Nonlinear Process Fault Diagnosis Based on Serial Principal Component Analysis

Many industrial processes contain both linear and nonlinear parts, and kernel principal component analysis (KPCA), widely used in nonlinear process monitoring, may not offer the most effective means for dealing with these nonlinear processes. This paper proposes a new hybrid linear-nonlinear statist...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 29; no. 3; pp. 560 - 572
Main Authors Deng, Xiaogang, Tian, Xuemin, Chen, Sheng, Harris, Chris J.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many industrial processes contain both linear and nonlinear parts, and kernel principal component analysis (KPCA), widely used in nonlinear process monitoring, may not offer the most effective means for dealing with these nonlinear processes. This paper proposes a new hybrid linear-nonlinear statistical modeling approach for nonlinear process monitoring by closely integrating linear principal component analysis (PCA) and nonlinear KPCA using a serial model structure, which we refer to as serial PCA (SPCA). Specifically, PCA is first applied to extract PCs as linear features, and to decompose the data into the PC subspace and residual subspace (RS). Then, KPCA is performed in the RS to extract the nonlinear PCs as nonlinear features. Two monitoring statistics are constructed for fault detection, based on both the linear and nonlinear features extracted by the proposed SPCA. To effectively perform fault identification after a fault is detected, an SPCA similarity factor method is built for fault recognition, which fuses both the linear and nonlinear features. Unlike PCA and KPCA, the proposed method takes into account both linear and nonlinear PCs simultaneously, and therefore, it can better exploit the underlying process's structure to enhance fault diagnosis performance. Two case studies involving a simulated nonlinear process and the benchmark Tennessee Eastman process demonstrate that the proposed SPCA approach is more effective than the existing state-of-the-art approach based on KPCA alone, in terms of nonlinear process fault detection and identification.
AbstractList Many industrial processes contain both linear and nonlinear parts, and kernel principal component analysis (KPCA), widely used in nonlinear process monitoring, may not offer the most effective means for dealing with these nonlinear processes. This paper proposes a new hybrid linear-nonlinear statistical modeling approach for nonlinear process monitoring by closely integrating linear principal component analysis (PCA) and nonlinear KPCA using a serial model structure, which we refer to as serial PCA (SPCA). Specifically, PCA is first applied to extract PCs as linear features, and to decompose the data into the PC subspace and residual subspace (RS). Then, KPCA is performed in the RS to extract the nonlinear PCs as nonlinear features. Two monitoring statistics are constructed for fault detection, based on both the linear and nonlinear features extracted by the proposed SPCA. To effectively perform fault identification after a fault is detected, an SPCA similarity factor method is built for fault recognition, which fuses both the linear and nonlinear features. Unlike PCA and KPCA, the proposed method takes into account both linear and nonlinear PCs simultaneously, and therefore, it can better exploit the underlying process's structure to enhance fault diagnosis performance. Two case studies involving a simulated nonlinear process and the benchmark Tennessee Eastman process demonstrate that the proposed SPCA approach is more effective than the existing state-of-the-art approach based on KPCA alone, in terms of nonlinear process fault detection and identification.
Many industrial processes contain both linear and nonlinear parts, and kernel principal component analysis (KPCA), widely used in nonlinear process monitoring, may not offer the most effective means for dealing with these nonlinear processes. This paper proposes a new hybrid linear-nonlinear statistical modeling approach for nonlinear process monitoring by closely integrating linear principal component analysis (PCA) and nonlinear KPCA using a serial model structure, which we refer to as serial PCA (SPCA). Specifically, PCA is first applied to extract PCs as linear features, and to decompose the data into the PC subspace and residual subspace (RS). Then, KPCA is performed in the RS to extract the nonlinear PCs as nonlinear features. Two monitoring statistics are constructed for fault detection, based on both the linear and nonlinear features extracted by the proposed SPCA. To effectively perform fault identification after a fault is detected, an SPCA similarity factor method is built for fault recognition, which fuses both the linear and nonlinear features. Unlike PCA and KPCA, the proposed method takes into account both linear and nonlinear PCs simultaneously, and therefore, it can better exploit the underlying process's structure to enhance fault diagnosis performance. Two case studies involving a simulated nonlinear process and the benchmark Tennessee Eastman process demonstrate that the proposed SPCA approach is more effective than the existing state-of-the-art approach based on KPCA alone, in terms of nonlinear process fault detection and identification.Many industrial processes contain both linear and nonlinear parts, and kernel principal component analysis (KPCA), widely used in nonlinear process monitoring, may not offer the most effective means for dealing with these nonlinear processes. This paper proposes a new hybrid linear-nonlinear statistical modeling approach for nonlinear process monitoring by closely integrating linear principal component analysis (PCA) and nonlinear KPCA using a serial model structure, which we refer to as serial PCA (SPCA). Specifically, PCA is first applied to extract PCs as linear features, and to decompose the data into the PC subspace and residual subspace (RS). Then, KPCA is performed in the RS to extract the nonlinear PCs as nonlinear features. Two monitoring statistics are constructed for fault detection, based on both the linear and nonlinear features extracted by the proposed SPCA. To effectively perform fault identification after a fault is detected, an SPCA similarity factor method is built for fault recognition, which fuses both the linear and nonlinear features. Unlike PCA and KPCA, the proposed method takes into account both linear and nonlinear PCs simultaneously, and therefore, it can better exploit the underlying process's structure to enhance fault diagnosis performance. Two case studies involving a simulated nonlinear process and the benchmark Tennessee Eastman process demonstrate that the proposed SPCA approach is more effective than the existing state-of-the-art approach based on KPCA alone, in terms of nonlinear process fault detection and identification.
Author Deng, Xiaogang
Tian, Xuemin
Harris, Chris J.
Chen, Sheng
Author_xml – sequence: 1
  givenname: Xiaogang
  surname: Deng
  fullname: Deng, Xiaogang
  email: dengxg2002@gmail.com
  organization: College of Information and Control Engineering, China University of Petroleum, Qingdao, China
– sequence: 2
  givenname: Xuemin
  surname: Tian
  fullname: Tian, Xuemin
  email: tianxm@upc.edu.cn
  organization: College of Information and Control Engineering, China University of Petroleum, Qingdao, China
– sequence: 3
  givenname: Sheng
  orcidid: 0000-0001-6882-600X
  surname: Chen
  fullname: Chen, Sheng
  email: sqc@ecs.soton.ac.uk
  organization: Department of Electronics and Computer Science, University of Southampton, Southampton, U.K
– sequence: 4
  givenname: Chris J.
  surname: Harris
  fullname: Harris, Chris J.
  email: cjh@ecs.soton.ac.uk
  organization: Department of Electronics and Computer Science, University of Southampton, Southampton, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28026785$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1PAyEQhonR-FH9A5qYTbx4aYWhsHDUatWkqSZq4o2wLGswW6iwe_DfS2314EFCwhyeZzLDe4C2ffAWoWOCR4RgefE8n8-eRoAJHwGnjBCyhfaBcBgCFWL7ty5f99BRSu84H44ZH8tdtAcCAy8F20fzefCt81bH4jEGY1Mqprpvu-La6TcfkkvFlU62LoIvnmx0us2c88YtczUJi2WeynfFpdftZ4YP0U6j22SPNu8AvUxvnid3w9nD7f3kcjY0Y1J2w4piXvOaAa6BNkCqGpu8RMWBlIZqoEY22ohqLIWpuCY2r1fVksq64QAV0AE6X_ddxvDR29SphUvGtq32NvRJEcEozZev0LM_6HvoY543KcBYSIkFG2fqdEP11cLWahndQsdP9fNTGRBrwMSQUrSNMq7TnQu-i9q1imC1ykV956JWuahNLlmFP-pP93-lk7XkrLW_QllKBozRL_DjlxU
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_jprocont_2019_11_010
crossref_primary_10_3390_pr12020251
crossref_primary_10_1109_JSEN_2022_3221282
crossref_primary_10_1016_j_isatra_2020_05_029
crossref_primary_10_1109_TIM_2020_3014033
crossref_primary_10_1109_ACCESS_2020_3039464
crossref_primary_10_1016_j_measurement_2023_113411
crossref_primary_10_1109_TII_2019_2915559
crossref_primary_10_1109_TIM_2020_3039614
crossref_primary_10_1109_JSEN_2024_3384262
crossref_primary_10_1016_j_compchemeng_2023_108580
crossref_primary_10_1016_j_ifacol_2020_12_701
crossref_primary_10_1002_cem_3116
crossref_primary_10_1021_acs_iecr_9b02391
crossref_primary_10_1109_ACCESS_2019_2911369
crossref_primary_10_1109_TCYB_2022_3172790
crossref_primary_10_1109_TII_2024_3390446
crossref_primary_10_1252_jcej_19we080
crossref_primary_10_1002_cjce_24265
crossref_primary_10_1109_ACCESS_2019_2947714
crossref_primary_10_3390_electronics11111755
crossref_primary_10_1109_TASE_2022_3190360
crossref_primary_10_1016_j_neucom_2022_03_012
crossref_primary_10_1002_stc_2802
crossref_primary_10_1109_TNNLS_2022_3201881
crossref_primary_10_1016_j_ces_2025_121335
crossref_primary_10_1016_j_compeleceng_2022_108538
crossref_primary_10_1016_j_jprocont_2023_04_001
crossref_primary_10_1109_ACCESS_2019_2937886
crossref_primary_10_1109_TIM_2021_3075742
crossref_primary_10_1016_j_conengprac_2020_104698
crossref_primary_10_1016_j_apor_2021_102681
crossref_primary_10_1016_j_ndteint_2019_102155
crossref_primary_10_1021_acs_iecr_0c01512
crossref_primary_10_1007_s00202_019_00823_8
crossref_primary_10_1080_21642583_2021_2024915
crossref_primary_10_1109_TASE_2024_3402653
crossref_primary_10_1088_1755_1315_208_1_012047
crossref_primary_10_1109_ACCESS_2019_2927013
crossref_primary_10_1109_TII_2022_3166784
crossref_primary_10_1016_j_isatra_2018_05_005
crossref_primary_10_1021_acs_iecr_0c02209
crossref_primary_10_1109_TNNLS_2023_3296942
crossref_primary_10_1109_TGRS_2025_3539459
crossref_primary_10_1109_TII_2020_2966707
crossref_primary_10_1016_j_psep_2021_10_036
crossref_primary_10_1109_TII_2024_3353840
crossref_primary_10_1007_s12530_023_09525_w
crossref_primary_10_1109_TCYB_2024_3474651
crossref_primary_10_1109_TEMC_2020_2976649
crossref_primary_10_1016_j_measurement_2021_109970
crossref_primary_10_1016_j_jprocont_2020_03_006
crossref_primary_10_1109_JSEN_2018_2866708
crossref_primary_10_1016_j_oceaneng_2024_120081
crossref_primary_10_1109_TNNLS_2021_3071292
crossref_primary_10_1109_TNNLS_2021_3132376
crossref_primary_10_1109_TSMC_2024_3487776
crossref_primary_10_1109_TNNLS_2023_3290974
crossref_primary_10_1002_cjce_23491
crossref_primary_10_1016_j_enbuild_2021_111467
crossref_primary_10_1109_TII_2022_3198170
crossref_primary_10_1109_ACCESS_2019_2894764
crossref_primary_10_1109_TIM_2022_3150589
crossref_primary_10_3390_electronics9030429
crossref_primary_10_1109_TNB_2018_2873243
crossref_primary_10_1016_j_jtice_2019_10_021
crossref_primary_10_1109_TIM_2023_3239649
crossref_primary_10_1016_j_eswa_2022_118358
crossref_primary_10_1021_acsomega_4c10552
crossref_primary_10_1002_cjce_23527
crossref_primary_10_1088_1361_6501_ab199a
crossref_primary_10_1016_j_jprocont_2024_103235
crossref_primary_10_1016_j_psep_2022_06_058
crossref_primary_10_1109_JSEN_2024_3432896
crossref_primary_10_1109_TII_2018_2886048
crossref_primary_10_3390_axioms12060583
crossref_primary_10_1016_j_chemolab_2021_104371
crossref_primary_10_1021_acs_iecr_9b03197
crossref_primary_10_1007_s12555_019_0363_3
crossref_primary_10_1109_TIM_2023_3334369
crossref_primary_10_1109_TNNLS_2021_3086323
crossref_primary_10_1109_TII_2020_3031496
crossref_primary_10_1177_0142331220960247
crossref_primary_10_1002_apj_3132
crossref_primary_10_1016_j_conengprac_2023_105750
crossref_primary_10_1109_TGRS_2021_3134674
crossref_primary_10_1109_ACCESS_2019_2932017
crossref_primary_10_1016_j_measurement_2019_107155
crossref_primary_10_1016_j_isatra_2021_06_023
crossref_primary_10_3390_rs13193864
crossref_primary_10_3390_pr8010024
crossref_primary_10_1177_0020294020920891
crossref_primary_10_1016_j_engappai_2024_108872
crossref_primary_10_1021_acs_iecr_0c04038
crossref_primary_10_4018_IJSWIS_365203
crossref_primary_10_1109_TII_2023_3333841
crossref_primary_10_1109_TIM_2025_3548238
crossref_primary_10_1002_rnc_6432
crossref_primary_10_1007_s12555_022_0241_2
crossref_primary_10_1016_j_jprocont_2021_07_004
crossref_primary_10_1109_TNNLS_2020_2985223
crossref_primary_10_1007_s00521_021_05919_6
crossref_primary_10_1109_TCSS_2019_2914499
crossref_primary_10_1109_TIM_2025_3542110
crossref_primary_10_1016_j_engappai_2020_104139
crossref_primary_10_1109_TII_2020_3029900
crossref_primary_10_1016_j_eswa_2020_114141
crossref_primary_10_1088_1361_6501_ac0de2
crossref_primary_10_1109_TIM_2023_3318673
crossref_primary_10_1109_ACCESS_2020_3048127
crossref_primary_10_1109_TCST_2018_2865413
crossref_primary_10_1109_TNNLS_2022_3174822
crossref_primary_10_1109_ACCESS_2022_3208163
crossref_primary_10_1016_j_jii_2024_100622
crossref_primary_10_1021_acs_iecr_8b04794
crossref_primary_10_1109_ACCESS_2020_2992132
crossref_primary_10_1109_ACCESS_2022_3169174
crossref_primary_10_1109_JAS_2024_124578
crossref_primary_10_1109_ACCESS_2020_3034550
crossref_primary_10_1016_j_conengprac_2022_105174
crossref_primary_10_3390_app11062761
crossref_primary_10_1177_0142331219888370
crossref_primary_10_1016_j_jtice_2020_06_001
crossref_primary_10_1109_TASE_2021_3080977
crossref_primary_10_1109_ACCESS_2020_3028144
crossref_primary_10_1109_TR_2021_3115108
crossref_primary_10_1002_cjce_23832
crossref_primary_10_1002_cjce_25058
crossref_primary_10_1016_j_energy_2021_121835
crossref_primary_10_1007_s11071_024_10589_9
crossref_primary_10_1016_j_measurement_2022_111181
crossref_primary_10_3390_math12111644
crossref_primary_10_1016_j_renene_2019_08_064
crossref_primary_10_1109_TNNLS_2021_3083401
crossref_primary_10_1016_j_conengprac_2019_104235
crossref_primary_10_1109_ACCESS_2021_3124948
crossref_primary_10_1109_TIM_2024_3350143
crossref_primary_10_1002_cjce_24260
crossref_primary_10_1016_j_psep_2022_12_091
crossref_primary_10_1109_TGRS_2021_3068447
crossref_primary_10_3390_pr11102955
crossref_primary_10_3390_en12193799
crossref_primary_10_1109_ACCESS_2021_3051409
crossref_primary_10_1109_TNNLS_2019_2920903
crossref_primary_10_1109_TIM_2025_3529563
crossref_primary_10_1109_TII_2023_3300414
crossref_primary_10_1016_j_measurement_2023_113491
crossref_primary_10_1109_TCST_2024_3483431
Cites_doi 10.1016/j.eswa.2011.02.049
10.1109/TNNLS.2013.2239309
10.1021/ie990110i
10.1016/j.jprocont.2015.01.009
10.1109/TNNLS.2013.2256797
10.1016/j.cjche.2014.09.022
10.1016/j.compeleceng.2014.08.002
10.1162/089976698300017467
10.1080/21642583.2016.1198940
10.1016/j.cherd.2011.11.015
10.1109/TNNLS.2015.2505086
10.1016/j.conengprac.2012.11.013
10.1007/978-1-4471-0347-9
10.1109/TNNLS.2013.2253491
10.1109/MCS.2002.1035217
10.1016/j.chemolab.2014.01.009
10.1016/j.chemolab.2012.10.005
10.1016/j.chemolab.2012.07.008
10.1016/j.compchemeng.2015.09.013
10.1016/j.chemolab.2015.04.003
10.1016/j.epsr.2015.06.002
10.1016/j.compchemeng.2013.10.004
10.1109/TNN.2007.908645
10.1016/j.jprocont.2015.02.007
10.1002/aic.11977
10.1016/0098-1354(95)00003-K
10.1109/TNNLS.2016.2547968
10.1016/j.chemolab.2013.09.003
10.1109/TNNLS.2014.2303651
10.1016/j.chemolab.2013.04.002
10.1016/j.cie.2011.02.014
10.1016/j.neucom.2008.09.003
10.1109/TNNLS.2014.2362015
10.1109/TII.2009.2032654
10.1016/j.chemolab.2004.05.001
10.1016/j.jprocont.2003.09.004
10.1016/j.neucom.2013.04.042
10.1021/ie501502t
10.1016/S0925-2312(01)00702-0
10.1016/S0169-7439(00)00062-9
10.1016/j.jprocont.2012.06.009
10.1016/j.jprocont.2013.10.013
10.1109/TIE.2014.2308133
10.1109/IJCNN.2013.6706761
10.1016/j.ces.2003.09.012
10.1016/j.conengprac.2013.06.017
10.1016/j.chemolab.2014.04.012
10.1016/0098-1354(93)80018-I
10.1016/j.ces.2009.01.050
10.1016/j.ifacol.2015.09.719
10.1021/ie302069q
10.1016/j.neucom.2014.08.009
10.1016/j.compchemeng.2015.03.001
10.1002/aic.690480916
10.1016/j.knosys.2015.01.002
10.1016/j.jprocont.2013.09.017
10.1016/j.cjche.2015.01.014
10.1016/j.arcontrol.2012.09.004
10.1016/j.jprocont.2004.02.001
10.1016/j.chemolab.2013.07.001
10.1109/TNNLS.2015.2389273
10.1002/aic.690370209
10.1007/978-1-4471-6410-4
10.1016/j.arcontrol.2016.09.001
10.1016/j.jprocont.2015.04.006
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2016.2635111
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 572
ExternalDocumentID 28026785
10_1109_TNNLS_2016_2635111
7795255
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61403418; 61273160
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Shandong Province, China
  grantid: ZR2014FL016
  funderid: 10.13039/501100007129
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c417t-b306d6d520d23f21bd0c635b6217c3a23c9fac8b498cb6a1e111bd939df622b23
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 05:09:57 EDT 2025
Mon Jun 30 06:50:15 EDT 2025
Thu Apr 03 06:49:58 EDT 2025
Tue Jul 01 00:27:23 EDT 2025
Thu Apr 24 23:04:07 EDT 2025
Wed Aug 27 02:52:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-b306d6d520d23f21bd0c635b6217c3a23c9fac8b498cb6a1e111bd939df622b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6882-600X
PMID 28026785
PQID 2008990854
PQPubID 85436
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TNNLS_2016_2635111
ieee_primary_7795255
pubmed_primary_28026785
proquest_journals_2008990854
proquest_miscellaneous_1853353362
crossref_primary_10_1109_TNNLS_2016_2635111
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref54
ref10
ref17
zhou (ref11) 2010; 56
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref64
ref20
ref63
ref22
ref65
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref41
  doi: 10.1016/j.eswa.2011.02.049
– ident: ref63
  doi: 10.1109/TNNLS.2013.2239309
– ident: ref46
  doi: 10.1021/ie990110i
– ident: ref61
  doi: 10.1016/j.jprocont.2015.01.009
– ident: ref19
  doi: 10.1109/TNNLS.2013.2256797
– ident: ref56
  doi: 10.1016/j.cjche.2014.09.022
– ident: ref24
  doi: 10.1016/j.compeleceng.2014.08.002
– ident: ref30
  doi: 10.1162/089976698300017467
– ident: ref45
  doi: 10.1080/21642583.2016.1198940
– ident: ref33
  doi: 10.1016/j.cherd.2011.11.015
– ident: ref39
  doi: 10.1109/TNNLS.2015.2505086
– ident: ref53
  doi: 10.1016/j.conengprac.2012.11.013
– ident: ref62
  doi: 10.1007/978-1-4471-0347-9
– ident: ref18
  doi: 10.1109/TNNLS.2013.2253491
– ident: ref55
  doi: 10.1109/MCS.2002.1035217
– ident: ref8
  doi: 10.1016/j.chemolab.2014.01.009
– ident: ref60
  doi: 10.1016/j.chemolab.2012.10.005
– ident: ref57
  doi: 10.1016/j.chemolab.2012.07.008
– ident: ref10
  doi: 10.1016/j.compchemeng.2015.09.013
– ident: ref65
  doi: 10.1016/j.chemolab.2015.04.003
– ident: ref29
  doi: 10.1016/j.epsr.2015.06.002
– ident: ref51
  doi: 10.1016/j.compchemeng.2013.10.004
– ident: ref47
  doi: 10.1109/TNN.2007.908645
– ident: ref37
  doi: 10.1016/j.jprocont.2015.02.007
– volume: 56
  start-page: 168
  year: 2010
  ident: ref11
  article-title: Total projection to latent structures for process monitoring
  publication-title: AIChE J
  doi: 10.1002/aic.11977
– ident: ref28
  doi: 10.1016/0098-1354(95)00003-K
– ident: ref44
  doi: 10.1109/TNNLS.2016.2547968
– ident: ref22
  doi: 10.1016/j.chemolab.2013.09.003
– ident: ref20
  doi: 10.1109/TNNLS.2014.2303651
– ident: ref23
  doi: 10.1016/j.chemolab.2013.04.002
– ident: ref64
  doi: 10.1016/j.cie.2011.02.014
– ident: ref14
  doi: 10.1016/j.neucom.2008.09.003
– ident: ref50
  doi: 10.1109/TNNLS.2014.2362015
– ident: ref16
  doi: 10.1109/TII.2009.2032654
– ident: ref32
  doi: 10.1016/j.chemolab.2004.05.001
– ident: ref49
  doi: 10.1016/j.jprocont.2003.09.004
– ident: ref58
  doi: 10.1016/j.neucom.2013.04.042
– ident: ref12
  doi: 10.1021/ie501502t
– ident: ref40
  doi: 10.1016/S0925-2312(01)00702-0
– ident: ref52
  doi: 10.1016/S0169-7439(00)00062-9
– ident: ref6
  doi: 10.1016/j.jprocont.2012.06.009
– ident: ref9
  doi: 10.1016/j.jprocont.2013.10.013
– ident: ref5
  doi: 10.1109/TIE.2014.2308133
– ident: ref43
  doi: 10.1109/IJCNN.2013.6706761
– ident: ref31
  doi: 10.1016/j.ces.2003.09.012
– ident: ref35
  doi: 10.1016/j.conengprac.2013.06.017
– ident: ref13
  doi: 10.1016/j.chemolab.2014.04.012
– ident: ref59
  doi: 10.1016/0098-1354(93)80018-I
– ident: ref34
  doi: 10.1016/j.ces.2009.01.050
– ident: ref38
  doi: 10.1016/j.ifacol.2015.09.719
– ident: ref7
  doi: 10.1021/ie302069q
– ident: ref15
  doi: 10.1016/j.neucom.2014.08.009
– ident: ref17
  doi: 10.1016/j.compchemeng.2015.03.001
– ident: ref54
  doi: 10.1002/aic.690480916
– ident: ref42
  doi: 10.1016/j.knosys.2015.01.002
– ident: ref26
  doi: 10.1016/j.jprocont.2013.09.017
– ident: ref25
  doi: 10.1016/j.cjche.2015.01.014
– ident: ref4
  doi: 10.1016/j.arcontrol.2012.09.004
– ident: ref21
  doi: 10.1016/j.jprocont.2004.02.001
– ident: ref36
  doi: 10.1016/j.chemolab.2013.07.001
– ident: ref48
  doi: 10.1109/TNNLS.2015.2389273
– ident: ref27
  doi: 10.1002/aic.690370209
– ident: ref3
  doi: 10.1007/978-1-4471-6410-4
– ident: ref2
  doi: 10.1016/j.arcontrol.2016.09.001
– ident: ref1
  doi: 10.1016/j.jprocont.2015.04.006
SSID ssj0000605649
Score 2.6134903
Snippet Many industrial processes contain both linear and nonlinear parts, and kernel principal component analysis (KPCA), widely used in nonlinear process monitoring,...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 560
SubjectTerms Case studies
Computer simulation
Data models
Diagnosis
Fault detection
Fault diagnosis
fault identification
Feature extraction
Fuses
Kernel
kernel principal component analysis (KPCA)
Mathematical models
Monitoring
Nonlinear analysis
nonlinear process monitoring
Principal component analysis
Principal components analysis
Regression analysis
serial principal component analysis
similarity factor
Statistical analysis
Statistical models
Title Nonlinear Process Fault Diagnosis Based on Serial Principal Component Analysis
URI https://ieeexplore.ieee.org/document/7795255
https://www.ncbi.nlm.nih.gov/pubmed/28026785
https://www.proquest.com/docview/2008990854
https://www.proquest.com/docview/1853353362
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1bS90w-EN98kXnZbPqJMLeZo9p2qbNo9s8iMy-TOG8ldwKw0OPeNqX_Xq_JG0ZsolQSqBpk34Xvku-C8CXzJqGlTKLy1SKOFO0iaUoRGxcG25rZCoLlyh8V_Gbh-x2kS824GLKhbHW-uAzO3NDf5ZvVrp3rrLLohA5qsCbsImGW8jVmvwpFPVy7rVdlnAWs7RYjDkyVFzeV9XPXy6Qi89c9RVkcFcFuHTtl1wX5b9Eku-x8n9104ud-S7cjRsO0SaPs75TM_3nVS3H9_7RB9gZ9E9yFQhmDzZsuw-7Y28HMrD6AVRVqKEhn8mQS0Dmsl925EeIzfu9Jt9QABqyaknwsOE877fHkfvcqsWVyVjz5BAe5tf332_iofdCrLOk6GKFpoThJmcUsdawRBmqEXCKowmjU8lSLRqpS5WJUisuE4sgVUakwjScMcXSj7DV4kpHQGhui0ZRLhXaLpm706awvMmlppblZQTJCP5aD4XJXX-MZe0NFCpqj73aYa8esBfB1-mdp1CW483ZBw7008wB6hGcjliuB85d-7acKKHLPIvgfHqMPOcOUmRrV_26djpOihdnEXwK1DF9eySq43-veQLbuLMyRLGdwlb33NvPqNZ06szT8wsn0PBu
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3JbtQw9Km0B7hQSqEESnElbpCp4yROfGTpaKAzuTCV5hZ5i1S1yqBOcuHrebaTCCFASFFkKU7svEVv8VsA3mbWNKyUWVymUsSZok0sRSFi49pwWyNTWbhE4VXFF9fZ102-2YP3Uy6MtdYHn9mZG_qzfLPVvXOVXRSFyFEFfgAHKPfzJGRrTR4Vipo59_ouSziLWVpsxiwZKi7WVbX85kK5-MzVX0EWd3WAS9eAyfVR_kUo-S4rf1c4veCZH8Jq3HKIN7md9Z2a6R-_VXP83396Ao8HDZR8CCRzBHu2fQqHY3cHMjD7MVRVqKIh78mQTUDmsr_ryOcQnXezIx9RBBqybUnwseE877nHkfvctsWVyVj15Blczy_Xnxbx0H0h1llSdLFCY8JwkzOKeGtYogzVCDjF0YjRqWSpFo3UpcpEqRWXiUWQKiNSYRrOmGLpc9hvcaUXQGhui0ZRLhVaL5m706awvMmlppblZQTJCP5aD6XJXYeMu9qbKFTUHnu1w149YC-Cd9M730Nhjn_OPnagn2YOUI_gdMRyPfDuzjfmRBld5lkE59Nj5Dp3lCJbu-13tdNyUrw4i-AkUMf07ZGoXv55zTfwcLFeLevll-rqFTzCXZYhpu0U9rv73r5GJadTZ562fwLbEvO3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+Process+Fault+Diagnosis+Based+on+Serial+Principal+Component+Analysis&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Deng%2C+Xiaogang&rft.au=Tian%2C+Xuemin&rft.au=Chen%2C+Sheng&rft.au=Harris%2C+Chris+J.&rft.date=2018-03-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=29&rft.issue=3&rft.spage=560&rft.epage=572&rft_id=info:doi/10.1109%2FTNNLS.2016.2635111&rft_id=info%3Apmid%2F28026785&rft.externalDocID=7795255
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon