Destroying the event horizon of a nonsingular rotating quantum-corrected black hole
A bstract The destruction of the event horizon of a nonsingular black hole, which is not prevented by the weak cosmic censorship conjecture, might provide us the possibility to access quantum regime of gravity inside black hole. We investigate the possibility of overspinning a nonsingular rotating q...
Saved in:
Published in | The journal of high energy physics Vol. 2022; no. 4; pp. 66 - 19 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
11.04.2022
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
The destruction of the event horizon of a nonsingular black hole, which is not prevented by the weak cosmic censorship conjecture, might provide us the possibility to access quantum regime of gravity inside black hole. We investigate the possibility of overspinning a nonsingular rotating quantum-corrected black hole by a test particle and a scalar field in this paper, and analyse the effect of the quantum parameter on the destruction of the event horizon. For the test particle injection, both extremal and near-extremal black holes cannot be overspun due to the existence of the quantum parameter. And the larger the quantum parameter the harder the black hole to be overspun. It seems that the quantum parameter acts as a protector to prevent the black hole to be destroyed. However, for the test scalar field scattering, both extremal and near-extremal black holes can be destroyed. Due to the loop quantum gravity correction, the angular velocity of the extremal black hole shifts from that of the extremal Kerr black hole. This provides a small range of wave modes to destroy the event horizon of the quantum-corrected black hole. |
---|---|
AbstractList | The destruction of the event horizon of a nonsingular black hole, which is not prevented by the weak cosmic censorship conjecture, might provide us the possibility to access quantum regime of gravity inside black hole. We investigate the possibility of overspinning a nonsingular rotating quantum-corrected black hole by a test particle and a scalar field in this paper, and analyse the effect of the quantum parameter on the destruction of the event horizon. For the test particle injection, both extremal and near-extremal black holes cannot be overspun due to the existence of the quantum parameter. And the larger the quantum parameter the harder the black hole to be overspun. It seems that the quantum parameter acts as a protector to prevent the black hole to be destroyed. However, for the test scalar field scattering, both extremal and near-extremal black holes can be destroyed. Due to the loop quantum gravity correction, the angular velocity of the extremal black hole shifts from that of the extremal Kerr black hole. This provides a small range of wave modes to destroy the event horizon of the quantum-corrected black hole. A bstract The destruction of the event horizon of a nonsingular black hole, which is not prevented by the weak cosmic censorship conjecture, might provide us the possibility to access quantum regime of gravity inside black hole. We investigate the possibility of overspinning a nonsingular rotating quantum-corrected black hole by a test particle and a scalar field in this paper, and analyse the effect of the quantum parameter on the destruction of the event horizon. For the test particle injection, both extremal and near-extremal black holes cannot be overspun due to the existence of the quantum parameter. And the larger the quantum parameter the harder the black hole to be overspun. It seems that the quantum parameter acts as a protector to prevent the black hole to be destroyed. However, for the test scalar field scattering, both extremal and near-extremal black holes can be destroyed. Due to the loop quantum gravity correction, the angular velocity of the extremal black hole shifts from that of the extremal Kerr black hole. This provides a small range of wave modes to destroy the event horizon of the quantum-corrected black hole. Abstract The destruction of the event horizon of a nonsingular black hole, which is not prevented by the weak cosmic censorship conjecture, might provide us the possibility to access quantum regime of gravity inside black hole. We investigate the possibility of overspinning a nonsingular rotating quantum-corrected black hole by a test particle and a scalar field in this paper, and analyse the effect of the quantum parameter on the destruction of the event horizon. For the test particle injection, both extremal and near-extremal black holes cannot be overspun due to the existence of the quantum parameter. And the larger the quantum parameter the harder the black hole to be overspun. It seems that the quantum parameter acts as a protector to prevent the black hole to be destroyed. However, for the test scalar field scattering, both extremal and near-extremal black holes can be destroyed. Due to the loop quantum gravity correction, the angular velocity of the extremal black hole shifts from that of the extremal Kerr black hole. This provides a small range of wave modes to destroy the event horizon of the quantum-corrected black hole. |
ArticleNumber | 66 |
Author | Zhang, Yu-Peng Wei, Shao-Wen Yang, Si-Jiang Liu, Yu-Xiao |
Author_xml | – sequence: 1 givenname: Si-Jiang surname: Yang fullname: Yang, Si-Jiang organization: Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, School of Physical Science and Technology, Lanzhou University, Institute of Theoretical Physics & Research Center of Gravitation, Lanzhou University – sequence: 2 givenname: Yu-Peng surname: Zhang fullname: Zhang, Yu-Peng organization: Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, School of Physical Science and Technology, Lanzhou University, Institute of Theoretical Physics & Research Center of Gravitation, Lanzhou University – sequence: 3 givenname: Shao-Wen surname: Wei fullname: Wei, Shao-Wen organization: Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, School of Physical Science and Technology, Lanzhou University, Institute of Theoretical Physics & Research Center of Gravitation, Lanzhou University – sequence: 4 givenname: Yu-Xiao orcidid: 0000-0002-4117-4176 surname: Liu fullname: Liu, Yu-Xiao email: liuyx@lzu.edu.cn organization: Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, School of Physical Science and Technology, Lanzhou University, Institute of Theoretical Physics & Research Center of Gravitation, Lanzhou University, Key Laboratory for Magnetism and Magnetic of the Ministry of Education, Lanzhou University |
BookMark | eNp9kc1L5TAUxYMojB-znm1hNrqo3qRJmiwHdfxAUFDX4TZNn31TE03TAf3rzbODyoCuEpLzO-dyzxZZ98E7Qn5Q2KcA9cH56fEV8F0GjO2BlGtkkwLTpeK1Xv9w_0a2xnEJQAXVsEmuj9yYYnjq_aJId65wf51PxV2I_XPwRegKLHLOmL-nAWMRQ8K00j5O6NN0X9oQo7PJtUUzoP2TycHtkI0Oh9F9_3duk9vfxzeHp-XF5cnZ4a-L0nJap7IBsE5oLivdQMtBtbXSTFFEZkE1VjqFrRBgBZeiYYzpDijlUlYNrRXT1TY5m33bgEvzEPt7jE8mYG9eH0JcGIypt4MzArHjtqoo6zqukWtKNUctHTRtK5TIXj9nr4cYHqe8E7MMU_R5fMMk15xxBSqrDmaVjWEco-veUimYVQtmbsGsWjC5hUyI_wjbr1YYfIrYD19wMHNjTvALF9_n-Qx5Aev9m1c |
CitedBy_id | crossref_primary_10_1088_1475_7516_2022_10_077 crossref_primary_10_3847_1538_4357_accced crossref_primary_10_1088_1674_1137_ad34c1 crossref_primary_10_1140_epjc_s10052_023_11764_9 crossref_primary_10_1088_1475_7516_2023_01_032 crossref_primary_10_1103_PhysRevD_107_064019 crossref_primary_10_1088_1361_6382_ad6129 crossref_primary_10_1140_epjc_s10052_024_13062_4 crossref_primary_10_1140_epjc_s10052_023_12117_2 crossref_primary_10_3847_1538_4357_acb334 crossref_primary_10_1140_epjc_s10052_024_12698_6 crossref_primary_10_1103_PhysRevD_106_024052 crossref_primary_10_1140_epjc_s10052_023_11868_2 crossref_primary_10_1007_JHEP03_2023_160 crossref_primary_10_1007_JHEP07_2024_226 crossref_primary_10_1007_s10714_025_03383_4 crossref_primary_10_1103_PhysRevD_109_064089 crossref_primary_10_1140_epjc_s10052_023_12265_5 crossref_primary_10_1103_PhysRevD_110_024081 |
Cites_doi | 10.1103/PhysRevD.87.041501 10.1103/PhysRevLett.14.57 10.1007/978-3-319-19000-6_1 10.1142/S0217732319500378 10.1103/PhysRevD.104.084069 10.1103/PhysRevLett.121.241301 10.1103/PhysRevD.88.064043 10.1007/JHEP09(2018)081 10.1007/JHEP09(2019)099 10.1007/JHEP09(2021)095 10.1103/PhysRevLett.68.1447 10.1103/PhysRevD.95.124050 10.1098/rspa.1970.0021 10.1016/j.nuclphysb.2021.115335 10.1103/PhysRevLett.103.131102 10.1103/PhysRevD.59.064013 10.1103/PhysRevLett.66.994 10.1103/PhysRevLett.118.181101 10.1103/PhysRevD.91.104024 10.1140/epjc/s10052-020-7703-6 10.1088/0264-9381/33/17/175002 10.1103/PhysRevD.101.084001 10.1103/PhysRevLett.116.071102 10.1007/JHEP05(2020)161 10.1103/PhysRevLett.70.9 10.1007/JHEP04(2019)121 10.1088/0264-9381/6/7/012 10.1016/0003-4916(74)90125-0 10.1103/PhysRevLett.118.151103 10.1103/PhysRevD.92.104021 10.1007/JHEP03(2022)111 10.1088/1475-7516/2020/03/058 10.1103/PhysRevD.96.104014 10.1088/1475-7516/2021/10/012 10.1007/s10714-020-02735-6 10.1140/epjc/s10052-020-08511-9 10.1103/PhysRevD.101.041502 10.1103/PhysRevLett.59.2137 10.1103/PhysRevLett.103.209903 10.1007/JHEP03(2021)045 10.1140/epjc/s10052-020-08475-w 10.1140/epjc/s10052-022-10120-7 10.1007/BF01223743 10.1016/j.physletb.2021.136390 10.1103/PhysRevD.103.084038 10.1103/PhysRevLett.92.131101 10.1007/s10714-010-1108-z 10.1103/PhysRevLett.105.261102 10.1103/PhysRevLett.126.181301 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/JHEP04(2022)066 |
DatabaseName | Springer Nature OA/Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 19 |
ExternalDocumentID | oai_doaj_org_article_5aaf4c3312ff49a491194a96e0bdd585 10_1007_JHEP04_2022_066 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX AMVHM CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c417t-b00ce594639b0d408d789281aa2c08bc6e8ad550c5465b2229f0114663b178293 |
IEDL.DBID | BENPR |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:30:53 EDT 2025 Sun Jul 13 04:28:47 EDT 2025 Tue Jul 01 01:00:05 EDT 2025 Thu Apr 24 23:03:05 EDT 2025 Fri Feb 21 02:45:24 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Black Holes Models of Quantum Gravity Spacetime Singularities |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-b00ce594639b0d408d789281aa2c08bc6e8ad550c5465b2229f0114663b178293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4117-4176 |
OpenAccessLink | https://www.proquest.com/docview/2649424808?pq-origsite=%requestingapplication% |
PQID | 2649424808 |
PQPubID | 2034718 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5aaf4c3312ff49a491194a96e0bdd585 proquest_journals_2649424808 crossref_primary_10_1007_JHEP04_2022_066 crossref_citationtrail_10_1007_JHEP04_2022_066 springer_journals_10_1007_JHEP04_2022_066 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-11 |
PublicationDateYYYYMMDD | 2022-04-11 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | LiangJGuoXChenDMuBRemarks on the weak cosmic censorship conjecture of RN-AdS black holes with cloud of strings and quintessence under the scalar fieldNucl. Phys. B202196542169751489.83069[arXiv:2008.08327] [INSPIRE] ShapiroSLTeukolskySAFormation of naked singularities: the violation of cosmic censorshipPhys. Rev. Lett.1991669941991PhRvL..66..994S10959780968.83515[INSPIRE] ChenBLinF-LNingBGedanken experiments to destroy a BTZ black holePhys. Rev. D20191002019PhRvD.100d4043N4022998[arXiv:1902.00949] [INSPIRE] CorelliFIkedaTPaniPChallenging cosmic censorship in Einstein-Maxwell-scalar theory with numerically simulated gedanken experimentsPhys. Rev. D20211042021PhRvD.104h4069C4342316[arXiv:2108.08328] [INSPIRE] GwakBCosmic censorship conjecture in Kerr-Sen black holePhys. Rev. D2017952017PhRvD..95l4050G3827489[arXiv:1611.09640] [INSPIRE] GhoshRMishraAKSarkarSOvercharging extremal black holesPhys. Rev. D20211042021PhRvD.104j4043G4354801[arXiv:2106.10667] [INSPIRE] BodendorferNMeleFMMünchJMass and horizon Dirac observables in effective models of quantum black-to-white hole transitionClass. Quant. Grav.2021382021CQGra..38i5002B42639741483.83022[arXiv:1912.00774] [INSPIRE] LehnerLPretoriusFBlack strings, low viscosity fluids, and violation of cosmic censorshipPhys. Rev. Lett.20101052010PhRvL.105j1102L2720336[arXiv:1006.5960] [INSPIRE] GonçalvesJNatárioJProof of the weak cosmic censorship conjecture for several extremal black holesGen. Rel. Grav.2020529441522841461.83029[arXiv:2004.02902] [INSPIRE] HossenfelderSModestoLPremont-SchwarzIA model for non-singular black hole collapse and evaporationPhys. Rev. D2010812010PhRvD..81d4036H[arXiv:0912.1823] [INSPIRE] T. Jacobson and T. P. Sotiriou, Over-spinning a black hole with a test body, Phys. Rev. Lett.103 (2009) 141101 [Erratum ibid.103 (2009) 209903] [arXiv:0907.4146] [INSPIRE]. R. Wald, Gedanken experiments to destroy a black hole, Ann. Phys.82 (1974) 548. LiangBWeiS-WLiuY-XWeak cosmic censorship conjecture in Kerr black holes of modified gravityMod. Phys. Lett. A20193419500372019MPLA...3450037L39166721407.83009[arXiv:1804.06966] [INSPIRE] AndradeTEmparanRLichtDLunaRCosmic censorship violation in black hole collisions in higher dimensionsJHEP2019041212019JHEP...04..121A39539531415.83033[arXiv:1812.05017] [INSPIRE] SperhakeUCardosoVPretoriusFBertiEHindererTYunesNCross section, final spin and zoom-whirl behavior in high-energy black hole collisionsPhys. Rev. Lett.20091032009PhRvL.103m1102S[arXiv:0907.1252] [INSPIRE] SongYHuT-TWangY-QWeak cosmic censorship with self-interacting scalar and bound on charge to mass ratioJHEP2021030452021JHEP...03..045S42628091461.83040[arXiv:2008.02513] [INSPIRE] PenroseRGravitational collapse and space-time singularitiesPhys. Rev. Lett.196514571965PhRvL..14...57P1726780125.21206[INSPIRE] GwakBWeak cosmic censorship conjecture in Kerr-Newman-(anti-)de Sitter black hole with charged scalar fieldJCAP2021100122021JCAP...10..012G43679751486.83102[arXiv:2105.07226] [INSPIRE] HertogTHorowitzGTMaedaKGeneric cosmic censorship violation in anti-de Sitter spacePhys. Rev. Lett.2004921311012004PhRvL..92m1101H[gr-qc/0307102] [INSPIRE] YangS-JChenJWanJ-JWeiS-WLiuY-XWeak cosmic censorship conjecture for a Kerr-Taub-NUT black hole with a test scalar field and particlePhys. Rev. D20201012020PhRvD.101f4048Y4086206[arXiv:2001.03106] [INSPIRE] AndradeTEmparanRLichtDLunaRBlack hole collisions, instabilities, and cosmic censorship violation at large DJHEP2019090992019JHEP...09..099A40202471423.83039[arXiv:1908.03424] [INSPIRE] HubenyVEOvercharging a black hole and cosmic censorshipPhys. Rev. D1999591999PhRvD..59f4013H1678942[gr-qc/9808043] [INSPIRE] HawkingSWPenroseRThe singularities of gravitational collapse and cosmologyProc. Roy. Soc. Lond. A19703145291970RSPSA.314..529H2649590954.83012[INSPIRE] C. Liu et al., Shadow and quasinormal modes of a rotating loop quantum black hole, Phys. Rev. D101 (2020) 084001 [Erratum ibid.103 (2021) 089902] [arXiv:2003.00477] [INSPIRE]. LiZBambiCDestroying the event horizon of regular black holesPhys. Rev. D2013872013PhRvD..87l4022L[arXiv:1304.6592] [INSPIRE] LemosJPSNaked singularities: gravitationally collapsing configurations of dust or radiation in spherical symmetry. A unified treatmentPhys. Rev. Lett.19926814471992PhRvL..68.1447L11533720969.83519[INSPIRE] SemizİDüztaşKWeak cosmic censorship, superradiance and quantum particle creationPhys. Rev. D2015922015PhRvD..92j4021S3465132[arXiv:1507.03744] [INSPIRE] GwakBWeak cosmic censorship in Kerr-Sen black hole under charged scalar fieldJCAP2020030582020JCAP...03..058G41277141490.83057[arXiv:1910.13329] [INSPIRE] FuQ-MZhangXGravitational lensing by a black hole in effective loop quantum gravityPhys. Rev. D20221052022PhRvD.105f4020F4416058[arXiv:2111.07223] [INSPIRE] FiguerasPKuneschMTunyasuvunakoolSEnd point of black ring instabilities and the weak cosmic censorship conjecturePhys. Rev. Lett.20161162016PhRvL.116g1102F[arXiv:1512.04532] [INSPIRE] EperonFCGanchevBSantosJEPlausible scenario for a generic violation of the weak cosmic censorship conjecture in asymptotically flat four dimensionsPhys. Rev. D20201012020PhRvD.101d1502E4073078[arXiv:1906.11257] [INSPIRE] FiguerasPKuneschMLehnerLTunyasuvunakoolSEnd point of the ultraspinning instability and violation of cosmic censorshipPhys. Rev. Lett.20171182017PhRvL.118o1103F[arXiv:1702.01755] [INSPIRE] ZhangMJiangJNew gedanken experiment on higher-dimensional asymptotically AdS Reissner-Nordström black holeEur. Phys. J. C2020808902020EPJC...80..890Z[arXiv:2009.07681] [INSPIRE] WangX-YJiangJGedanken experiments at high-order approximation: nearly extremal Reissner-Nordström black holes cannot be overchargedJHEP2020051612020JHEP...05..161W1437.83074[arXiv:2004.12120] [INSPIRE] GwakBWeak cosmic censorship conjecture in Kerr-(anti-)de Sitter black hole with scalar fieldJHEP2018090812018JHEP...09..081G38684061398.83064[arXiv:1807.10630] [INSPIRE] Y.-L. Liu, Z.-Q. Feng and X.-D. Zhang, Observational tests of a black hole in effective loop quantum gravity, arXiv:2201.10202 [INSPIRE]. YangS-JWanJ-JChenJYangJWangY-QWeak cosmic censorship conjecture for the novel 4D charged Einstein-Gauss-Bonnet black hole with test scalar field and particleEur. Phys. J. C2020809372020EPJC...80..937Y[arXiv:2004.07934] [INSPIRE] GanW-CSantosNOShuF-WWangAProperties of the spherically symmetric polymer black holesPhys. Rev. D20201022020PhRvD.102l4030G4196998[arXiv:2008.09664] [INSPIRE] BarausseECardosoVKhannaGTest bodies and naked singularities: is the self-force the cosmic censor?Phys. Rev. Lett.20101052010PhRvL.105z1102B[arXiv:1008.5159] [INSPIRE] F. Qu, S.-J. Yang, Z. Wang and J.-R. Ren, Weak cosmic censorship conjecture is not violated for a rotating linear dilaton black hole, arXiv:2008.09950 [INSPIRE]. R. Penrose, Gravitational collapse: the role of general relativity, Riv. Nuovo Cim.1 (1969) 252 [Gen. Rel. Grav.34 (2002) 1141] [INSPIRE]. SangAJiangJGedanken experiments at high-order approximation: Kerr black hole cannot be overspunJHEP2021090952021JHEP...09..095S43272211472.83061[arXiv:2108.03454] [INSPIRE] AshtekarAOlmedoJSinghPQuantum transfiguration of Kruskal black holesPhys. Rev. Lett.20181212018PhRvL.121x1301A[arXiv:1806.00648] [INSPIRE] QuYTaoJWuJNew gedanken experiment on RN-AdS black holes surrounded by quintessenceEur. Phys. J. C2022821852022EPJC...82..185Q[arXiv:2103.09183] [INSPIRE] BodendorferNMeleFMMünchJ(b, v)-type variables for black to white hole transitions in effective loop quantum gravityPhys. Lett. B2021819426876607409697[arXiv:1911.12646] [INSPIRE] BarausseECardosoVKhannaGTesting the cosmic censorship conjecture with point particles: the effect of radiation reaction and the self-forcePhys. Rev. D2011842011PhRvD..84j4006B[arXiv:1106.1692] [INSPIRE] FengW-BYangS-JTanQYangJLiuY-XOvercharging a Reissner-Nordström Taub-NUT regular black holeSci. China Phys. Mech. Astron.2021642021SCPMA..6460411F[arXiv:2009.12846] [INSPIRE] MatsasGEARichartzMSaaAda SilvaARRVanzellaDATCan quantum mechanics fool the cosmic censor?Phys. Rev. D2009792009PhRvD..79j1502M2538527[arXiv:0905.1077] [INSPIRE] JiangJGaoYInvestigating the gedanken experiment to destroy the event horizon of a regular black holePhys. Rev. D20201012020PhRvD.101h4005J4103100[arXiv:2003.07501] [INSPIRE] SemizIDyonic Kerr-Newman black holes, complex scalar field and cosmic censorshipGen. Rel. Grav.2011438332011GReGr..43..833S27735411215.83042[gr-qc/0508011] [INSPIRE] MatsasGEAda SilvaARROverspinning a nearly extreme charged black hole via a quantum tunneling processPhys. Rev. Lett.2007992007PhRvL..99r1301M[arXiv:0706.3198] [INSPIRE] HodSWeak cosmic censorship: as strong as everPhys. Rev. Lett.20081002008PhRvL.100l1101H23902591228.83085[arXiv:0805.3873] [INSPIRE] ChoptuikMWUniversality and scaling in gravitational collapse of a massless scalar fieldPhys. Rev. Lett.19937091993PhRvL..70....9C[INSPIRE] SorceJWaldRMGedanken experiments to destroy a black hole. II. Kerr-Newman black holes cannot be overcharged or overspunPhys. Rev. D2017961040142017PhRvD..96j4014S3864960[arXiv:1707.05862] [INSPIRE] BritoRCardosoVPaniPSuperradiance: new frontiers in black hole physicsLect. Notes Phys.20159061[arXiv:1501.06570] [INSPIRE] CrisfordTSantosJEViolating the weak cosmic censorship conjecture in four-dimensional anti-de Sitter spacePhys. Rev. Lett.20171182017PhRvL.118r1101C[arXiv:1702.05490] [INSPIRE] DüztaşKSemizİCosmic censorship, black holes and integer-spin test fieldsPhys. Rev. D2013882013PhRvD..88f4043D[arXiv:1307.1481] [INSPIRE] AndradeTFiguerasPSperhakeUEvidence for violations of weak cosmic censorship in black hole collisions in higher dimensionsJHEP2022031112022JHEP...03..111A442619807609953[arXiv:2011.03049] [INSPIRE] ZimmermanPVegaIPoissonEHaasRSelf-force as a cosmic censorPhys. Rev. D2013872013PhRvD..87d1501Z[arXiv:1211.3889] [INSPIRE] OriAPiranTNaked singularities in selfsimilar spherical gravitational collapsePhys. Rev. Lett.19875921371987PhRvL..59.2137O[INSPIRE] BlanchetteKDasSHergottSRastgooSBlack hole singularity resolution via the modified Raychaudhu S Hod (18173_CR24) 2002; 66 E Barausse (18173_CR28) 2010; 105 VE Hubeny (18173_CR23) 1999; 59 B Chen (18173_CR40) 2019; 100 Y Qu (18173_CR41) 2022; 82 X-Y Wang (18173_CR38) 2020; 05 T Hertog (18173_CR17) 2004; 92 A Sang (18173_CR35) 2021; 09 Q-M Fu (18173_CR58) 2022; 105 J Jiang (18173_CR39) 2020; 101 P Figueras (18173_CR15) 2016; 116 J Sorce (18173_CR34) 2017; 96 S Brahma (18173_CR60) 2021; 126 T Crisford (18173_CR13) 2017; 118 18173_CR37 N Bodendorfer (18173_CR54) 2021; 819 GEA Matsas (18173_CR52) 2009; 79 U Sperhake (18173_CR21) 2009; 103 A Ori (18173_CR5) 1987; 59 S-J Yang (18173_CR45) 2020; 80 S Hod (18173_CR51) 2008; 100 R Penrose (18173_CR1) 1965; 14 R Ghosh (18173_CR26) 2019; 100 R Ghosh (18173_CR27) 2021; 104 GEA Matsas (18173_CR50) 2007; 99 J Gonçalves (18173_CR48) 2020; 52 B Gwak (18173_CR49) 2020; 03 Z Li (18173_CR61) 2013; 87 18173_CR22 J Liang (18173_CR46) 2021; 965 Y Song (18173_CR10) 2021; 03 S-J Yang (18173_CR69) 2020; 101 18173_CR25 F Corelli (18173_CR11) 2021; 104 J Natario (18173_CR47) 2016; 33 T-T Hu (18173_CR9) 2020; 80 B Liang (18173_CR33) 2019; 34 B Gwak (18173_CR32) 2017; 95 N Bodendorfer (18173_CR55) 2021; 38 D Christodoulou (18173_CR4) 1984; 93 T Andrade (18173_CR20) 2019; 04 E Barausse (18173_CR29) 2011; 84 K Blanchette (18173_CR53) 2021; 103 P Figueras (18173_CR14) 2017; 118 18173_CR56 R Brito (18173_CR68) 2015; 906 18173_CR59 İ Semiz (18173_CR66) 2015; 92 K Düztaş (18173_CR65) 2013; 88 T Andrade (18173_CR19) 2019; 09 B Gwak (18173_CR44) 2021; 10 T Andrade (18173_CR18) 2022; 03 JPS Lemos (18173_CR7) 1992; 68 A Ashtekar (18173_CR57) 2018; 121 18173_CR3 E Seidel (18173_CR67) 1989; 6 I Semiz (18173_CR42) 2011; 43 S Hossenfelder (18173_CR63) 2010; 81 M Zhang (18173_CR36) 2020; 80 W-C Gan (18173_CR62) 2020; 102 B Gwak (18173_CR43) 2018; 09 P Zimmerman (18173_CR30) 2013; 87 W-B Feng (18173_CR64) 2021; 64 SW Hawking (18173_CR2) 1970; 314 MW Choptuik (18173_CR8) 1993; 70 M Colleoni (18173_CR31) 2015; 91 FC Eperon (18173_CR12) 2020; 101 L Lehner (18173_CR16) 2010; 105 SL Shapiro (18173_CR6) 1991; 66 |
References_xml | – reference: SorceJWaldRMGedanken experiments to destroy a black hole. II. Kerr-Newman black holes cannot be overcharged or overspunPhys. Rev. D2017961040142017PhRvD..96j4014S3864960[arXiv:1707.05862] [INSPIRE] – reference: GhoshRMishraAKSarkarSOvercharging extremal black holesPhys. Rev. D20211042021PhRvD.104j4043G4354801[arXiv:2106.10667] [INSPIRE] – reference: C. Liu et al., Shadow and quasinormal modes of a rotating loop quantum black hole, Phys. Rev. D101 (2020) 084001 [Erratum ibid.103 (2021) 089902] [arXiv:2003.00477] [INSPIRE]. – reference: EperonFCGanchevBSantosJEPlausible scenario for a generic violation of the weak cosmic censorship conjecture in asymptotically flat four dimensionsPhys. Rev. D20201012020PhRvD.101d1502E4073078[arXiv:1906.11257] [INSPIRE] – reference: LiangBWeiS-WLiuY-XWeak cosmic censorship conjecture in Kerr black holes of modified gravityMod. Phys. Lett. A20193419500372019MPLA...3450037L39166721407.83009[arXiv:1804.06966] [INSPIRE] – reference: GwakBWeak cosmic censorship conjecture in Kerr-Newman-(anti-)de Sitter black hole with charged scalar fieldJCAP2021100122021JCAP...10..012G43679751486.83102[arXiv:2105.07226] [INSPIRE] – reference: YangS-JWanJ-JChenJYangJWangY-QWeak cosmic censorship conjecture for the novel 4D charged Einstein-Gauss-Bonnet black hole with test scalar field and particleEur. Phys. J. C2020809372020EPJC...80..937Y[arXiv:2004.07934] [INSPIRE] – reference: MatsasGEAda SilvaARROverspinning a nearly extreme charged black hole via a quantum tunneling processPhys. Rev. Lett.2007992007PhRvL..99r1301M[arXiv:0706.3198] [INSPIRE] – reference: BodendorferNMeleFMMünchJMass and horizon Dirac observables in effective models of quantum black-to-white hole transitionClass. Quant. Grav.2021382021CQGra..38i5002B42639741483.83022[arXiv:1912.00774] [INSPIRE] – reference: SemizİDüztaşKWeak cosmic censorship, superradiance and quantum particle creationPhys. Rev. D2015922015PhRvD..92j4021S3465132[arXiv:1507.03744] [INSPIRE] – reference: LemosJPSNaked singularities: gravitationally collapsing configurations of dust or radiation in spherical symmetry. A unified treatmentPhys. Rev. Lett.19926814471992PhRvL..68.1447L11533720969.83519[INSPIRE] – reference: CrisfordTSantosJEViolating the weak cosmic censorship conjecture in four-dimensional anti-de Sitter spacePhys. Rev. Lett.20171182017PhRvL.118r1101C[arXiv:1702.05490] [INSPIRE] – reference: SemizIDyonic Kerr-Newman black holes, complex scalar field and cosmic censorshipGen. Rel. Grav.2011438332011GReGr..43..833S27735411215.83042[gr-qc/0508011] [INSPIRE] – reference: BarausseECardosoVKhannaGTest bodies and naked singularities: is the self-force the cosmic censor?Phys. Rev. Lett.20101052010PhRvL.105z1102B[arXiv:1008.5159] [INSPIRE] – reference: ShapiroSLTeukolskySAFormation of naked singularities: the violation of cosmic censorshipPhys. Rev. Lett.1991669941991PhRvL..66..994S10959780968.83515[INSPIRE] – reference: GhoshRFairoosCSarkarSOvercharging higher curvature black holesPhys. Rev. D20191002019PhRvD.100l4019G4048078[arXiv:1906.08016] [INSPIRE] – reference: PenroseRGravitational collapse and space-time singularitiesPhys. Rev. Lett.196514571965PhRvL..14...57P1726780125.21206[INSPIRE] – reference: FuQ-MZhangXGravitational lensing by a black hole in effective loop quantum gravityPhys. Rev. D20221052022PhRvD.105f4020F4416058[arXiv:2111.07223] [INSPIRE] – reference: YangS-JChenJWanJ-JWeiS-WLiuY-XWeak cosmic censorship conjecture for a Kerr-Taub-NUT black hole with a test scalar field and particlePhys. Rev. D20201012020PhRvD.101f4048Y4086206[arXiv:2001.03106] [INSPIRE] – reference: BlanchetteKDasSHergottSRastgooSBlack hole singularity resolution via the modified Raychaudhuri equation in loop quantum gravityPhys. Rev. D20211032021PhRvD.103h4038B4261165[arXiv:2011.11815] [INSPIRE] – reference: AndradeTFiguerasPSperhakeUEvidence for violations of weak cosmic censorship in black hole collisions in higher dimensionsJHEP2022031112022JHEP...03..111A442619807609953[arXiv:2011.03049] [INSPIRE] – reference: HossenfelderSModestoLPremont-SchwarzIA model for non-singular black hole collapse and evaporationPhys. Rev. D2010812010PhRvD..81d4036H[arXiv:0912.1823] [INSPIRE] – reference: BodendorferNMeleFMMünchJ(b, v)-type variables for black to white hole transitions in effective loop quantum gravityPhys. Lett. B2021819426876607409697[arXiv:1911.12646] [INSPIRE] – reference: BritoRCardosoVPaniPSuperradiance: new frontiers in black hole physicsLect. Notes Phys.20159061[arXiv:1501.06570] [INSPIRE] – reference: BrahmaSChenC-YYeomD-HTesting loop quantum gravity from observational consequences of nonsingular rotating black holesPhys. Rev. Lett.20211262021PhRvL.126r1301B4264715[arXiv:2012.08785] [INSPIRE] – reference: FiguerasPKuneschMLehnerLTunyasuvunakoolSEnd point of the ultraspinning instability and violation of cosmic censorshipPhys. Rev. Lett.20171182017PhRvL.118o1103F[arXiv:1702.01755] [INSPIRE] – reference: SperhakeUCardosoVPretoriusFBertiEHindererTYunesNCross section, final spin and zoom-whirl behavior in high-energy black hole collisionsPhys. Rev. Lett.20091032009PhRvL.103m1102S[arXiv:0907.1252] [INSPIRE] – reference: HuT-TSongYSunSLiH-BWangY-QWeak cosmic censorship in Born-Infeld electrodynamics and bound on charge-to-mass ratioEur. Phys. J. C2020801472020EPJC...80..147H[arXiv:1906.00235] [INSPIRE] – reference: NatarioJQueimadaLVicenteRTest fields cannot destroy extremal black holesClass. Quant. Grav.2016332016CQGra..33q5002N35387171349.83050[arXiv:1601.06809] [INSPIRE] – reference: T. Jacobson and T. P. Sotiriou, Over-spinning a black hole with a test body, Phys. Rev. Lett.103 (2009) 141101 [Erratum ibid.103 (2009) 209903] [arXiv:0907.4146] [INSPIRE]. – reference: HodSWeak cosmic censorship: as strong as everPhys. Rev. Lett.20081002008PhRvL.100l1101H23902591228.83085[arXiv:0805.3873] [INSPIRE] – reference: R. Penrose, Gravitational collapse: the role of general relativity, Riv. Nuovo Cim.1 (1969) 252 [Gen. Rel. Grav.34 (2002) 1141] [INSPIRE]. – reference: ChenBLinF-LNingBGedanken experiments to destroy a BTZ black holePhys. Rev. D20191002019PhRvD.100d4043N4022998[arXiv:1902.00949] [INSPIRE] – reference: GwakBWeak cosmic censorship conjecture in Kerr-(anti-)de Sitter black hole with scalar fieldJHEP2018090812018JHEP...09..081G38684061398.83064[arXiv:1807.10630] [INSPIRE] – reference: HodSCosmic censorship, area theorem, and selfenergy of particlesPhys. Rev. D2002662002PhRvD..66b4016H1936620[gr-qc/0205005] [INSPIRE] – reference: SangAJiangJGedanken experiments at high-order approximation: Kerr black hole cannot be overspunJHEP2021090952021JHEP...09..095S43272211472.83061[arXiv:2108.03454] [INSPIRE] – reference: Y.-L. Liu, Z.-Q. Feng and X.-D. Zhang, Observational tests of a black hole in effective loop quantum gravity, arXiv:2201.10202 [INSPIRE]. – reference: R. Wald, Gedanken experiments to destroy a black hole, Ann. Phys.82 (1974) 548. – reference: OriAPiranTNaked singularities in selfsimilar spherical gravitational collapsePhys. Rev. Lett.19875921371987PhRvL..59.2137O[INSPIRE] – reference: AndradeTEmparanRLichtDLunaRBlack hole collisions, instabilities, and cosmic censorship violation at large DJHEP2019090992019JHEP...09..099A40202471423.83039[arXiv:1908.03424] [INSPIRE] – reference: ChristodoulouDViolation of cosmic censorship in the gravitational collapse of a dust cloudCommun. Math. Phys.1984931711984CMaPh..93..171C742192[INSPIRE] – reference: JiangJGaoYInvestigating the gedanken experiment to destroy the event horizon of a regular black holePhys. Rev. D20201012020PhRvD.101h4005J4103100[arXiv:2003.07501] [INSPIRE] – reference: QuYTaoJWuJNew gedanken experiment on RN-AdS black holes surrounded by quintessenceEur. Phys. J. C2022821852022EPJC...82..185Q[arXiv:2103.09183] [INSPIRE] – reference: HertogTHorowitzGTMaedaKGeneric cosmic censorship violation in anti-de Sitter spacePhys. Rev. Lett.2004921311012004PhRvL..92m1101H[gr-qc/0307102] [INSPIRE] – reference: GanW-CSantosNOShuF-WWangAProperties of the spherically symmetric polymer black holesPhys. Rev. D20201022020PhRvD.102l4030G4196998[arXiv:2008.09664] [INSPIRE] – reference: ColleoniMBarackLOverspinning a Kerr black hole: the effect of self-forcePhys. Rev. D2015912015PhRvD..91j4024C3421357[arXiv:1501.07330] [INSPIRE] – reference: GonçalvesJNatárioJProof of the weak cosmic censorship conjecture for several extremal black holesGen. Rel. Grav.2020529441522841461.83029[arXiv:2004.02902] [INSPIRE] – reference: FiguerasPKuneschMTunyasuvunakoolSEnd point of black ring instabilities and the weak cosmic censorship conjecturePhys. Rev. Lett.20161162016PhRvL.116g1102F[arXiv:1512.04532] [INSPIRE] – reference: HubenyVEOvercharging a black hole and cosmic censorshipPhys. Rev. D1999591999PhRvD..59f4013H1678942[gr-qc/9808043] [INSPIRE] – reference: LiZBambiCDestroying the event horizon of regular black holesPhys. Rev. D2013872013PhRvD..87l4022L[arXiv:1304.6592] [INSPIRE] – reference: GwakBCosmic censorship conjecture in Kerr-Sen black holePhys. Rev. D2017952017PhRvD..95l4050G3827489[arXiv:1611.09640] [INSPIRE] – reference: GwakBWeak cosmic censorship in Kerr-Sen black hole under charged scalar fieldJCAP2020030582020JCAP...03..058G41277141490.83057[arXiv:1910.13329] [INSPIRE] – reference: HawkingSWPenroseRThe singularities of gravitational collapse and cosmologyProc. Roy. Soc. Lond. A19703145291970RSPSA.314..529H2649590954.83012[INSPIRE] – reference: DüztaşKSemizİCosmic censorship, black holes and integer-spin test fieldsPhys. Rev. D2013882013PhRvD..88f4043D[arXiv:1307.1481] [INSPIRE] – reference: LiangJGuoXChenDMuBRemarks on the weak cosmic censorship conjecture of RN-AdS black holes with cloud of strings and quintessence under the scalar fieldNucl. Phys. B202196542169751489.83069[arXiv:2008.08327] [INSPIRE] – reference: F. Qu, S.-J. Yang, Z. Wang and J.-R. Ren, Weak cosmic censorship conjecture is not violated for a rotating linear dilaton black hole, arXiv:2008.09950 [INSPIRE]. – reference: FengW-BYangS-JTanQYangJLiuY-XOvercharging a Reissner-Nordström Taub-NUT regular black holeSci. China Phys. Mech. Astron.2021642021SCPMA..6460411F[arXiv:2009.12846] [INSPIRE] – reference: ZimmermanPVegaIPoissonEHaasRSelf-force as a cosmic censorPhys. Rev. D2013872013PhRvD..87d1501Z[arXiv:1211.3889] [INSPIRE] – reference: ChoptuikMWUniversality and scaling in gravitational collapse of a massless scalar fieldPhys. Rev. Lett.19937091993PhRvL..70....9C[INSPIRE] – reference: SongYHuT-TWangY-QWeak cosmic censorship with self-interacting scalar and bound on charge to mass ratioJHEP2021030452021JHEP...03..045S42628091461.83040[arXiv:2008.02513] [INSPIRE] – reference: BarausseECardosoVKhannaGTesting the cosmic censorship conjecture with point particles: the effect of radiation reaction and the self-forcePhys. Rev. D2011842011PhRvD..84j4006B[arXiv:1106.1692] [INSPIRE] – reference: CorelliFIkedaTPaniPChallenging cosmic censorship in Einstein-Maxwell-scalar theory with numerically simulated gedanken experimentsPhys. Rev. D20211042021PhRvD.104h4069C4342316[arXiv:2108.08328] [INSPIRE] – reference: ZhangMJiangJNew gedanken experiment on higher-dimensional asymptotically AdS Reissner-Nordström black holeEur. Phys. J. C2020808902020EPJC...80..890Z[arXiv:2009.07681] [INSPIRE] – reference: SeidelEA comment on the eigenvalues of spin weighted spheroidal functionsClass. Quant. Grav.1989610571989CQGra...6.1057S1005405[INSPIRE] – reference: WangX-YJiangJGedanken experiments at high-order approximation: nearly extremal Reissner-Nordström black holes cannot be overchargedJHEP2020051612020JHEP...05..161W1437.83074[arXiv:2004.12120] [INSPIRE] – reference: AshtekarAOlmedoJSinghPQuantum transfiguration of Kruskal black holesPhys. Rev. Lett.20181212018PhRvL.121x1301A[arXiv:1806.00648] [INSPIRE] – reference: MatsasGEARichartzMSaaAda SilvaARRVanzellaDATCan quantum mechanics fool the cosmic censor?Phys. Rev. D2009792009PhRvD..79j1502M2538527[arXiv:0905.1077] [INSPIRE] – reference: LehnerLPretoriusFBlack strings, low viscosity fluids, and violation of cosmic censorshipPhys. Rev. Lett.20101052010PhRvL.105j1102L2720336[arXiv:1006.5960] [INSPIRE] – reference: AndradeTEmparanRLichtDLunaRCosmic censorship violation in black hole collisions in higher dimensionsJHEP2019041212019JHEP...04..121A39539531415.83033[arXiv:1812.05017] [INSPIRE] – volume: 87 year: 2013 ident: 18173_CR30 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.87.041501 – ident: 18173_CR59 – volume: 14 start-page: 57 year: 1965 ident: 18173_CR1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.14.57 – volume: 101 year: 2020 ident: 18173_CR39 publication-title: Phys. Rev. D – volume: 906 start-page: 1 year: 2015 ident: 18173_CR68 publication-title: Lect. Notes Phys. doi: 10.1007/978-3-319-19000-6_1 – volume: 101 year: 2020 ident: 18173_CR69 publication-title: Phys. Rev. D – volume: 34 start-page: 1950037 year: 2019 ident: 18173_CR33 publication-title: Mod. Phys. Lett. A doi: 10.1142/S0217732319500378 – volume: 38 year: 2021 ident: 18173_CR55 publication-title: Class. Quant. Grav. – volume: 104 year: 2021 ident: 18173_CR11 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.104.084069 – volume: 121 year: 2018 ident: 18173_CR57 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.241301 – volume: 88 year: 2013 ident: 18173_CR65 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.064043 – volume: 09 start-page: 081 year: 2018 ident: 18173_CR43 publication-title: JHEP doi: 10.1007/JHEP09(2018)081 – volume: 09 start-page: 099 year: 2019 ident: 18173_CR19 publication-title: JHEP doi: 10.1007/JHEP09(2019)099 – volume: 09 start-page: 095 year: 2021 ident: 18173_CR35 publication-title: JHEP doi: 10.1007/JHEP09(2021)095 – volume: 68 start-page: 1447 year: 1992 ident: 18173_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.68.1447 – volume: 95 year: 2017 ident: 18173_CR32 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.95.124050 – volume: 79 year: 2009 ident: 18173_CR52 publication-title: Phys. Rev. D – volume: 314 start-page: 529 year: 1970 ident: 18173_CR2 publication-title: Proc. Roy. Soc. Lond. A doi: 10.1098/rspa.1970.0021 – volume: 99 year: 2007 ident: 18173_CR50 publication-title: Phys. Rev. Lett. – volume: 87 year: 2013 ident: 18173_CR61 publication-title: Phys. Rev. D – volume: 965 year: 2021 ident: 18173_CR46 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2021.115335 – volume: 105 year: 2022 ident: 18173_CR58 publication-title: Phys. Rev. D – volume: 100 year: 2019 ident: 18173_CR40 publication-title: Phys. Rev. D – volume: 64 year: 2021 ident: 18173_CR64 publication-title: Sci. China Phys. Mech. Astron. – volume: 103 year: 2009 ident: 18173_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.131102 – volume: 59 year: 1999 ident: 18173_CR23 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.59.064013 – ident: 18173_CR37 – volume: 100 year: 2008 ident: 18173_CR51 publication-title: Phys. Rev. Lett. – volume: 81 year: 2010 ident: 18173_CR63 publication-title: Phys. Rev. D – volume: 66 start-page: 994 year: 1991 ident: 18173_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.66.994 – volume: 118 year: 2017 ident: 18173_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.181101 – volume: 100 year: 2019 ident: 18173_CR26 publication-title: Phys. Rev. D – volume: 105 year: 2010 ident: 18173_CR16 publication-title: Phys. Rev. Lett. – volume: 91 year: 2015 ident: 18173_CR31 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.104024 – volume: 80 start-page: 147 year: 2020 ident: 18173_CR9 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-7703-6 – volume: 33 year: 2016 ident: 18173_CR47 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/33/17/175002 – ident: 18173_CR56 doi: 10.1103/PhysRevD.101.084001 – volume: 84 year: 2011 ident: 18173_CR29 publication-title: Phys. Rev. D – volume: 116 year: 2016 ident: 18173_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.071102 – volume: 05 start-page: 161 year: 2020 ident: 18173_CR38 publication-title: JHEP doi: 10.1007/JHEP05(2020)161 – volume: 70 start-page: 9 year: 1993 ident: 18173_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.70.9 – volume: 102 year: 2020 ident: 18173_CR62 publication-title: Phys. Rev. D – volume: 04 start-page: 121 year: 2019 ident: 18173_CR20 publication-title: JHEP doi: 10.1007/JHEP04(2019)121 – volume: 6 start-page: 1057 year: 1989 ident: 18173_CR67 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/6/7/012 – ident: 18173_CR22 doi: 10.1016/0003-4916(74)90125-0 – volume: 118 year: 2017 ident: 18173_CR14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.151103 – volume: 92 year: 2015 ident: 18173_CR66 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.92.104021 – volume: 03 start-page: 111 year: 2022 ident: 18173_CR18 publication-title: JHEP doi: 10.1007/JHEP03(2022)111 – volume: 03 start-page: 058 year: 2020 ident: 18173_CR49 publication-title: JCAP doi: 10.1088/1475-7516/2020/03/058 – volume: 96 start-page: 104014 year: 2017 ident: 18173_CR34 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.96.104014 – volume: 10 start-page: 012 year: 2021 ident: 18173_CR44 publication-title: JCAP doi: 10.1088/1475-7516/2021/10/012 – volume: 52 start-page: 94 year: 2020 ident: 18173_CR48 publication-title: Gen. Rel. Grav. doi: 10.1007/s10714-020-02735-6 – ident: 18173_CR3 – volume: 80 start-page: 937 year: 2020 ident: 18173_CR45 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-08511-9 – volume: 66 year: 2002 ident: 18173_CR24 publication-title: Phys. Rev. D – volume: 101 year: 2020 ident: 18173_CR12 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.041502 – volume: 59 start-page: 2137 year: 1987 ident: 18173_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.59.2137 – ident: 18173_CR25 doi: 10.1103/PhysRevLett.103.209903 – volume: 03 start-page: 045 year: 2021 ident: 18173_CR10 publication-title: JHEP doi: 10.1007/JHEP03(2021)045 – volume: 80 start-page: 890 year: 2020 ident: 18173_CR36 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-08475-w – volume: 82 start-page: 185 year: 2022 ident: 18173_CR41 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-022-10120-7 – volume: 93 start-page: 171 year: 1984 ident: 18173_CR4 publication-title: Commun. Math. Phys. doi: 10.1007/BF01223743 – volume: 819 year: 2021 ident: 18173_CR54 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2021.136390 – volume: 103 year: 2021 ident: 18173_CR53 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.103.084038 – volume: 92 start-page: 131101 year: 2004 ident: 18173_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.131101 – volume: 104 year: 2021 ident: 18173_CR27 publication-title: Phys. Rev. D – volume: 43 start-page: 833 year: 2011 ident: 18173_CR42 publication-title: Gen. Rel. Grav. doi: 10.1007/s10714-010-1108-z – volume: 105 year: 2010 ident: 18173_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.261102 – volume: 126 year: 2021 ident: 18173_CR60 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.181301 |
SSID | ssj0015190 |
Score | 2.5131187 |
Snippet | A
bstract
The destruction of the event horizon of a nonsingular black hole, which is not prevented by the weak cosmic censorship conjecture, might provide us... The destruction of the event horizon of a nonsingular black hole, which is not prevented by the weak cosmic censorship conjecture, might provide us the... Abstract The destruction of the event horizon of a nonsingular black hole, which is not prevented by the weak cosmic censorship conjecture, might provide us... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 66 |
SubjectTerms | Angular velocity Black Holes Censorship Classical and Quantum Gravitation Destruction Elementary Particles Event horizon Gravity High energy physics Investigations Laboratories Models of Quantum Gravity Parameters Particle injection Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum gravity Quantum Physics Regular Article - Theoretical Physics Relativity Theory Rotation Scalars Spacetime Spacetime Singularities String Theory Theoretical physics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ1ZXycGDHqpJm22To8ouy4IiqOCt5ImCbrW7e_HXO9OHL1i8eG3TMkwmnW86yfcRcgQI3kgNM5AqBwUKJIFYW-Vi5gP3PnE8r0-5Xl1no3sxfug_fJP6wj1hDT1w47izvtZB2DTlSQhCaQGLUwmtMs-Mc4B18esLOa8rptr-AeAS1hH5sPxsPBrcMHEMhX5ywmpCxK8cVFP1_8CXv1qidaYZrpO1FiLS88a0DbLkJ5tkpd6qaadb5BZLxarE40kU0ButKZjoY1k9vZcTWgaq6QR3vU5QZL6iVYnNdhj7Ngcnzl9ii3ocFoAmNfjzjqJA7ja5Hw7uLkdxK40QW8HzGcrm4PkpAfjCMCeYdLlUieRaJ5ZJYzMvtYPiw6LWuUHN7oCVD8ALwwETqHSHLIMtfpfQ4IVzQQDQURwcLU2aBqeYYRlAl35mInLaOauwLW84ylc8Fx3jcePdAr1bgHcjcvz5wGtDmbF46AV6_3MYcl3XFyACijYCir8iICK9bu6KdgFOC8B5CiJPMhmRk24-v24vsGfvP-zZJ6v4Pmw5cd4jy7Nq7g8AuczMYR2kH7w558E priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Journals Complete - Open Access dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxEB0FqkpcUCkgArTyoQdyWGTvOhv7SBFRFImqUkHitvJnQYIsbJILv54ZZzdVWnHobbU7lqwZ2_NmxzMP4BsieKsMWqDQHgMUdAKZcdpnPEQRQu7FKFW5Xv8oJ7dyeje864HoamHSbfcuJZlO6q7YbTq5-snlGQbr-QD95BZ8GOIzLepLKnBoEwcISHjXweffQRvOJ_Xo3wCWf-VCk4sZf4LdFhuyi5Ux96AXZp_hY7qj6eb78ItixKamuiSGsI2l3kvsvm4eXusZqyMzbEbXXWfELt-wpqYsO8q-LFF7y6fMERGHQ4TJLP21Y8SMewC346uby0nWciJkTorRgvhyqHBKIrCw3Euu_EjpXAljcseVdWVQxmPU4Yjk3BJZd6SQB3GFFQgGdHEI2ziXcAQsBul9lIhwtJCuULYootfc8hIxy7C0fTjvlFW5tmE48VY8Vl2r45V2K9Juhdrtw9l6wPOqV8b7ot9J-2sxanKdXtTN76rdM9XQmIgTK0Qeo9RG4rmspdFl4NZ7DHP6cNrZrmp33rxCgKdxySmu-jDo7Pnn8zvzOf4P2RPYoUdKKQlxCtuLZhm-IDJZ2K9pLb4B27bajw priority: 102 providerName: Springer Nature |
Title | Destroying the event horizon of a nonsingular rotating quantum-corrected black hole |
URI | https://link.springer.com/article/10.1007/JHEP04(2022)066 https://www.proquest.com/docview/2649424808 https://doaj.org/article/5aaf4c3312ff49a491194a96e0bdd585 |
Volume | 2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB7RVkhcEE8RKJEPHNrDUnvX2dgn1EYJUSWqCojU28pPeoBsu0ku_HpmHG8ikMrF0u7OWtbYHn_jsecD-IAI3iqDPVBpjw4KLgKFcdoXPEQRQunFON1y_XJVzxfy8mZ0kzfcVvlYZW8Tk6H2raM98jNcuDVWpbj6dHdfEGsURVczhcYBHKEJVuh8HV1Mr66_7uIIiE94n9CHj88u59NrLk_Q4S9PeUqMuF-LUsr-v3DmP6HRtOLMnsHTDBXZ-bZvn8OjsHwBj9ORTbd6Cd_IZexauqbEEMWxlIqJ3WKbf7dL1kZm2JJOvy6JbL5jXUtBd5S936AyN78KR7wcDgEns7SJx4go9xUsZtPvk3mRKRIKJ8V4TfQ5dI9KIs6w3Euu_FjpUgljSseVdXVQxqMT4ojz3BJ3dyQPCGGGFYgNdPUaDrEt4Q2wGKT3USLg0UK6Stmqil5zy2uEMKPaDuBjr6zG5fzhRGPxs-kzH2-125B2G9TuAE52P9xtU2c8LHpB2t-JUc7r9KLtfjR5CjUjYyI2rBJljFIbiWZaS6PrwK336PUM4LjvuyZPxFWzHzYDOO37c__5gfa8_X9V7-AJSVJQSYhjOFx3m_AescnaDuFAzT4P8zDEp0kpqawnw-TtY7koz_8ALkTk_w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VrRBcqvISaQv4AFJ7WGrvOhv7gBCPhvQpJFqpt8VPOEC23SSq4EfxG5lxdhOBVG69Jt6VNTP2982OPR_AC2TwVhn0QKE9JigIAplx2mc8RBFC7sUg3XI9OS1H5_Lwon-xAr-7uzB0rLLbE9NG7WtH38j3ELg1vkpx9ebyKiPVKKqudhIa87A4Cj-vMWWbvD74gP59mefD_bP3o6xVFcicFIMpKc7Q1SOJ0Gy5l1z5gdK5EsbkjivryqCMR97uSCbcktx1pKQBkdkKhFNqvoRb_posCk0rSg0_LqoWyIZ41z6ID_YOR_ufuNzJESZ3eWrDuES-JBDwF6v9pxCb8G24AestMWVv55F0H1bC-AHcSQdE3eQhfKYEtanpUhRDzshS4yf2DS30qx6zOjLDxnTWdkzS9g1rairx49irGbpu9iNzpALikN4yS58MGcnyPoLzWzHdY1jFuYQnwGKQ3keJ9EoL6QpliyJ6zS0vkTD1S9uDV52xKtd2KyfRjO9V12d5bt2KrFuhdXuws3jgct6o4-ah78j6i2HUYTv9UDdfq3bBVn1jIk6sEHmMUhuJoKCl0WXg1nvMsXqw3fmuapf9pFoGaQ92O38u_75hPpv_f9VzuDs6Ozmujg9Oj7bgHj1F5SwhtmF12szCU2RFU_sshSKDL7cd-38AYKcZmQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqUBcUHmJ0AJ7AKk9mOzaGz8OCLU0UdpCFAGVelv2WQ40bp1EFfw0fl1nHDsRSOXWq722VjPj_b7x7M4H8AYZvMk1eiApHCYoCAKRtoWLuA_C-9iJrD7l-nmcjk7l8Vn_bAP-tGdhaFtluybWC7UrLf0j7yFwF_iqnOe90GyLmBwOP1xeRaQgRZXWVk5jGSIn_tc1pm-z90eH6Ou3cTwcfPs4ihqFgchKkc1JfYaOIUmEacOd5LnL8iLOhdax5bmxqc-1Qw5vSTLckPR1oAQCUdoIhFZqxITL_2aGWRHvwObBYDz5sqphIDfibTMhnvWOR4MJl7sxguYer5syrnGwlgv4i-P-U5at0W64BQ8bmsr2l3H1CDb89DHcq7eL2tkT-ErpalXSESmGDJLVbaDYD7TR73LKysA0m9LO2ykJ3VesKqngj2OvFujIxUVkSRPEItllhn4gMhLpfQqnd2K8Z9DBufjnwIKXzgWJZKsQ0ia5SZLgCm54ivSpn5ouvGuNpWzTu5wkNH6qtuvy0rqKrKvQul3YXT1wuWzbcfvQA7L-ahj1264vlNW5aj5f1dc64MQSEYcgCy0RIgqpi9Rz4xxmXF3YaX2nmkVgptYh24W91p_r27fM58X_X_Ua7mPcq09H45NteEAPUW1LiB3ozKuFf4kUaW5eNbHI4Ptdh_8NZoAfKw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Destroying+the+event+horizon+of+a+nonsingular+rotating+quantum-corrected+black+hole&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Yang%2C+Si-Jiang&rft.au=Zhang%2C+Yu-Peng&rft.au=Wei%2C+Shao-Wen&rft.au=Liu%2C+Yu-Xiao&rft.date=2022-04-11&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2022&rft.issue=4&rft.spage=66&rft_id=info:doi/10.1007%2FJHEP04%282022%29066&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |