Ladder top-quark condensation imprints in supercooled electroweak phase transition
A bstract The electroweak (EW) phase transition in the early Universe might be supercooled due to the presence of the classical scale invariance involving Beyond the Standard Model (BSM) sectors and the supercooling could persist down till a later epoch around which the QCD chiral phase transition i...
Saved in:
Published in | The journal of high energy physics Vol. 2024; no. 9; pp. 140 - 26 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
20.09.2024
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
The electroweak (EW) phase transition in the early Universe might be supercooled due to the presence of the classical scale invariance involving Beyond the Standard Model (BSM) sectors and the supercooling could persist down till a later epoch around which the QCD chiral phase transition is supposed to take place. Since this supercooling period keeps masslessness for all the six SM quarks, it has simply been argued that the QCD phase transition is the first order, and so is the EW one. However, not only the QCD coupling but also the top Yukawa and the Higgs quartic couplings get strong at around the QCD scale due to the renormalization group running, hence this scenario is potentially subject to a rigorous nonperturbative analysis. In this work, we employ the ladder Schwinger-Dyson (LSD) analysis based on the Cornwall-Jackiw-Tomboulis formalism at the two-loop level in such a gauge-Higgs-Yukawa system. We show that the chiral broken QCD vacuum emerges with the nonperturbative top condensate and the lightness of all six quarks is guaranteed due to the accidental U(1) axial symmetry presented in the top-Higgs sector. We employ a quark-meson model-like description in the mean field approximation to address the impact on the EW phase transition arising due to the top quark condensation at the QCD phase transition epoch. In the model, the LSD results are encoded to constrain the model parameter space. We then observe the cosmological phase transition of the first-order type and discuss the induced gravitational wave (GW) productions. We find that in addition to the conventional GW signals sourced from an expected BSM at around or over the TeV scale, the dynamical topponium-Higgs system can yield another power spectrum sensitive to the BBO, LISA, and DECIGO, etc. |
---|---|
AbstractList | The electroweak (EW) phase transition in the early Universe might be supercooled due to the presence of the classical scale invariance involving Beyond the Standard Model (BSM) sectors and the supercooling could persist down till a later epoch around which the QCD chiral phase transition is supposed to take place. Since this supercooling period keeps masslessness for all the six SM quarks, it has simply been argued that the QCD phase transition is the first order, and so is the EW one. However, not only the QCD coupling but also the top Yukawa and the Higgs quartic couplings get strong at around the QCD scale due to the renormalization group running, hence this scenario is potentially subject to a rigorous nonperturbative analysis. In this work, we employ the ladder Schwinger-Dyson (LSD) analysis based on the Cornwall-Jackiw-Tomboulis formalism at the two-loop level in such a gauge-Higgs-Yukawa system. We show that the chiral broken QCD vacuum emerges with the nonperturbative top condensate and the lightness of all six quarks is guaranteed due to the accidental U(1) axial symmetry presented in the top-Higgs sector. We employ a quark-meson model-like description in the mean field approximation to address the impact on the EW phase transition arising due to the top quark condensation at the QCD phase transition epoch. In the model, the LSD results are encoded to constrain the model parameter space. We then observe the cosmological phase transition of the first-order type and discuss the induced gravitational wave (GW) productions. We find that in addition to the conventional GW signals sourced from an expected BSM at around or over the TeV scale, the dynamical topponium-Higgs system can yield another power spectrum sensitive to the BBO, LISA, and DECIGO, etc. Abstract The electroweak (EW) phase transition in the early Universe might be supercooled due to the presence of the classical scale invariance involving Beyond the Standard Model (BSM) sectors and the supercooling could persist down till a later epoch around which the QCD chiral phase transition is supposed to take place. Since this supercooling period keeps masslessness for all the six SM quarks, it has simply been argued that the QCD phase transition is the first order, and so is the EW one. However, not only the QCD coupling but also the top Yukawa and the Higgs quartic couplings get strong at around the QCD scale due to the renormalization group running, hence this scenario is potentially subject to a rigorous nonperturbative analysis. In this work, we employ the ladder Schwinger-Dyson (LSD) analysis based on the Cornwall-Jackiw-Tomboulis formalism at the two-loop level in such a gauge-Higgs-Yukawa system. We show that the chiral broken QCD vacuum emerges with the nonperturbative top condensate and the lightness of all six quarks is guaranteed due to the accidental U(1) axial symmetry presented in the top-Higgs sector. We employ a quark-meson model-like description in the mean field approximation to address the impact on the EW phase transition arising due to the top quark condensation at the QCD phase transition epoch. In the model, the LSD results are encoded to constrain the model parameter space. We then observe the cosmological phase transition of the first-order type and discuss the induced gravitational wave (GW) productions. We find that in addition to the conventional GW signals sourced from an expected BSM at around or over the TeV scale, the dynamical topponium-Higgs system can yield another power spectrum sensitive to the BBO, LISA, and DECIGO, etc. A bstract The electroweak (EW) phase transition in the early Universe might be supercooled due to the presence of the classical scale invariance involving Beyond the Standard Model (BSM) sectors and the supercooling could persist down till a later epoch around which the QCD chiral phase transition is supposed to take place. Since this supercooling period keeps masslessness for all the six SM quarks, it has simply been argued that the QCD phase transition is the first order, and so is the EW one. However, not only the QCD coupling but also the top Yukawa and the Higgs quartic couplings get strong at around the QCD scale due to the renormalization group running, hence this scenario is potentially subject to a rigorous nonperturbative analysis. In this work, we employ the ladder Schwinger-Dyson (LSD) analysis based on the Cornwall-Jackiw-Tomboulis formalism at the two-loop level in such a gauge-Higgs-Yukawa system. We show that the chiral broken QCD vacuum emerges with the nonperturbative top condensate and the lightness of all six quarks is guaranteed due to the accidental U(1) axial symmetry presented in the top-Higgs sector. We employ a quark-meson model-like description in the mean field approximation to address the impact on the EW phase transition arising due to the top quark condensation at the QCD phase transition epoch. In the model, the LSD results are encoded to constrain the model parameter space. We then observe the cosmological phase transition of the first-order type and discuss the induced gravitational wave (GW) productions. We find that in addition to the conventional GW signals sourced from an expected BSM at around or over the TeV scale, the dynamical topponium-Higgs system can yield another power spectrum sensitive to the BBO, LISA, and DECIGO, etc. |
ArticleNumber | 140 |
Author | Matsuzaki, Shinya Guan, Yuepeng |
Author_xml | – sequence: 1 givenname: Yuepeng orcidid: 0009-0007-8571-0931 surname: Guan fullname: Guan, Yuepeng email: guanyp22@mails.jlu.edu.cn organization: Center for Theoretical Physics and College of Physics, Jilin University – sequence: 2 givenname: Shinya orcidid: 0000-0003-4531-0363 surname: Matsuzaki fullname: Matsuzaki, Shinya organization: Center for Theoretical Physics and College of Physics, Jilin University |
BookMark | eNp9kUFrFTEUhYNUsK2u3Q64aRdjczOZmWQppfVVHihi1-E2c1PzOk2mSR7Ff-9Mp6gIusol3O_cwzlH7CDEQIy9Bf4eOO_PPm0uvnB9IriQpyD5C3YIXOhayV4f_DG_Ykc57ziHFjQ_ZF-3OAyUqhKn-mGP6a6yMQwUMhYfQ-Xvp-RDyZUPVd5PlGyMIw0VjWRLio-Ed9X0HTNVJWHIfoFes5cOx0xvnt9jdn158e18U28_f7w6_7CtrYS-1DggtJ1QVnWtUxrJdU5gc6OEExaEbSW1ljtBSlFHDoWUXcepb1yPglzTHLOrVXeIuDOzz3tMP0xEb54-Yro1mIq3I5mWnIBBgsNeScBBUw_aSoeqa_SNXLTerVpTig97ysXs4j6F2b5pgPcNKA3L1tm6ZVPMOZH7dRW4WUowawlmKcHMJcxE-xdhfXmKds7Lj__h-MrlJf9bSr_9_Av5Cfr_nTY |
CitedBy_id | crossref_primary_10_1088_1475_7516_2025_02_075 crossref_primary_10_1103_PhysRevD_110_115001 |
Cites_doi | 10.1103/PhysRevD.83.044011 10.1103/PhysRevD.104.L111501 10.1007/JHEP01(2023)093 10.1103/PhysRevD.108.023512 10.1103/PhysRevD.110.014048 10.1103/PhysRevD.91.034016 10.1016/j.physletb.2019.05.013 10.1103/PhysRevD.93.114502 10.1103/PhysRevD.108.015033 10.1088/1742-6596/316/1/012020 10.1088/1475-7516/2020/03/024 10.1103/PhysRevD.100.055025 10.1016/j.cpc.2012.04.004 10.1088/1475-7516/2019/02/021 10.1103/PhysRevD.102.034027 10.1103/PhysRevD.23.876 10.1103/PhysRevD.109.034009 10.1088/1674-4527/acdfa5 10.1088/1126-6708/2009/06/088 10.1007/JHEP01(2018)159 10.1007/JHEP01(2021)097 10.1103/PhysRevD.107.123512 10.1103/PhysRevD.7.1888 10.1088/0264-9381/23/7/014 10.1142/S0218301315300076 10.1088/0264-9381/23/15/008 10.1016/j.nuclphysa.2020.121940 10.1007/JHEP08(2018)188 10.1103/PhysRevD.109.095006 10.1103/PhysRevD.108.055035 10.1051/0004-6361/202449185 10.1103/PhysRevD.20.2947 10.3847/2041-8213/acdd03 10.1088/1674-1137/ad2b4f 10.22323/1.256.0022 10.3847/2041-8213/acdd02 10.1103/PhysRevD.10.2428 10.1142/9789814343336 10.1103/PhysRevLett.44.631 10.1103/PhysRevD.95.114011 10.1103/PhysRevLett.119.141301 10.1016/j.nuclphysb.2020.114938 10.3390/universe6070096 10.1016/j.ppnp.2023.104081 10.1088/1475-7516/2019/04/003 10.1007/JHEP02(2024)059 10.1016/0550-3213(83)90293-6 10.1143/PTP.91.541 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 Copyright Springer Nature B.V. Sep 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: Copyright Springer Nature B.V. Sep 2024 |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/JHEP09(2024)140 |
DatabaseName | Open Access Journals from Springer Nature CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Advanced Technologies & Aerospace Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 26 |
ExternalDocumentID | oai_doaj_org_article_5ef21d41fa7841ad9e719c4fa8639b43 10_1007_JHEP09_2024_140 |
GroupedDBID | 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMVHM AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP N5L N9A NB0 O93 OK1 P62 P9T PHGZM PHGZT PIMPY PQGLB PROAC R9I RO9 S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX CITATION ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c417t-ada15628c865f89aef6f2a3b82f2c12c54e5c0f2e88e6efa244660e73f7a2ef33 |
IEDL.DBID | C6C |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:16:58 EDT 2025 Sun Jul 13 04:20:49 EDT 2025 Thu Apr 24 22:57:06 EDT 2025 Wed Jul 23 08:15:35 EDT 2025 Mon Jul 21 06:08:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Scale and Conformal Symmetries Nonperturbative Effects Phase Transitions in the Early Universe |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-ada15628c865f89aef6f2a3b82f2c12c54e5c0f2e88e6efa244660e73f7a2ef33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0007-8571-0931 0000-0003-4531-0363 |
OpenAccessLink | https://doi.org/10.1007/JHEP09(2024)140 |
PQID | 3107318913 |
PQPubID | 2034718 |
PageCount | 26 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5ef21d41fa7841ad9e719c4fa8639b43 proquest_journals_3107318913 crossref_primary_10_1007_JHEP09_2024_140 crossref_citationtrail_10_1007_JHEP09_2024_140 springer_journals_10_1007_JHEP09_2024_140 |
PublicationCentury | 2000 |
PublicationDate | 2024-09-20 |
PublicationDateYYYYMMDD | 2024-09-20 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | L Del Grosso (24517_CR29) 2024; 109 RJ Crewther (24517_CR45) 2015; 91 DJ Reardon (24517_CR7) 2023; 951 C Caprini (24517_CR11) 2020; 03 A Deur (24517_CR39) 2024; 134 24517_CR51 24517_CR50 24517_CR6 24517_CR13 24517_CR5 24517_CR12 24517_CR10 24517_CR17 24517_CR15 D Bödeker (24517_CR32) 2021; 104 24517_CR14 24517_CR19 H Xu (24517_CR9) 2023; 23 S Iso (24517_CR23) 2017; 119 M Aoki (24517_CR57) 2020; 04 H-T Ding (24517_CR18) 2015; 24 R Zwicky (24517_CR43) 2024; 110 K Schmitz (24517_CR55) 2021; 01 24517_CR46 V Brdar (24517_CR53) 2019; 02 24517_CR47 L Sagunski (24517_CR30) 2023; 107 J Ellis (24517_CR27) 2023; 01 J Ellis (24517_CR52) 2019; 04 O Catà (24517_CR41) 2020; 952 MT Frandsen (24517_CR31) 2023; 108 X-R Wang (24517_CR28) 2023; 108 Y-L Li (24517_CR40) 2017; 95 A Bazavov (24517_CR21) 2016; 93 24517_CR35 24517_CR34 T Hambye (24517_CR24) 2018; 08 24517_CR38 24517_CR37 H-T Ding (24517_CR20) 2021; 1005 24517_CR36 DJ Reardon (24517_CR8) 2023; 951 X-R Wong (24517_CR33) 2023; 108 RJ Crewther (24517_CR44) 2020; 6 Y Aoki (24517_CR16) 2009; 06 R Zwicky (24517_CR42) 2024; 109 CL Wainwright (24517_CR49) 2012; 183 24517_CR2 24517_CR1 24517_CR4 H-X Zhang (24517_CR54) 2024; 48 24517_CR3 B von Harling (24517_CR25) 2018; 01 AJ Helmboldt (24517_CR48) 2019; 100 24517_CR22 M Dichtl (24517_CR26) 2024; 02 F Gao (24517_CR56) 2020; 102 |
References_xml | – ident: 24517_CR15 doi: 10.1103/PhysRevD.83.044011 – volume: 104 start-page: L111501 year: 2021 ident: 24517_CR32 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.104.L111501 – volume: 01 start-page: 093 year: 2023 ident: 24517_CR27 publication-title: JHEP doi: 10.1007/JHEP01(2023)093 – volume: 108 year: 2023 ident: 24517_CR28 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.108.023512 – volume: 110 year: 2024 ident: 24517_CR43 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.110.014048 – volume: 91 year: 2015 ident: 24517_CR45 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.034016 – ident: 24517_CR3 – ident: 24517_CR10 – ident: 24517_CR19 doi: 10.1016/j.physletb.2019.05.013 – volume: 93 year: 2016 ident: 24517_CR21 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.114502 – volume: 108 year: 2023 ident: 24517_CR31 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.108.015033 – ident: 24517_CR17 doi: 10.1088/1742-6596/316/1/012020 – volume: 03 start-page: 024 year: 2020 ident: 24517_CR11 publication-title: JCAP doi: 10.1088/1475-7516/2020/03/024 – ident: 24517_CR14 – volume: 100 year: 2019 ident: 24517_CR48 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.055025 – ident: 24517_CR4 – volume: 183 start-page: 2006 year: 2012 ident: 24517_CR49 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.04.004 – volume: 02 start-page: 021 year: 2019 ident: 24517_CR53 publication-title: JCAP doi: 10.1088/1475-7516/2019/02/021 – volume: 102 year: 2020 ident: 24517_CR56 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.034027 – ident: 24517_CR51 doi: 10.1103/PhysRevD.23.876 – volume: 109 year: 2024 ident: 24517_CR42 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.109.034009 – volume: 23 year: 2023 ident: 24517_CR9 publication-title: Res. Astron. Astrophys. doi: 10.1088/1674-4527/acdfa5 – volume: 06 start-page: 088 year: 2009 ident: 24517_CR16 publication-title: JHEP doi: 10.1088/1126-6708/2009/06/088 – volume: 01 start-page: 159 year: 2018 ident: 24517_CR25 publication-title: JHEP doi: 10.1007/JHEP01(2018)159 – volume: 01 start-page: 097 year: 2021 ident: 24517_CR55 publication-title: JHEP doi: 10.1007/JHEP01(2021)097 – volume: 04 start-page: 001 year: 2020 ident: 24517_CR57 publication-title: JCAP – volume: 107 year: 2023 ident: 24517_CR30 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.107.123512 – ident: 24517_CR46 doi: 10.1103/PhysRevD.7.1888 – ident: 24517_CR12 doi: 10.1088/0264-9381/23/7/014 – volume: 24 start-page: 1530007 year: 2015 ident: 24517_CR18 publication-title: Int. J. Mod. Phys. E doi: 10.1142/S0218301315300076 – ident: 24517_CR1 – ident: 24517_CR13 doi: 10.1088/0264-9381/23/15/008 – volume: 1005 year: 2021 ident: 24517_CR20 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2020.121940 – volume: 08 start-page: 188 year: 2018 ident: 24517_CR24 publication-title: JHEP doi: 10.1007/JHEP08(2018)188 – volume: 109 year: 2024 ident: 24517_CR29 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.109.095006 – volume: 108 year: 2023 ident: 24517_CR33 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.108.055035 – ident: 24517_CR2 doi: 10.1051/0004-6361/202449185 – ident: 24517_CR38 doi: 10.1103/PhysRevD.20.2947 – volume: 951 start-page: L7 year: 2023 ident: 24517_CR8 publication-title: Astrophys. J. Lett. doi: 10.3847/2041-8213/acdd03 – ident: 24517_CR5 – volume: 48 year: 2024 ident: 24517_CR54 publication-title: Chin. Phys. C doi: 10.1088/1674-1137/ad2b4f – ident: 24517_CR22 doi: 10.22323/1.256.0022 – volume: 951 start-page: L6 year: 2023 ident: 24517_CR7 publication-title: Astrophys. J. Lett. doi: 10.3847/2041-8213/acdd02 – ident: 24517_CR35 – ident: 24517_CR34 doi: 10.1103/PhysRevD.10.2428 – ident: 24517_CR37 doi: 10.1142/9789814343336 – ident: 24517_CR50 doi: 10.1103/PhysRevLett.44.631 – volume: 95 year: 2017 ident: 24517_CR40 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.95.114011 – volume: 119 year: 2017 ident: 24517_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.141301 – volume: 952 year: 2020 ident: 24517_CR41 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2020.114938 – volume: 6 start-page: 96 year: 2020 ident: 24517_CR44 publication-title: Universe doi: 10.3390/universe6070096 – volume: 134 year: 2024 ident: 24517_CR39 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2023.104081 – volume: 04 start-page: 003 year: 2019 ident: 24517_CR52 publication-title: JCAP doi: 10.1088/1475-7516/2019/04/003 – volume: 02 start-page: 059 year: 2024 ident: 24517_CR26 publication-title: JHEP doi: 10.1007/JHEP02(2024)059 – ident: 24517_CR6 – ident: 24517_CR47 doi: 10.1016/0550-3213(83)90293-6 – ident: 24517_CR36 doi: 10.1143/PTP.91.541 |
SSID | ssj0015190 |
Score | 2.4575315 |
Snippet | A
bstract
The electroweak (EW) phase transition in the early Universe might be supercooled due to the presence of the classical scale invariance involving... The electroweak (EW) phase transition in the early Universe might be supercooled due to the presence of the classical scale invariance involving Beyond the... Abstract The electroweak (EW) phase transition in the early Universe might be supercooled due to the presence of the classical scale invariance involving... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 140 |
SubjectTerms | Astronomical models Classical and Quantum Gravitation Condensates Cosmology Couplings Elementary Particles Gravitational waves Nonperturbative Effects Parameter sensitivity Phase transitions Phase Transitions in the Early Universe Physics Physics and Astronomy Quantum chromodynamics Quantum Field Theories Quantum Field Theory Quantum Physics Quarks Regular Article - Theoretical Physics Relativity Theory Scale and Conformal Symmetries Scale invariance Standard model (particle physics) String Theory Supercooling |
SummonAdditionalLinks | – databaseName: Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iCF7EJ1ar5OChPdRms8k-jiotpYiIWOhtSZMJltZ2bbf4953so1ahePG6yYYwMzvzzc7wDSE3BoOoVOj9ML0KMEGRvKWMKyGiY5RaM6YhZ_t8CnoD0R_K4caoL9cTVtADF4JrS7DcM8KzylXIlIkh9GItrIowto5EzvOJMa9Kpsr6AeISVhH5sLDd73WeWdzARF80PfefYyMG5VT9P_Dlr5JoHmm6h-SghIj0rrjaEdmB2THZy1s19fKEvDw6Z7Gg2TxtfaCCJxRTWvQeRVsOHb-7Y7MlHc_ocpXCQs_nUzC0nHfzCWpC0zeMXTRzYSrv2Dolg27n9aHXKicjtLTwwgzFqTDv4pGOAmmjWIENLFf-KOKWa49rKUBqZjlEEQRgFXdVWwahb0PFwfr-GdmdzWdwTqgwxkcYxk0UaMGUrxSiAmUksFAroWWN3FaySnRJG-6mV0yTivC4EG7ihIuJBKuRxvqFtGDM2L713gl_vc1RXecP0ACS0gCSvwygRuqV6pLy-1smCFpD9Faxh8vNSp3fy1vuc_Ef97kk--4811PCWZ3sZosVXCFwyUbXuY1-AchP6U4 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RT9wwDLa2Q5P2goAx7TaG8sADPHSkadKmT2igQyc0IYSGxFuVS5wNwa7lWsTfn9NLD4bEXts0qmzH_hxbnwH2HAVRZcj7UXqVU4KiRGJcKCGSY1TWcm6xZ_s8z6dX8uxaXccLtza2VQ4-sXfUrrbhjvyQYEhB9lem2VFzn4SpUaG6GkdovIU1csFaj2DteHJ-cbmqIxA-4QOhDy8Oz6aTC17uU8IvD9Jw3_EsFvWU_f_gzBel0T7inG7AeoSK7PtSt5vwBudb8K5v2bTtB7j8EZzGgnV1k9yTom8ZpbbkRZbtOezmT9i2a9nNnLUPDS5sXd-hY3HuzSOaW9b8phjGuhCu-s6tbbg6nfw8mSZxQkJiZVp0JFZD-ZfQVufK69Kgz70w2UwLL2wqrJKoLPcCtcYcvRGhesuxyHxhBPos-wijeT3HT8CkcxnBMeF0biU3mTGEDoxTyAtrpFVj-DbIqrKRPjxMsbirBuLjpXCrIFxKKPgY9lcfNEvmjNeXHgfhr5YFyuv-Qb34VcUTVCn0InUy9SaUSo0rsUhLK73RBLJmMhvDzqC6Kp7DtnqymjEcDOp8ev3K_3z-_1Zf4H1YGbpGBN-BUbd4wK8ETbrZbrS_vzVz4fw priority: 102 providerName: ProQuest |
Title | Ladder top-quark condensation imprints in supercooled electroweak phase transition |
URI | https://link.springer.com/article/10.1007/JHEP09(2024)140 https://www.proquest.com/docview/3107318913 https://doaj.org/article/5ef21d41fa7841ad9e719c4fa8639b43 |
Volume | 2024 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8QPBF_MT5MfLggz5M0zRp00cdm0NERBz4VrLkgqJuc6v473vp2omKD76UtklKuWvufsddfwdw5MiJKkPWj8KrhAIUJVrGhRQiGUZlLecWS7bPm6TXl1cP6qEiSQr_wvzI359d9Tq3PDumEF2eUCywCMsqitPQo6GdtOfpAoIhvObt-b3om8spmfm_wckfGdDSsXTXYa1ChOx8psINWMDhJqyUlZl2ugV318E2TFgxGrfeSJ_PjCJYMhazKhz29BoeW0zZ05BN38c4saPRCzpWtbf5QPPMxo_kqlgRvFJZoLUN_W7nvt1rVY0QWlZGaUHSMxRmCW11orzODPrECxMPtPDCRsIqicpyL1BrTNAbEZK0HNPYp0agj-MdWBqOhrgLTDoXE-oSTidWchMbQyDAOIU8tUZa1YDTWla5rVjCQ7OKl7zmN54JNw_CpbiBN-B4vmA8I8j4e-pFEP58WmC2Lm-QwvNqo-QKvYicjLwJGVHjMkyjzEpvNGGpgYwbcFCrLq-22zQnjJqSccoiGj6p1fk1_Mf77P1j7j6shtNQKSL4ASwVk3c8JDhSDJqwqLuXTVi-6Nzc3tFVW8hm-Xk2ywCfjn1x_gmYh91Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4QDNGLUdC4iNoHSeAw0tPTPY-DMT5YF1iIMZBwG3v7AQTcGXaGEP-Uv9GqeSxogjeuM92dTlV11Vdd1VUAby0aUaVR-6F7FaODokSgLYUQUTEqYzg3rqn2eRCPjuTusTpegN_9WxhKq-x1YqOobWHojnwLYUiC8peF0YfyMqCuURRd7VtotGKx535do8tWvd_5gvxdF2K4ffh5FHRdBQIjw6TGrWj0WURq0lj5NNPOx17oaJIKL0wojJJOGe6FS1MXO68FRTy5SyKfaOE8XYCiyn8gI7Tk9DJ9-HUetUA0xPvyQTzZ2h1tf-PZhkAzuBnS7coty9c0CPgL1f4TiG3s2_AJPO6AKfvYStJTWHDTZVhqEkRNtQLfx6SiZqwuyuASxeqcoSONOqtNBmJnP2nZumJnU1ZdlW5miuLCWdZ12bl2-pyVp2gxWU3GsckTewZH90K557A4LabuBTBpbYTgT9g0NpLrSGvEItoqxxOjpVEDeNfTKjddsXLqmXGR92WWW-LmRFx0X_gANuYTyrZOx91DPxHx58OowHbzoZid5N15zZXzIrQy9JoCs9pmLgkzI71OEdJNZDSAtZ51eXfqq_xGRgew2bPz5vcd-1n9_1Jv4OHocH-cj3cO9l7CI5pF-SqCr8FiPbtyrxAU1ZPXjSQy-HHfov8HzmIeiQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB6hRa16qehL3UKpD60Eh3QdJ87jUCEou1oeWq1QkbilXj8ogm7CJgj1r_XXMZPH0laiN66JbVnjL9_MeCYzAB8NKlGpkP3QvYrQQZHCU4ZCiEiMUmvOta2rfU6i8Wl4eCbPVuB39y8MpVV2nFgTtck13ZEP0AyJEX-pHwxcmxYx3R_tFNcedZCiSGvXTqOByJH9dYvuW_nlYB_P-pMQo-G3r2Ov7TDg6dCPK9yWQv9FJDqJpEtSZV3khApmiXBC-0LL0ErNnbBJYiPrlKDoJ7dx4GIlrKPLUKT_1Zi8oh6s7g0n05NlDANtI94VE-Lx4HA8nPJ0S6BS3PbpruUPPVi3C_jLxv0nLFtru9EaPG_NVLbb4OoFrNj5S3hSp4vq8hWcHBNhLViVF941guySoVuNDNakBrGLn7RsVbKLOStvCrvQeX5lDWt77txadcmKH6g_WUWqss4aew2njyK7N9Cb53P7FlhoTICmoDBJpEOuAqXQMlFGWh5rFWrZh8-drDLdli6nDhpXWVd0uRFuRsJFZ4b3YWs5oWiqdjw8dI-EvxxG5bbrB_niPGu_3kxaJ3wT-k5RmFaZ1MZ-qkOnEjTwZmHQh43u6LKWA8rsHrF92O6O8_71A_t59_-lPsBThH12fDA5WodnNImSVwTfgF61uLHv0UKqZpstFBl8f2z03wHL9CQb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ladder+top-quark+condensation+imprints+in+supercooled+electroweak+phase+transition&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Guan%2C+Yuepeng&rft.au=Matsuzaki%2C+Shinya&rft.date=2024-09-20&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2024&rft.issue=9&rft_id=info:doi/10.1007%2FJHEP09%282024%29140&rft.externalDocID=10_1007_JHEP09_2024_140 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |