Nonlinear Process Fault Diagnosis Based on Serial Principal Component Analysis
Many industrial processes contain both linear and nonlinear parts, and kernel principal component analysis (KPCA), widely used in nonlinear process monitoring, may not offer the most effective means for dealing with these nonlinear processes. This paper proposes a new hybrid linear-nonlinear statist...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 29; no. 3; pp. 560 - 572 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.03.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many industrial processes contain both linear and nonlinear parts, and kernel principal component analysis (KPCA), widely used in nonlinear process monitoring, may not offer the most effective means for dealing with these nonlinear processes. This paper proposes a new hybrid linear-nonlinear statistical modeling approach for nonlinear process monitoring by closely integrating linear principal component analysis (PCA) and nonlinear KPCA using a serial model structure, which we refer to as serial PCA (SPCA). Specifically, PCA is first applied to extract PCs as linear features, and to decompose the data into the PC subspace and residual subspace (RS). Then, KPCA is performed in the RS to extract the nonlinear PCs as nonlinear features. Two monitoring statistics are constructed for fault detection, based on both the linear and nonlinear features extracted by the proposed SPCA. To effectively perform fault identification after a fault is detected, an SPCA similarity factor method is built for fault recognition, which fuses both the linear and nonlinear features. Unlike PCA and KPCA, the proposed method takes into account both linear and nonlinear PCs simultaneously, and therefore, it can better exploit the underlying process's structure to enhance fault diagnosis performance. Two case studies involving a simulated nonlinear process and the benchmark Tennessee Eastman process demonstrate that the proposed SPCA approach is more effective than the existing state-of-the-art approach based on KPCA alone, in terms of nonlinear process fault detection and identification. |
---|---|
AbstractList | Many industrial processes contain both linear and nonlinear parts, and kernel principal component analysis (KPCA), widely used in nonlinear process monitoring, may not offer the most effective means for dealing with these nonlinear processes. This paper proposes a new hybrid linear-nonlinear statistical modeling approach for nonlinear process monitoring by closely integrating linear principal component analysis (PCA) and nonlinear KPCA using a serial model structure, which we refer to as serial PCA (SPCA). Specifically, PCA is first applied to extract PCs as linear features, and to decompose the data into the PC subspace and residual subspace (RS). Then, KPCA is performed in the RS to extract the nonlinear PCs as nonlinear features. Two monitoring statistics are constructed for fault detection, based on both the linear and nonlinear features extracted by the proposed SPCA. To effectively perform fault identification after a fault is detected, an SPCA similarity factor method is built for fault recognition, which fuses both the linear and nonlinear features. Unlike PCA and KPCA, the proposed method takes into account both linear and nonlinear PCs simultaneously, and therefore, it can better exploit the underlying process's structure to enhance fault diagnosis performance. Two case studies involving a simulated nonlinear process and the benchmark Tennessee Eastman process demonstrate that the proposed SPCA approach is more effective than the existing state-of-the-art approach based on KPCA alone, in terms of nonlinear process fault detection and identification. Many industrial processes contain both linear and nonlinear parts, and kernel principal component analysis (KPCA), widely used in nonlinear process monitoring, may not offer the most effective means for dealing with these nonlinear processes. This paper proposes a new hybrid linear-nonlinear statistical modeling approach for nonlinear process monitoring by closely integrating linear principal component analysis (PCA) and nonlinear KPCA using a serial model structure, which we refer to as serial PCA (SPCA). Specifically, PCA is first applied to extract PCs as linear features, and to decompose the data into the PC subspace and residual subspace (RS). Then, KPCA is performed in the RS to extract the nonlinear PCs as nonlinear features. Two monitoring statistics are constructed for fault detection, based on both the linear and nonlinear features extracted by the proposed SPCA. To effectively perform fault identification after a fault is detected, an SPCA similarity factor method is built for fault recognition, which fuses both the linear and nonlinear features. Unlike PCA and KPCA, the proposed method takes into account both linear and nonlinear PCs simultaneously, and therefore, it can better exploit the underlying process's structure to enhance fault diagnosis performance. Two case studies involving a simulated nonlinear process and the benchmark Tennessee Eastman process demonstrate that the proposed SPCA approach is more effective than the existing state-of-the-art approach based on KPCA alone, in terms of nonlinear process fault detection and identification.Many industrial processes contain both linear and nonlinear parts, and kernel principal component analysis (KPCA), widely used in nonlinear process monitoring, may not offer the most effective means for dealing with these nonlinear processes. This paper proposes a new hybrid linear-nonlinear statistical modeling approach for nonlinear process monitoring by closely integrating linear principal component analysis (PCA) and nonlinear KPCA using a serial model structure, which we refer to as serial PCA (SPCA). Specifically, PCA is first applied to extract PCs as linear features, and to decompose the data into the PC subspace and residual subspace (RS). Then, KPCA is performed in the RS to extract the nonlinear PCs as nonlinear features. Two monitoring statistics are constructed for fault detection, based on both the linear and nonlinear features extracted by the proposed SPCA. To effectively perform fault identification after a fault is detected, an SPCA similarity factor method is built for fault recognition, which fuses both the linear and nonlinear features. Unlike PCA and KPCA, the proposed method takes into account both linear and nonlinear PCs simultaneously, and therefore, it can better exploit the underlying process's structure to enhance fault diagnosis performance. Two case studies involving a simulated nonlinear process and the benchmark Tennessee Eastman process demonstrate that the proposed SPCA approach is more effective than the existing state-of-the-art approach based on KPCA alone, in terms of nonlinear process fault detection and identification. |
Author | Deng, Xiaogang Tian, Xuemin Harris, Chris J. Chen, Sheng |
Author_xml | – sequence: 1 givenname: Xiaogang surname: Deng fullname: Deng, Xiaogang email: dengxg2002@gmail.com organization: College of Information and Control Engineering, China University of Petroleum, Qingdao, China – sequence: 2 givenname: Xuemin surname: Tian fullname: Tian, Xuemin email: tianxm@upc.edu.cn organization: College of Information and Control Engineering, China University of Petroleum, Qingdao, China – sequence: 3 givenname: Sheng orcidid: 0000-0001-6882-600X surname: Chen fullname: Chen, Sheng email: sqc@ecs.soton.ac.uk organization: Department of Electronics and Computer Science, University of Southampton, Southampton, U.K – sequence: 4 givenname: Chris J. surname: Harris fullname: Harris, Chris J. email: cjh@ecs.soton.ac.uk organization: Department of Electronics and Computer Science, University of Southampton, Southampton, U.K |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28026785$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1PAyEQhonR-FH9A5qYTbx4aYWhsHDUatWkqSZq4o2wLGswW6iwe_DfS2314EFCwhyeZzLDe4C2ffAWoWOCR4RgefE8n8-eRoAJHwGnjBCyhfaBcBgCFWL7ty5f99BRSu84H44ZH8tdtAcCAy8F20fzefCt81bH4jEGY1Mqprpvu-La6TcfkkvFlU62LoIvnmx0us2c88YtczUJi2WeynfFpdftZ4YP0U6j22SPNu8AvUxvnid3w9nD7f3kcjY0Y1J2w4piXvOaAa6BNkCqGpu8RMWBlIZqoEY22ohqLIWpuCY2r1fVksq64QAV0AE6X_ddxvDR29SphUvGtq32NvRJEcEozZev0LM_6HvoY543KcBYSIkFG2fqdEP11cLWahndQsdP9fNTGRBrwMSQUrSNMq7TnQu-i9q1imC1ykV956JWuahNLlmFP-pP93-lk7XkrLW_QllKBozRL_DjlxU |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1016_j_jprocont_2019_11_010 crossref_primary_10_3390_pr12020251 crossref_primary_10_1109_JSEN_2022_3221282 crossref_primary_10_1016_j_isatra_2020_05_029 crossref_primary_10_1109_TIM_2020_3014033 crossref_primary_10_1109_ACCESS_2020_3039464 crossref_primary_10_1016_j_measurement_2023_113411 crossref_primary_10_1109_TII_2019_2915559 crossref_primary_10_1109_TIM_2020_3039614 crossref_primary_10_1109_JSEN_2024_3384262 crossref_primary_10_1016_j_compchemeng_2023_108580 crossref_primary_10_1016_j_ifacol_2020_12_701 crossref_primary_10_1002_cem_3116 crossref_primary_10_1021_acs_iecr_9b02391 crossref_primary_10_1109_ACCESS_2019_2911369 crossref_primary_10_1109_TCYB_2022_3172790 crossref_primary_10_1109_TII_2024_3390446 crossref_primary_10_1252_jcej_19we080 crossref_primary_10_1002_cjce_24265 crossref_primary_10_1109_ACCESS_2019_2947714 crossref_primary_10_3390_electronics11111755 crossref_primary_10_1109_TASE_2022_3190360 crossref_primary_10_1016_j_neucom_2022_03_012 crossref_primary_10_1002_stc_2802 crossref_primary_10_1109_TNNLS_2022_3201881 crossref_primary_10_1016_j_ces_2025_121335 crossref_primary_10_1016_j_compeleceng_2022_108538 crossref_primary_10_1016_j_jprocont_2023_04_001 crossref_primary_10_1109_ACCESS_2019_2937886 crossref_primary_10_1109_TIM_2021_3075742 crossref_primary_10_1016_j_conengprac_2020_104698 crossref_primary_10_1016_j_apor_2021_102681 crossref_primary_10_1016_j_ndteint_2019_102155 crossref_primary_10_1021_acs_iecr_0c01512 crossref_primary_10_1007_s00202_019_00823_8 crossref_primary_10_1080_21642583_2021_2024915 crossref_primary_10_1109_TASE_2024_3402653 crossref_primary_10_1088_1755_1315_208_1_012047 crossref_primary_10_1109_ACCESS_2019_2927013 crossref_primary_10_1109_TII_2022_3166784 crossref_primary_10_1016_j_isatra_2018_05_005 crossref_primary_10_1021_acs_iecr_0c02209 crossref_primary_10_1109_TNNLS_2023_3296942 crossref_primary_10_1109_TGRS_2025_3539459 crossref_primary_10_1109_TII_2020_2966707 crossref_primary_10_1016_j_psep_2021_10_036 crossref_primary_10_1109_TII_2024_3353840 crossref_primary_10_1007_s12530_023_09525_w crossref_primary_10_1109_TCYB_2024_3474651 crossref_primary_10_1109_TEMC_2020_2976649 crossref_primary_10_1016_j_measurement_2021_109970 crossref_primary_10_1016_j_jprocont_2020_03_006 crossref_primary_10_1109_JSEN_2018_2866708 crossref_primary_10_1016_j_oceaneng_2024_120081 crossref_primary_10_1109_TNNLS_2021_3071292 crossref_primary_10_1109_TNNLS_2021_3132376 crossref_primary_10_1109_TSMC_2024_3487776 crossref_primary_10_1109_TNNLS_2023_3290974 crossref_primary_10_1002_cjce_23491 crossref_primary_10_1016_j_enbuild_2021_111467 crossref_primary_10_1109_TII_2022_3198170 crossref_primary_10_1109_ACCESS_2019_2894764 crossref_primary_10_1109_TIM_2022_3150589 crossref_primary_10_3390_electronics9030429 crossref_primary_10_1109_TNB_2018_2873243 crossref_primary_10_1016_j_jtice_2019_10_021 crossref_primary_10_1109_TIM_2023_3239649 crossref_primary_10_1016_j_eswa_2022_118358 crossref_primary_10_1021_acsomega_4c10552 crossref_primary_10_1002_cjce_23527 crossref_primary_10_1088_1361_6501_ab199a crossref_primary_10_1016_j_jprocont_2024_103235 crossref_primary_10_1016_j_psep_2022_06_058 crossref_primary_10_1109_JSEN_2024_3432896 crossref_primary_10_1109_TII_2018_2886048 crossref_primary_10_3390_axioms12060583 crossref_primary_10_1016_j_chemolab_2021_104371 crossref_primary_10_1021_acs_iecr_9b03197 crossref_primary_10_1007_s12555_019_0363_3 crossref_primary_10_1109_TIM_2023_3334369 crossref_primary_10_1109_TNNLS_2021_3086323 crossref_primary_10_1109_TII_2020_3031496 crossref_primary_10_1177_0142331220960247 crossref_primary_10_1002_apj_3132 crossref_primary_10_1016_j_conengprac_2023_105750 crossref_primary_10_1109_TGRS_2021_3134674 crossref_primary_10_1109_ACCESS_2019_2932017 crossref_primary_10_1016_j_measurement_2019_107155 crossref_primary_10_1016_j_isatra_2021_06_023 crossref_primary_10_3390_rs13193864 crossref_primary_10_3390_pr8010024 crossref_primary_10_1177_0020294020920891 crossref_primary_10_1016_j_engappai_2024_108872 crossref_primary_10_1021_acs_iecr_0c04038 crossref_primary_10_4018_IJSWIS_365203 crossref_primary_10_1109_TII_2023_3333841 crossref_primary_10_1109_TIM_2025_3548238 crossref_primary_10_1002_rnc_6432 crossref_primary_10_1007_s12555_022_0241_2 crossref_primary_10_1016_j_jprocont_2021_07_004 crossref_primary_10_1109_TNNLS_2020_2985223 crossref_primary_10_1007_s00521_021_05919_6 crossref_primary_10_1109_TCSS_2019_2914499 crossref_primary_10_1109_TIM_2025_3542110 crossref_primary_10_1016_j_engappai_2020_104139 crossref_primary_10_1109_TII_2020_3029900 crossref_primary_10_1016_j_eswa_2020_114141 crossref_primary_10_1088_1361_6501_ac0de2 crossref_primary_10_1109_TIM_2023_3318673 crossref_primary_10_1109_ACCESS_2020_3048127 crossref_primary_10_1109_TCST_2018_2865413 crossref_primary_10_1109_TNNLS_2022_3174822 crossref_primary_10_1109_ACCESS_2022_3208163 crossref_primary_10_1016_j_jii_2024_100622 crossref_primary_10_1021_acs_iecr_8b04794 crossref_primary_10_1109_ACCESS_2020_2992132 crossref_primary_10_1109_ACCESS_2022_3169174 crossref_primary_10_1109_JAS_2024_124578 crossref_primary_10_1109_ACCESS_2020_3034550 crossref_primary_10_1016_j_conengprac_2022_105174 crossref_primary_10_3390_app11062761 crossref_primary_10_1177_0142331219888370 crossref_primary_10_1016_j_jtice_2020_06_001 crossref_primary_10_1109_TASE_2021_3080977 crossref_primary_10_1109_ACCESS_2020_3028144 crossref_primary_10_1109_TR_2021_3115108 crossref_primary_10_1002_cjce_23832 crossref_primary_10_1002_cjce_25058 crossref_primary_10_1016_j_energy_2021_121835 crossref_primary_10_1007_s11071_024_10589_9 crossref_primary_10_1016_j_measurement_2022_111181 crossref_primary_10_3390_math12111644 crossref_primary_10_1016_j_renene_2019_08_064 crossref_primary_10_1109_TNNLS_2021_3083401 crossref_primary_10_1016_j_conengprac_2019_104235 crossref_primary_10_1109_ACCESS_2021_3124948 crossref_primary_10_1109_TIM_2024_3350143 crossref_primary_10_1002_cjce_24260 crossref_primary_10_1016_j_psep_2022_12_091 crossref_primary_10_1109_TGRS_2021_3068447 crossref_primary_10_3390_pr11102955 crossref_primary_10_3390_en12193799 crossref_primary_10_1109_ACCESS_2021_3051409 crossref_primary_10_1109_TNNLS_2019_2920903 crossref_primary_10_1109_TIM_2025_3529563 crossref_primary_10_1109_TII_2023_3300414 crossref_primary_10_1016_j_measurement_2023_113491 crossref_primary_10_1109_TCST_2024_3483431 |
Cites_doi | 10.1016/j.eswa.2011.02.049 10.1109/TNNLS.2013.2239309 10.1021/ie990110i 10.1016/j.jprocont.2015.01.009 10.1109/TNNLS.2013.2256797 10.1016/j.cjche.2014.09.022 10.1016/j.compeleceng.2014.08.002 10.1162/089976698300017467 10.1080/21642583.2016.1198940 10.1016/j.cherd.2011.11.015 10.1109/TNNLS.2015.2505086 10.1016/j.conengprac.2012.11.013 10.1007/978-1-4471-0347-9 10.1109/TNNLS.2013.2253491 10.1109/MCS.2002.1035217 10.1016/j.chemolab.2014.01.009 10.1016/j.chemolab.2012.10.005 10.1016/j.chemolab.2012.07.008 10.1016/j.compchemeng.2015.09.013 10.1016/j.chemolab.2015.04.003 10.1016/j.epsr.2015.06.002 10.1016/j.compchemeng.2013.10.004 10.1109/TNN.2007.908645 10.1016/j.jprocont.2015.02.007 10.1002/aic.11977 10.1016/0098-1354(95)00003-K 10.1109/TNNLS.2016.2547968 10.1016/j.chemolab.2013.09.003 10.1109/TNNLS.2014.2303651 10.1016/j.chemolab.2013.04.002 10.1016/j.cie.2011.02.014 10.1016/j.neucom.2008.09.003 10.1109/TNNLS.2014.2362015 10.1109/TII.2009.2032654 10.1016/j.chemolab.2004.05.001 10.1016/j.jprocont.2003.09.004 10.1016/j.neucom.2013.04.042 10.1021/ie501502t 10.1016/S0925-2312(01)00702-0 10.1016/S0169-7439(00)00062-9 10.1016/j.jprocont.2012.06.009 10.1016/j.jprocont.2013.10.013 10.1109/TIE.2014.2308133 10.1109/IJCNN.2013.6706761 10.1016/j.ces.2003.09.012 10.1016/j.conengprac.2013.06.017 10.1016/j.chemolab.2014.04.012 10.1016/0098-1354(93)80018-I 10.1016/j.ces.2009.01.050 10.1016/j.ifacol.2015.09.719 10.1021/ie302069q 10.1016/j.neucom.2014.08.009 10.1016/j.compchemeng.2015.03.001 10.1002/aic.690480916 10.1016/j.knosys.2015.01.002 10.1016/j.jprocont.2013.09.017 10.1016/j.cjche.2015.01.014 10.1016/j.arcontrol.2012.09.004 10.1016/j.jprocont.2004.02.001 10.1016/j.chemolab.2013.07.001 10.1109/TNNLS.2015.2389273 10.1002/aic.690370209 10.1007/978-1-4471-6410-4 10.1016/j.arcontrol.2016.09.001 10.1016/j.jprocont.2015.04.006 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2016.2635111 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 572 |
ExternalDocumentID | 28026785 10_1109_TNNLS_2016_2635111 7795255 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61403418; 61273160 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Shandong Province, China grantid: ZR2014FL016 funderid: 10.13039/501100007129 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c417t-b306d6d520d23f21bd0c635b6217c3a23c9fac8b498cb6a1e111bd939df622b23 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 05:09:57 EDT 2025 Mon Jun 30 06:50:15 EDT 2025 Thu Apr 03 06:49:58 EDT 2025 Tue Jul 01 00:27:23 EDT 2025 Thu Apr 24 23:04:07 EDT 2025 Wed Aug 27 02:52:37 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-b306d6d520d23f21bd0c635b6217c3a23c9fac8b498cb6a1e111bd939df622b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6882-600X |
PMID | 28026785 |
PQID | 2008990854 |
PQPubID | 85436 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1109_TNNLS_2016_2635111 ieee_primary_7795255 pubmed_primary_28026785 proquest_journals_2008990854 proquest_miscellaneous_1853353362 crossref_primary_10_1109_TNNLS_2016_2635111 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-01 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref54 ref10 ref17 zhou (ref11) 2010; 56 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref64 ref20 ref63 ref22 ref65 ref21 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref41 doi: 10.1016/j.eswa.2011.02.049 – ident: ref63 doi: 10.1109/TNNLS.2013.2239309 – ident: ref46 doi: 10.1021/ie990110i – ident: ref61 doi: 10.1016/j.jprocont.2015.01.009 – ident: ref19 doi: 10.1109/TNNLS.2013.2256797 – ident: ref56 doi: 10.1016/j.cjche.2014.09.022 – ident: ref24 doi: 10.1016/j.compeleceng.2014.08.002 – ident: ref30 doi: 10.1162/089976698300017467 – ident: ref45 doi: 10.1080/21642583.2016.1198940 – ident: ref33 doi: 10.1016/j.cherd.2011.11.015 – ident: ref39 doi: 10.1109/TNNLS.2015.2505086 – ident: ref53 doi: 10.1016/j.conengprac.2012.11.013 – ident: ref62 doi: 10.1007/978-1-4471-0347-9 – ident: ref18 doi: 10.1109/TNNLS.2013.2253491 – ident: ref55 doi: 10.1109/MCS.2002.1035217 – ident: ref8 doi: 10.1016/j.chemolab.2014.01.009 – ident: ref60 doi: 10.1016/j.chemolab.2012.10.005 – ident: ref57 doi: 10.1016/j.chemolab.2012.07.008 – ident: ref10 doi: 10.1016/j.compchemeng.2015.09.013 – ident: ref65 doi: 10.1016/j.chemolab.2015.04.003 – ident: ref29 doi: 10.1016/j.epsr.2015.06.002 – ident: ref51 doi: 10.1016/j.compchemeng.2013.10.004 – ident: ref47 doi: 10.1109/TNN.2007.908645 – ident: ref37 doi: 10.1016/j.jprocont.2015.02.007 – volume: 56 start-page: 168 year: 2010 ident: ref11 article-title: Total projection to latent structures for process monitoring publication-title: AIChE J doi: 10.1002/aic.11977 – ident: ref28 doi: 10.1016/0098-1354(95)00003-K – ident: ref44 doi: 10.1109/TNNLS.2016.2547968 – ident: ref22 doi: 10.1016/j.chemolab.2013.09.003 – ident: ref20 doi: 10.1109/TNNLS.2014.2303651 – ident: ref23 doi: 10.1016/j.chemolab.2013.04.002 – ident: ref64 doi: 10.1016/j.cie.2011.02.014 – ident: ref14 doi: 10.1016/j.neucom.2008.09.003 – ident: ref50 doi: 10.1109/TNNLS.2014.2362015 – ident: ref16 doi: 10.1109/TII.2009.2032654 – ident: ref32 doi: 10.1016/j.chemolab.2004.05.001 – ident: ref49 doi: 10.1016/j.jprocont.2003.09.004 – ident: ref58 doi: 10.1016/j.neucom.2013.04.042 – ident: ref12 doi: 10.1021/ie501502t – ident: ref40 doi: 10.1016/S0925-2312(01)00702-0 – ident: ref52 doi: 10.1016/S0169-7439(00)00062-9 – ident: ref6 doi: 10.1016/j.jprocont.2012.06.009 – ident: ref9 doi: 10.1016/j.jprocont.2013.10.013 – ident: ref5 doi: 10.1109/TIE.2014.2308133 – ident: ref43 doi: 10.1109/IJCNN.2013.6706761 – ident: ref31 doi: 10.1016/j.ces.2003.09.012 – ident: ref35 doi: 10.1016/j.conengprac.2013.06.017 – ident: ref13 doi: 10.1016/j.chemolab.2014.04.012 – ident: ref59 doi: 10.1016/0098-1354(93)80018-I – ident: ref34 doi: 10.1016/j.ces.2009.01.050 – ident: ref38 doi: 10.1016/j.ifacol.2015.09.719 – ident: ref7 doi: 10.1021/ie302069q – ident: ref15 doi: 10.1016/j.neucom.2014.08.009 – ident: ref17 doi: 10.1016/j.compchemeng.2015.03.001 – ident: ref54 doi: 10.1002/aic.690480916 – ident: ref42 doi: 10.1016/j.knosys.2015.01.002 – ident: ref26 doi: 10.1016/j.jprocont.2013.09.017 – ident: ref25 doi: 10.1016/j.cjche.2015.01.014 – ident: ref4 doi: 10.1016/j.arcontrol.2012.09.004 – ident: ref21 doi: 10.1016/j.jprocont.2004.02.001 – ident: ref36 doi: 10.1016/j.chemolab.2013.07.001 – ident: ref48 doi: 10.1109/TNNLS.2015.2389273 – ident: ref27 doi: 10.1002/aic.690370209 – ident: ref3 doi: 10.1007/978-1-4471-6410-4 – ident: ref2 doi: 10.1016/j.arcontrol.2016.09.001 – ident: ref1 doi: 10.1016/j.jprocont.2015.04.006 |
SSID | ssj0000605649 |
Score | 2.6134903 |
Snippet | Many industrial processes contain both linear and nonlinear parts, and kernel principal component analysis (KPCA), widely used in nonlinear process monitoring,... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 560 |
SubjectTerms | Case studies Computer simulation Data models Diagnosis Fault detection Fault diagnosis fault identification Feature extraction Fuses Kernel kernel principal component analysis (KPCA) Mathematical models Monitoring Nonlinear analysis nonlinear process monitoring Principal component analysis Principal components analysis Regression analysis serial principal component analysis similarity factor Statistical analysis Statistical models |
Title | Nonlinear Process Fault Diagnosis Based on Serial Principal Component Analysis |
URI | https://ieeexplore.ieee.org/document/7795255 https://www.ncbi.nlm.nih.gov/pubmed/28026785 https://www.proquest.com/docview/2008990854 https://www.proquest.com/docview/1853353362 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1bS90w-EN98kXnZbPqJMLeZo9p2qbNo9s8iMy-TOG8ldwKw0OPeNqX_Xq_JG0ZsolQSqBpk34Xvku-C8CXzJqGlTKLy1SKOFO0iaUoRGxcG25rZCoLlyh8V_Gbh-x2kS824GLKhbHW-uAzO3NDf5ZvVrp3rrLLohA5qsCbsImGW8jVmvwpFPVy7rVdlnAWs7RYjDkyVFzeV9XPXy6Qi89c9RVkcFcFuHTtl1wX5b9Eku-x8n9104ud-S7cjRsO0SaPs75TM_3nVS3H9_7RB9gZ9E9yFQhmDzZsuw-7Y28HMrD6AVRVqKEhn8mQS0Dmsl925EeIzfu9Jt9QABqyaknwsOE877fHkfvcqsWVyVjz5BAe5tf332_iofdCrLOk6GKFpoThJmcUsdawRBmqEXCKowmjU8lSLRqpS5WJUisuE4sgVUakwjScMcXSj7DV4kpHQGhui0ZRLhXaLpm706awvMmlppblZQTJCP5aD4XJXX-MZe0NFCpqj73aYa8esBfB1-mdp1CW483ZBw7008wB6hGcjliuB85d-7acKKHLPIvgfHqMPOcOUmRrV_26djpOihdnEXwK1DF9eySq43-veQLbuLMyRLGdwlb33NvPqNZ06szT8wsn0PBu |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3JbtQw9Km0B7hQSqEESnElbpCp4yROfGTpaKAzuTCV5hZ5i1S1yqBOcuHrebaTCCFASFFkKU7svEVv8VsA3mbWNKyUWVymUsSZok0sRSFi49pwWyNTWbhE4VXFF9fZ102-2YP3Uy6MtdYHn9mZG_qzfLPVvXOVXRSFyFEFfgAHKPfzJGRrTR4Vipo59_ouSziLWVpsxiwZKi7WVbX85kK5-MzVX0EWd3WAS9eAyfVR_kUo-S4rf1c4veCZH8Jq3HKIN7md9Z2a6R-_VXP83396Ao8HDZR8CCRzBHu2fQqHY3cHMjD7MVRVqKIh78mQTUDmsr_ryOcQnXezIx9RBBqybUnwseE877nHkfvctsWVyVj15Blczy_Xnxbx0H0h1llSdLFCY8JwkzOKeGtYogzVCDjF0YjRqWSpFo3UpcpEqRWXiUWQKiNSYRrOmGLpc9hvcaUXQGhui0ZRLhVaL5m706awvMmlppblZQTJCP5aD6XJXYeMu9qbKFTUHnu1w149YC-Cd9M730Nhjn_OPnagn2YOUI_gdMRyPfDuzjfmRBld5lkE59Nj5Dp3lCJbu-13tdNyUrw4i-AkUMf07ZGoXv55zTfwcLFeLevll-rqFTzCXZYhpu0U9rv73r5GJadTZ562fwLbEvO3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+Process+Fault+Diagnosis+Based+on+Serial+Principal+Component+Analysis&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Deng%2C+Xiaogang&rft.au=Tian%2C+Xuemin&rft.au=Chen%2C+Sheng&rft.au=Harris%2C+Chris+J.&rft.date=2018-03-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=29&rft.issue=3&rft.spage=560&rft.epage=572&rft_id=info:doi/10.1109%2FTNNLS.2016.2635111&rft_id=info%3Apmid%2F28026785&rft.externalDocID=7795255 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |