Ladder top-quark condensation imprints in supercooled electroweak phase transition

A bstract The electroweak (EW) phase transition in the early Universe might be supercooled due to the presence of the classical scale invariance involving Beyond the Standard Model (BSM) sectors and the supercooling could persist down till a later epoch around which the QCD chiral phase transition i...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2024; no. 9; pp. 140 - 26
Main Authors Guan, Yuepeng, Matsuzaki, Shinya
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 20.09.2024
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract The electroweak (EW) phase transition in the early Universe might be supercooled due to the presence of the classical scale invariance involving Beyond the Standard Model (BSM) sectors and the supercooling could persist down till a later epoch around which the QCD chiral phase transition is supposed to take place. Since this supercooling period keeps masslessness for all the six SM quarks, it has simply been argued that the QCD phase transition is the first order, and so is the EW one. However, not only the QCD coupling but also the top Yukawa and the Higgs quartic couplings get strong at around the QCD scale due to the renormalization group running, hence this scenario is potentially subject to a rigorous nonperturbative analysis. In this work, we employ the ladder Schwinger-Dyson (LSD) analysis based on the Cornwall-Jackiw-Tomboulis formalism at the two-loop level in such a gauge-Higgs-Yukawa system. We show that the chiral broken QCD vacuum emerges with the nonperturbative top condensate and the lightness of all six quarks is guaranteed due to the accidental U(1) axial symmetry presented in the top-Higgs sector. We employ a quark-meson model-like description in the mean field approximation to address the impact on the EW phase transition arising due to the top quark condensation at the QCD phase transition epoch. In the model, the LSD results are encoded to constrain the model parameter space. We then observe the cosmological phase transition of the first-order type and discuss the induced gravitational wave (GW) productions. We find that in addition to the conventional GW signals sourced from an expected BSM at around or over the TeV scale, the dynamical topponium-Higgs system can yield another power spectrum sensitive to the BBO, LISA, and DECIGO, etc.
AbstractList The electroweak (EW) phase transition in the early Universe might be supercooled due to the presence of the classical scale invariance involving Beyond the Standard Model (BSM) sectors and the supercooling could persist down till a later epoch around which the QCD chiral phase transition is supposed to take place. Since this supercooling period keeps masslessness for all the six SM quarks, it has simply been argued that the QCD phase transition is the first order, and so is the EW one. However, not only the QCD coupling but also the top Yukawa and the Higgs quartic couplings get strong at around the QCD scale due to the renormalization group running, hence this scenario is potentially subject to a rigorous nonperturbative analysis. In this work, we employ the ladder Schwinger-Dyson (LSD) analysis based on the Cornwall-Jackiw-Tomboulis formalism at the two-loop level in such a gauge-Higgs-Yukawa system. We show that the chiral broken QCD vacuum emerges with the nonperturbative top condensate and the lightness of all six quarks is guaranteed due to the accidental U(1) axial symmetry presented in the top-Higgs sector. We employ a quark-meson model-like description in the mean field approximation to address the impact on the EW phase transition arising due to the top quark condensation at the QCD phase transition epoch. In the model, the LSD results are encoded to constrain the model parameter space. We then observe the cosmological phase transition of the first-order type and discuss the induced gravitational wave (GW) productions. We find that in addition to the conventional GW signals sourced from an expected BSM at around or over the TeV scale, the dynamical topponium-Higgs system can yield another power spectrum sensitive to the BBO, LISA, and DECIGO, etc.
Abstract The electroweak (EW) phase transition in the early Universe might be supercooled due to the presence of the classical scale invariance involving Beyond the Standard Model (BSM) sectors and the supercooling could persist down till a later epoch around which the QCD chiral phase transition is supposed to take place. Since this supercooling period keeps masslessness for all the six SM quarks, it has simply been argued that the QCD phase transition is the first order, and so is the EW one. However, not only the QCD coupling but also the top Yukawa and the Higgs quartic couplings get strong at around the QCD scale due to the renormalization group running, hence this scenario is potentially subject to a rigorous nonperturbative analysis. In this work, we employ the ladder Schwinger-Dyson (LSD) analysis based on the Cornwall-Jackiw-Tomboulis formalism at the two-loop level in such a gauge-Higgs-Yukawa system. We show that the chiral broken QCD vacuum emerges with the nonperturbative top condensate and the lightness of all six quarks is guaranteed due to the accidental U(1) axial symmetry presented in the top-Higgs sector. We employ a quark-meson model-like description in the mean field approximation to address the impact on the EW phase transition arising due to the top quark condensation at the QCD phase transition epoch. In the model, the LSD results are encoded to constrain the model parameter space. We then observe the cosmological phase transition of the first-order type and discuss the induced gravitational wave (GW) productions. We find that in addition to the conventional GW signals sourced from an expected BSM at around or over the TeV scale, the dynamical topponium-Higgs system can yield another power spectrum sensitive to the BBO, LISA, and DECIGO, etc.
A bstract The electroweak (EW) phase transition in the early Universe might be supercooled due to the presence of the classical scale invariance involving Beyond the Standard Model (BSM) sectors and the supercooling could persist down till a later epoch around which the QCD chiral phase transition is supposed to take place. Since this supercooling period keeps masslessness for all the six SM quarks, it has simply been argued that the QCD phase transition is the first order, and so is the EW one. However, not only the QCD coupling but also the top Yukawa and the Higgs quartic couplings get strong at around the QCD scale due to the renormalization group running, hence this scenario is potentially subject to a rigorous nonperturbative analysis. In this work, we employ the ladder Schwinger-Dyson (LSD) analysis based on the Cornwall-Jackiw-Tomboulis formalism at the two-loop level in such a gauge-Higgs-Yukawa system. We show that the chiral broken QCD vacuum emerges with the nonperturbative top condensate and the lightness of all six quarks is guaranteed due to the accidental U(1) axial symmetry presented in the top-Higgs sector. We employ a quark-meson model-like description in the mean field approximation to address the impact on the EW phase transition arising due to the top quark condensation at the QCD phase transition epoch. In the model, the LSD results are encoded to constrain the model parameter space. We then observe the cosmological phase transition of the first-order type and discuss the induced gravitational wave (GW) productions. We find that in addition to the conventional GW signals sourced from an expected BSM at around or over the TeV scale, the dynamical topponium-Higgs system can yield another power spectrum sensitive to the BBO, LISA, and DECIGO, etc.
ArticleNumber 140
Author Matsuzaki, Shinya
Guan, Yuepeng
Author_xml – sequence: 1
  givenname: Yuepeng
  orcidid: 0009-0007-8571-0931
  surname: Guan
  fullname: Guan, Yuepeng
  email: guanyp22@mails.jlu.edu.cn
  organization: Center for Theoretical Physics and College of Physics, Jilin University
– sequence: 2
  givenname: Shinya
  orcidid: 0000-0003-4531-0363
  surname: Matsuzaki
  fullname: Matsuzaki, Shinya
  organization: Center for Theoretical Physics and College of Physics, Jilin University
BookMark eNp9kUFrFTEUhYNUsK2u3Q64aRdjczOZmWQppfVVHihi1-E2c1PzOk2mSR7Ff-9Mp6gIusol3O_cwzlH7CDEQIy9Bf4eOO_PPm0uvnB9IriQpyD5C3YIXOhayV4f_DG_Ykc57ziHFjQ_ZF-3OAyUqhKn-mGP6a6yMQwUMhYfQ-Xvp-RDyZUPVd5PlGyMIw0VjWRLio-Ed9X0HTNVJWHIfoFes5cOx0xvnt9jdn158e18U28_f7w6_7CtrYS-1DggtJ1QVnWtUxrJdU5gc6OEExaEbSW1ljtBSlFHDoWUXcepb1yPglzTHLOrVXeIuDOzz3tMP0xEb54-Yro1mIq3I5mWnIBBgsNeScBBUw_aSoeqa_SNXLTerVpTig97ysXs4j6F2b5pgPcNKA3L1tm6ZVPMOZH7dRW4WUowawlmKcHMJcxE-xdhfXmKds7Lj__h-MrlJf9bSr_9_Av5Cfr_nTY
CitedBy_id crossref_primary_10_1088_1475_7516_2025_02_075
crossref_primary_10_1103_PhysRevD_110_115001
Cites_doi 10.1103/PhysRevD.83.044011
10.1103/PhysRevD.104.L111501
10.1007/JHEP01(2023)093
10.1103/PhysRevD.108.023512
10.1103/PhysRevD.110.014048
10.1103/PhysRevD.91.034016
10.1016/j.physletb.2019.05.013
10.1103/PhysRevD.93.114502
10.1103/PhysRevD.108.015033
10.1088/1742-6596/316/1/012020
10.1088/1475-7516/2020/03/024
10.1103/PhysRevD.100.055025
10.1016/j.cpc.2012.04.004
10.1088/1475-7516/2019/02/021
10.1103/PhysRevD.102.034027
10.1103/PhysRevD.23.876
10.1103/PhysRevD.109.034009
10.1088/1674-4527/acdfa5
10.1088/1126-6708/2009/06/088
10.1007/JHEP01(2018)159
10.1007/JHEP01(2021)097
10.1103/PhysRevD.107.123512
10.1103/PhysRevD.7.1888
10.1088/0264-9381/23/7/014
10.1142/S0218301315300076
10.1088/0264-9381/23/15/008
10.1016/j.nuclphysa.2020.121940
10.1007/JHEP08(2018)188
10.1103/PhysRevD.109.095006
10.1103/PhysRevD.108.055035
10.1051/0004-6361/202449185
10.1103/PhysRevD.20.2947
10.3847/2041-8213/acdd03
10.1088/1674-1137/ad2b4f
10.22323/1.256.0022
10.3847/2041-8213/acdd02
10.1103/PhysRevD.10.2428
10.1142/9789814343336
10.1103/PhysRevLett.44.631
10.1103/PhysRevD.95.114011
10.1103/PhysRevLett.119.141301
10.1016/j.nuclphysb.2020.114938
10.3390/universe6070096
10.1016/j.ppnp.2023.104081
10.1088/1475-7516/2019/04/003
10.1007/JHEP02(2024)059
10.1016/0550-3213(83)90293-6
10.1143/PTP.91.541
ContentType Journal Article
Copyright The Author(s) 2024
Copyright Springer Nature B.V. Sep 2024
Copyright_xml – notice: The Author(s) 2024
– notice: Copyright Springer Nature B.V. Sep 2024
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP09(2024)140
DatabaseName Open Access Journals from Springer Nature
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 26
ExternalDocumentID oai_doaj_org_article_5ef21d41fa7841ad9e719c4fa8639b43
10_1007_JHEP09_2024_140
GroupedDBID 0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMVHM
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
N5L
N9A
NB0
O93
OK1
P62
P9T
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
R9I
RO9
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c417t-ada15628c865f89aef6f2a3b82f2c12c54e5c0f2e88e6efa244660e73f7a2ef33
IEDL.DBID C6C
ISSN 1029-8479
IngestDate Wed Aug 27 01:16:58 EDT 2025
Sun Jul 13 04:20:49 EDT 2025
Thu Apr 24 22:57:06 EDT 2025
Wed Jul 23 08:15:35 EDT 2025
Mon Jul 21 06:08:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Scale and Conformal Symmetries
Nonperturbative Effects
Phase Transitions in the Early Universe
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-ada15628c865f89aef6f2a3b82f2c12c54e5c0f2e88e6efa244660e73f7a2ef33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0007-8571-0931
0000-0003-4531-0363
OpenAccessLink https://doi.org/10.1007/JHEP09(2024)140
PQID 3107318913
PQPubID 2034718
PageCount 26
ParticipantIDs doaj_primary_oai_doaj_org_article_5ef21d41fa7841ad9e719c4fa8639b43
proquest_journals_3107318913
crossref_primary_10_1007_JHEP09_2024_140
crossref_citationtrail_10_1007_JHEP09_2024_140
springer_journals_10_1007_JHEP09_2024_140
PublicationCentury 2000
PublicationDate 2024-09-20
PublicationDateYYYYMMDD 2024-09-20
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-20
  day: 20
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References L Del Grosso (24517_CR29) 2024; 109
RJ Crewther (24517_CR45) 2015; 91
DJ Reardon (24517_CR7) 2023; 951
C Caprini (24517_CR11) 2020; 03
A Deur (24517_CR39) 2024; 134
24517_CR51
24517_CR50
24517_CR6
24517_CR13
24517_CR5
24517_CR12
24517_CR10
24517_CR17
24517_CR15
D Bödeker (24517_CR32) 2021; 104
24517_CR14
24517_CR19
H Xu (24517_CR9) 2023; 23
S Iso (24517_CR23) 2017; 119
M Aoki (24517_CR57) 2020; 04
H-T Ding (24517_CR18) 2015; 24
R Zwicky (24517_CR43) 2024; 110
K Schmitz (24517_CR55) 2021; 01
24517_CR46
V Brdar (24517_CR53) 2019; 02
24517_CR47
L Sagunski (24517_CR30) 2023; 107
J Ellis (24517_CR27) 2023; 01
J Ellis (24517_CR52) 2019; 04
O Catà (24517_CR41) 2020; 952
MT Frandsen (24517_CR31) 2023; 108
X-R Wang (24517_CR28) 2023; 108
Y-L Li (24517_CR40) 2017; 95
A Bazavov (24517_CR21) 2016; 93
24517_CR35
24517_CR34
T Hambye (24517_CR24) 2018; 08
24517_CR38
24517_CR37
H-T Ding (24517_CR20) 2021; 1005
24517_CR36
DJ Reardon (24517_CR8) 2023; 951
X-R Wong (24517_CR33) 2023; 108
RJ Crewther (24517_CR44) 2020; 6
Y Aoki (24517_CR16) 2009; 06
R Zwicky (24517_CR42) 2024; 109
CL Wainwright (24517_CR49) 2012; 183
24517_CR2
24517_CR1
24517_CR4
H-X Zhang (24517_CR54) 2024; 48
24517_CR3
B von Harling (24517_CR25) 2018; 01
AJ Helmboldt (24517_CR48) 2019; 100
24517_CR22
M Dichtl (24517_CR26) 2024; 02
F Gao (24517_CR56) 2020; 102
References_xml – ident: 24517_CR15
  doi: 10.1103/PhysRevD.83.044011
– volume: 104
  start-page: L111501
  year: 2021
  ident: 24517_CR32
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.104.L111501
– volume: 01
  start-page: 093
  year: 2023
  ident: 24517_CR27
  publication-title: JHEP
  doi: 10.1007/JHEP01(2023)093
– volume: 108
  year: 2023
  ident: 24517_CR28
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.108.023512
– volume: 110
  year: 2024
  ident: 24517_CR43
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.110.014048
– volume: 91
  year: 2015
  ident: 24517_CR45
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.034016
– ident: 24517_CR3
– ident: 24517_CR10
– ident: 24517_CR19
  doi: 10.1016/j.physletb.2019.05.013
– volume: 93
  year: 2016
  ident: 24517_CR21
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.114502
– volume: 108
  year: 2023
  ident: 24517_CR31
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.108.015033
– ident: 24517_CR17
  doi: 10.1088/1742-6596/316/1/012020
– volume: 03
  start-page: 024
  year: 2020
  ident: 24517_CR11
  publication-title: JCAP
  doi: 10.1088/1475-7516/2020/03/024
– ident: 24517_CR14
– volume: 100
  year: 2019
  ident: 24517_CR48
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.055025
– ident: 24517_CR4
– volume: 183
  start-page: 2006
  year: 2012
  ident: 24517_CR49
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.04.004
– volume: 02
  start-page: 021
  year: 2019
  ident: 24517_CR53
  publication-title: JCAP
  doi: 10.1088/1475-7516/2019/02/021
– volume: 102
  year: 2020
  ident: 24517_CR56
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.034027
– ident: 24517_CR51
  doi: 10.1103/PhysRevD.23.876
– volume: 109
  year: 2024
  ident: 24517_CR42
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.109.034009
– volume: 23
  year: 2023
  ident: 24517_CR9
  publication-title: Res. Astron. Astrophys.
  doi: 10.1088/1674-4527/acdfa5
– volume: 06
  start-page: 088
  year: 2009
  ident: 24517_CR16
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/06/088
– volume: 01
  start-page: 159
  year: 2018
  ident: 24517_CR25
  publication-title: JHEP
  doi: 10.1007/JHEP01(2018)159
– volume: 01
  start-page: 097
  year: 2021
  ident: 24517_CR55
  publication-title: JHEP
  doi: 10.1007/JHEP01(2021)097
– volume: 04
  start-page: 001
  year: 2020
  ident: 24517_CR57
  publication-title: JCAP
– volume: 107
  year: 2023
  ident: 24517_CR30
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.107.123512
– ident: 24517_CR46
  doi: 10.1103/PhysRevD.7.1888
– ident: 24517_CR12
  doi: 10.1088/0264-9381/23/7/014
– volume: 24
  start-page: 1530007
  year: 2015
  ident: 24517_CR18
  publication-title: Int. J. Mod. Phys. E
  doi: 10.1142/S0218301315300076
– ident: 24517_CR1
– ident: 24517_CR13
  doi: 10.1088/0264-9381/23/15/008
– volume: 1005
  year: 2021
  ident: 24517_CR20
  publication-title: Nucl. Phys. A
  doi: 10.1016/j.nuclphysa.2020.121940
– volume: 08
  start-page: 188
  year: 2018
  ident: 24517_CR24
  publication-title: JHEP
  doi: 10.1007/JHEP08(2018)188
– volume: 109
  year: 2024
  ident: 24517_CR29
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.109.095006
– volume: 108
  year: 2023
  ident: 24517_CR33
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.108.055035
– ident: 24517_CR2
  doi: 10.1051/0004-6361/202449185
– ident: 24517_CR38
  doi: 10.1103/PhysRevD.20.2947
– volume: 951
  start-page: L7
  year: 2023
  ident: 24517_CR8
  publication-title: Astrophys. J. Lett.
  doi: 10.3847/2041-8213/acdd03
– ident: 24517_CR5
– volume: 48
  year: 2024
  ident: 24517_CR54
  publication-title: Chin. Phys. C
  doi: 10.1088/1674-1137/ad2b4f
– ident: 24517_CR22
  doi: 10.22323/1.256.0022
– volume: 951
  start-page: L6
  year: 2023
  ident: 24517_CR7
  publication-title: Astrophys. J. Lett.
  doi: 10.3847/2041-8213/acdd02
– ident: 24517_CR35
– ident: 24517_CR34
  doi: 10.1103/PhysRevD.10.2428
– ident: 24517_CR37
  doi: 10.1142/9789814343336
– ident: 24517_CR50
  doi: 10.1103/PhysRevLett.44.631
– volume: 95
  year: 2017
  ident: 24517_CR40
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.95.114011
– volume: 119
  year: 2017
  ident: 24517_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.141301
– volume: 952
  year: 2020
  ident: 24517_CR41
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2020.114938
– volume: 6
  start-page: 96
  year: 2020
  ident: 24517_CR44
  publication-title: Universe
  doi: 10.3390/universe6070096
– volume: 134
  year: 2024
  ident: 24517_CR39
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2023.104081
– volume: 04
  start-page: 003
  year: 2019
  ident: 24517_CR52
  publication-title: JCAP
  doi: 10.1088/1475-7516/2019/04/003
– volume: 02
  start-page: 059
  year: 2024
  ident: 24517_CR26
  publication-title: JHEP
  doi: 10.1007/JHEP02(2024)059
– ident: 24517_CR6
– ident: 24517_CR47
  doi: 10.1016/0550-3213(83)90293-6
– ident: 24517_CR36
  doi: 10.1143/PTP.91.541
SSID ssj0015190
Score 2.4575315
Snippet A bstract The electroweak (EW) phase transition in the early Universe might be supercooled due to the presence of the classical scale invariance involving...
The electroweak (EW) phase transition in the early Universe might be supercooled due to the presence of the classical scale invariance involving Beyond the...
Abstract The electroweak (EW) phase transition in the early Universe might be supercooled due to the presence of the classical scale invariance involving...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 140
SubjectTerms Astronomical models
Classical and Quantum Gravitation
Condensates
Cosmology
Couplings
Elementary Particles
Gravitational waves
Nonperturbative Effects
Parameter sensitivity
Phase transitions
Phase Transitions in the Early Universe
Physics
Physics and Astronomy
Quantum chromodynamics
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Quarks
Regular Article - Theoretical Physics
Relativity Theory
Scale and Conformal Symmetries
Scale invariance
Standard model (particle physics)
String Theory
Supercooling
SummonAdditionalLinks – databaseName: Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iCF7EJ1ar5OChPdRms8k-jiotpYiIWOhtSZMJltZ2bbf4953so1ahePG6yYYwMzvzzc7wDSE3BoOoVOj9ML0KMEGRvKWMKyGiY5RaM6YhZ_t8CnoD0R_K4caoL9cTVtADF4JrS7DcM8KzylXIlIkh9GItrIowto5EzvOJMa9Kpsr6AeISVhH5sLDd73WeWdzARF80PfefYyMG5VT9P_Dlr5JoHmm6h-SghIj0rrjaEdmB2THZy1s19fKEvDw6Z7Gg2TxtfaCCJxRTWvQeRVsOHb-7Y7MlHc_ocpXCQs_nUzC0nHfzCWpC0zeMXTRzYSrv2Dolg27n9aHXKicjtLTwwgzFqTDv4pGOAmmjWIENLFf-KOKWa49rKUBqZjlEEQRgFXdVWwahb0PFwfr-GdmdzWdwTqgwxkcYxk0UaMGUrxSiAmUksFAroWWN3FaySnRJG-6mV0yTivC4EG7ihIuJBKuRxvqFtGDM2L713gl_vc1RXecP0ACS0gCSvwygRuqV6pLy-1smCFpD9Faxh8vNSp3fy1vuc_Ef97kk--4811PCWZ3sZosVXCFwyUbXuY1-AchP6U4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RT9wwDLa2Q5P2goAx7TaG8sADPHSkadKmT2igQyc0IYSGxFuVS5wNwa7lWsTfn9NLD4bEXts0qmzH_hxbnwH2HAVRZcj7UXqVU4KiRGJcKCGSY1TWcm6xZ_s8z6dX8uxaXccLtza2VQ4-sXfUrrbhjvyQYEhB9lem2VFzn4SpUaG6GkdovIU1csFaj2DteHJ-cbmqIxA-4QOhDy8Oz6aTC17uU8IvD9Jw3_EsFvWU_f_gzBel0T7inG7AeoSK7PtSt5vwBudb8K5v2bTtB7j8EZzGgnV1k9yTom8ZpbbkRZbtOezmT9i2a9nNnLUPDS5sXd-hY3HuzSOaW9b8phjGuhCu-s6tbbg6nfw8mSZxQkJiZVp0JFZD-ZfQVufK69Kgz70w2UwLL2wqrJKoLPcCtcYcvRGhesuxyHxhBPos-wijeT3HT8CkcxnBMeF0biU3mTGEDoxTyAtrpFVj-DbIqrKRPjxMsbirBuLjpXCrIFxKKPgY9lcfNEvmjNeXHgfhr5YFyuv-Qb34VcUTVCn0InUy9SaUSo0rsUhLK73RBLJmMhvDzqC6Kp7DtnqymjEcDOp8ev3K_3z-_1Zf4H1YGbpGBN-BUbd4wK8ETbrZbrS_vzVz4fw
  priority: 102
  providerName: ProQuest
Title Ladder top-quark condensation imprints in supercooled electroweak phase transition
URI https://link.springer.com/article/10.1007/JHEP09(2024)140
https://www.proquest.com/docview/3107318913
https://doaj.org/article/5ef21d41fa7841ad9e719c4fa8639b43
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8QPBF_MT5MfLggz5M0zRp00cdm0NERBz4VrLkgqJuc6v473vp2omKD76UtklKuWvufsddfwdw5MiJKkPWj8KrhAIUJVrGhRQiGUZlLecWS7bPm6TXl1cP6qEiSQr_wvzI359d9Tq3PDumEF2eUCywCMsqitPQo6GdtOfpAoIhvObt-b3om8spmfm_wckfGdDSsXTXYa1ChOx8psINWMDhJqyUlZl2ugV318E2TFgxGrfeSJ_PjCJYMhazKhz29BoeW0zZ05BN38c4saPRCzpWtbf5QPPMxo_kqlgRvFJZoLUN_W7nvt1rVY0QWlZGaUHSMxRmCW11orzODPrECxMPtPDCRsIqicpyL1BrTNAbEZK0HNPYp0agj-MdWBqOhrgLTDoXE-oSTidWchMbQyDAOIU8tUZa1YDTWla5rVjCQ7OKl7zmN54JNw_CpbiBN-B4vmA8I8j4e-pFEP58WmC2Lm-QwvNqo-QKvYicjLwJGVHjMkyjzEpvNGGpgYwbcFCrLq-22zQnjJqSccoiGj6p1fk1_Mf77P1j7j6shtNQKSL4ASwVk3c8JDhSDJqwqLuXTVi-6Nzc3tFVW8hm-Xk2ywCfjn1x_gmYh91Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4QDNGLUdC4iNoHSeAw0tPTPY-DMT5YF1iIMZBwG3v7AQTcGXaGEP-Uv9GqeSxogjeuM92dTlV11Vdd1VUAby0aUaVR-6F7FaODokSgLYUQUTEqYzg3rqn2eRCPjuTusTpegN_9WxhKq-x1YqOobWHojnwLYUiC8peF0YfyMqCuURRd7VtotGKx535do8tWvd_5gvxdF2K4ffh5FHRdBQIjw6TGrWj0WURq0lj5NNPOx17oaJIKL0wojJJOGe6FS1MXO68FRTy5SyKfaOE8XYCiyn8gI7Tk9DJ9-HUetUA0xPvyQTzZ2h1tf-PZhkAzuBnS7coty9c0CPgL1f4TiG3s2_AJPO6AKfvYStJTWHDTZVhqEkRNtQLfx6SiZqwuyuASxeqcoSONOqtNBmJnP2nZumJnU1ZdlW5miuLCWdZ12bl2-pyVp2gxWU3GsckTewZH90K557A4LabuBTBpbYTgT9g0NpLrSGvEItoqxxOjpVEDeNfTKjddsXLqmXGR92WWW-LmRFx0X_gANuYTyrZOx91DPxHx58OowHbzoZid5N15zZXzIrQy9JoCs9pmLgkzI71OEdJNZDSAtZ51eXfqq_xGRgew2bPz5vcd-1n9_1Jv4OHocH-cj3cO9l7CI5pF-SqCr8FiPbtyrxAU1ZPXjSQy-HHfov8HzmIeiQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB6hRa16qehL3UKpD60Eh3QdJ87jUCEou1oeWq1QkbilXj8ogm7CJgj1r_XXMZPH0laiN66JbVnjL9_MeCYzAB8NKlGpkP3QvYrQQZHCU4ZCiEiMUmvOta2rfU6i8Wl4eCbPVuB39y8MpVV2nFgTtck13ZEP0AyJEX-pHwxcmxYx3R_tFNcedZCiSGvXTqOByJH9dYvuW_nlYB_P-pMQo-G3r2Ov7TDg6dCPK9yWQv9FJDqJpEtSZV3khApmiXBC-0LL0ErNnbBJYiPrlKDoJ7dx4GIlrKPLUKT_1Zi8oh6s7g0n05NlDANtI94VE-Lx4HA8nPJ0S6BS3PbpruUPPVi3C_jLxv0nLFtru9EaPG_NVLbb4OoFrNj5S3hSp4vq8hWcHBNhLViVF941guySoVuNDNakBrGLn7RsVbKLOStvCrvQeX5lDWt77txadcmKH6g_WUWqss4aew2njyK7N9Cb53P7FlhoTICmoDBJpEOuAqXQMlFGWh5rFWrZh8-drDLdli6nDhpXWVd0uRFuRsJFZ4b3YWs5oWiqdjw8dI-EvxxG5bbrB_niPGu_3kxaJ3wT-k5RmFaZ1MZ-qkOnEjTwZmHQh43u6LKWA8rsHrF92O6O8_71A_t59_-lPsBThH12fDA5WodnNImSVwTfgF61uLHv0UKqZpstFBl8f2z03wHL9CQb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ladder+top-quark+condensation+imprints+in+supercooled+electroweak+phase+transition&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Guan%2C+Yuepeng&rft.au=Matsuzaki%2C+Shinya&rft.date=2024-09-20&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2024&rft.issue=9&rft_id=info:doi/10.1007%2FJHEP09%282024%29140&rft.externalDocID=10_1007_JHEP09_2024_140
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon