Destroying the event horizon of a nonsingular rotating quantum-corrected black hole

A bstract The destruction of the event horizon of a nonsingular black hole, which is not prevented by the weak cosmic censorship conjecture, might provide us the possibility to access quantum regime of gravity inside black hole. We investigate the possibility of overspinning a nonsingular rotating q...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2022; no. 4; pp. 66 - 19
Main Authors Yang, Si-Jiang, Zhang, Yu-Peng, Wei, Shao-Wen, Liu, Yu-Xiao
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 11.04.2022
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract The destruction of the event horizon of a nonsingular black hole, which is not prevented by the weak cosmic censorship conjecture, might provide us the possibility to access quantum regime of gravity inside black hole. We investigate the possibility of overspinning a nonsingular rotating quantum-corrected black hole by a test particle and a scalar field in this paper, and analyse the effect of the quantum parameter on the destruction of the event horizon. For the test particle injection, both extremal and near-extremal black holes cannot be overspun due to the existence of the quantum parameter. And the larger the quantum parameter the harder the black hole to be overspun. It seems that the quantum parameter acts as a protector to prevent the black hole to be destroyed. However, for the test scalar field scattering, both extremal and near-extremal black holes can be destroyed. Due to the loop quantum gravity correction, the angular velocity of the extremal black hole shifts from that of the extremal Kerr black hole. This provides a small range of wave modes to destroy the event horizon of the quantum-corrected black hole.
AbstractList The destruction of the event horizon of a nonsingular black hole, which is not prevented by the weak cosmic censorship conjecture, might provide us the possibility to access quantum regime of gravity inside black hole. We investigate the possibility of overspinning a nonsingular rotating quantum-corrected black hole by a test particle and a scalar field in this paper, and analyse the effect of the quantum parameter on the destruction of the event horizon. For the test particle injection, both extremal and near-extremal black holes cannot be overspun due to the existence of the quantum parameter. And the larger the quantum parameter the harder the black hole to be overspun. It seems that the quantum parameter acts as a protector to prevent the black hole to be destroyed. However, for the test scalar field scattering, both extremal and near-extremal black holes can be destroyed. Due to the loop quantum gravity correction, the angular velocity of the extremal black hole shifts from that of the extremal Kerr black hole. This provides a small range of wave modes to destroy the event horizon of the quantum-corrected black hole.
A bstract The destruction of the event horizon of a nonsingular black hole, which is not prevented by the weak cosmic censorship conjecture, might provide us the possibility to access quantum regime of gravity inside black hole. We investigate the possibility of overspinning a nonsingular rotating quantum-corrected black hole by a test particle and a scalar field in this paper, and analyse the effect of the quantum parameter on the destruction of the event horizon. For the test particle injection, both extremal and near-extremal black holes cannot be overspun due to the existence of the quantum parameter. And the larger the quantum parameter the harder the black hole to be overspun. It seems that the quantum parameter acts as a protector to prevent the black hole to be destroyed. However, for the test scalar field scattering, both extremal and near-extremal black holes can be destroyed. Due to the loop quantum gravity correction, the angular velocity of the extremal black hole shifts from that of the extremal Kerr black hole. This provides a small range of wave modes to destroy the event horizon of the quantum-corrected black hole.
Abstract The destruction of the event horizon of a nonsingular black hole, which is not prevented by the weak cosmic censorship conjecture, might provide us the possibility to access quantum regime of gravity inside black hole. We investigate the possibility of overspinning a nonsingular rotating quantum-corrected black hole by a test particle and a scalar field in this paper, and analyse the effect of the quantum parameter on the destruction of the event horizon. For the test particle injection, both extremal and near-extremal black holes cannot be overspun due to the existence of the quantum parameter. And the larger the quantum parameter the harder the black hole to be overspun. It seems that the quantum parameter acts as a protector to prevent the black hole to be destroyed. However, for the test scalar field scattering, both extremal and near-extremal black holes can be destroyed. Due to the loop quantum gravity correction, the angular velocity of the extremal black hole shifts from that of the extremal Kerr black hole. This provides a small range of wave modes to destroy the event horizon of the quantum-corrected black hole.
ArticleNumber 66
Author Zhang, Yu-Peng
Wei, Shao-Wen
Yang, Si-Jiang
Liu, Yu-Xiao
Author_xml – sequence: 1
  givenname: Si-Jiang
  surname: Yang
  fullname: Yang, Si-Jiang
  organization: Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, School of Physical Science and Technology, Lanzhou University, Institute of Theoretical Physics & Research Center of Gravitation, Lanzhou University
– sequence: 2
  givenname: Yu-Peng
  surname: Zhang
  fullname: Zhang, Yu-Peng
  organization: Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, School of Physical Science and Technology, Lanzhou University, Institute of Theoretical Physics & Research Center of Gravitation, Lanzhou University
– sequence: 3
  givenname: Shao-Wen
  surname: Wei
  fullname: Wei, Shao-Wen
  organization: Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, School of Physical Science and Technology, Lanzhou University, Institute of Theoretical Physics & Research Center of Gravitation, Lanzhou University
– sequence: 4
  givenname: Yu-Xiao
  orcidid: 0000-0002-4117-4176
  surname: Liu
  fullname: Liu, Yu-Xiao
  email: liuyx@lzu.edu.cn
  organization: Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, School of Physical Science and Technology, Lanzhou University, Institute of Theoretical Physics & Research Center of Gravitation, Lanzhou University, Key Laboratory for Magnetism and Magnetic of the Ministry of Education, Lanzhou University
BookMark eNp9kc1L5TAUxYMojB-znm1hNrqo3qRJmiwHdfxAUFDX4TZNn31TE03TAf3rzbODyoCuEpLzO-dyzxZZ98E7Qn5Q2KcA9cH56fEV8F0GjO2BlGtkkwLTpeK1Xv9w_0a2xnEJQAXVsEmuj9yYYnjq_aJId65wf51PxV2I_XPwRegKLHLOmL-nAWMRQ8K00j5O6NN0X9oQo7PJtUUzoP2TycHtkI0Oh9F9_3duk9vfxzeHp-XF5cnZ4a-L0nJap7IBsE5oLivdQMtBtbXSTFFEZkE1VjqFrRBgBZeiYYzpDijlUlYNrRXT1TY5m33bgEvzEPt7jE8mYG9eH0JcGIypt4MzArHjtqoo6zqukWtKNUctHTRtK5TIXj9nr4cYHqe8E7MMU_R5fMMk15xxBSqrDmaVjWEco-veUimYVQtmbsGsWjC5hUyI_wjbr1YYfIrYD19wMHNjTvALF9_n-Qx5Aev9m1c
CitedBy_id crossref_primary_10_1088_1475_7516_2022_10_077
crossref_primary_10_3847_1538_4357_accced
crossref_primary_10_1088_1674_1137_ad34c1
crossref_primary_10_1140_epjc_s10052_023_11764_9
crossref_primary_10_1088_1475_7516_2023_01_032
crossref_primary_10_1103_PhysRevD_107_064019
crossref_primary_10_1088_1361_6382_ad6129
crossref_primary_10_1140_epjc_s10052_024_13062_4
crossref_primary_10_1140_epjc_s10052_023_12117_2
crossref_primary_10_3847_1538_4357_acb334
crossref_primary_10_1140_epjc_s10052_024_12698_6
crossref_primary_10_1103_PhysRevD_106_024052
crossref_primary_10_1140_epjc_s10052_023_11868_2
crossref_primary_10_1007_JHEP03_2023_160
crossref_primary_10_1007_JHEP07_2024_226
crossref_primary_10_1007_s10714_025_03383_4
crossref_primary_10_1103_PhysRevD_109_064089
crossref_primary_10_1140_epjc_s10052_023_12265_5
crossref_primary_10_1103_PhysRevD_110_024081
Cites_doi 10.1103/PhysRevD.87.041501
10.1103/PhysRevLett.14.57
10.1007/978-3-319-19000-6_1
10.1142/S0217732319500378
10.1103/PhysRevD.104.084069
10.1103/PhysRevLett.121.241301
10.1103/PhysRevD.88.064043
10.1007/JHEP09(2018)081
10.1007/JHEP09(2019)099
10.1007/JHEP09(2021)095
10.1103/PhysRevLett.68.1447
10.1103/PhysRevD.95.124050
10.1098/rspa.1970.0021
10.1016/j.nuclphysb.2021.115335
10.1103/PhysRevLett.103.131102
10.1103/PhysRevD.59.064013
10.1103/PhysRevLett.66.994
10.1103/PhysRevLett.118.181101
10.1103/PhysRevD.91.104024
10.1140/epjc/s10052-020-7703-6
10.1088/0264-9381/33/17/175002
10.1103/PhysRevD.101.084001
10.1103/PhysRevLett.116.071102
10.1007/JHEP05(2020)161
10.1103/PhysRevLett.70.9
10.1007/JHEP04(2019)121
10.1088/0264-9381/6/7/012
10.1016/0003-4916(74)90125-0
10.1103/PhysRevLett.118.151103
10.1103/PhysRevD.92.104021
10.1007/JHEP03(2022)111
10.1088/1475-7516/2020/03/058
10.1103/PhysRevD.96.104014
10.1088/1475-7516/2021/10/012
10.1007/s10714-020-02735-6
10.1140/epjc/s10052-020-08511-9
10.1103/PhysRevD.101.041502
10.1103/PhysRevLett.59.2137
10.1103/PhysRevLett.103.209903
10.1007/JHEP03(2021)045
10.1140/epjc/s10052-020-08475-w
10.1140/epjc/s10052-022-10120-7
10.1007/BF01223743
10.1016/j.physletb.2021.136390
10.1103/PhysRevD.103.084038
10.1103/PhysRevLett.92.131101
10.1007/s10714-010-1108-z
10.1103/PhysRevLett.105.261102
10.1103/PhysRevLett.126.181301
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP04(2022)066
DatabaseName Springer Nature OA/Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 19
ExternalDocumentID oai_doaj_org_article_5aaf4c3312ff49a491194a96e0bdd585
10_1007_JHEP04_2022_066
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AMVHM
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c417t-b00ce594639b0d408d789281aa2c08bc6e8ad550c5465b2229f0114663b178293
IEDL.DBID BENPR
ISSN 1029-8479
IngestDate Wed Aug 27 01:30:53 EDT 2025
Sun Jul 13 04:28:47 EDT 2025
Tue Jul 01 01:00:05 EDT 2025
Thu Apr 24 23:03:05 EDT 2025
Fri Feb 21 02:45:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Black Holes
Models of Quantum Gravity
Spacetime Singularities
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-b00ce594639b0d408d789281aa2c08bc6e8ad550c5465b2229f0114663b178293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4117-4176
OpenAccessLink https://www.proquest.com/docview/2649424808?pq-origsite=%requestingapplication%
PQID 2649424808
PQPubID 2034718
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_5aaf4c3312ff49a491194a96e0bdd585
proquest_journals_2649424808
crossref_primary_10_1007_JHEP04_2022_066
crossref_citationtrail_10_1007_JHEP04_2022_066
springer_journals_10_1007_JHEP04_2022_066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-11
PublicationDateYYYYMMDD 2022-04-11
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-11
  day: 11
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References LiangJGuoXChenDMuBRemarks on the weak cosmic censorship conjecture of RN-AdS black holes with cloud of strings and quintessence under the scalar fieldNucl. Phys. B202196542169751489.83069[arXiv:2008.08327] [INSPIRE]
ShapiroSLTeukolskySAFormation of naked singularities: the violation of cosmic censorshipPhys. Rev. Lett.1991669941991PhRvL..66..994S10959780968.83515[INSPIRE]
ChenBLinF-LNingBGedanken experiments to destroy a BTZ black holePhys. Rev. D20191002019PhRvD.100d4043N4022998[arXiv:1902.00949] [INSPIRE]
CorelliFIkedaTPaniPChallenging cosmic censorship in Einstein-Maxwell-scalar theory with numerically simulated gedanken experimentsPhys. Rev. D20211042021PhRvD.104h4069C4342316[arXiv:2108.08328] [INSPIRE]
GwakBCosmic censorship conjecture in Kerr-Sen black holePhys. Rev. D2017952017PhRvD..95l4050G3827489[arXiv:1611.09640] [INSPIRE]
GhoshRMishraAKSarkarSOvercharging extremal black holesPhys. Rev. D20211042021PhRvD.104j4043G4354801[arXiv:2106.10667] [INSPIRE]
BodendorferNMeleFMMünchJMass and horizon Dirac observables in effective models of quantum black-to-white hole transitionClass. Quant. Grav.2021382021CQGra..38i5002B42639741483.83022[arXiv:1912.00774] [INSPIRE]
LehnerLPretoriusFBlack strings, low viscosity fluids, and violation of cosmic censorshipPhys. Rev. Lett.20101052010PhRvL.105j1102L2720336[arXiv:1006.5960] [INSPIRE]
GonçalvesJNatárioJProof of the weak cosmic censorship conjecture for several extremal black holesGen. Rel. Grav.2020529441522841461.83029[arXiv:2004.02902] [INSPIRE]
HossenfelderSModestoLPremont-SchwarzIA model for non-singular black hole collapse and evaporationPhys. Rev. D2010812010PhRvD..81d4036H[arXiv:0912.1823] [INSPIRE]
T. Jacobson and T. P. Sotiriou, Over-spinning a black hole with a test body, Phys. Rev. Lett.103 (2009) 141101 [Erratum ibid.103 (2009) 209903] [arXiv:0907.4146] [INSPIRE].
R. Wald, Gedanken experiments to destroy a black hole, Ann. Phys.82 (1974) 548.
LiangBWeiS-WLiuY-XWeak cosmic censorship conjecture in Kerr black holes of modified gravityMod. Phys. Lett. A20193419500372019MPLA...3450037L39166721407.83009[arXiv:1804.06966] [INSPIRE]
AndradeTEmparanRLichtDLunaRCosmic censorship violation in black hole collisions in higher dimensionsJHEP2019041212019JHEP...04..121A39539531415.83033[arXiv:1812.05017] [INSPIRE]
SperhakeUCardosoVPretoriusFBertiEHindererTYunesNCross section, final spin and zoom-whirl behavior in high-energy black hole collisionsPhys. Rev. Lett.20091032009PhRvL.103m1102S[arXiv:0907.1252] [INSPIRE]
SongYHuT-TWangY-QWeak cosmic censorship with self-interacting scalar and bound on charge to mass ratioJHEP2021030452021JHEP...03..045S42628091461.83040[arXiv:2008.02513] [INSPIRE]
PenroseRGravitational collapse and space-time singularitiesPhys. Rev. Lett.196514571965PhRvL..14...57P1726780125.21206[INSPIRE]
GwakBWeak cosmic censorship conjecture in Kerr-Newman-(anti-)de Sitter black hole with charged scalar fieldJCAP2021100122021JCAP...10..012G43679751486.83102[arXiv:2105.07226] [INSPIRE]
HertogTHorowitzGTMaedaKGeneric cosmic censorship violation in anti-de Sitter spacePhys. Rev. Lett.2004921311012004PhRvL..92m1101H[gr-qc/0307102] [INSPIRE]
YangS-JChenJWanJ-JWeiS-WLiuY-XWeak cosmic censorship conjecture for a Kerr-Taub-NUT black hole with a test scalar field and particlePhys. Rev. D20201012020PhRvD.101f4048Y4086206[arXiv:2001.03106] [INSPIRE]
AndradeTEmparanRLichtDLunaRBlack hole collisions, instabilities, and cosmic censorship violation at large DJHEP2019090992019JHEP...09..099A40202471423.83039[arXiv:1908.03424] [INSPIRE]
HubenyVEOvercharging a black hole and cosmic censorshipPhys. Rev. D1999591999PhRvD..59f4013H1678942[gr-qc/9808043] [INSPIRE]
HawkingSWPenroseRThe singularities of gravitational collapse and cosmologyProc. Roy. Soc. Lond. A19703145291970RSPSA.314..529H2649590954.83012[INSPIRE]
C. Liu et al., Shadow and quasinormal modes of a rotating loop quantum black hole, Phys. Rev. D101 (2020) 084001 [Erratum ibid.103 (2021) 089902] [arXiv:2003.00477] [INSPIRE].
LiZBambiCDestroying the event horizon of regular black holesPhys. Rev. D2013872013PhRvD..87l4022L[arXiv:1304.6592] [INSPIRE]
LemosJPSNaked singularities: gravitationally collapsing configurations of dust or radiation in spherical symmetry. A unified treatmentPhys. Rev. Lett.19926814471992PhRvL..68.1447L11533720969.83519[INSPIRE]
SemizİDüztaşKWeak cosmic censorship, superradiance and quantum particle creationPhys. Rev. D2015922015PhRvD..92j4021S3465132[arXiv:1507.03744] [INSPIRE]
GwakBWeak cosmic censorship in Kerr-Sen black hole under charged scalar fieldJCAP2020030582020JCAP...03..058G41277141490.83057[arXiv:1910.13329] [INSPIRE]
FuQ-MZhangXGravitational lensing by a black hole in effective loop quantum gravityPhys. Rev. D20221052022PhRvD.105f4020F4416058[arXiv:2111.07223] [INSPIRE]
FiguerasPKuneschMTunyasuvunakoolSEnd point of black ring instabilities and the weak cosmic censorship conjecturePhys. Rev. Lett.20161162016PhRvL.116g1102F[arXiv:1512.04532] [INSPIRE]
EperonFCGanchevBSantosJEPlausible scenario for a generic violation of the weak cosmic censorship conjecture in asymptotically flat four dimensionsPhys. Rev. D20201012020PhRvD.101d1502E4073078[arXiv:1906.11257] [INSPIRE]
FiguerasPKuneschMLehnerLTunyasuvunakoolSEnd point of the ultraspinning instability and violation of cosmic censorshipPhys. Rev. Lett.20171182017PhRvL.118o1103F[arXiv:1702.01755] [INSPIRE]
ZhangMJiangJNew gedanken experiment on higher-dimensional asymptotically AdS Reissner-Nordström black holeEur. Phys. J. C2020808902020EPJC...80..890Z[arXiv:2009.07681] [INSPIRE]
WangX-YJiangJGedanken experiments at high-order approximation: nearly extremal Reissner-Nordström black holes cannot be overchargedJHEP2020051612020JHEP...05..161W1437.83074[arXiv:2004.12120] [INSPIRE]
GwakBWeak cosmic censorship conjecture in Kerr-(anti-)de Sitter black hole with scalar fieldJHEP2018090812018JHEP...09..081G38684061398.83064[arXiv:1807.10630] [INSPIRE]
Y.-L. Liu, Z.-Q. Feng and X.-D. Zhang, Observational tests of a black hole in effective loop quantum gravity, arXiv:2201.10202 [INSPIRE].
YangS-JWanJ-JChenJYangJWangY-QWeak cosmic censorship conjecture for the novel 4D charged Einstein-Gauss-Bonnet black hole with test scalar field and particleEur. Phys. J. C2020809372020EPJC...80..937Y[arXiv:2004.07934] [INSPIRE]
GanW-CSantosNOShuF-WWangAProperties of the spherically symmetric polymer black holesPhys. Rev. D20201022020PhRvD.102l4030G4196998[arXiv:2008.09664] [INSPIRE]
BarausseECardosoVKhannaGTest bodies and naked singularities: is the self-force the cosmic censor?Phys. Rev. Lett.20101052010PhRvL.105z1102B[arXiv:1008.5159] [INSPIRE]
F. Qu, S.-J. Yang, Z. Wang and J.-R. Ren, Weak cosmic censorship conjecture is not violated for a rotating linear dilaton black hole, arXiv:2008.09950 [INSPIRE].
R. Penrose, Gravitational collapse: the role of general relativity, Riv. Nuovo Cim.1 (1969) 252 [Gen. Rel. Grav.34 (2002) 1141] [INSPIRE].
SangAJiangJGedanken experiments at high-order approximation: Kerr black hole cannot be overspunJHEP2021090952021JHEP...09..095S43272211472.83061[arXiv:2108.03454] [INSPIRE]
AshtekarAOlmedoJSinghPQuantum transfiguration of Kruskal black holesPhys. Rev. Lett.20181212018PhRvL.121x1301A[arXiv:1806.00648] [INSPIRE]
QuYTaoJWuJNew gedanken experiment on RN-AdS black holes surrounded by quintessenceEur. Phys. J. C2022821852022EPJC...82..185Q[arXiv:2103.09183] [INSPIRE]
BodendorferNMeleFMMünchJ(b, v)-type variables for black to white hole transitions in effective loop quantum gravityPhys. Lett. B2021819426876607409697[arXiv:1911.12646] [INSPIRE]
BarausseECardosoVKhannaGTesting the cosmic censorship conjecture with point particles: the effect of radiation reaction and the self-forcePhys. Rev. D2011842011PhRvD..84j4006B[arXiv:1106.1692] [INSPIRE]
FengW-BYangS-JTanQYangJLiuY-XOvercharging a Reissner-Nordström Taub-NUT regular black holeSci. China Phys. Mech. Astron.2021642021SCPMA..6460411F[arXiv:2009.12846] [INSPIRE]
MatsasGEARichartzMSaaAda SilvaARRVanzellaDATCan quantum mechanics fool the cosmic censor?Phys. Rev. D2009792009PhRvD..79j1502M2538527[arXiv:0905.1077] [INSPIRE]
JiangJGaoYInvestigating the gedanken experiment to destroy the event horizon of a regular black holePhys. Rev. D20201012020PhRvD.101h4005J4103100[arXiv:2003.07501] [INSPIRE]
SemizIDyonic Kerr-Newman black holes, complex scalar field and cosmic censorshipGen. Rel. Grav.2011438332011GReGr..43..833S27735411215.83042[gr-qc/0508011] [INSPIRE]
MatsasGEAda SilvaARROverspinning a nearly extreme charged black hole via a quantum tunneling processPhys. Rev. Lett.2007992007PhRvL..99r1301M[arXiv:0706.3198] [INSPIRE]
HodSWeak cosmic censorship: as strong as everPhys. Rev. Lett.20081002008PhRvL.100l1101H23902591228.83085[arXiv:0805.3873] [INSPIRE]
ChoptuikMWUniversality and scaling in gravitational collapse of a massless scalar fieldPhys. Rev. Lett.19937091993PhRvL..70....9C[INSPIRE]
SorceJWaldRMGedanken experiments to destroy a black hole. II. Kerr-Newman black holes cannot be overcharged or overspunPhys. Rev. D2017961040142017PhRvD..96j4014S3864960[arXiv:1707.05862] [INSPIRE]
BritoRCardosoVPaniPSuperradiance: new frontiers in black hole physicsLect. Notes Phys.20159061[arXiv:1501.06570] [INSPIRE]
CrisfordTSantosJEViolating the weak cosmic censorship conjecture in four-dimensional anti-de Sitter spacePhys. Rev. Lett.20171182017PhRvL.118r1101C[arXiv:1702.05490] [INSPIRE]
DüztaşKSemizİCosmic censorship, black holes and integer-spin test fieldsPhys. Rev. D2013882013PhRvD..88f4043D[arXiv:1307.1481] [INSPIRE]
AndradeTFiguerasPSperhakeUEvidence for violations of weak cosmic censorship in black hole collisions in higher dimensionsJHEP2022031112022JHEP...03..111A442619807609953[arXiv:2011.03049] [INSPIRE]
ZimmermanPVegaIPoissonEHaasRSelf-force as a cosmic censorPhys. Rev. D2013872013PhRvD..87d1501Z[arXiv:1211.3889] [INSPIRE]
OriAPiranTNaked singularities in selfsimilar spherical gravitational collapsePhys. Rev. Lett.19875921371987PhRvL..59.2137O[INSPIRE]
BlanchetteKDasSHergottSRastgooSBlack hole singularity resolution via the modified Raychaudhu
S Hod (18173_CR24) 2002; 66
E Barausse (18173_CR28) 2010; 105
VE Hubeny (18173_CR23) 1999; 59
B Chen (18173_CR40) 2019; 100
Y Qu (18173_CR41) 2022; 82
X-Y Wang (18173_CR38) 2020; 05
T Hertog (18173_CR17) 2004; 92
A Sang (18173_CR35) 2021; 09
Q-M Fu (18173_CR58) 2022; 105
J Jiang (18173_CR39) 2020; 101
P Figueras (18173_CR15) 2016; 116
J Sorce (18173_CR34) 2017; 96
S Brahma (18173_CR60) 2021; 126
T Crisford (18173_CR13) 2017; 118
18173_CR37
N Bodendorfer (18173_CR54) 2021; 819
GEA Matsas (18173_CR52) 2009; 79
U Sperhake (18173_CR21) 2009; 103
A Ori (18173_CR5) 1987; 59
S-J Yang (18173_CR45) 2020; 80
S Hod (18173_CR51) 2008; 100
R Penrose (18173_CR1) 1965; 14
R Ghosh (18173_CR26) 2019; 100
R Ghosh (18173_CR27) 2021; 104
GEA Matsas (18173_CR50) 2007; 99
J Gonçalves (18173_CR48) 2020; 52
B Gwak (18173_CR49) 2020; 03
Z Li (18173_CR61) 2013; 87
18173_CR22
J Liang (18173_CR46) 2021; 965
Y Song (18173_CR10) 2021; 03
S-J Yang (18173_CR69) 2020; 101
18173_CR25
F Corelli (18173_CR11) 2021; 104
J Natario (18173_CR47) 2016; 33
T-T Hu (18173_CR9) 2020; 80
B Liang (18173_CR33) 2019; 34
B Gwak (18173_CR32) 2017; 95
N Bodendorfer (18173_CR55) 2021; 38
D Christodoulou (18173_CR4) 1984; 93
T Andrade (18173_CR20) 2019; 04
E Barausse (18173_CR29) 2011; 84
K Blanchette (18173_CR53) 2021; 103
P Figueras (18173_CR14) 2017; 118
18173_CR56
R Brito (18173_CR68) 2015; 906
18173_CR59
İ Semiz (18173_CR66) 2015; 92
K Düztaş (18173_CR65) 2013; 88
T Andrade (18173_CR19) 2019; 09
B Gwak (18173_CR44) 2021; 10
T Andrade (18173_CR18) 2022; 03
JPS Lemos (18173_CR7) 1992; 68
A Ashtekar (18173_CR57) 2018; 121
18173_CR3
E Seidel (18173_CR67) 1989; 6
I Semiz (18173_CR42) 2011; 43
S Hossenfelder (18173_CR63) 2010; 81
M Zhang (18173_CR36) 2020; 80
W-C Gan (18173_CR62) 2020; 102
B Gwak (18173_CR43) 2018; 09
P Zimmerman (18173_CR30) 2013; 87
W-B Feng (18173_CR64) 2021; 64
SW Hawking (18173_CR2) 1970; 314
MW Choptuik (18173_CR8) 1993; 70
M Colleoni (18173_CR31) 2015; 91
FC Eperon (18173_CR12) 2020; 101
L Lehner (18173_CR16) 2010; 105
SL Shapiro (18173_CR6) 1991; 66
References_xml – reference: SorceJWaldRMGedanken experiments to destroy a black hole. II. Kerr-Newman black holes cannot be overcharged or overspunPhys. Rev. D2017961040142017PhRvD..96j4014S3864960[arXiv:1707.05862] [INSPIRE]
– reference: GhoshRMishraAKSarkarSOvercharging extremal black holesPhys. Rev. D20211042021PhRvD.104j4043G4354801[arXiv:2106.10667] [INSPIRE]
– reference: C. Liu et al., Shadow and quasinormal modes of a rotating loop quantum black hole, Phys. Rev. D101 (2020) 084001 [Erratum ibid.103 (2021) 089902] [arXiv:2003.00477] [INSPIRE].
– reference: EperonFCGanchevBSantosJEPlausible scenario for a generic violation of the weak cosmic censorship conjecture in asymptotically flat four dimensionsPhys. Rev. D20201012020PhRvD.101d1502E4073078[arXiv:1906.11257] [INSPIRE]
– reference: LiangBWeiS-WLiuY-XWeak cosmic censorship conjecture in Kerr black holes of modified gravityMod. Phys. Lett. A20193419500372019MPLA...3450037L39166721407.83009[arXiv:1804.06966] [INSPIRE]
– reference: GwakBWeak cosmic censorship conjecture in Kerr-Newman-(anti-)de Sitter black hole with charged scalar fieldJCAP2021100122021JCAP...10..012G43679751486.83102[arXiv:2105.07226] [INSPIRE]
– reference: YangS-JWanJ-JChenJYangJWangY-QWeak cosmic censorship conjecture for the novel 4D charged Einstein-Gauss-Bonnet black hole with test scalar field and particleEur. Phys. J. C2020809372020EPJC...80..937Y[arXiv:2004.07934] [INSPIRE]
– reference: MatsasGEAda SilvaARROverspinning a nearly extreme charged black hole via a quantum tunneling processPhys. Rev. Lett.2007992007PhRvL..99r1301M[arXiv:0706.3198] [INSPIRE]
– reference: BodendorferNMeleFMMünchJMass and horizon Dirac observables in effective models of quantum black-to-white hole transitionClass. Quant. Grav.2021382021CQGra..38i5002B42639741483.83022[arXiv:1912.00774] [INSPIRE]
– reference: SemizİDüztaşKWeak cosmic censorship, superradiance and quantum particle creationPhys. Rev. D2015922015PhRvD..92j4021S3465132[arXiv:1507.03744] [INSPIRE]
– reference: LemosJPSNaked singularities: gravitationally collapsing configurations of dust or radiation in spherical symmetry. A unified treatmentPhys. Rev. Lett.19926814471992PhRvL..68.1447L11533720969.83519[INSPIRE]
– reference: CrisfordTSantosJEViolating the weak cosmic censorship conjecture in four-dimensional anti-de Sitter spacePhys. Rev. Lett.20171182017PhRvL.118r1101C[arXiv:1702.05490] [INSPIRE]
– reference: SemizIDyonic Kerr-Newman black holes, complex scalar field and cosmic censorshipGen. Rel. Grav.2011438332011GReGr..43..833S27735411215.83042[gr-qc/0508011] [INSPIRE]
– reference: BarausseECardosoVKhannaGTest bodies and naked singularities: is the self-force the cosmic censor?Phys. Rev. Lett.20101052010PhRvL.105z1102B[arXiv:1008.5159] [INSPIRE]
– reference: ShapiroSLTeukolskySAFormation of naked singularities: the violation of cosmic censorshipPhys. Rev. Lett.1991669941991PhRvL..66..994S10959780968.83515[INSPIRE]
– reference: GhoshRFairoosCSarkarSOvercharging higher curvature black holesPhys. Rev. D20191002019PhRvD.100l4019G4048078[arXiv:1906.08016] [INSPIRE]
– reference: PenroseRGravitational collapse and space-time singularitiesPhys. Rev. Lett.196514571965PhRvL..14...57P1726780125.21206[INSPIRE]
– reference: FuQ-MZhangXGravitational lensing by a black hole in effective loop quantum gravityPhys. Rev. D20221052022PhRvD.105f4020F4416058[arXiv:2111.07223] [INSPIRE]
– reference: YangS-JChenJWanJ-JWeiS-WLiuY-XWeak cosmic censorship conjecture for a Kerr-Taub-NUT black hole with a test scalar field and particlePhys. Rev. D20201012020PhRvD.101f4048Y4086206[arXiv:2001.03106] [INSPIRE]
– reference: BlanchetteKDasSHergottSRastgooSBlack hole singularity resolution via the modified Raychaudhuri equation in loop quantum gravityPhys. Rev. D20211032021PhRvD.103h4038B4261165[arXiv:2011.11815] [INSPIRE]
– reference: AndradeTFiguerasPSperhakeUEvidence for violations of weak cosmic censorship in black hole collisions in higher dimensionsJHEP2022031112022JHEP...03..111A442619807609953[arXiv:2011.03049] [INSPIRE]
– reference: HossenfelderSModestoLPremont-SchwarzIA model for non-singular black hole collapse and evaporationPhys. Rev. D2010812010PhRvD..81d4036H[arXiv:0912.1823] [INSPIRE]
– reference: BodendorferNMeleFMMünchJ(b, v)-type variables for black to white hole transitions in effective loop quantum gravityPhys. Lett. B2021819426876607409697[arXiv:1911.12646] [INSPIRE]
– reference: BritoRCardosoVPaniPSuperradiance: new frontiers in black hole physicsLect. Notes Phys.20159061[arXiv:1501.06570] [INSPIRE]
– reference: BrahmaSChenC-YYeomD-HTesting loop quantum gravity from observational consequences of nonsingular rotating black holesPhys. Rev. Lett.20211262021PhRvL.126r1301B4264715[arXiv:2012.08785] [INSPIRE]
– reference: FiguerasPKuneschMLehnerLTunyasuvunakoolSEnd point of the ultraspinning instability and violation of cosmic censorshipPhys. Rev. Lett.20171182017PhRvL.118o1103F[arXiv:1702.01755] [INSPIRE]
– reference: SperhakeUCardosoVPretoriusFBertiEHindererTYunesNCross section, final spin and zoom-whirl behavior in high-energy black hole collisionsPhys. Rev. Lett.20091032009PhRvL.103m1102S[arXiv:0907.1252] [INSPIRE]
– reference: HuT-TSongYSunSLiH-BWangY-QWeak cosmic censorship in Born-Infeld electrodynamics and bound on charge-to-mass ratioEur. Phys. J. C2020801472020EPJC...80..147H[arXiv:1906.00235] [INSPIRE]
– reference: NatarioJQueimadaLVicenteRTest fields cannot destroy extremal black holesClass. Quant. Grav.2016332016CQGra..33q5002N35387171349.83050[arXiv:1601.06809] [INSPIRE]
– reference: T. Jacobson and T. P. Sotiriou, Over-spinning a black hole with a test body, Phys. Rev. Lett.103 (2009) 141101 [Erratum ibid.103 (2009) 209903] [arXiv:0907.4146] [INSPIRE].
– reference: HodSWeak cosmic censorship: as strong as everPhys. Rev. Lett.20081002008PhRvL.100l1101H23902591228.83085[arXiv:0805.3873] [INSPIRE]
– reference: R. Penrose, Gravitational collapse: the role of general relativity, Riv. Nuovo Cim.1 (1969) 252 [Gen. Rel. Grav.34 (2002) 1141] [INSPIRE].
– reference: ChenBLinF-LNingBGedanken experiments to destroy a BTZ black holePhys. Rev. D20191002019PhRvD.100d4043N4022998[arXiv:1902.00949] [INSPIRE]
– reference: GwakBWeak cosmic censorship conjecture in Kerr-(anti-)de Sitter black hole with scalar fieldJHEP2018090812018JHEP...09..081G38684061398.83064[arXiv:1807.10630] [INSPIRE]
– reference: HodSCosmic censorship, area theorem, and selfenergy of particlesPhys. Rev. D2002662002PhRvD..66b4016H1936620[gr-qc/0205005] [INSPIRE]
– reference: SangAJiangJGedanken experiments at high-order approximation: Kerr black hole cannot be overspunJHEP2021090952021JHEP...09..095S43272211472.83061[arXiv:2108.03454] [INSPIRE]
– reference: Y.-L. Liu, Z.-Q. Feng and X.-D. Zhang, Observational tests of a black hole in effective loop quantum gravity, arXiv:2201.10202 [INSPIRE].
– reference: R. Wald, Gedanken experiments to destroy a black hole, Ann. Phys.82 (1974) 548.
– reference: OriAPiranTNaked singularities in selfsimilar spherical gravitational collapsePhys. Rev. Lett.19875921371987PhRvL..59.2137O[INSPIRE]
– reference: AndradeTEmparanRLichtDLunaRBlack hole collisions, instabilities, and cosmic censorship violation at large DJHEP2019090992019JHEP...09..099A40202471423.83039[arXiv:1908.03424] [INSPIRE]
– reference: ChristodoulouDViolation of cosmic censorship in the gravitational collapse of a dust cloudCommun. Math. Phys.1984931711984CMaPh..93..171C742192[INSPIRE]
– reference: JiangJGaoYInvestigating the gedanken experiment to destroy the event horizon of a regular black holePhys. Rev. D20201012020PhRvD.101h4005J4103100[arXiv:2003.07501] [INSPIRE]
– reference: QuYTaoJWuJNew gedanken experiment on RN-AdS black holes surrounded by quintessenceEur. Phys. J. C2022821852022EPJC...82..185Q[arXiv:2103.09183] [INSPIRE]
– reference: HertogTHorowitzGTMaedaKGeneric cosmic censorship violation in anti-de Sitter spacePhys. Rev. Lett.2004921311012004PhRvL..92m1101H[gr-qc/0307102] [INSPIRE]
– reference: GanW-CSantosNOShuF-WWangAProperties of the spherically symmetric polymer black holesPhys. Rev. D20201022020PhRvD.102l4030G4196998[arXiv:2008.09664] [INSPIRE]
– reference: ColleoniMBarackLOverspinning a Kerr black hole: the effect of self-forcePhys. Rev. D2015912015PhRvD..91j4024C3421357[arXiv:1501.07330] [INSPIRE]
– reference: GonçalvesJNatárioJProof of the weak cosmic censorship conjecture for several extremal black holesGen. Rel. Grav.2020529441522841461.83029[arXiv:2004.02902] [INSPIRE]
– reference: FiguerasPKuneschMTunyasuvunakoolSEnd point of black ring instabilities and the weak cosmic censorship conjecturePhys. Rev. Lett.20161162016PhRvL.116g1102F[arXiv:1512.04532] [INSPIRE]
– reference: HubenyVEOvercharging a black hole and cosmic censorshipPhys. Rev. D1999591999PhRvD..59f4013H1678942[gr-qc/9808043] [INSPIRE]
– reference: LiZBambiCDestroying the event horizon of regular black holesPhys. Rev. D2013872013PhRvD..87l4022L[arXiv:1304.6592] [INSPIRE]
– reference: GwakBCosmic censorship conjecture in Kerr-Sen black holePhys. Rev. D2017952017PhRvD..95l4050G3827489[arXiv:1611.09640] [INSPIRE]
– reference: GwakBWeak cosmic censorship in Kerr-Sen black hole under charged scalar fieldJCAP2020030582020JCAP...03..058G41277141490.83057[arXiv:1910.13329] [INSPIRE]
– reference: HawkingSWPenroseRThe singularities of gravitational collapse and cosmologyProc. Roy. Soc. Lond. A19703145291970RSPSA.314..529H2649590954.83012[INSPIRE]
– reference: DüztaşKSemizİCosmic censorship, black holes and integer-spin test fieldsPhys. Rev. D2013882013PhRvD..88f4043D[arXiv:1307.1481] [INSPIRE]
– reference: LiangJGuoXChenDMuBRemarks on the weak cosmic censorship conjecture of RN-AdS black holes with cloud of strings and quintessence under the scalar fieldNucl. Phys. B202196542169751489.83069[arXiv:2008.08327] [INSPIRE]
– reference: F. Qu, S.-J. Yang, Z. Wang and J.-R. Ren, Weak cosmic censorship conjecture is not violated for a rotating linear dilaton black hole, arXiv:2008.09950 [INSPIRE].
– reference: FengW-BYangS-JTanQYangJLiuY-XOvercharging a Reissner-Nordström Taub-NUT regular black holeSci. China Phys. Mech. Astron.2021642021SCPMA..6460411F[arXiv:2009.12846] [INSPIRE]
– reference: ZimmermanPVegaIPoissonEHaasRSelf-force as a cosmic censorPhys. Rev. D2013872013PhRvD..87d1501Z[arXiv:1211.3889] [INSPIRE]
– reference: ChoptuikMWUniversality and scaling in gravitational collapse of a massless scalar fieldPhys. Rev. Lett.19937091993PhRvL..70....9C[INSPIRE]
– reference: SongYHuT-TWangY-QWeak cosmic censorship with self-interacting scalar and bound on charge to mass ratioJHEP2021030452021JHEP...03..045S42628091461.83040[arXiv:2008.02513] [INSPIRE]
– reference: BarausseECardosoVKhannaGTesting the cosmic censorship conjecture with point particles: the effect of radiation reaction and the self-forcePhys. Rev. D2011842011PhRvD..84j4006B[arXiv:1106.1692] [INSPIRE]
– reference: CorelliFIkedaTPaniPChallenging cosmic censorship in Einstein-Maxwell-scalar theory with numerically simulated gedanken experimentsPhys. Rev. D20211042021PhRvD.104h4069C4342316[arXiv:2108.08328] [INSPIRE]
– reference: ZhangMJiangJNew gedanken experiment on higher-dimensional asymptotically AdS Reissner-Nordström black holeEur. Phys. J. C2020808902020EPJC...80..890Z[arXiv:2009.07681] [INSPIRE]
– reference: SeidelEA comment on the eigenvalues of spin weighted spheroidal functionsClass. Quant. Grav.1989610571989CQGra...6.1057S1005405[INSPIRE]
– reference: WangX-YJiangJGedanken experiments at high-order approximation: nearly extremal Reissner-Nordström black holes cannot be overchargedJHEP2020051612020JHEP...05..161W1437.83074[arXiv:2004.12120] [INSPIRE]
– reference: AshtekarAOlmedoJSinghPQuantum transfiguration of Kruskal black holesPhys. Rev. Lett.20181212018PhRvL.121x1301A[arXiv:1806.00648] [INSPIRE]
– reference: MatsasGEARichartzMSaaAda SilvaARRVanzellaDATCan quantum mechanics fool the cosmic censor?Phys. Rev. D2009792009PhRvD..79j1502M2538527[arXiv:0905.1077] [INSPIRE]
– reference: LehnerLPretoriusFBlack strings, low viscosity fluids, and violation of cosmic censorshipPhys. Rev. Lett.20101052010PhRvL.105j1102L2720336[arXiv:1006.5960] [INSPIRE]
– reference: AndradeTEmparanRLichtDLunaRCosmic censorship violation in black hole collisions in higher dimensionsJHEP2019041212019JHEP...04..121A39539531415.83033[arXiv:1812.05017] [INSPIRE]
– volume: 87
  year: 2013
  ident: 18173_CR30
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.87.041501
– ident: 18173_CR59
– volume: 14
  start-page: 57
  year: 1965
  ident: 18173_CR1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.14.57
– volume: 101
  year: 2020
  ident: 18173_CR39
  publication-title: Phys. Rev. D
– volume: 906
  start-page: 1
  year: 2015
  ident: 18173_CR68
  publication-title: Lect. Notes Phys.
  doi: 10.1007/978-3-319-19000-6_1
– volume: 101
  year: 2020
  ident: 18173_CR69
  publication-title: Phys. Rev. D
– volume: 34
  start-page: 1950037
  year: 2019
  ident: 18173_CR33
  publication-title: Mod. Phys. Lett. A
  doi: 10.1142/S0217732319500378
– volume: 38
  year: 2021
  ident: 18173_CR55
  publication-title: Class. Quant. Grav.
– volume: 104
  year: 2021
  ident: 18173_CR11
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.104.084069
– volume: 121
  year: 2018
  ident: 18173_CR57
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.241301
– volume: 88
  year: 2013
  ident: 18173_CR65
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.064043
– volume: 09
  start-page: 081
  year: 2018
  ident: 18173_CR43
  publication-title: JHEP
  doi: 10.1007/JHEP09(2018)081
– volume: 09
  start-page: 099
  year: 2019
  ident: 18173_CR19
  publication-title: JHEP
  doi: 10.1007/JHEP09(2019)099
– volume: 09
  start-page: 095
  year: 2021
  ident: 18173_CR35
  publication-title: JHEP
  doi: 10.1007/JHEP09(2021)095
– volume: 68
  start-page: 1447
  year: 1992
  ident: 18173_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.1447
– volume: 95
  year: 2017
  ident: 18173_CR32
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.95.124050
– volume: 79
  year: 2009
  ident: 18173_CR52
  publication-title: Phys. Rev. D
– volume: 314
  start-page: 529
  year: 1970
  ident: 18173_CR2
  publication-title: Proc. Roy. Soc. Lond. A
  doi: 10.1098/rspa.1970.0021
– volume: 99
  year: 2007
  ident: 18173_CR50
  publication-title: Phys. Rev. Lett.
– volume: 87
  year: 2013
  ident: 18173_CR61
  publication-title: Phys. Rev. D
– volume: 965
  year: 2021
  ident: 18173_CR46
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2021.115335
– volume: 105
  year: 2022
  ident: 18173_CR58
  publication-title: Phys. Rev. D
– volume: 100
  year: 2019
  ident: 18173_CR40
  publication-title: Phys. Rev. D
– volume: 64
  year: 2021
  ident: 18173_CR64
  publication-title: Sci. China Phys. Mech. Astron.
– volume: 103
  year: 2009
  ident: 18173_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.131102
– volume: 59
  year: 1999
  ident: 18173_CR23
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.59.064013
– ident: 18173_CR37
– volume: 100
  year: 2008
  ident: 18173_CR51
  publication-title: Phys. Rev. Lett.
– volume: 81
  year: 2010
  ident: 18173_CR63
  publication-title: Phys. Rev. D
– volume: 66
  start-page: 994
  year: 1991
  ident: 18173_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.66.994
– volume: 118
  year: 2017
  ident: 18173_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.181101
– volume: 100
  year: 2019
  ident: 18173_CR26
  publication-title: Phys. Rev. D
– volume: 105
  year: 2010
  ident: 18173_CR16
  publication-title: Phys. Rev. Lett.
– volume: 91
  year: 2015
  ident: 18173_CR31
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.104024
– volume: 80
  start-page: 147
  year: 2020
  ident: 18173_CR9
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-7703-6
– volume: 33
  year: 2016
  ident: 18173_CR47
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/33/17/175002
– ident: 18173_CR56
  doi: 10.1103/PhysRevD.101.084001
– volume: 84
  year: 2011
  ident: 18173_CR29
  publication-title: Phys. Rev. D
– volume: 116
  year: 2016
  ident: 18173_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.071102
– volume: 05
  start-page: 161
  year: 2020
  ident: 18173_CR38
  publication-title: JHEP
  doi: 10.1007/JHEP05(2020)161
– volume: 70
  start-page: 9
  year: 1993
  ident: 18173_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.70.9
– volume: 102
  year: 2020
  ident: 18173_CR62
  publication-title: Phys. Rev. D
– volume: 04
  start-page: 121
  year: 2019
  ident: 18173_CR20
  publication-title: JHEP
  doi: 10.1007/JHEP04(2019)121
– volume: 6
  start-page: 1057
  year: 1989
  ident: 18173_CR67
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/6/7/012
– ident: 18173_CR22
  doi: 10.1016/0003-4916(74)90125-0
– volume: 118
  year: 2017
  ident: 18173_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.151103
– volume: 92
  year: 2015
  ident: 18173_CR66
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.104021
– volume: 03
  start-page: 111
  year: 2022
  ident: 18173_CR18
  publication-title: JHEP
  doi: 10.1007/JHEP03(2022)111
– volume: 03
  start-page: 058
  year: 2020
  ident: 18173_CR49
  publication-title: JCAP
  doi: 10.1088/1475-7516/2020/03/058
– volume: 96
  start-page: 104014
  year: 2017
  ident: 18173_CR34
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.104014
– volume: 10
  start-page: 012
  year: 2021
  ident: 18173_CR44
  publication-title: JCAP
  doi: 10.1088/1475-7516/2021/10/012
– volume: 52
  start-page: 94
  year: 2020
  ident: 18173_CR48
  publication-title: Gen. Rel. Grav.
  doi: 10.1007/s10714-020-02735-6
– ident: 18173_CR3
– volume: 80
  start-page: 937
  year: 2020
  ident: 18173_CR45
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-08511-9
– volume: 66
  year: 2002
  ident: 18173_CR24
  publication-title: Phys. Rev. D
– volume: 101
  year: 2020
  ident: 18173_CR12
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.041502
– volume: 59
  start-page: 2137
  year: 1987
  ident: 18173_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.59.2137
– ident: 18173_CR25
  doi: 10.1103/PhysRevLett.103.209903
– volume: 03
  start-page: 045
  year: 2021
  ident: 18173_CR10
  publication-title: JHEP
  doi: 10.1007/JHEP03(2021)045
– volume: 80
  start-page: 890
  year: 2020
  ident: 18173_CR36
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-08475-w
– volume: 82
  start-page: 185
  year: 2022
  ident: 18173_CR41
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-022-10120-7
– volume: 93
  start-page: 171
  year: 1984
  ident: 18173_CR4
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01223743
– volume: 819
  year: 2021
  ident: 18173_CR54
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2021.136390
– volume: 103
  year: 2021
  ident: 18173_CR53
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.084038
– volume: 92
  start-page: 131101
  year: 2004
  ident: 18173_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.131101
– volume: 104
  year: 2021
  ident: 18173_CR27
  publication-title: Phys. Rev. D
– volume: 43
  start-page: 833
  year: 2011
  ident: 18173_CR42
  publication-title: Gen. Rel. Grav.
  doi: 10.1007/s10714-010-1108-z
– volume: 105
  year: 2010
  ident: 18173_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.261102
– volume: 126
  year: 2021
  ident: 18173_CR60
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.181301
SSID ssj0015190
Score 2.5131187
Snippet A bstract The destruction of the event horizon of a nonsingular black hole, which is not prevented by the weak cosmic censorship conjecture, might provide us...
The destruction of the event horizon of a nonsingular black hole, which is not prevented by the weak cosmic censorship conjecture, might provide us the...
Abstract The destruction of the event horizon of a nonsingular black hole, which is not prevented by the weak cosmic censorship conjecture, might provide us...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 66
SubjectTerms Angular velocity
Black Holes
Censorship
Classical and Quantum Gravitation
Destruction
Elementary Particles
Event horizon
Gravity
High energy physics
Investigations
Laboratories
Models of Quantum Gravity
Parameters
Particle injection
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum gravity
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Rotation
Scalars
Spacetime
Spacetime Singularities
String Theory
Theoretical physics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ1ZXycGDHqpJm22To8ouy4IiqOCt5ImCbrW7e_HXO9OHL1i8eG3TMkwmnW86yfcRcgQI3kgNM5AqBwUKJIFYW-Vi5gP3PnE8r0-5Xl1no3sxfug_fJP6wj1hDT1w47izvtZB2DTlSQhCaQGLUwmtMs-Mc4B18esLOa8rptr-AeAS1hH5sPxsPBrcMHEMhX5ywmpCxK8cVFP1_8CXv1qidaYZrpO1FiLS88a0DbLkJ5tkpd6qaadb5BZLxarE40kU0ButKZjoY1k9vZcTWgaq6QR3vU5QZL6iVYnNdhj7Ngcnzl9ii3ocFoAmNfjzjqJA7ja5Hw7uLkdxK40QW8HzGcrm4PkpAfjCMCeYdLlUieRaJ5ZJYzMvtYPiw6LWuUHN7oCVD8ALwwETqHSHLIMtfpfQ4IVzQQDQURwcLU2aBqeYYRlAl35mInLaOauwLW84ylc8Fx3jcePdAr1bgHcjcvz5wGtDmbF46AV6_3MYcl3XFyACijYCir8iICK9bu6KdgFOC8B5CiJPMhmRk24-v24vsGfvP-zZJ6v4Pmw5cd4jy7Nq7g8AuczMYR2kH7w558E
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Journals Complete - Open Access
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxEB0FqkpcUCkgArTyoQdyWGTvOhv7SBFRFImqUkHitvJnQYIsbJILv54ZZzdVWnHobbU7lqwZ2_NmxzMP4BsieKsMWqDQHgMUdAKZcdpnPEQRQu7FKFW5Xv8oJ7dyeje864HoamHSbfcuJZlO6q7YbTq5-snlGQbr-QD95BZ8GOIzLepLKnBoEwcISHjXweffQRvOJ_Xo3wCWf-VCk4sZf4LdFhuyi5Ux96AXZp_hY7qj6eb78ItixKamuiSGsI2l3kvsvm4eXusZqyMzbEbXXWfELt-wpqYsO8q-LFF7y6fMERGHQ4TJLP21Y8SMewC346uby0nWciJkTorRgvhyqHBKIrCw3Euu_EjpXAljcseVdWVQxmPU4Yjk3BJZd6SQB3GFFQgGdHEI2ziXcAQsBul9lIhwtJCuULYootfc8hIxy7C0fTjvlFW5tmE48VY8Vl2r45V2K9Juhdrtw9l6wPOqV8b7ot9J-2sxanKdXtTN76rdM9XQmIgTK0Qeo9RG4rmspdFl4NZ7DHP6cNrZrmp33rxCgKdxySmu-jDo7Pnn8zvzOf4P2RPYoUdKKQlxCtuLZhm-IDJZ2K9pLb4B27bajw
  priority: 102
  providerName: Springer Nature
Title Destroying the event horizon of a nonsingular rotating quantum-corrected black hole
URI https://link.springer.com/article/10.1007/JHEP04(2022)066
https://www.proquest.com/docview/2649424808
https://doaj.org/article/5aaf4c3312ff49a491194a96e0bdd585
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB7RVkhcEE8RKJEPHNrDUnvX2dgn1EYJUSWqCojU28pPeoBsu0ku_HpmHG8ikMrF0u7OWtbYHn_jsecD-IAI3iqDPVBpjw4KLgKFcdoXPEQRQunFON1y_XJVzxfy8mZ0kzfcVvlYZW8Tk6H2raM98jNcuDVWpbj6dHdfEGsURVczhcYBHKEJVuh8HV1Mr66_7uIIiE94n9CHj88u59NrLk_Q4S9PeUqMuF-LUsr-v3DmP6HRtOLMnsHTDBXZ-bZvn8OjsHwBj9ORTbd6Cd_IZexauqbEEMWxlIqJ3WKbf7dL1kZm2JJOvy6JbL5jXUtBd5S936AyN78KR7wcDgEns7SJx4go9xUsZtPvk3mRKRIKJ8V4TfQ5dI9KIs6w3Euu_FjpUgljSseVdXVQxqMT4ojz3BJ3dyQPCGGGFYgNdPUaDrEt4Q2wGKT3USLg0UK6Stmqil5zy2uEMKPaDuBjr6zG5fzhRGPxs-kzH2-125B2G9TuAE52P9xtU2c8LHpB2t-JUc7r9KLtfjR5CjUjYyI2rBJljFIbiWZaS6PrwK336PUM4LjvuyZPxFWzHzYDOO37c__5gfa8_X9V7-AJSVJQSYhjOFx3m_AescnaDuFAzT4P8zDEp0kpqawnw-TtY7koz_8ALkTk_w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VrRBcqvISaQv4AFJ7WGrvOhv7gBCPhvQpJFqpt8VPOEC23SSq4EfxG5lxdhOBVG69Jt6VNTP2982OPR_AC2TwVhn0QKE9JigIAplx2mc8RBFC7sUg3XI9OS1H5_Lwon-xAr-7uzB0rLLbE9NG7WtH38j3ELg1vkpx9ebyKiPVKKqudhIa87A4Cj-vMWWbvD74gP59mefD_bP3o6xVFcicFIMpKc7Q1SOJ0Gy5l1z5gdK5EsbkjivryqCMR97uSCbcktx1pKQBkdkKhFNqvoRb_posCk0rSg0_LqoWyIZ41z6ID_YOR_ufuNzJESZ3eWrDuES-JBDwF6v9pxCb8G24AestMWVv55F0H1bC-AHcSQdE3eQhfKYEtanpUhRDzshS4yf2DS30qx6zOjLDxnTWdkzS9g1rairx49irGbpu9iNzpALikN4yS58MGcnyPoLzWzHdY1jFuYQnwGKQ3keJ9EoL6QpliyJ6zS0vkTD1S9uDV52xKtd2KyfRjO9V12d5bt2KrFuhdXuws3jgct6o4-ah78j6i2HUYTv9UDdfq3bBVn1jIk6sEHmMUhuJoKCl0WXg1nvMsXqw3fmuapf9pFoGaQ92O38u_75hPpv_f9VzuDs6Ozmujg9Oj7bgHj1F5SwhtmF12szCU2RFU_sshSKDL7cd-38AYKcZmQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqUBcUHmJ0AJ7AKk9mOzaGz8OCLU0UdpCFAGVelv2WQ40bp1EFfw0fl1nHDsRSOXWq722VjPj_b7x7M4H8AYZvMk1eiApHCYoCAKRtoWLuA_C-9iJrD7l-nmcjk7l8Vn_bAP-tGdhaFtluybWC7UrLf0j7yFwF_iqnOe90GyLmBwOP1xeRaQgRZXWVk5jGSIn_tc1pm-z90eH6Ou3cTwcfPs4ihqFgchKkc1JfYaOIUmEacOd5LnL8iLOhdax5bmxqc-1Qw5vSTLckPR1oAQCUdoIhFZqxITL_2aGWRHvwObBYDz5sqphIDfibTMhnvWOR4MJl7sxguYer5syrnGwlgv4i-P-U5at0W64BQ8bmsr2l3H1CDb89DHcq7eL2tkT-ErpalXSESmGDJLVbaDYD7TR73LKysA0m9LO2ykJ3VesKqngj2OvFujIxUVkSRPEItllhn4gMhLpfQqnd2K8Z9DBufjnwIKXzgWJZKsQ0ia5SZLgCm54ivSpn5ouvGuNpWzTu5wkNH6qtuvy0rqKrKvQul3YXT1wuWzbcfvQA7L-ahj1264vlNW5aj5f1dc64MQSEYcgCy0RIgqpi9Rz4xxmXF3YaX2nmkVgptYh24W91p_r27fM58X_X_Ua7mPcq09H45NteEAPUW1LiB3ozKuFf4kUaW5eNbHI4Ptdh_8NZoAfKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Destroying+the+event+horizon+of+a+nonsingular+rotating+quantum-corrected+black+hole&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Yang%2C+Si-Jiang&rft.au=Zhang%2C+Yu-Peng&rft.au=Wei%2C+Shao-Wen&rft.au=Liu%2C+Yu-Xiao&rft.date=2022-04-11&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2022&rft.issue=4&rft.spage=66&rft_id=info:doi/10.1007%2FJHEP04%282022%29066&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon