Explore Efficient Local Features from RGB-D Data for One-Shot Learning Gesture Recognition

Availability of handy RGB-D sensors has brought about a surge of gesture recognition research and applications. Among various approaches, one shot learning approach is advantageous because it requires minimum amount of data. Here, we provide a thorough review about one-shot learning gesture recognit...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 38; no. 8; pp. 1626 - 1639
Main Authors Jun Wan, Guodong Guo, Li, Stan Z.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Availability of handy RGB-D sensors has brought about a surge of gesture recognition research and applications. Among various approaches, one shot learning approach is advantageous because it requires minimum amount of data. Here, we provide a thorough review about one-shot learning gesture recognition from RGB-D data and propose a novel spatiotemporal feature extracted from RGB-D data, namely mixed features around sparse keypoints (MFSK). In the review, we analyze the challenges that we are facing, and point out some future research directions which may enlighten researchers in this field. The proposed MFSK feature is robust and invariant to scale, rotation and partial occlusions. To alleviate the insufficiency of one shot training samples, we augment the training samples by artificially synthesizing versions of various temporal scales, which is beneficial for coping with gestures performed at varying speed. We evaluate the proposed method on the Chalearn gesture dataset (CGD). The results show that our approach outperforms all currently published approaches on the challenging data of CGD, such as translated, scaled and occluded subsets. When applied to the RGB-D datasets that are not one-shot (e.g., the Cornell Activity Dataset-60 and MSR Daily Activity 3D dataset), the proposed feature also produces very promising results under leave-one-out cross validation or one-shot learning.
AbstractList Availability of handy RGB-D sensors has brought about a surge of gesture recognition research and applications. Among various approaches, one shot learning approach is advantageous because it requires minimum amount of data. Here, we provide a thorough review about one-shot learning gesture recognition from RGB-D data and propose a novel spatiotemporal feature extracted from RGB-D data, namely mixed features around sparse keypoints (MFSK). In the review, we analyze the challenges that we are facing, and point out some future research directions which may enlighten researchers in this field. The proposed MFSK feature is robust and invariant to scale, rotation and partial occlusions. To alleviate the insufficiency of one shot training samples, we augment the training samples by artificially synthesizing versions of various temporal scales, which is beneficial for coping with gestures performed at varying speed. We evaluate the proposed method on the Chalearn gesture dataset (CGD). The results show that our approach outperforms all currently published approaches on the challenging data of CGD, such as translated, scaled and occluded subsets. When applied to the RGB-D datasets that are not one-shot (e.g., the Cornell Activity Dataset-60 and MSR Daily Activity 3D dataset), the proposed feature also produces very promising results under leave-one-out cross validation or one-shot learning.
Availability of handy RGB-D sensors has brought about a surge of gesture recognition research and applications. Among various approaches, one shot learning approach is advantageous because it requires minimum amount of data. Here, we provide a thorough review about one-shot learning gesture recognition from RGB-D data and propose a novel spatiotemporal feature extracted from RGB-D data, namely mixed features around sparse keypoints (MFSK). In the review, we analyze the challenges that we are facing, and point out some future research directions which may enlighten researchers in this field. The proposed MFSK feature is robust and invariant to scale, rotation and partial occlusions. To alleviate the insufficiency of one shot training samples, we augment the training samples by artificially synthesizing versions of various temporal scales, which is beneficial for coping with gestures performed at varying speed. We evaluate the proposed method on the Chalearn gesture dataset (CGD). The results show that our approach outperforms all currently published approaches on the challenging data of CGD, such as translated, scaled and occluded subsets. When applied to the RGB-D datasets that are not one-shot (e.g., the Cornell Activity Dataset-60 and MSR Daily Activity 3D dataset), the proposed feature also produces very promising results under leave-one-out cross validation or one-shot learning.Availability of handy RGB-D sensors has brought about a surge of gesture recognition research and applications. Among various approaches, one shot learning approach is advantageous because it requires minimum amount of data. Here, we provide a thorough review about one-shot learning gesture recognition from RGB-D data and propose a novel spatiotemporal feature extracted from RGB-D data, namely mixed features around sparse keypoints (MFSK). In the review, we analyze the challenges that we are facing, and point out some future research directions which may enlighten researchers in this field. The proposed MFSK feature is robust and invariant to scale, rotation and partial occlusions. To alleviate the insufficiency of one shot training samples, we augment the training samples by artificially synthesizing versions of various temporal scales, which is beneficial for coping with gestures performed at varying speed. We evaluate the proposed method on the Chalearn gesture dataset (CGD). The results show that our approach outperforms all currently published approaches on the challenging data of CGD, such as translated, scaled and occluded subsets. When applied to the RGB-D datasets that are not one-shot (e.g., the Cornell Activity Dataset-60 and MSR Daily Activity 3D dataset), the proposed feature also produces very promising results under leave-one-out cross validation or one-shot learning.
Author Li, Stan Z.
Jun Wan
Guodong Guo
Author_xml – sequence: 1
  surname: Jun Wan
  fullname: Jun Wan
  email: jun.wan@nlpr.ia.ac.cn
  organization: Nat. Lab. of Pattern Recognition, Inst. of Autom., Beijing, China
– sequence: 2
  surname: Guodong Guo
  fullname: Guodong Guo
  email: guodong.guo@mail.wvu.edu
  organization: Lane Dept. of Comput. Sci. & Electr. Eng., West Virginia Univ., Morgantown, WV, USA
– sequence: 3
  givenname: Stan Z.
  surname: Li
  fullname: Li, Stan Z.
  email: szli@nlpr.ia.ac.cn
  organization: Nat. Lab. of Pattern Recognition, Inst. of Autom., Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26731641$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vEzEQhi1URNPCHwAJWeLCZVN_7a59LG0aKqUq6seFi-X1jourjZ3auxL8e5wm5dADl5nL84xm5j1CByEGQOgjJXNKiTq5-3F6dTlnhNZzVlMuWvUGzRhtSKWYYgdoRmjDKimZPERHOT8SQkVN-Dt0yJqW00bQGfq5-L0ZYgK8cM5bD2HEq2jNgC_AjFOCjF2Ka3yz_Fad43MzGuxiwtcBqttfsbBgUvDhAS8hb3F8AzY-BD_6GN6jt84MGT7s-zG6v1jcnX2vVtfLy7PTVWUFbceqE70VgjsrVQ-dlV1dW-N6LomQvJOd4n0p0tqmJ13NJFWqNRYkaZnrRAv8GH3dzd2k-DSVPfTaZwvDYALEKWsqCWsF45wV9Msr9DFOKZTtnqmCNbUq1Oc9NXVr6PUm-bVJf_TL1wogd4BNMecETls_mu3NYzJ-0JTobUD6OSC9DUjvAyoqe6W-TP-v9GkneQD4J7S8kaqc9RfTDpo0
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TNNLS_2024_3368341
crossref_primary_10_1177_1729881419892398
crossref_primary_10_1109_TII_2019_2893713
crossref_primary_10_1109_TMM_2021_3117124
crossref_primary_10_1007_s11063_020_10320_w
crossref_primary_10_1007_s11704_017_6495_9
crossref_primary_10_3390_s16122171
crossref_primary_10_1016_j_patcog_2018_01_038
crossref_primary_10_1108_AA_11_2018_0228
crossref_primary_10_1016_j_eswa_2019_112829
crossref_primary_10_1080_17460441_2022_2114451
crossref_primary_10_1007_s00138_018_0969_0
crossref_primary_10_3390_s19020239
crossref_primary_10_1016_j_patcog_2017_09_001
crossref_primary_10_1016_j_patrec_2017_12_003
crossref_primary_10_1109_TIP_2021_3108349
crossref_primary_10_1016_j_autcon_2021_103872
crossref_primary_10_1016_j_autcon_2021_103625
crossref_primary_10_1016_j_patcog_2020_107416
crossref_primary_10_1109_TPAMI_2023_3274783
crossref_primary_10_1007_s00521_022_07165_w
crossref_primary_10_1016_j_eswa_2023_122538
crossref_primary_10_1109_TCSVT_2017_2749509
crossref_primary_10_1109_TMM_2018_2818329
crossref_primary_10_1109_TMC_2020_3012433
crossref_primary_10_1109_TNNLS_2023_3295811
crossref_primary_10_1109_LSP_2016_2643691
crossref_primary_10_1109_TIP_2021_3124668
crossref_primary_10_1007_s11042_019_08429_9
crossref_primary_10_1109_TPAMI_2019_2916873
crossref_primary_10_1515_nanoph_2024_0572
crossref_primary_10_1109_TCYB_2020_3012092
crossref_primary_10_1016_j_vrih_2021_05_003
crossref_primary_10_1109_JBHI_2018_2819182
crossref_primary_10_1109_TIM_2023_3307768
crossref_primary_10_1109_TMM_2018_2808769
crossref_primary_10_1109_JIOT_2021_3067382
crossref_primary_10_1007_s00138_019_01043_7
crossref_primary_10_1007_s11042_022_12091_z
crossref_primary_10_1016_j_cviu_2018_04_007
crossref_primary_10_1016_j_ijinfomgt_2018_03_004
crossref_primary_10_1109_JAS_2019_1911534
crossref_primary_10_3390_s20113226
crossref_primary_10_1109_ACCESS_2018_2815149
crossref_primary_10_1109_ACCESS_2017_2782258
crossref_primary_10_1109_TIP_2021_3087348
crossref_primary_10_1039_C8CC02850H
crossref_primary_10_1007_s00138_024_01565_9
crossref_primary_10_1109_TCSVT_2018_2847305
crossref_primary_10_1109_ACCESS_2017_2684186
crossref_primary_10_1155_2022_3978627
crossref_primary_10_1109_TSMC_2017_2680404
crossref_primary_10_1145_3131343
crossref_primary_10_1109_ACCESS_2022_3158667
crossref_primary_10_1109_JSTSP_2017_2747154
crossref_primary_10_1007_s10044_021_00965_1
crossref_primary_10_1007_s00138_018_0996_x
crossref_primary_10_1109_ACCESS_2019_2940997
crossref_primary_10_3390_electronics8121511
crossref_primary_10_1016_j_asoc_2018_05_038
Cites_doi 10.5244/C.22.99
10.1109/CVPR.1992.223161
10.1109/TIT.1967.1054010
10.1007/978-3-642-40303-3_19
10.1109/TPAMI.2009.26
10.1007/s00138-014-0596-3
10.1007/978-3-540-73110-8_79
10.1109/TCYB.2013.2276433
10.1109/CVPR.2008.4587756
10.1145/2502081.2502099
10.1109/TSMCB.2009.2039566
10.1109/CVPR.2013.98
10.1109/CVPR.2000.855856
10.1016/j.patcog.2007.02.010
10.1109/MSP.2013.2241312
10.1109/CVPRW.2012.6239185
10.1007/s10462-012-9356-9
10.1109/VSPETS.2005.1570899
10.1109/ICME.2012.8
10.1109/TIP.2014.2328181
10.1109/TSMCC.2007.893280
10.1007/s11263-005-1838-7
10.1109/ICPR.2010.938
10.1109/ROMAN.2014.6926340
10.1016/j.patcog.2014.10.026
10.1109/CVPRW.2012.6239179
10.1016/j.patrec.2013.09.009
10.1023/A:1012487302797
10.1109/CVPR.2007.383346
10.1109/CVPR.2011.5995354
10.1117/1.JEI.23.2.023017
10.1016/j.cviu.2007.09.014
10.1007/978-3-642-38628-2_4
10.1007/s11263-012-0594-8
10.5244/C.23.124
10.1109/34.910878
10.1023/B:VISI.0000029664.99615.94
10.1016/j.imavis.2014.04.005
10.1109/79.790984
10.1109/TCSVT.2012.2203731
10.1016/j.patcog.2007.07.013
10.1109/CVPR.2005.177
10.1109/TPAMI.2006.79
10.1109/CVPR.2012.6247813
10.3389/fnbot.2015.00003
10.1109/CVPR.2001.990517
10.7763/LNSE.2013.V1.73
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2015.2513479
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 1639
ExternalDocumentID 4110574491
26731641
10_1109_TPAMI_2015_2513479
7368923
Genre orig-research
Journal Article
Review
GrantInformation_xml – fundername: National Science and Technology Support Program
  grantid: sharp2013BAK02B01
– fundername: Chinese Academy of Sciences
  grantid: KGZD-EW-102-2
  funderid: 10.13039/501100002367
– fundername: AuthenMetric R&D Funds
– fundername: Chinese National Natural Science Foundation
  grantid: sharp61203267; sharp61375037; sharp61473291; sharp61572501; sharp61502491
  funderid: 10.13039/501100001809
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
RIG
5VS
9M8
AAYOK
ABFSI
ADRHT
AETIX
AI.
AIBXA
AKJIK
ALLEH
CGR
CUY
CVF
ECM
EIF
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
PKN
RIC
RNI
RZB
VH1
XJT
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c417t-b4dc443fc89debc8b55cafd380483b8b93d8b98cc6d0b5281997ace8072fb47e3
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Fri Jul 11 05:02:04 EDT 2025
Sun Jun 29 12:46:29 EDT 2025
Wed Feb 19 02:42:32 EST 2025
Tue Jul 01 03:18:22 EDT 2025
Thu Apr 24 23:05:31 EDT 2025
Wed Aug 27 02:57:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-b4dc443fc89debc8b55cafd380483b8b93d8b98cc6d0b5281997ace8072fb47e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 26731641
PQID 1802274659
PQPubID 85458
PageCount 14
ParticipantIDs pubmed_primary_26731641
crossref_primary_10_1109_TPAMI_2015_2513479
crossref_citationtrail_10_1109_TPAMI_2015_2513479
ieee_primary_7368923
proquest_miscellaneous_1802742332
proquest_journals_1802274659
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-Aug.-1
2016-8-1
2016-08-00
20160801
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-Aug.-1
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref12
ref15
ref58
ref14
ref53
qian (ref4) 2013; 7
ref55
ref11
ref54
ref10
kone?n? (ref19) 2014; 15
ref18
lui (ref16) 2012; 13
ref51
ref50
liu (ref68) 0
ref45
ref48
ref47
ref42
ref41
ref49
ref7
wan (ref9) 2013; 14
jiang (ref38) 2015; 16
ref3
ref6
ref5
pfister (ref8) 0
ref40
escalante (ref28) 0
ref35
ref37
fanello (ref36) 2013; 14
ref31
ref30
ref33
ref32
ref1
ref39
lee (ref44) 0
lucas (ref25) 0
pigou (ref2) 0
mcauliffe (ref43) 0
vapnik (ref46) 1998; 1
malgireddy (ref27) 2013; 14
dalal (ref56) 0
goussies (ref17) 2014; 15
ref24
ref67
ref23
ref26
ref64
ref20
ref63
zhang (ref66) 2012; 2
ref22
ref65
ref21
sung (ref59) 0
ref29
otsu (ref34) 1975; 11
ref60
bradski (ref52) 2000
ref62
ref61
References_xml – ident: ref22
  doi: 10.5244/C.22.99
– ident: ref10
  doi: 10.1109/CVPR.1992.223161
– ident: ref40
  doi: 10.1109/TIT.1967.1054010
– year: 0
  ident: ref28
  article-title: Principal motion components for gesture recognition using a single-example
  publication-title: arXiv preprint arXiv 1310 4822
– ident: ref13
  doi: 10.1007/978-3-642-40303-3_19
– ident: ref49
  doi: 10.1109/TPAMI.2009.26
– start-page: 121
  year: 0
  ident: ref43
  article-title: Supervised topic models
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref18
  doi: 10.1007/s00138-014-0596-3
– ident: ref6
  doi: 10.1007/978-3-540-73110-8_79
– ident: ref64
  doi: 10.1109/TCYB.2013.2276433
– ident: ref53
  doi: 10.1109/CVPR.2008.4587756
– ident: ref65
  doi: 10.1145/2502081.2502099
– volume: 2
  start-page: 12
  year: 2012
  ident: ref66
  article-title: RGB-D camera-based daily living activity recognition
  publication-title: Comput Vis Image Processing
– ident: ref15
  doi: 10.1109/TSMCB.2009.2039566
– ident: ref67
  doi: 10.1109/CVPR.2013.98
– ident: ref32
  doi: 10.1109/CVPR.2000.855856
– year: 2000
  ident: ref52
  publication-title: Dr Dobb's Journal of Software Tools
– volume: 16
  start-page: 227
  year: 2015
  ident: ref38
  article-title: Multi-layered gesture recognition with Kinect
  publication-title: J Mach Learning Res
– ident: ref41
  doi: 10.1016/j.patcog.2007.02.010
– ident: ref5
  doi: 10.1109/MSP.2013.2241312
– ident: ref26
  doi: 10.1109/CVPRW.2012.6239185
– ident: ref3
  doi: 10.1007/s10462-012-9356-9
– ident: ref57
  doi: 10.1109/VSPETS.2005.1570899
– volume: 13
  start-page: 3297
  year: 2012
  ident: ref16
  article-title: Human gesture recognition on product manifolds
  publication-title: J Mach Learning Res
– ident: ref50
  doi: 10.1109/ICME.2012.8
– volume: 1
  year: 1998
  ident: ref46
  publication-title: Statistical Learning Theory
– ident: ref37
  doi: 10.1109/TIP.2014.2328181
– ident: ref1
  doi: 10.1109/TSMCC.2007.893280
– ident: ref58
  doi: 10.1007/s11263-005-1838-7
– ident: ref42
  doi: 10.1109/ICPR.2010.938
– ident: ref63
  doi: 10.1109/ROMAN.2014.6926340
– start-page: 1493
  year: 0
  ident: ref68
  article-title: Learning discriminative representations from RGB-D video data
  publication-title: Proc Int Joint Conf Artif Intell
– volume: 11
  start-page: 23
  year: 1975
  ident: ref34
  article-title: A threshold selection method from gray-level histograms
  publication-title: Automatica
– ident: ref33
  doi: 10.1016/j.patcog.2014.10.026
– ident: ref11
  doi: 10.1109/CVPRW.2012.6239179
– ident: ref30
  doi: 10.1016/j.patrec.2013.09.009
– ident: ref47
  doi: 10.1023/A:1012487302797
– ident: ref12
  doi: 10.1109/CVPR.2007.383346
– ident: ref45
  doi: 10.1109/CVPR.2011.5995354
– ident: ref20
  doi: 10.1117/1.JEI.23.2.023017
– volume: 14
  start-page: 2617
  year: 2013
  ident: ref36
  article-title: Keep it simple and sparse: Real-time action recognition
  publication-title: J Mach Learning Res
– ident: ref24
  doi: 10.1016/j.cviu.2007.09.014
– ident: ref35
  doi: 10.1007/978-3-642-38628-2_4
– start-page: 674
  year: 0
  ident: ref25
  article-title: An iterative image registration technique with an application to stereo vision
  publication-title: Proc 7th Int Joint Conf Artif Intell
– ident: ref55
  doi: 10.1007/s11263-012-0594-8
– ident: ref54
  doi: 10.5244/C.23.124
– ident: ref39
  doi: 10.1109/34.910878
– ident: ref23
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: ref61
  doi: 10.1016/j.imavis.2014.04.005
– ident: ref48
  doi: 10.1109/79.790984
– ident: ref14
  doi: 10.1109/TCSVT.2012.2203731
– start-page: 801
  year: 0
  ident: ref44
  article-title: Efficient sparse coding algorithms
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 7
  start-page: 203
  year: 2013
  ident: ref4
  article-title: Developing a gesture based remote human-robot interaction system using Kinect
  publication-title: Int J Smart Home
– start-page: 428
  year: 0
  ident: ref56
  article-title: Human detection using oriented histograms of flow and appearance
  publication-title: Proc Computer Vision
– volume: 14
  start-page: 2549
  year: 2013
  ident: ref9
  article-title: One-shot learning gesture recognition from RGB-D data using bag of features
  publication-title: J Mach Learning Res
– ident: ref7
  doi: 10.1016/j.patcog.2007.07.013
– ident: ref21
  doi: 10.1109/CVPR.2005.177
– ident: ref31
  doi: 10.1109/TPAMI.2006.79
– start-page: 814
  year: 0
  ident: ref8
  article-title: Domain-adaptive discriminative one-shot learning of gestures
  publication-title: Proc 13th Eur Conf Comput Vis
– ident: ref60
  doi: 10.1109/CVPR.2012.6247813
– ident: ref62
  doi: 10.3389/fnbot.2015.00003
– volume: 15
  start-page: 3667
  year: 2014
  ident: ref17
  article-title: Transfer learning decision forests for gesture recognition
  publication-title: J Mach Learning Res
– ident: ref51
  doi: 10.1109/CVPR.2001.990517
– start-page: 842
  year: 0
  ident: ref59
  article-title: Unstructured human activity detection from rgbd images
  publication-title: Proc IEEE Conf Robot Autom
– volume: 15
  start-page: 2513
  year: 2014
  ident: ref19
  article-title: One-shot-learning gesture recognition using HOG-HOF features
  publication-title: J Mach Learning Res
– volume: 14
  start-page: 2189
  year: 2013
  ident: ref27
  article-title: Language-motivated approaches to action recognition
  publication-title: J Mach Learning Res
– start-page: 572
  year: 0
  ident: ref2
  article-title: Sign language recognition using convolutional neural networks
  publication-title: Proc European Conf Comp Vis Workshop
– ident: ref29
  doi: 10.7763/LNSE.2013.V1.73
SSID ssj0014503
Score 2.5147939
SecondaryResourceType review_article
Snippet Availability of handy RGB-D sensors has brought about a surge of gesture recognition research and applications. Among various approaches, one shot learning...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1626
SubjectTerms Algorithms
bag of visual words model
Datasets
Feature extraction
gesture reco gnition
Gesture recognition
Gestures
Hidden Markov models
Humans
One-shot learning
Pattern Recognition, Automated
RGB-D data
Robustness
Spatiotemporal phenomena
Three-dimensional displays
Training
Title Explore Efficient Local Features from RGB-D Data for One-Shot Learning Gesture Recognition
URI https://ieeexplore.ieee.org/document/7368923
https://www.ncbi.nlm.nih.gov/pubmed/26731641
https://www.proquest.com/docview/1802274659
https://www.proquest.com/docview/1802742332
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9UwDLe2neDAYAP2YKAgcYO-ta9Jmhz3PRBvoLFJE5cqSRNN2tQiaC_89djphwaCaZeqUp00kW3Fju2fAd6qQmv0Oyj0b3nCZZCJ1sYkUgUulPGFj7CLy1N5csE_XorLFXg_1cJ472PymZ_Ta4zlV43r6Kpsp8ilQoNkFVbRcetrtaaIARexCzJaMKjh6EaMBTKp3jn_srv8QFlcYo6nOZVOEgSwpJ5NPPvjPIoNVv5va8Yz52gdluNq-1ST63nX2rn79ReQ43238xgeDcYn2-2l5Qms-HoD1sfGDmzQ8w14eAulcBO-9Xl6nh1GuAmck32iE5CR-dihu86oRoWdHe8lB-zAtIahIcw-1z75etUg7XD5wo5xq0jOzsacpaZ-ChdHh-f7J8nQkiFxPCvaxPLKcZ4Hp3TlrVNWCGdClStCprfK6rzCh3JOVqkVFKTThXFepcUiWI6MfwZrdVP7LWBZkVXBBBuC4OjEWqvQWc5TU4XCamnEDLKRMaUb8MqpbcZNGf2WVJeRryXxtRz4OoN305jvPVrHndSbxJSJcuDHDLZH_peDQv8sCSgPHXgpcNSb6TOqIsVXTO2brqehwHe-mMHzXm6muUdxe_Hvf76EB7gy2WcWbsNa-6Pzr9Daae3rKOa_AUA59zM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOFFoeCwWMBCeUbR52Yh84FLbtLt0tqGylqpdgO7aQQAnqJkLwW_gr_DfGzkOAgFslLtFKmWQT54v9TWbmG4AnPBMC_Q4X-lc0oKlNAyGkDFJuKePSZMbLLi6O0ukJfXXKTtfg21ALY4zxyWdm7H76WH5R6cZ9KtvJkpQjIelSKA_Nl8_ooK2ezyb4NJ_G8f7e8uU06HoIBJpGWR0oWmhKE6u5KIzSXDGmpS0S7qTUFVciKXDDtU6LUDEXVRKZ1IaHWWwVxSvF816Cy8gzWNxWhw0xCsp832XkTDinoOPSl-SEYmf5Zncxc3ljbIz8wRVrOtHh1HWJotEvK6Bv6fJ3dutXuf0N-N6PT5vc8mHc1Gqsv_4mHfm_DuANuN7Ra7Lbvg83Yc2Um7DRt64g3Uy2Cdd-0mHcgrM2E9GQPS-ogfdA5m6NJ44gN-dmRVwVDjk-eBFMyETWkiDVJ69LE7x9X6Ft93mJHODQojk57rOyqvIWnFzI_d6G9bIqzV0gURYVVlplLaPopivFE54koSxspkQq2QiiHgi57hTZXWOQj7n3zEKRexzlDkd5h6MRPBuO-dTqkfzTesuBYLDsnv8Itnu85d2UtcqdFGCc0ZThUY-H3TjZuAiSLE3VtDYutJ_EI7jT4nQ4dw_ve3_-z0dwZbpczPP57OjwPlzFq0zbPMptWK_PG_MAuV2tHvpXjMC7i4bkD0VbVv4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explore+Efficient+Local+Features+from+RGB-D+Data+for+One-Shot+Learning+Gesture+Recognition&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Wan%2C+Jun&rft.au=Guo%2C+Guodong&rft.au=Li%2C+Stan+Z.&rft.date=2016-08-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=38&rft.issue=8&rft.spage=1626&rft.epage=1639&rft_id=info:doi/10.1109%2FTPAMI.2015.2513479&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2015_2513479
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon