079
crossref_primary_10_1016_j_matre_2022_100092
crossref_primary_10_1016_j_jcis_2024_01_072
crossref_primary_10_1016_j_apcatb_2024_124415
crossref_primary_10_1016_j_mtener_2024_101492
crossref_primary_10_1016_j_ijhydene_2024_03_263
crossref_primary_10_1002_ijch_202100055
crossref_primary_10_1039_D1TA06308A
crossref_primary_10_1016_j_ensm_2021_06_043
Cites_doi 10.1039/C5CC00803D
10.1002/adfm.201600566
10.1016/j.carbon.2019.12.072
10.1002/adfm.201805298
10.1039/C8TA03862G
10.1016/j.electacta.2017.11.055
10.1126/science.1194975
10.1016/j.jcat.2020.03.012
10.1002/adfm.201807031
10.1016/j.electacta.2019.06.060
10.1016/j.electacta.2018.01.150
10.1021/acsanm.9b00985
10.1002/aenm.201301875
10.1021/acsaem.8b00665
10.1016/j.jcat.2020.01.015
10.1021/acsami.9b14350
10.1002/smll.201905000
10.1016/j.mattod.2019.05.021
10.1038/s41467-018-04888-0
10.1016/j.electacta.2018.02.131
10.1021/acssuschemeng.9b04739
10.1016/j.ijhydene.2017.05.195
10.1103/PhysRevB.83.235311
10.1021/ja201269b
10.1021/acsenergylett.8b01840
10.1016/j.scib.2018.07.008
10.1016/j.apcatb.2019.04.072
10.1039/C7NR06186B
10.1002/slct.202000026
10.1021/acsami.8b14603
10.1016/j.mtphys.2018.11.007
10.1039/C8TA01928B
10.1016/j.apcatb.2019.04.067
10.1002/aenm.201701592
10.1016/j.apsusc.2019.01.167
10.1016/j.apcatb.2020.119165
10.1002/ange.201309474
10.1016/j.jpowsour.2019.01.090
10.1039/C8QM00259B
10.1016/j.apsusc.2019.04.165
10.1021/acscatal.8b00413
10.1039/C8QI01104D
10.1016/j.jallcom.2019.153542
10.1016/j.electacta.2018.05.182
10.1038/nchem.1589
10.1021/acssuschemeng.9b04882
10.1016/j.physleta.2020.126368
10.1002/anie.201602237
10.1038/nmat4564
10.1021/acscatal.6b02479
10.1039/C7TA08518D
10.1021/jacs.5b08186
10.1016/j.ijhydene.2019.09.003
10.1021/jp506288w
10.1039/C8CS00664D
10.1007/BF01024844
10.1021/acscatal.9b01503
10.1021/acsami.8b17961
10.1021/acsenergylett.7b00270
10.1016/j.apcatb.2019.02.014
10.1039/C7NR09424H
10.1021/acs.chemrev.5b00287
10.1016/j.ijhydene.2019.11.217
10.1021/acssuschemeng.8b05611
10.1039/D0CC03053H
10.1021/acsaem.9b00428
10.1002/advs.201700772
10.1021/acssuschemeng.8b05462
10.1016/j.apcatb.2019.117911
10.1016/j.jpowsour.2019.226857
10.1002/adma.201807001
10.3847/1538-4357/aac6ce
10.1002/smll.201600332
10.1016/j.jpowsour.2019.02.098
10.1039/C5CC08064A
10.1002/adma.201807134
10.1039/C6TA07904K
10.1002/celc.201801343
10.1002/celc.201901201
10.1002/slct.201803665
10.1007/s12274-019-2304-0
10.1021/nn5016242
10.1016/j.cej.2017.10.074
10.1016/j.jcat.2016.10.001
10.1016/j.jallcom.2019.03.313
10.1039/C7TA10790K
10.1039/C9TA03819A
10.1039/C7TA10584C
10.1021/acsnano.5b06653
10.1021/ja408329q
10.1039/C7TA04438K
10.1021/acssuschemeng.8b04397
10.1038/s41598-018-35831-4
10.1039/C9TA10547F
10.1021/acssuschemeng.7b04663
10.1039/C7TA10048E
10.1039/C8DT02927J
10.1002/adfm.201602236
10.1039/C9NR06083A
10.1126/science.aad4998
10.1016/j.elecom.2015.02.017
10.1039/C9NR04529E
10.1039/C4EE01303D
10.1021/acs.nanolett.7b01030
10.1039/C8TA10686J
10.1021/acscatal.8b00668
10.1016/j.carbon.2019.01.065
10.1039/C8TA01387J
10.1021/acs.chemrev.7b00618
10.1016/j.apcatb.2019.117899
10.1016/j.jelechem.2006.11.008
10.1039/C9NR07564J
10.1016/j.jpowsour.2019.226887
10.1002/smll.202000081
10.1016/j.electacta.2019.135537
10.1021/acsami.6b13984
10.1039/C9EE01202H
10.1002/adma.201801450
10.1039/C8NR05494K
10.1016/j.jechem.2017.10.004
10.1021/acs.accounts.7b00187
10.1038/nenergy.2017.127
10.1039/C5CY01111F
10.1016/j.electacta.2019.135534
10.1021/acssuschemeng.8b05378
10.1016/j.electacta.2017.11.080
10.1039/C8NR02402B
10.3389/fchem.2018.00569
10.1016/j.electacta.2019.134942
10.1016/j.ijhydene.2018.12.031
10.1016/j.jallcom.2020.154299
10.1021/acscatal.9b05445
10.1016/j.ijhydene.2019.06.003
10.1021/acscentsci.7b00502
10.1016/j.electacta.2020.135957
10.1021/ja407115p
10.1039/C6CP08176B
10.1002/adfm.201606585
10.1039/C8TA01266K
10.1016/j.jmst.2019.08.042
10.1021/nn305833u
10.1016/j.jpowsour.2018.08.088
10.1002/advs.201900246
10.1016/j.jcis.2019.08.093
10.1021/ar4002312
10.1002/adma.201602502
10.1039/C9TA10860B
10.1002/ente.201900063
10.1039/C9CC06244K
10.1021/cm5044864
10.1039/C8CC00766G
10.1039/C6TA09853C
10.1002/adma.201501969
10.1021/acsnano.7b06501
10.1039/C8TA03304H
10.1038/nmat3313
10.1039/C9NJ05023J
10.1002/aenm.201903137
10.1016/j.cej.2020.124556
10.1016/j.jpowsour.2018.04.061
10.1039/C8NR09902B
10.1039/C7CS00705A
10.1002/admi.201500669
10.1021/ja404523s
10.1016/j.jallcom.2019.01.012
10.1007/s10008-019-04362-x
10.1021/acsenergylett.8b00134
10.1002/aenm.201903891
10.1021/jacs.9b04492
10.1016/S0925-8388(02)01037-X
10.1021/acs.chemmater.5b00664
10.1002/adma.201502075
10.1039/C6TA05110C
10.1039/C8CP00443A
10.1039/C9DT02201E
10.1021/acsami.8b06166
10.1021/acsami.7b11192
10.1021/acscatal.7b00792
10.1002/chem.201804492
10.1002/celc.201900507
10.1038/s41467-017-01089-z
10.1039/C9CC01235D
10.1002/eem2.12052
10.1016/j.nanoen.2017.03.024
10.1039/C7NR03182C
10.1002/adma.201606200
10.1002/smll.201700264
10.1021/acssuschemeng.8b01978
10.1021/acscatal.6b01211
10.1021/acs.energyfuels.0c03084
10.1021/acssuschemeng.8b02155
10.1039/c2cs35387c
10.1039/C5CP06475A
10.1039/C8NR07787H
10.1039/C9QI00554D
10.1039/C8NR04218G
10.1016/j.jcis.2019.10.099
10.1039/C4CS00448E
10.1126/science.1141483
10.1039/C5EE00751H
10.1039/D0TA02337J
10.1002/adma.201803151
10.1016/j.apcatb.2020.119281
10.1016/j.apcatb.2019.01.082
10.1016/j.apsusc.2018.02.076
10.1002/smll.201803639
10.1186/s40580-015-0048-4
10.1039/C7NH00079K
10.1021/acsami.8b04386
10.1016/j.jechem.2019.11.011
10.1016/j.apcatb.2019.01.094
10.1021/jacs.6b01502
10.1039/C6CS00328A
10.1002/asia.201901137
10.1021/acsenergylett.7b00679
10.1021/acsami.9b04528
10.1016/j.jcis.2017.09.076
10.1016/j.nanoen.2018.03.012
10.1038/ncomms15377
10.1021/nl2045364
10.1002/adma.201506402
10.1039/C9TA05601G
10.1016/j.nanoen.2019.02.006
10.1039/D0TA05865C
10.1039/c3ee42413h
10.1021/acsnano.7b05050
10.1039/C5TA02974K
10.1039/C9TA07868A
10.1002/advs.201700464
10.1021/acsomega.8b00989
10.1002/adma.201503270
10.1039/C6TA05618K
10.1021/acsami.7b16430
10.1016/j.ijhydene.2019.05.157
10.1016/j.chempr.2018.02.023
10.1021/acsami.7b16791
10.1038/ncomms10672
10.1039/C9TA01903K
10.1021/acsami.8b09361
10.1021/acscatal.6b03192
10.1002/smll.201801070
10.1021/acsami.7b07465
10.1039/C7TA00816C
10.1016/j.jallcom.2020.153965
10.1002/adfm.201601315
10.1039/C7TA08166A
10.1021/acsnano.0c03916
10.1039/C9TA07210A
10.1039/C7RA07667C
10.1002/smll.201604161
10.1016/j.ijhydene.2020.03.045
10.1021/acscatal.6b02650
10.1021/acsami.8b04223
10.1016/j.jallcom.2019.153346
10.1039/C0DT01107J
10.1021/jacs.7b07044
10.1039/C7CS00811B
10.1002/celc.201700965
10.1021/acsenergylett.6b00084
10.1039/C9DT00957D
10.1021/acsami.7b06377
10.1016/j.ijhydene.2018.07.098
10.1002/aenm.201903120
10.1039/C0JM03121F
10.1016/j.nanoen.2018.06.048
10.1002/adma.201806682
10.1021/acssuschemeng.9b06959
10.1021/acs.inorgchem.9b01814
10.1038/nmat4481
10.1002/chem.201903628
10.1016/j.apcatb.2018.11.003
10.1002/adma.201705538
10.1002/adma.201701584
10.1039/C7CP06316D
10.1002/smll.201901993
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/d0ta12152e
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
CrossRef
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 5363
ExternalDocumentID 10_1039_D0TA12152E
d0ta12152e
GroupedDBID 0-7
0R
705
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
O-G
O9-
R7C
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
0R~
AAJAE
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c417t-bad0174b787b6ef12ddee404a98aec70442d3db9a6d47e55483f6147813c80a63
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 10:51:35 EDT 2025
Mon Jun 30 12:10:36 EDT 2025
Tue Jul 01 01:13:03 EDT 2025
Thu Apr 24 22:58:17 EDT 2025
Sat Jan 08 03:48:16 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c417t-bad0174b787b6ef12ddee404a98aec70442d3db9a6d47e55483f6147813c80a63
Notes Min Wang is a PhD candidate at the School of Materials Science and Engineering, Tsinghua University, China. She received her B.S. degree in Materials Science and Engineering from Jilin University in 2016. Her research focuses on advanced nanomaterials related to electrocatalysis for energy conversion.
Hongwei Zhu is a Professor at the School of Materials Science and Engineering, Tsinghua University, China. He received his B.S. degree in Mechanical Engineering (1998) and his PhD degree in Materials Processing Engineering (2003) from Tsinghua University. After postdoctoral studies in Japan and the USA, he began his independent career as a faculty member at Tsinghua University (2008 to present). His current research interests involve low-dimensional materials and materials informatics.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7337-1983
0000-0002-0832-8946
PQID 2499014288
PQPubID 2047523
PageCount 44
ParticipantIDs crossref_citationtrail_10_1039_D0TA12152E
proquest_miscellaneous_2551977813
proquest_journals_2499014288
rsc_primary_d0ta12152e
crossref_primary_10_1039_D0TA12152E
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210309
PublicationDateYYYYMMDD 2021-03-09
PublicationDate_xml – month: 3
  year: 2021
  text: 20210309
  day: 9
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Chandrasekaran (D0TA12152E/cit2/1) 2019; 48
Li (D0TA12152E/cit143/1) 2017; 9
Bhat (D0TA12152E/cit267/1) 2020; 5
Xie (D0TA12152E/cit101/1) 2019; 31
Feng (D0TA12152E/cit17/1) 2020; 10
Huang (D0TA12152E/cit64/1) 2013; 42
Chen (D0TA12152E/cit51/1) 2017; 5
Zequine (D0TA12152E/cit213/1) 2019; 784
Wang (D0TA12152E/cit188/1) 2019; 436
Liang (D0TA12152E/cit211/1) 2019; 25
Liu (D0TA12152E/cit252/1) 2020; 8
Tsai (D0TA12152E/cit279/1) 2019; 2
Yuan (D0TA12152E/cit73/1) 2015; 27
Xie (D0TA12152E/cit42/1) 2013; 135
Xue (D0TA12152E/cit184/1) 2019; 48
Ma (D0TA12152E/cit278/1) 2019; 7
Wu (D0TA12152E/cit236/1) 2020; 46
Souleymen (D0TA12152E/cit191/1) 2018; 6
Anantharaj (D0TA12152E/cit14/1) 2016; 6
Yang (D0TA12152E/cit97/1) 2019; 141
Yang (D0TA12152E/cit183/1) 2019; 55
Miao (D0TA12152E/cit81/1) 2017; 139
Shi (D0TA12152E/cit110/1) 2019; 7
Pham (D0TA12152E/cit103/1) 2016; 28
Deng (D0TA12152E/cit253/1) 2019; 11
Wang (D0TA12152E/cit175/1) 2017; 9
Zeng (D0TA12152E/cit271/1) 2018; 51
Guo (D0TA12152E/cit19/1) 2019; 31
Miao (D0TA12152E/cit235/1) 2017; 7
Wei (D0TA12152E/cit92/1) 2019; 4
Zhao (D0TA12152E/cit255/1) 2019; 7
Najafi (D0TA12152E/cit86/1) 2019; 7
Qin (D0TA12152E/cit180/1) 2019; 7
Gong (D0TA12152E/cit219/1) 2019; 4
Lei (D0TA12152E/cit200/1) 2020; 385
Jia (D0TA12152E/cit246/1) 2019; 484
An (D0TA12152E/cit260/1) 2019; 29
Acevedo (D0TA12152E/cit79/1) 2012; 12
Kim (D0TA12152E/cit76/1) 2020; 16
Kuang (D0TA12152E/cit169/1) 2019; 254
Xu (D0TA12152E/cit107/1) 2019; 11
Wang (D0TA12152E/cit248/1) 2019; 6
Jaramillo (D0TA12152E/cit52/1) 2007; 317
Lv (D0TA12152E/cit254/1) 2019; 7
Zhong (D0TA12152E/cit273/1) 2018; 269
Zhao (D0TA12152E/cit61/1) 2016; 10
Sivanantham (D0TA12152E/cit137/1) 2016; 26
Wang (D0TA12152E/cit127/1) 2019; 420
Guo (D0TA12152E/cit251/1) 2019; 6
Ma (D0TA12152E/cit262/1) 2018; 260
Zheng (D0TA12152E/cit111/1) 2019; 11
Du (D0TA12152E/cit196/1) 2019; 7
Xiong (D0TA12152E/cit104/1) 2018; 30
Shit (D0TA12152E/cit265/1) 2018; 10
Yang (D0TA12152E/cit161/1) 2017; 7
Li (D0TA12152E/cit201/1) 2020; 390
Fan (D0TA12152E/cit224/1) 2019; 7
Liu (D0TA12152E/cit226/1) 2017; 29
Li (D0TA12152E/cit119/1) 2018; 14
Yang (D0TA12152E/cit193/1) 2018; 281
Chen (D0TA12152E/cit228/1) 2020; 560
Hou (D0TA12152E/cit95/1) 2018; 8
Guo (D0TA12152E/cit240/1) 2017; 42
Li (D0TA12152E/cit41/1) 2016; 15
Yao (D0TA12152E/cit133/1) 2019; 15
Ren (D0TA12152E/cit238/1) 2018; 10
Zheng (D0TA12152E/cit261/1) 2017; 9
Faber (D0TA12152E/cit80/1) 2014; 118
Lau (D0TA12152E/cit40/1) 2019; 9
Tang (D0TA12152E/cit220/1) 2018; 10
Li (D0TA12152E/cit140/1) 2020; 340
Gao (D0TA12152E/cit187/1) 2020; 44
Lu (D0TA12152E/cit15/1) 2016; 28
Tong (D0TA12152E/cit131/1) 2017; 19
Du (D0TA12152E/cit274/1) 2018; 6
Li (D0TA12152E/cit7/1) 2020; 10
Chia (D0TA12152E/cit34/1) 2015; 115
Samad (D0TA12152E/cit74/1) 2015; 27
Lin (D0TA12152E/cit121/1) 2018; 401
Chen (D0TA12152E/cit205/1) 2019; 12
Zhu (D0TA12152E/cit217/1) 2018; 6
Darband (D0TA12152E/cit227/1) 2019; 11
Li (D0TA12152E/cit85/1) 2016; 28
Zhu (D0TA12152E/cit120/1) 2015; 27
Feng (D0TA12152E/cit142/1) 2015; 137
Yu (D0TA12152E/cit218/1) 2018; 5
Zhang (D0TA12152E/cit206/1) 2018; 6
Yang (D0TA12152E/cit156/1) 2019; 436
Subbaraman (D0TA12152E/cit53/1) 2012; 11
Tang (D0TA12152E/cit6/1) 2020; 278
Li (D0TA12152E/cit58/1) 2020; 14
Kang (D0TA12152E/cit10/1) 2019; 29
Zhang (D0TA12152E/cit18/1) 2020; 821
Fan (D0TA12152E/cit62/1) 2016; 138
Zhu (D0TA12152E/cit114/1) 2016; 52
Li (D0TA12152E/cit162/1) 2018; 1
Ambrosi (D0TA12152E/cit66/1) 2015; 54
Dong (D0TA12152E/cit68/1) 2011; 40
Du (D0TA12152E/cit264/1) 2019; 44
Hu (D0TA12152E/cit158/1) 2019; 416
Li (D0TA12152E/cit117/1) 2018; 47
Deng (D0TA12152E/cit102/1) 2015; 8
Jing (D0TA12152E/cit124/1) 2018; 6
Xiao (D0TA12152E/cit272/1) 2018; 10
Zhang (D0TA12152E/cit8/1) 2018; 8
Jirkovsky (D0TA12152E/cit4/1) 2016; 15
Zhu (D0TA12152E/cit39/1) 2018; 47
Cui (D0TA12152E/cit153/1) 2017; 5
Yuan (D0TA12152E/cit71/1) 2017; 13
Du (D0TA12152E/cit263/1) 2019; 253
You (D0TA12152E/cit147/1) 2019; 31
Lou (D0TA12152E/cit136/1) 2018; 8
Han (D0TA12152E/cit56/1) 2015; 2
Du (D0TA12152E/cit214/1) 2019; 14
Shang (D0TA12152E/cit100/1) 2018; 10
Luo (D0TA12152E/cit270/1) 2020; 10
Jin (D0TA12152E/cit54/1) 2017; 2
Hao (D0TA12152E/cit132/1) 2017; 7
Chen (D0TA12152E/cit148/1) 2016; 18
Du (D0TA12152E/cit197/1) 2020; 824
Hui (D0TA12152E/cit216/1) 2018; 10
Czioska (D0TA12152E/cit212/1) 2018; 6
Xue (D0TA12152E/cit106/1) 2019; 58
Ning (D0TA12152E/cit225/1) 2018; 265
Li (D0TA12152E/cit182/1) 2017; 8
Hu (D0TA12152E/cit277/1) 2018; 30
Islam (D0TA12152E/cit167/1) 2018; 3
Yan (D0TA12152E/cit90/1) 2016; 12
Mahmood (D0TA12152E/cit22/1) 2018; 5
Wang (D0TA12152E/cit98/1) 2018; 4
Han (D0TA12152E/cit35/1) 2018; 118
Mabayoje (D0TA12152E/cit55/1) 2016; 1
Tiwari (D0TA12152E/cit241/1) 2019; 2
Huang (D0TA12152E/cit165/1) 2019; 327
Li (D0TA12152E/cit192/1) 2019; 6
Zeng (D0TA12152E/cit243/1) 2019; 7
Guan (D0TA12152E/cit145/1) 2017; 2
Zhang (D0TA12152E/cit256/1) 2019; 257
Hu (D0TA12152E/cit13/1) 2019; 12
Hu (D0TA12152E/cit215/1) 2018; 6
Xin (D0TA12152E/cit122/1) 2019; 55
Li (D0TA12152E/cit209/1) 2018; 10
Ren (D0TA12152E/cit239/1) 2017; 26
Chia (D0TA12152E/cit16/1) 2016; 4
Shit (D0TA12152E/cit166/1) 2019; 6
Du (D0TA12152E/cit195/1) 2019; 44
Sun (D0TA12152E/cit47/1) 2011; 83
Shit (D0TA12152E/cit186/1) 2019; 7
Muthurasu (D0TA12152E/cit179/1) 2020; 334
Tang (D0TA12152E/cit199/1) 2019; 11
Lukowski (D0TA12152E/cit36/1) 2013; 135
Ma (D0TA12152E/cit115/1) 2018; 10
Liu (D0TA12152E/cit96/1) 2018; 6
Liu (D0TA12152E/cit134/1) 2017; 11
Zhu (D0TA12152E/cit257/1) 2019; 7
Yao (D0TA12152E/cit190/1) 2018; 2
Pan (D0TA12152E/cit105/1) 2020; 8
He (D0TA12152E/cit160/1) 2019; 12
Han (D0TA12152E/cit65/1) 2003; 351
Zeng (D0TA12152E/cit112/1) 2018; 6
Zou (D0TA12152E/cit185/1) 2018; 4
Deng (D0TA12152E/cit203/1) 2018; 5
Zhu (D0TA12152E/cit152/1) 2020; 160
Shan (D0TA12152E/cit149/1) 2020; 384
Zhang (D0TA12152E/cit89/1) 2019; 11
Li (D0TA12152E/cit118/1) 2018; 9
Wang (D0TA12152E/cit11/1) 2020; 819
Chen (D0TA12152E/cit44/1) 2016; 4
Liu (D0TA12152E/cit45/1) 2018; 260
Gao (D0TA12152E/cit48/1) 2017; 50
Wu (D0TA12152E/cit245/1) 2018; 441
Wang (D0TA12152E/cit208/1) 2018; 63
Wang (D0TA12152E/cit141/1) 2020; 10
Zhang (D0TA12152E/cit144/1) 2017; 7
Zhang (D0TA12152E/cit189/1) 2020; 332
Liu (D0TA12152E/cit168/1) 2019; 247
Li (D0TA12152E/cit29/1) 2020; 34
Zhu (D0TA12152E/cit194/1) 2018; 509
Zhang (D0TA12152E/cit221/1) 2018; 10
Zhu (D0TA12152E/cit171/1) 2019; 7
Ma (D0TA12152E/cit222/1) 2018; 5
Gong (D0TA12152E/cit269/1) 2019; 476
Lin (D0TA12152E/cit151/1) 2019; 6
Luo (D0TA12152E/cit67/1) 2017; 9
Xu (D0TA12152E/cit275/1) 2020; 45
Liu (D0TA12152E/cit229/1) 2019; 11
Du (D0TA12152E/cit198/1) 2020; 383
Zhang (D0TA12152E/cit93/1) 2016; 55
Che (D0TA12152E/cit230/1) 2019; 246
Liu (D0TA12152E/cit130/1) 2019; 9
Gong (D0TA12152E/cit247/1) 2019; 48
Seh (D0TA12152E/cit1/1) 2017; 355
Li (D0TA12152E/cit155/1) 2018; 20
Wu (D0TA12152E/cit259/1) 2017; 35
Zeng (D0TA12152E/cit27/1) 2015; 3
Lv (D0TA12152E/cit128/1) 2017; 13
Ambrosi (D0TA12152E/cit37/1) 2015; 51
Hou (D0TA12152E/cit232/1) 2017; 17
Varrla (D0TA12152E/cit60/1) 2015; 27
Chen (D0TA12152E/cit135/1) 2017; 29
Ji (D0TA12152E/cit99/1) 2017; 5
Song (D0TA12152E/cit250/1) 2020; 827
Zhang (D0TA12152E/cit150/1) 2017; 2
Peng (D0TA12152E/cit94/1) 2017; 5
Qin (D0TA12152E/cit163/1) 2019; 15
Luo (D0TA12152E/cit126/1) 2018; 10
Huang (D0TA12152E/cit210/1) 2019; 556
Wang (D0TA12152E/cit72/1) 2011; 21
Huang (D0TA12152E/cit207/1) 2017; 27
McCrory (D0TA12152E/cit28/1) 2013; 135
Wu (D0TA12152E/cit91/1) 2016; 3
Zhao (D0TA12152E/cit157/1) 2019; 7
Wang (D0TA12152E/cit78/1) 2019; 7
Lin (D0TA12152E/cit87/1) 2014; 4
Tan (D0TA12152E/cit159/1) 2019; 11
Gong (D0TA12152E/cit138/1) 2018; 43
Sun (D0TA12152E/cit21/1) 2019
Zou (D0TA12152E/cit20/1) 2015; 44
Zhang (D0TA12152E/cit164/1) 2019; 44
Ray (D0TA12152E/cit204/1) 2017; 9
Acevedo (D0TA12152E/cit82/1) 2013; 7
Li (D0TA12152E/cit123/1) 2018; 6
Guo (D0TA12152E/cit129/1) 2020; 8
Yan (D0TA12152E/cit223/1) 2018; 334
Jian (D0TA12152E/cit244/1) 2018; 10
Liu (D0TA12152E/cit46/1) 2017; 2
Wang (D0TA12152E/cit31/1) 2019; 3
Fronzi (D0TA12152E/cit116/1) 2018; 3
Dai (D0TA12152E/cit202/1) 2017; 11
Xiong (D0TA12152E/cit233/1) 2019; 791
Xiong (D0TA12152E/cit69/1) 2018; 54
Joo (D0TA12152E/cit3/1) 2019; 37
Guo (D0TA12152E/cit173/1) 2018; 47
Zhang (D0TA12152E/cit113/1) 2018; 10
Yu (D0TA12152E/cit12/1) 2018; 7
Prasannachandran (D0TA12152E/cit176/1) 2020; 56
Coleman (D0TA12152E/cit59/1) 2011; 331
Buckley (D0TA12152E/cit49/1) 1991; 21
Ambrosi (D0TA12152E/cit33/1) 2018; 47
Huang (D0TA12152E/cit154/1) 2018; 6
Liu (D0TA12152E/cit25/1) 2020; 276
Suen (D0TA12152E/cit24/1) 2017; 46
Jin (D0TA12152E/cit5/1) 2019; 6
Wu (D0TA12152E/cit231/1) 2019; 23
Ren (D0TA12152E/cit276/1) 2019; 318
Kong (D0TA12152E/cit38/1) 2013; 6
Geng (D0TA12152E/cit84/1) 2016; 7
Jiang (D0TA12152E/cit109/1) 2016; 6
McCrory (D0TA12152E/cit30/1) 2013; 135
Ding (D0TA12152E/cit242/1) 2019; 44
Tang (D0TA12152E/cit88/1) 2016; 6
Yoon (D0TA12152E/cit170/1) 2016; 26
Chhowalla (D0TA12152E/cit32/1) 2013; 5
Yang (D0TA12152E/cit268/1) 2019; 257
Zhu (D0TA12152E/cit237/1) 2016; 4
Qua (D0TA12152E/cit266/1) 2018; 390
Shi (D0TA12152E/cit75/1) 2017; 8
Yu (D0TA12152E/cit139/1) 2017; 5
Wu (D0TA12152E/cit181/1) 2018; 30
Muthurasu (D0TA12152E/cit174/1) 2019; 248
Sun (D0TA12152E/cit43/1) 2019; 58
Ganesan (D0TA12152E/cit172/1) 2020; 45
Xu (D0TA12152E/cit177/1) 2019; 25
Ojha (D0TA12152E/cit23/1) 2018; 20
Rossmeisl (D0TA12152E/cit26/1) 2007; 607
Dong (D0TA12152E/cit50/1) 2019; 243
Li (D0TA12152E/cit70/1) 2011; 133
Song (D0TA12152E/cit77/1) 2014; 126
Wu (D0TA12152E/cit125/1) 2016; 26
Bara (D0TA12152E/cit83/1) 2016; 344
Li (D0TA12152E/cit57/1) 2014; 47
Zhai (D0TA12152E/cit178/1) 2018; 6
Li (D0TA12152E/cit234/1) 2019; 145
Qu (D0TA12152E/cit258/1) 2017; 9
Yan (D0TA12152E/cit146/1) 2020; 42
Liu (D0TA12152E/cit63/1) 2014; 8
Kwon (D0TA12152E/cit108/1) 2020; 16
Varcoe (D0TA12152E/cit9/1) 2014; 7
Zhu (D0TA12152E/cit249/1) 2018; 6
References_xml – volume: 51
  start-page: 8450
  year: 2015
  ident: D0TA12152E/cit37/1
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC00803D
– volume: 26
  start-page: 4661
  year: 2016
  ident: D0TA12152E/cit137/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600566
– volume: 160
  start-page: 133
  year: 2020
  ident: D0TA12152E/cit152/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.12.072
– volume: 29
  start-page: 1805298
  year: 2019
  ident: D0TA12152E/cit260/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201805298
– volume: 6
  start-page: 14207
  year: 2018
  ident: D0TA12152E/cit124/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03862G
– volume: 260
  start-page: 82
  year: 2018
  ident: D0TA12152E/cit262/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.11.055
– volume: 331
  start-page: 568
  year: 2011
  ident: D0TA12152E/cit59/1
  publication-title: Science
  doi: 10.1126/science.1194975
– volume: 385
  start-page: 129
  year: 2020
  ident: D0TA12152E/cit200/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2020.03.012
– volume: 29
  start-page: 1807031
  year: 2019
  ident: D0TA12152E/cit10/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201807031
– volume: 318
  start-page: 42
  year: 2019
  ident: D0TA12152E/cit276/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.06.060
– volume: 265
  start-page: 19
  year: 2018
  ident: D0TA12152E/cit225/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.01.150
– volume: 2
  start-page: 5061
  year: 2019
  ident: D0TA12152E/cit241/1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b00985
– volume: 4
  start-page: 1301875
  year: 2014
  ident: D0TA12152E/cit87/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201301875
– volume: 1
  start-page: 3929
  year: 2018
  ident: D0TA12152E/cit162/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00665
– volume: 383
  start-page: 103
  year: 2020
  ident: D0TA12152E/cit198/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2020.01.015
– volume: 12
  start-page: 2225
  year: 2019
  ident: D0TA12152E/cit160/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b14350
– volume: 16
  start-page: 1905000
  year: 2020
  ident: D0TA12152E/cit76/1
  publication-title: Small
  doi: 10.1002/smll.201905000
– volume: 31
  start-page: 47
  year: 2019
  ident: D0TA12152E/cit101/1
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2019.05.021
– volume: 9
  start-page: 2452
  year: 2018
  ident: D0TA12152E/cit118/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04888-0
– volume: 269
  start-page: 55
  year: 2018
  ident: D0TA12152E/cit273/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.02.131
– volume: 7
  start-page: 16917
  year: 2019
  ident: D0TA12152E/cit196/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b04739
– volume: 42
  start-page: 17038
  year: 2017
  ident: D0TA12152E/cit240/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.05.195
– volume: 83
  start-page: 235311
  year: 2011
  ident: D0TA12152E/cit47/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.83.235311
– volume: 133
  start-page: 7296
  year: 2011
  ident: D0TA12152E/cit70/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja201269b
– volume: 4
  start-page: 368
  year: 2019
  ident: D0TA12152E/cit92/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01840
– volume: 63
  start-page: 1130
  year: 2018
  ident: D0TA12152E/cit208/1
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2018.07.008
– volume: 254
  start-page: 15
  year: 2019
  ident: D0TA12152E/cit169/1
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.04.072
– volume: 9
  start-page: 17349
  year: 2017
  ident: D0TA12152E/cit175/1
  publication-title: Nanoscale
  doi: 10.1039/C7NR06186B
– volume: 5
  start-page: 2455
  year: 2020
  ident: D0TA12152E/cit267/1
  publication-title: ChemistrySelect
  doi: 10.1002/slct.202000026
– volume: 10
  start-page: 40568
  year: 2018
  ident: D0TA12152E/cit244/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b14603
– volume: 7
  start-page: 121
  year: 2018
  ident: D0TA12152E/cit12/1
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2018.11.007
– volume: 6
  start-page: 8233
  year: 2018
  ident: D0TA12152E/cit123/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01928B
– volume: 253
  start-page: 246
  year: 2019
  ident: D0TA12152E/cit263/1
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.04.067
– volume: 8
  start-page: 1701592
  year: 2018
  ident: D0TA12152E/cit136/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701592
– volume: 476
  start-page: 840
  year: 2019
  ident: D0TA12152E/cit269/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.01.167
– volume: 276
  start-page: 119281
  year: 2020
  ident: D0TA12152E/cit25/1
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.119165
– volume: 126
  start-page: 1290
  year: 2014
  ident: D0TA12152E/cit77/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201309474
– volume: 416
  start-page: 95
  year: 2019
  ident: D0TA12152E/cit158/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.01.090
– volume: 2
  start-page: 1732
  year: 2018
  ident: D0TA12152E/cit190/1
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C8QM00259B
– volume: 484
  start-page: 1052
  year: 2019
  ident: D0TA12152E/cit246/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.04.165
– volume: 8
  start-page: 5431
  year: 2018
  ident: D0TA12152E/cit8/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00413
– volume: 6
  start-page: 443
  year: 2019
  ident: D0TA12152E/cit251/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C8QI01104D
– volume: 821
  start-page: 153542
  year: 2020
  ident: D0TA12152E/cit18/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.153542
– volume: 281
  start-page: 198
  year: 2018
  ident: D0TA12152E/cit193/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.05.182
– volume: 5
  start-page: 263
  year: 2013
  ident: D0TA12152E/cit32/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1589
– volume: 7
  start-page: 18015
  year: 2019
  ident: D0TA12152E/cit186/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b04882
– volume: 384
  start-page: 126368
  year: 2020
  ident: D0TA12152E/cit149/1
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2020.126368
– volume: 55
  start-page: 6702
  year: 2016
  ident: D0TA12152E/cit93/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201602237
– volume: 15
  start-page: 364
  year: 2016
  ident: D0TA12152E/cit41/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4564
– volume: 6
  start-page: 8069
  year: 2016
  ident: D0TA12152E/cit14/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02479
– volume: 5
  start-page: 23361
  year: 2017
  ident: D0TA12152E/cit94/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA08518D
– volume: 137
  start-page: 14023
  year: 2015
  ident: D0TA12152E/cit142/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b08186
– volume: 44
  start-page: 27765
  year: 2019
  ident: D0TA12152E/cit195/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.09.003
– volume: 118
  start-page: 21347
  year: 2014
  ident: D0TA12152E/cit80/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp506288w
– volume: 11
  start-page: 12
  year: 2019
  ident: D0TA12152E/cit253/1
  publication-title: Nanomicro Lett.
– volume: 48
  start-page: 4178
  year: 2019
  ident: D0TA12152E/cit2/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00664D
– volume: 21
  start-page: 575
  year: 1991
  ident: D0TA12152E/cit49/1
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/BF01024844
– volume: 9
  start-page: 7527
  year: 2019
  ident: D0TA12152E/cit40/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b01503
– volume: 11
  start-page: 3880
  year: 2019
  ident: D0TA12152E/cit159/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b17961
– volume: 2
  start-page: 1022
  year: 2017
  ident: D0TA12152E/cit150/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00270
– volume: 248
  start-page: 202
  year: 2019
  ident: D0TA12152E/cit174/1
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.02.014
– volume: 10
  start-page: 4816
  year: 2018
  ident: D0TA12152E/cit115/1
  publication-title: Nanoscale
  doi: 10.1039/C7NR09424H
– volume: 115
  start-page: 11941
  year: 2015
  ident: D0TA12152E/cit34/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00287
– volume: 45
  start-page: 2546
  year: 2020
  ident: D0TA12152E/cit275/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.11.217
– volume: 7
  start-page: 2610
  year: 2019
  ident: D0TA12152E/cit157/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b05611
– volume: 56
  start-page: 8623
  year: 2020
  ident: D0TA12152E/cit176/1
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC03053H
– volume: 2
  start-page: 3708
  year: 2019
  ident: D0TA12152E/cit279/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b00428
– volume: 5
  start-page: 1700772
  year: 2018
  ident: D0TA12152E/cit203/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700772
– volume: 5
  start-page: 701396
  year: 2018
  ident: D0TA12152E/cit218/1
  publication-title: Adv. Mater. Interfaces
– volume: 7
  start-page: 2899
  year: 2019
  ident: D0TA12152E/cit171/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b05462
– volume: 257
  start-page: 117911
  year: 2019
  ident: D0TA12152E/cit268/1
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.117911
– volume: 436
  start-page: 226857
  year: 2019
  ident: D0TA12152E/cit188/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.226857
– volume: 31
  start-page: 1807001
  year: 2019
  ident: D0TA12152E/cit147/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807001
– volume: 10
  start-page: 6
  year: 2018
  ident: D0TA12152E/cit209/1
  publication-title: Nanomicro Lett.
  doi: 10.3847/1538-4357/aac6ce
– volume: 12
  start-page: 2975
  year: 2016
  ident: D0TA12152E/cit90/1
  publication-title: Small
  doi: 10.1002/smll.201600332
– volume: 420
  start-page: 108
  year: 2019
  ident: D0TA12152E/cit127/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.02.098
– volume: 52
  start-page: 1486
  year: 2016
  ident: D0TA12152E/cit114/1
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC08064A
– volume: 31
  start-page: 1807134
  year: 2019
  ident: D0TA12152E/cit19/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807134
– volume: 4
  start-page: 18060
  year: 2016
  ident: D0TA12152E/cit44/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA07904K
– volume: 6
  start-page: 430
  year: 2019
  ident: D0TA12152E/cit166/1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201801343
– volume: 6
  start-page: 4550
  year: 2019
  ident: D0TA12152E/cit248/1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201901201
– volume: 4
  start-page: 1180
  year: 2019
  ident: D0TA12152E/cit219/1
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201803665
– volume: 12
  start-page: 2259
  year: 2019
  ident: D0TA12152E/cit205/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2304-0
– volume: 8
  start-page: 6902
  year: 2014
  ident: D0TA12152E/cit63/1
  publication-title: ACS Nano
  doi: 10.1021/nn5016242
– volume: 334
  start-page: 922
  year: 2018
  ident: D0TA12152E/cit223/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.10.074
– volume: 344
  start-page: 591
  year: 2016
  ident: D0TA12152E/cit83/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2016.10.001
– volume: 791
  start-page: 328
  year: 2019
  ident: D0TA12152E/cit233/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.03.313
– volume: 6
  start-page: 4485
  year: 2018
  ident: D0TA12152E/cit112/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10790K
– volume: 7
  start-page: 23787
  year: 2019
  ident: D0TA12152E/cit110/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03819A
– volume: 6
  start-page: 4346
  year: 2018
  ident: D0TA12152E/cit249/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10584C
– volume: 10
  start-page: 2159
  year: 2016
  ident: D0TA12152E/cit61/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b06653
– volume: 135
  start-page: 17881
  year: 2013
  ident: D0TA12152E/cit42/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja408329q
– volume: 5
  start-page: 15838
  year: 2017
  ident: D0TA12152E/cit139/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA04438K
– volume: 6
  start-page: 15954
  year: 2018
  ident: D0TA12152E/cit154/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b04397
– volume: 9
  start-page: 1951
  year: 2019
  ident: D0TA12152E/cit130/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-35831-4
– volume: 7
  start-page: 27594
  year: 2019
  ident: D0TA12152E/cit180/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA10547F
– volume: 6
  start-page: 5011
  year: 2018
  ident: D0TA12152E/cit217/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b04663
– volume: 6
  start-page: 2067
  year: 2018
  ident: D0TA12152E/cit96/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10048E
– volume: 47
  start-page: 14917
  year: 2018
  ident: D0TA12152E/cit117/1
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT02927J
– volume: 26
  start-page: 7386
  year: 2016
  ident: D0TA12152E/cit170/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201602236
– volume: 11
  start-page: 20228
  year: 2019
  ident: D0TA12152E/cit107/1
  publication-title: Nanoscale
  doi: 10.1039/C9NR06083A
– volume: 355
  start-page: 4998
  year: 2017
  ident: D0TA12152E/cit1/1
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 54
  start-page: 36
  year: 2015
  ident: D0TA12152E/cit66/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2015.02.017
– volume: 11
  start-page: 16621
  year: 2019
  ident: D0TA12152E/cit227/1
  publication-title: Nanoscale
  doi: 10.1039/C9NR04529E
– volume: 7
  start-page: 3135
  year: 2014
  ident: D0TA12152E/cit9/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01303D
– volume: 17
  start-page: 4202
  year: 2017
  ident: D0TA12152E/cit232/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b01030
– volume: 7
  start-page: 1196
  year: 2019
  ident: D0TA12152E/cit254/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA10686J
– volume: 8
  start-page: 4612
  year: 2018
  ident: D0TA12152E/cit95/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00668
– volume: 145
  start-page: 521
  year: 2019
  ident: D0TA12152E/cit234/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.01.065
– volume: 6
  start-page: 6938
  year: 2018
  ident: D0TA12152E/cit274/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01387J
– volume: 118
  start-page: 6297
  year: 2018
  ident: D0TA12152E/cit35/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00618
– volume: 257
  start-page: 117899
  year: 2019
  ident: D0TA12152E/cit256/1
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.117899
– volume: 607
  start-page: 83
  year: 2007
  ident: D0TA12152E/cit26/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2006.11.008
– volume: 11
  start-page: 22255
  year: 2019
  ident: D0TA12152E/cit89/1
  publication-title: Nanoscale
  doi: 10.1039/C9NR07564J
– volume: 436
  start-page: 226887
  year: 2019
  ident: D0TA12152E/cit156/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.226887
– volume: 16
  start-page: 2000081
  year: 2020
  ident: D0TA12152E/cit108/1
  publication-title: Small
  doi: 10.1002/smll.202000081
– volume: 334
  start-page: 135537
  year: 2020
  ident: D0TA12152E/cit179/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.135537
– volume: 9
  start-page: 2500
  year: 2017
  ident: D0TA12152E/cit67/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b13984
– volume: 12
  start-page: 2620
  year: 2019
  ident: D0TA12152E/cit13/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01202H
– volume: 30
  start-page: 1801450
  year: 2018
  ident: D0TA12152E/cit104/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801450
– volume: 10
  start-page: 17347
  year: 2018
  ident: D0TA12152E/cit238/1
  publication-title: Nanoscale
  doi: 10.1039/C8NR05494K
– volume: 26
  start-page: 1217
  year: 2017
  ident: D0TA12152E/cit239/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2017.10.004
– volume: 50
  start-page: 2194
  year: 2017
  ident: D0TA12152E/cit48/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00187
– volume: 2
  start-page: 17127
  year: 2017
  ident: D0TA12152E/cit46/1
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.127
– volume: 6
  start-page: 1077
  year: 2016
  ident: D0TA12152E/cit109/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C5CY01111F
– volume: 332
  start-page: 135534
  year: 2020
  ident: D0TA12152E/cit189/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.135534
– volume: 7
  start-page: 1622
  year: 2019
  ident: D0TA12152E/cit224/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b05378
– volume: 260
  start-page: 24
  year: 2018
  ident: D0TA12152E/cit45/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.11.080
– volume: 10
  start-page: 10459
  year: 2018
  ident: D0TA12152E/cit220/1
  publication-title: Nanoscale
  doi: 10.1039/C8NR02402B
– volume: 6
  start-page: 569
  year: 2018
  ident: D0TA12152E/cit206/1
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2018.00569
– volume: 327
  start-page: 134942
  year: 2019
  ident: D0TA12152E/cit165/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.134942
– volume: 44
  start-page: 2832
  year: 2019
  ident: D0TA12152E/cit242/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.12.031
– volume: 827
  start-page: 154299
  year: 2020
  ident: D0TA12152E/cit250/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.154299
– volume: 10
  start-page: 4019
  year: 2020
  ident: D0TA12152E/cit17/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b05445
– volume: 44
  start-page: 19953
  year: 2019
  ident: D0TA12152E/cit264/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.06.003
– volume: 4
  start-page: 112
  year: 2018
  ident: D0TA12152E/cit98/1
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.7b00502
– volume: 340
  start-page: 135957
  year: 2020
  ident: D0TA12152E/cit140/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.135957
– volume: 135
  start-page: 16977
  year: 2013
  ident: D0TA12152E/cit30/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja407115p
– volume: 19
  start-page: 4821
  year: 2017
  ident: D0TA12152E/cit131/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP08176B
– volume: 27
  start-page: 1606585
  year: 2017
  ident: D0TA12152E/cit207/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201606585
– volume: 6
  start-page: 7592
  year: 2018
  ident: D0TA12152E/cit191/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01266K
– start-page: 1806326
  year: 2019
  ident: D0TA12152E/cit21/1
  publication-title: Adv. Mater.
– volume: 42
  start-page: 10
  year: 2020
  ident: D0TA12152E/cit146/1
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2019.08.042
– volume: 7
  start-page: 1731
  issue: 2
  year: 2013
  ident: D0TA12152E/cit82/1
  publication-title: ACS Nano
  doi: 10.1021/nn305833u
– volume: 401
  start-page: 329
  year: 2018
  ident: D0TA12152E/cit121/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.08.088
– volume: 6
  start-page: 1900246
  year: 2019
  ident: D0TA12152E/cit151/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900246
– volume: 556
  start-page: 401
  year: 2019
  ident: D0TA12152E/cit210/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.08.093
– volume: 47
  start-page: 1067
  year: 2014
  ident: D0TA12152E/cit57/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar4002312
– volume: 28
  start-page: 8945
  year: 2016
  ident: D0TA12152E/cit85/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602502
– volume: 7
  start-page: 26975
  year: 2019
  ident: D0TA12152E/cit257/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA10860B
– volume: 7
  start-page: 1900063
  year: 2019
  ident: D0TA12152E/cit278/1
  publication-title: Energy Technol.
  doi: 10.1002/ente.201900063
– volume: 55
  start-page: 14343
  year: 2019
  ident: D0TA12152E/cit183/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC06244K
– volume: 27
  start-page: 1129
  year: 2015
  ident: D0TA12152E/cit60/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm5044864
– volume: 54
  start-page: 3859
  year: 2018
  ident: D0TA12152E/cit69/1
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC00766G
– volume: 5
  start-page: 1595
  year: 2017
  ident: D0TA12152E/cit153/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09853C
– volume: 135
  start-page: 16977
  year: 2013
  ident: D0TA12152E/cit28/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja407115p
– volume: 27
  start-page: 4752
  year: 2015
  ident: D0TA12152E/cit120/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501969
– volume: 11
  start-page: 11574
  year: 2017
  ident: D0TA12152E/cit134/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06501
– volume: 6
  start-page: 9833
  year: 2018
  ident: D0TA12152E/cit178/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03304H
– volume: 11
  start-page: 550
  year: 2012
  ident: D0TA12152E/cit53/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3313
– volume: 44
  start-page: 1711
  year: 2020
  ident: D0TA12152E/cit187/1
  publication-title: New J. Chem.
  doi: 10.1039/C9NJ05023J
– volume: 10
  start-page: 1903137
  year: 2020
  ident: D0TA12152E/cit141/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903137
– volume: 390
  start-page: 124556
  year: 2020
  ident: D0TA12152E/cit201/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124556
– volume: 390
  start-page: 224
  year: 2018
  ident: D0TA12152E/cit266/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.04.061
– volume: 11
  start-page: 5646
  year: 2019
  ident: D0TA12152E/cit111/1
  publication-title: Nanoscale
  doi: 10.1039/C8NR09902B
– volume: 47
  start-page: 4332
  year: 2018
  ident: D0TA12152E/cit39/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00705A
– volume: 3
  start-page: 1500669
  year: 2016
  ident: D0TA12152E/cit91/1
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201500669
– volume: 135
  start-page: 10274
  year: 2013
  ident: D0TA12152E/cit36/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja404523s
– volume: 784
  start-page: 1
  year: 2019
  ident: D0TA12152E/cit213/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.01.012
– volume: 23
  start-page: 2627
  year: 2019
  ident: D0TA12152E/cit231/1
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-019-04362-x
– volume: 3
  start-page: 952
  year: 2018
  ident: D0TA12152E/cit167/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00134
– volume: 10
  start-page: 1903891
  year: 2020
  ident: D0TA12152E/cit270/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903891
– volume: 141
  start-page: 10417
  year: 2019
  ident: D0TA12152E/cit97/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b04492
– volume: 351
  start-page: 273
  year: 2003
  ident: D0TA12152E/cit65/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(02)01037-X
– volume: 27
  start-page: 3108
  year: 2015
  ident: D0TA12152E/cit74/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b00664
– volume: 27
  start-page: 5605
  year: 2015
  ident: D0TA12152E/cit73/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502075
– volume: 4
  start-page: 14241
  year: 2016
  ident: D0TA12152E/cit16/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA05110C
– volume: 20
  start-page: 11649
  year: 2018
  ident: D0TA12152E/cit155/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP00443A
– volume: 48
  start-page: 12186
  year: 2019
  ident: D0TA12152E/cit184/1
  publication-title: Dalton Trans.
  doi: 10.1039/C9DT02201E
– volume: 10
  start-page: 22291
  year: 2018
  ident: D0TA12152E/cit126/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b06166
– volume: 9
  start-page: 37739
  year: 2017
  ident: D0TA12152E/cit204/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b11192
– volume: 7
  start-page: 4214
  year: 2017
  ident: D0TA12152E/cit132/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b00792
– volume: 25
  start-page: 621
  year: 2019
  ident: D0TA12152E/cit211/1
  publication-title: Chemistry
  doi: 10.1002/chem.201804492
– volume: 6
  start-page: 3244
  year: 2019
  ident: D0TA12152E/cit5/1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201900507
– volume: 8
  start-page: 958
  year: 2017
  ident: D0TA12152E/cit75/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01089-z
– volume: 55
  start-page: 3781
  year: 2019
  ident: D0TA12152E/cit122/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC01235D
– volume: 3
  start-page: 12
  year: 2019
  ident: D0TA12152E/cit31/1
  publication-title: Energy. Environ. Mater.
  doi: 10.1002/eem2.12052
– volume: 35
  start-page: 161
  year: 2017
  ident: D0TA12152E/cit259/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.03.024
– volume: 9
  start-page: 9230
  year: 2017
  ident: D0TA12152E/cit143/1
  publication-title: Nanoscale
  doi: 10.1039/C7NR03182C
– volume: 29
  start-page: 1606200
  year: 2017
  ident: D0TA12152E/cit226/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606200
– volume: 13
  start-page: 1700264
  year: 2017
  ident: D0TA12152E/cit128/1
  publication-title: Small
  doi: 10.1002/smll.201700264
– volume: 6
  start-page: 11724
  year: 2018
  ident: D0TA12152E/cit215/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b01978
– volume: 6
  start-page: 4953
  year: 2016
  ident: D0TA12152E/cit88/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01211
– volume: 34
  start-page: 13491
  year: 2020
  ident: D0TA12152E/cit29/1
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.0c03084
– volume: 6
  start-page: 11877
  year: 2018
  ident: D0TA12152E/cit212/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b02155
– volume: 42
  start-page: 1934
  year: 2013
  ident: D0TA12152E/cit64/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35387c
– volume: 18
  start-page: 9388
  year: 2016
  ident: D0TA12152E/cit148/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP06475A
– volume: 11
  start-page: 2202
  year: 2019
  ident: D0TA12152E/cit199/1
  publication-title: Nanoscale
  doi: 10.1039/C8NR07787H
– volume: 6
  start-page: 2090
  year: 2019
  ident: D0TA12152E/cit192/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C9QI00554D
– volume: 10
  start-page: 12330
  year: 2018
  ident: D0TA12152E/cit100/1
  publication-title: Nanoscale
  doi: 10.1039/C8NR04218G
– volume: 560
  start-page: 426
  year: 2020
  ident: D0TA12152E/cit228/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.10.099
– volume: 44
  start-page: 5148
  year: 2015
  ident: D0TA12152E/cit20/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00448E
– volume: 317
  start-page: 100
  year: 2007
  ident: D0TA12152E/cit52/1
  publication-title: Science
  doi: 10.1126/science.1141483
– volume: 8
  start-page: 1594
  year: 2015
  ident: D0TA12152E/cit102/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE00751H
– volume: 8
  start-page: 9239
  year: 2020
  ident: D0TA12152E/cit129/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA02337J
– volume: 30
  start-page: 1803151
  year: 2018
  ident: D0TA12152E/cit181/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803151
– volume: 278
  start-page: 119281
  year: 2020
  ident: D0TA12152E/cit6/1
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.119281
– volume: 246
  start-page: 337
  year: 2019
  ident: D0TA12152E/cit230/1
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.01.082
– volume: 441
  start-page: 1024
  year: 2018
  ident: D0TA12152E/cit245/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.02.076
– volume: 15
  start-page: 1803639
  year: 2019
  ident: D0TA12152E/cit163/1
  publication-title: Small
  doi: 10.1002/smll.201803639
– volume: 2
  start-page: 17
  year: 2015
  ident: D0TA12152E/cit56/1
  publication-title: Nano Converg.
  doi: 10.1186/s40580-015-0048-4
– volume: 2
  start-page: 342
  year: 2017
  ident: D0TA12152E/cit145/1
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C7NH00079K
– volume: 10
  start-page: 27723
  year: 2018
  ident: D0TA12152E/cit221/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b04386
– volume: 46
  start-page: 178
  year: 2020
  ident: D0TA12152E/cit236/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2019.11.011
– volume: 247
  start-page: 107
  year: 2019
  ident: D0TA12152E/cit168/1
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.01.094
– volume: 138
  start-page: 5143
  year: 2016
  ident: D0TA12152E/cit62/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b01502
– volume: 46
  start-page: 337
  year: 2017
  ident: D0TA12152E/cit24/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00328A
– volume: 14
  start-page: 3386
  year: 2019
  ident: D0TA12152E/cit214/1
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.201901137
– volume: 2
  start-page: 1937
  year: 2017
  ident: D0TA12152E/cit54/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00679
– volume: 11
  start-page: 27667
  year: 2019
  ident: D0TA12152E/cit229/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b04528
– volume: 509
  start-page: 522
  year: 2018
  ident: D0TA12152E/cit194/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.09.076
– volume: 47
  start-page: 494
  year: 2018
  ident: D0TA12152E/cit173/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.03.012
– volume: 8
  start-page: 15377
  year: 2017
  ident: D0TA12152E/cit182/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15377
– volume: 12
  start-page: 1977
  year: 2012
  ident: D0TA12152E/cit79/1
  publication-title: Nano Lett.
  doi: 10.1021/nl2045364
– volume: 28
  start-page: 9024
  year: 2016
  ident: D0TA12152E/cit103/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201506402
– volume: 7
  start-page: 16793
  year: 2019
  ident: D0TA12152E/cit243/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA05601G
– volume: 58
  start-page: 862
  year: 2019
  ident: D0TA12152E/cit43/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.006
– volume: 8
  start-page: 19654
  year: 2020
  ident: D0TA12152E/cit105/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA05865C
– volume: 6
  start-page: 3553
  year: 2013
  ident: D0TA12152E/cit38/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee42413h
– volume: 11
  start-page: 11031
  year: 2017
  ident: D0TA12152E/cit202/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05050
– volume: 3
  start-page: 14942
  year: 2015
  ident: D0TA12152E/cit27/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA02974K
– volume: 7
  start-page: 22405
  year: 2019
  ident: D0TA12152E/cit78/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA07868A
– volume: 5
  start-page: 1700464
  year: 2018
  ident: D0TA12152E/cit22/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700464
– volume: 3
  start-page: 12215
  year: 2018
  ident: D0TA12152E/cit116/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b00989
– volume: 28
  start-page: 1917
  year: 2016
  ident: D0TA12152E/cit15/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503270
– volume: 4
  start-page: 13916
  year: 2016
  ident: D0TA12152E/cit237/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA05618K
– volume: 10
  start-page: 4689
  year: 2018
  ident: D0TA12152E/cit272/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16430
– volume: 44
  start-page: 17900
  year: 2019
  ident: D0TA12152E/cit164/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.05.157
– volume: 4
  start-page: 1139
  year: 2018
  ident: D0TA12152E/cit185/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.02.023
– volume: 10
  start-page: 1771
  year: 2018
  ident: D0TA12152E/cit216/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16791
– volume: 7
  start-page: 10672
  year: 2016
  ident: D0TA12152E/cit84/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10672
– volume: 7
  start-page: 8117
  year: 2019
  ident: D0TA12152E/cit255/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA01903K
– volume: 10
  start-page: 31330
  year: 2018
  ident: D0TA12152E/cit113/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b09361
– volume: 7
  start-page: 2357
  year: 2017
  ident: D0TA12152E/cit161/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b03192
– volume: 14
  start-page: 1801070
  year: 2018
  ident: D0TA12152E/cit119/1
  publication-title: Small
  doi: 10.1002/smll.201801070
– volume: 9
  start-page: 26066
  year: 2017
  ident: D0TA12152E/cit261/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b07465
– volume: 5
  start-page: 8187
  year: 2017
  ident: D0TA12152E/cit51/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00816C
– volume: 824
  start-page: 153965
  year: 2020
  ident: D0TA12152E/cit197/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.153965
– volume: 26
  start-page: 4839
  year: 2016
  ident: D0TA12152E/cit125/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201601315
– volume: 5
  start-page: 23898
  year: 2017
  ident: D0TA12152E/cit99/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA08166A
– volume: 14
  start-page: 10976
  year: 2020
  ident: D0TA12152E/cit58/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03916
– volume: 7
  start-page: 25593
  year: 2019
  ident: D0TA12152E/cit86/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA07210A
– volume: 7
  start-page: 46286
  year: 2017
  ident: D0TA12152E/cit144/1
  publication-title: RSC Adv.
  doi: 10.1039/C7RA07667C
– volume: 13
  start-page: 1604161
  year: 2017
  ident: D0TA12152E/cit71/1
  publication-title: Small
  doi: 10.1002/smll.201604161
– volume: 45
  start-page: 13290
  year: 2020
  ident: D0TA12152E/cit172/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.03.045
– volume: 7
  start-page: 819
  year: 2017
  ident: D0TA12152E/cit235/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02650
– volume: 10
  start-page: 27712
  year: 2018
  ident: D0TA12152E/cit265/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b04223
– volume: 819
  start-page: 153346
  year: 2020
  ident: D0TA12152E/cit11/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.153346
– volume: 40
  start-page: 243
  year: 2011
  ident: D0TA12152E/cit68/1
  publication-title: Dalton Trans.
  doi: 10.1039/C0DT01107J
– volume: 139
  start-page: 13604
  year: 2017
  ident: D0TA12152E/cit81/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07044
– volume: 47
  start-page: 7213
  year: 2018
  ident: D0TA12152E/cit33/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00811B
– volume: 5
  start-page: 335
  year: 2018
  ident: D0TA12152E/cit222/1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201700965
– volume: 1
  start-page: 195
  year: 2016
  ident: D0TA12152E/cit55/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00084
– volume: 48
  start-page: 6718
  year: 2019
  ident: D0TA12152E/cit247/1
  publication-title: Dalton Trans.
  doi: 10.1039/C9DT00957D
– volume: 9
  start-page: 29660
  year: 2017
  ident: D0TA12152E/cit258/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b06377
– volume: 43
  start-page: 17259
  year: 2018
  ident: D0TA12152E/cit138/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.07.098
– volume: 10
  start-page: 1903120
  year: 2020
  ident: D0TA12152E/cit7/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903120
– volume: 21
  start-page: 327
  year: 2011
  ident: D0TA12152E/cit72/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/C0JM03121F
– volume: 51
  start-page: 26
  year: 2018
  ident: D0TA12152E/cit271/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.06.048
– volume: 37
  start-page: 1806682
  year: 2019
  ident: D0TA12152E/cit3/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806682
– volume: 8
  start-page: 6222
  year: 2020
  ident: D0TA12152E/cit252/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b06959
– volume: 58
  start-page: 11202
  year: 2019
  ident: D0TA12152E/cit106/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b01814
– volume: 15
  start-page: 197
  year: 2016
  ident: D0TA12152E/cit4/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4481
– volume: 25
  start-page: 16074
  year: 2019
  ident: D0TA12152E/cit177/1
  publication-title: Chem.–Eur J.
  doi: 10.1002/chem.201903628
– volume: 243
  start-page: 693
  year: 2019
  ident: D0TA12152E/cit50/1
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.11.003
– volume: 30
  start-page: 1705538
  year: 2018
  ident: D0TA12152E/cit277/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705538
– volume: 29
  start-page: 1701584
  year: 2017
  ident: D0TA12152E/cit135/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701584
– volume: 20
  start-page: 6777
  year: 2018
  ident: D0TA12152E/cit23/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP06316D
– volume: 15
  start-page: 1901993
  year: 2019
  ident: D0TA12152E/cit133/1
  publication-title: Small
  doi: 10.1002/smll.201901993
SSID ssj0000800699
Score 2.6989443
SecondaryResourceType review_article
Snippet Hydrogen produced via water electrolysis can act as an ideal clean chemical fuel with superb gravimetric energy density and high energy conversion efficiency,...
Hydrogen produced via water electrolysis can act as an ideal clean chemical fuel with superb gravimetric energy density and high energy conversion efficiency,...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 532
SubjectTerms Chemical fuels
Clean energy
Contamination
durability
Electrocatalysts
Electrolysis
Energy conversion
Energy conversion efficiency
energy density
Fabrication
Flux density
Fossil fuels
Gravimetry
hydrogen
Hydrogen evolution reactions
hydrogen production
Metal sulfides
Metals
Optimization
Oxygen evolution reactions
oxygen production
Physicochemical properties
pollution
Reaction mechanisms
Splitting
Sulfides
Transition metals
Water splitting
Title Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting
URI https://www.proquest.com/docview/2499014288
https://www.proquest.com/docview/2551977813
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa27QUOFa-KpQUZwQWtUpLYeR1XsFVB23LJSnuLEsdGgTaLuokq-Gf8O2bsOAlQKuASrRLLm2S-zIzH38wQ8jJOIsWKQjqejJkD6y_uJEIGjijzUIHFVYxh7vDZeXi64u_XwXoy-T5iLbVNcSy-3ZhX8j9ShXMgV8yS_QfJ9pPCCfgN8oUjSBiOfyVj8Pk0Rdzs42tma4O2R9OwnEsJjrWzbS9UVUoHzRU4mxUasi7-17XA0RGcr9tGV2aYIaUTt6uvcyyfuAUfVTOj_-DEXuIofNCZsJ3jjmdzkwRkr-ii4ibFUEfpbcoWsnJHAX2jdM6qHq19LHtZDRFbbTKqT1U-jGq1-dzUH69lNQ5i-IbFNahKEyqxPFXNQ-nueVCHvhu4WPnUaGs5Pmd64lp9noxgm4x0M7bAGNn5gBnN-psNcRmWYC3dJsfKG74cLKVlB5x_yE5Wy2WWLtbpDtnzYYUCKnZvvkjfLfsAH7rioe5f2t-5LY_LktfD9D87RMMqZ-fKtqDRrk56j-x34qVzA7j7ZCLrB-TuqHLlQ_LZQI9a6NGqprdDj46hR3-FHgWQ0A56VEOP9tB7RFYni_TNqdP17XAE96IGZi1Bz_MCbEERSuX5YEIld3mexLkUkcu5X7KySPKw5JEEfzZmCrzEKPaYiN08ZAdkt97U8jGhHlOlCGXElSt4iCUPAqniogRVIjzF2ZS8si8vE11Re-ytcpFpcgVLsrduOtcvejElL_qxX0wplxtHHVkZZN2nvs18jtvHsFKPp-R5fxkQirtreS03LYwJMAccH2JKDkB2_X8Mon5y-9yH5M7wbRyR3eaqlU_B5W2KZx24fgAJm7XL
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+transition-metal-sulfide-based+bifunctional+electrocatalysts+for+overall+water+splitting&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Wang%2C+Min&rft.au=Zhang%2C+Li&rft.au=He%2C+Yijia&rft.au=Zhu%2C+Hongwei&rft.date=2021-03-09&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=9&rft.issue=9&rft.spage=5320&rft.epage=5363&rft_id=info:doi/10.1039%2Fd0ta12152e&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon