Anomalies of average symmetries: entanglement and open quantum systems

A bstract Symmetries and their anomalies are powerful tools for understanding quantum systems. However, realistic systems are often subject to disorders, dissipation and decoherence. In many circumstances, symmetries are not exact but only on average. This work investigates the constraints on mixed...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2024; no. 10; pp. 134 - 42
Main Authors Hsin, Po-Shen, Luo, Zhu-Xi, Sun, Hao-Yu
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 18.10.2024
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract Symmetries and their anomalies are powerful tools for understanding quantum systems. However, realistic systems are often subject to disorders, dissipation and decoherence. In many circumstances, symmetries are not exact but only on average. This work investigates the constraints on mixed states resulting from non-commuting average symmetries. We will focus on the cases where the commutation relations of the average symmetry generators are violated by nontrivial phases, and call such average symmetry anomalous. We show that anomalous average symmetry implies degeneracy in the density matrix eigenvalues, and present several lattice examples with average symmetries, including XY chain, Heisenberg chain, and deformed toric code models. In certain cases, the results can be further extended to reduced density matrices, leading to a new lower bound on the entanglement entropy. We discuss several applications in the contexts of many body localization, quantum channels, entanglement phase transitions and also derive new constraints on the Lindbladian evolution of open quantum systems.
AbstractList Abstract Symmetries and their anomalies are powerful tools for understanding quantum systems. However, realistic systems are often subject to disorders, dissipation and decoherence. In many circumstances, symmetries are not exact but only on average. This work investigates the constraints on mixed states resulting from non-commuting average symmetries. We will focus on the cases where the commutation relations of the average symmetry generators are violated by nontrivial phases, and call such average symmetry anomalous. We show that anomalous average symmetry implies degeneracy in the density matrix eigenvalues, and present several lattice examples with average symmetries, including XY chain, Heisenberg chain, and deformed toric code models. In certain cases, the results can be further extended to reduced density matrices, leading to a new lower bound on the entanglement entropy. We discuss several applications in the contexts of many body localization, quantum channels, entanglement phase transitions and also derive new constraints on the Lindbladian evolution of open quantum systems.
A bstract Symmetries and their anomalies are powerful tools for understanding quantum systems. However, realistic systems are often subject to disorders, dissipation and decoherence. In many circumstances, symmetries are not exact but only on average. This work investigates the constraints on mixed states resulting from non-commuting average symmetries. We will focus on the cases where the commutation relations of the average symmetry generators are violated by nontrivial phases, and call such average symmetry anomalous. We show that anomalous average symmetry implies degeneracy in the density matrix eigenvalues, and present several lattice examples with average symmetries, including XY chain, Heisenberg chain, and deformed toric code models. In certain cases, the results can be further extended to reduced density matrices, leading to a new lower bound on the entanglement entropy. We discuss several applications in the contexts of many body localization, quantum channels, entanglement phase transitions and also derive new constraints on the Lindbladian evolution of open quantum systems.
Symmetries and their anomalies are powerful tools for understanding quantum systems. However, realistic systems are often subject to disorders, dissipation and decoherence. In many circumstances, symmetries are not exact but only on average. This work investigates the constraints on mixed states resulting from non-commuting average symmetries. We will focus on the cases where the commutation relations of the average symmetry generators are violated by nontrivial phases, and call such average symmetry anomalous. We show that anomalous average symmetry implies degeneracy in the density matrix eigenvalues, and present several lattice examples with average symmetries, including XY chain, Heisenberg chain, and deformed toric code models. In certain cases, the results can be further extended to reduced density matrices, leading to a new lower bound on the entanglement entropy. We discuss several applications in the contexts of many body localization, quantum channels, entanglement phase transitions and also derive new constraints on the Lindbladian evolution of open quantum systems.
ArticleNumber 134
Author Hsin, Po-Shen
Luo, Zhu-Xi
Sun, Hao-Yu
Author_xml – sequence: 1
  givenname: Po-Shen
  orcidid: 0000-0002-4764-1476
  surname: Hsin
  fullname: Hsin, Po-Shen
  organization: Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and Astronomy, University of California Los Angeles
– sequence: 2
  givenname: Zhu-Xi
  orcidid: 0000-0001-8715-6582
  surname: Luo
  fullname: Luo, Zhu-Xi
  email: zhuxi_luo@gatech.edu
  organization: Department of Physics, Harvard University, School of Physics, Georgia Institute of Technology
– sequence: 3
  givenname: Hao-Yu
  orcidid: 0000-0002-7211-3704
  surname: Sun
  fullname: Sun, Hao-Yu
  organization: Weinberg Institute, Department of Physics, The University of Texas at Austin
BookMark eNp1kM1LxDAUxIMouK6evRa86GE1adI29Say6weCHvQcXtLXpUubrElW2P_eaBVF8PSGx_yGYQ7IrnUWCTlm9JxRWl3c386fGD3NaS7OGBc7ZMJoXs-kqOrdX3qfHISwopQVrKYTsriyboC-w5C5NoM39LDELGyHAaNP38sMbQS77HFIIgPbZG6NNnvdgI2bITlDxCEckr0W-oBHX3dKXhbz5-vb2cPjzd311cPMCFbFGYimlJwbU4DOeUUlNlXZCCmZFhQEb6QxeduAllJQqYHVpqlykCXPhW418im5G3MbByu19t0AfqscdOrz4fxSgY-d6VHVvMIKmGi5BoFtrQW0peYahZYUijplnYxZa-9eNxiiWrmNt6m-4ozJuig5k8lVjC7jXQgeW2W6CLFzNnroesWo-phfjfOrj_lVmj9xF3-477b_E3QkQnLaJfqfPv8h7_SGmJo
CitedBy_id crossref_primary_10_1093_nsr_nwae287
crossref_primary_10_1103_PhysRevX_15_011069
crossref_primary_10_1103_PhysRevB_111_115137
crossref_primary_10_1103_PhysRevB_111_115123
Cites_doi 10.1088/1751-8113/40/25/S57
10.1007/s00220-023-04859-7
10.1103/PhysRevLett.96.110404
10.1016/S0370-1573(99)00083-6
10.1103/PhysRevB.50.3799
10.1017/cbo9780511535048
10.1103/PhysRevLett.96.110405
10.1103/PhysRevB.69.104431
10.1088/1742-5468/2005/05/P05012
10.1103/PhysRevB.94.205150
10.1007/JHEP05(2018)183
10.1007/3-540-12732-1
10.1103/PhysRevD.94.106002
10.1103/PhysRevLett.128.231602
10.1103/PhysRevB.81.064439
10.21468/SciPostPhys.13.3.066
10.21468/SciPostPhys.15.2.051
10.1103/PhysRevB.96.041122
10.1007/s00220-021-04040-y
10.1007/978-3-319-52573-0
10.1088/1751-8113/42/50/504010
10.1093/ptep/ptab145
10.1103/PhysRevLett.109.130502
10.1103/PRXQuantum.5.020343
10.1103/PhysRevB.98.085140
10.1103/PhysRevB.95.075106
10.1103/PhysRevLett.96.181602
10.1017/cbo9780511976667
10.1103/PhysRevB.92.085139
10.1103/PhysRevB.87.155114
10.1103/PhysRevResearch.2.043305
10.1103/PhysRevD.105.125016
10.1103/PhysRevLett.59.799
10.1146/annurev-conmatphys-031214-014726
10.1103/PhysRevResearch.2.043086
10.1103/PhysRevLett.93.260602
10.1103/RevModPhys.82.277
10.1007/JHEP11(2021)142
10.21468/SciPostPhysCore.4.2.010
10.1103/PhysRevLett.108.076804
10.1063/1.4838856
10.1007/s00220-016-2796-3
10.1103/PhysRevB.98.235155
10.1103/PhysRevLett.95.046404
10.1088/1361-6633/ac73a0
10.1103/PhysRevB.86.045102
10.1007/JHEP09(2020)022
10.21468/SciPostPhys.16.3.064
10.1016/j.aop.2005.11.014
10.1103/PhysRevLett.125.230602
10.1007/JHEP07(2012)069
10.1016/0024-3795(75)90075-0
10.1038/nature24622
10.1088/1751-8113/42/50/504005
10.1146/annurev-conmatphys-031720-030658
10.1103/PhysRevB.101.224437
10.1103/PhysRevLett.98.160409
10.1103/PhysRevD.85.125016
10.1103/PhysRevLett.131.166601
10.1007/JHEP02(2022)056
10.22331/q-2022-11-10-856
10.1103/PhysRevB.90.235137
10.1093/nsr/nwae287
10.1103/PhysRevB.101.174204
10.1103/PhysRevLett.126.120604
10.1103/RevModPhys.58.801
10.1103/PhysRevB.102.041117
10.1016/b978-012189800-7/50004-2
10.4310/ATMP.1998.v2.n2.a2
10.1103/PhysRevLett.118.021601
10.1142/9789811231711_0009
10.1103/PhysRevLett.128.231603
10.1038/s41567-021-01230-2
10.1007/JHEP03(2021)103
10.1143/PTP.32.956
10.1103/PhysRevA.88.042318
10.1209/0295-5075/95/50001
10.1063/1.1499754
10.1016/0550-3213(83)90063-9
10.1088/1367-2630/14/11/113016
10.4310/ATMP.1998.v2.n2.a1
10.1016/j.physrep.2005.02.006
10.21468/SciPostPhys.16.4.089
10.1103/PhysRevB.96.195105
10.21468/SciPostPhys.16.5.122
10.1088/1361-6382/ac1082
10.1007/JHEP09(2024)133
10.1016/j.physrep.2020.03.003
10.1007/BF01608499
10.1103/PhysRevB.94.224206
10.1103/RevModPhys.90.035007
10.1103/PhysRevLett.125.240405
10.1038/ncomms4507
10.1103/PhysRevLett.84.3370
10.1103/RevModPhys.88.035001
10.1103/PhysRevA.98.042118
10.1103/RevModPhys.91.021001
10.1088/1361-6633/aac9ed
10.1088/1361-6382/ac2134
10.21468/SciPostPhys.15.3.125
10.1038/nature15750
10.1103/PhysRevD.97.105011
10.1103/PRXQuantum.2.030313
10.1016/0003-4916(61)90115-4
10.1103/PhysRevB.89.155424
10.1103/PhysRevA.58.883
10.1103/PhysRevB.83.035107
10.1103/PhysRevB.84.165139
10.1007/JHEP02(2015)172
10.1103/PhysRevLett.48.344
10.1016/j.physletb.2004.08.072
10.1103/PhysRevB.110.035155
10.1103/PRXQuantum.4.030317
10.1063/1.522979
10.1007/JHEP03(2021)040
10.1103/PRXQuantum.4.030328
10.1016/S0003-4916(02)00018-0
10.1103/PhysRevLett.132.070402
10.1143/PTPS.176.384
ContentType Journal Article
Copyright The Author(s) 2024
Copyright Springer Nature B.V. Oct 2024
Copyright_xml – notice: The Author(s) 2024
– notice: Copyright Springer Nature B.V. Oct 2024
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP10(2024)134
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 42
ExternalDocumentID oai_doaj_org_article_937e7a14f3ba4ef9b4af6b3be4b80a59
10_1007_JHEP10_2024_134
GroupedDBID 0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMVHM
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
N5L
N9A
NB0
O93
OK1
P62
P9T
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
R9I
RO9
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c417t-a4d6833cc5ab23708ed76d4881b40a43d8cc2fdab88408ba19cd72a86324bfbe3
IEDL.DBID BENPR
ISSN 1029-8479
IngestDate Wed Aug 27 01:13:16 EDT 2025
Sun Jul 13 04:20:44 EDT 2025
Thu Apr 24 22:54:29 EDT 2025
Tue Jul 01 05:22:06 EDT 2025
Mon Jul 21 06:08:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Discrete Symmetries
Global Symmetries
Wilson
t Hooft and Polyakov loops
Topological States of Matter
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-a4d6833cc5ab23708ed76d4881b40a43d8cc2fdab88408ba19cd72a86324bfbe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8715-6582
0000-0002-4764-1476
0000-0002-7211-3704
OpenAccessLink https://www.proquest.com/docview/3118956318?pq-origsite=%requestingapplication%
PQID 3118956318
PQPubID 2034718
PageCount 42
ParticipantIDs doaj_primary_oai_doaj_org_article_937e7a14f3ba4ef9b4af6b3be4b80a59
proquest_journals_3118956318
crossref_citationtrail_10_1007_JHEP10_2024_134
crossref_primary_10_1007_JHEP10_2024_134
springer_journals_10_1007_JHEP10_2024_134
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-18
PublicationDateYYYYMMDD 2024-10-18
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-18
  day: 18
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References 24715_CR39
24715_CR37
24715_CR35
S Lieu (24715_CR51) 2020; 125
M Barkeshli (24715_CR14) 2024; 16
A Kitaev (24715_CR38) 2006; 96
24715_CR28
24715_CR27
24715_CR25
S Sang (24715_CR119) 2021; 2
Y Choi (24715_CR134) 2022; 105
24715_CR29
N Seiberg (24715_CR19) 2024; 16
24715_CR24
24715_CR23
24715_CR22
J Maldacena (24715_CR30) 2016; 94
GY Cho (24715_CR55) 2017; 96
D Gaiotto (24715_CR98) 2015; 02
H Casini (24715_CR127) 2012; 85
DV Else (24715_CR5) 2020; 101
S Ryu (24715_CR85) 2006; 96
24715_CR3
24715_CR4
24715_CR1
24715_CR2
X-L Qi (24715_CR32) 2022; 02
H Bernien (24715_CR104) 2017; 551
24715_CR17
24715_CR16
24715_CR15
MA Metlitski (24715_CR56) 2018; 98
M Cheng (24715_CR54) 2016; 6
R Vanhove (24715_CR78) 2022; 128
A Kitaev (24715_CR31) 2018; 05
J Kaidi (24715_CR137) 2023; 404
P Saad (24715_CR71) 2024; 09
24715_CR95
24715_CR94
Z Komargodski (24715_CR10) 2021; 03
24715_CR92
L Kong (24715_CR136) 2020; 2
24715_CR91
24715_CR90
F Minganti (24715_CR50) 2018; 98
T Nishioka (24715_CR129) 2018; 90
V Khemani (24715_CR113) 2020; 101
24715_CR87
A Antinucci (24715_CR33) 2023; 15
H Casini (24715_CR125) 2004; 600
T-C Huang (24715_CR79) 2022; 128
24715_CR81
C de Groot (24715_CR20) 2022; 6
24715_CR80
S Gopalakrishnan (24715_CR100) 2020; 862
P Calabrese (24715_CR77) 2009; 42
K Kawabata (24715_CR49) 2023; 4
SA Parameswaran (24715_CR99) 2018; 81
24715_CR102
24715_CR103
24715_CR105
N O’Dea (24715_CR110) 2020; 2
IC Fulga (24715_CR41) 2014; 89
24715_CR109
24715_CR73
X Chen (24715_CR88) 2011; 83
M Serbyn (24715_CR106) 2021; 17
L Gioia (24715_CR57) 2022; 12
D Harlow (24715_CR86) 2021; 383
M Müller-Lennert (24715_CR93) 2013; 54
Y Chen (24715_CR69) 2021; 03
J Eisert (24715_CR75) 2010; 82
IH Kim (24715_CR124) 2023; 131
F Pollmann (24715_CR36) 2010; 81
24715_CR114
24715_CR115
P Calabrese (24715_CR117) 2012; 109
D Delmastro (24715_CR18) 2021; 11
24715_CR116
24715_CR118
R Fan (24715_CR122) 2024; 5
24715_CR64
O Aharony (24715_CR84) 2000; 323
24715_CR63
24715_CR62
24715_CR61
X Chen (24715_CR11) 2013; 87
24715_CR67
24715_CR66
24715_CR65
K Kawabata (24715_CR34) 2024; 132
R Ma (24715_CR21) 2023; 13
24715_CR60
E Witten (24715_CR83) 1998; 2
AC Potter (24715_CR40) 2016; 94
S Moudgalya (24715_CR107) 2022; 85
24715_CR120
A Belin (24715_CR70) 2021; 38
Z Komargodski (24715_CR72) 2012; 07
24715_CR121
JY Lee (24715_CR123) 2023; 4
24715_CR126
24715_CR59
24715_CR128
24715_CR58
DA Abanin (24715_CR97) 2019; 91
24715_CR6
R Nandkishore (24715_CR96) 2015; 6
S Sachdev (24715_CR26) 2015; 5
24715_CR52
W Ye (24715_CR7) 2022; 13
C Zhang (24715_CR139) 2024; 110
M Freedman (24715_CR101) 2017; 352
SC Furuya (24715_CR53) 2017; 118
P-S Hsin (24715_CR9) 2020; 09
24715_CR130
24715_CR131
24715_CR132
24715_CR133
24715_CR135
MB Hastings (24715_CR74) 2007; 0708
MPA Fisher (24715_CR76) 2023; 14
24715_CR138
24715_CR48
24715_CR47
P Sala (24715_CR112) 2020; 10
24715_CR42
H Shimizu (24715_CR8) 2018; 97
24715_CR46
24715_CR45
DV Else (24715_CR12) 2014; 90
24715_CR44
P-S Hsin (24715_CR68) 2021; 38
E Witten (24715_CR13) 2016; 88
DJ Williamson (24715_CR89) 2016; 94
JM Maldacena (24715_CR82) 1998; 2
24715_CR140
Z Ringel (24715_CR43) 2012; 86
J Ren (24715_CR111) 2021; 126
K Pakrouski (24715_CR108) 2020; 125
References_xml – ident: 24715_CR126
  doi: 10.1088/1751-8113/40/25/S57
– volume: 404
  start-page: 1021
  year: 2023
  ident: 24715_CR137
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-023-04859-7
– ident: 24715_CR22
– volume: 96
  year: 2006
  ident: 24715_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.110404
– volume: 323
  start-page: 183
  year: 2000
  ident: 24715_CR84
  publication-title: Phys. Rept.
  doi: 10.1016/S0370-1573(99)00083-6
– ident: 24715_CR60
  doi: 10.1103/PhysRevB.50.3799
– ident: 24715_CR80
  doi: 10.1017/cbo9780511535048
– volume: 12
  year: 2022
  ident: 24715_CR57
  publication-title: Phys. Rev. X
– ident: 24715_CR37
  doi: 10.1103/PhysRevLett.96.110405
– ident: 24715_CR4
  doi: 10.1103/PhysRevB.69.104431
– volume: 5
  year: 2015
  ident: 24715_CR26
  publication-title: Phys. Rev. X
– volume: 13
  year: 2023
  ident: 24715_CR21
  publication-title: Phys. Rev. X
– ident: 24715_CR66
  doi: 10.1088/1742-5468/2005/05/P05012
– volume: 94
  year: 2016
  ident: 24715_CR89
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.205150
– volume: 05
  start-page: 183
  year: 2018
  ident: 24715_CR31
  publication-title: JHEP
  doi: 10.1007/JHEP05(2018)183
– ident: 24715_CR45
  doi: 10.1007/3-540-12732-1
– volume: 94
  year: 2016
  ident: 24715_CR30
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.106002
– volume: 128
  year: 2022
  ident: 24715_CR78
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.231602
– volume: 81
  year: 2010
  ident: 24715_CR36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.064439
– volume: 13
  start-page: 066
  year: 2022
  ident: 24715_CR7
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.13.3.066
– ident: 24715_CR6
  doi: 10.21468/SciPostPhys.15.2.051
– ident: 24715_CR39
  doi: 10.1103/PhysRevB.96.041122
– volume: 383
  start-page: 1669
  year: 2021
  ident: 24715_CR86
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-021-04040-y
– ident: 24715_CR27
– ident: 24715_CR81
  doi: 10.1007/978-3-319-52573-0
– ident: 24715_CR63
  doi: 10.1088/1751-8113/42/50/504010
– ident: 24715_CR133
  doi: 10.1093/ptep/ptab145
– volume: 109
  year: 2012
  ident: 24715_CR117
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.130502
– volume: 5
  year: 2024
  ident: 24715_CR122
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.5.020343
– volume: 98
  year: 2018
  ident: 24715_CR56
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.085140
– ident: 24715_CR25
  doi: 10.1103/PhysRevB.95.075106
– ident: 24715_CR128
– volume: 96
  year: 2006
  ident: 24715_CR85
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.181602
– ident: 24715_CR28
– ident: 24715_CR46
  doi: 10.1017/cbo9780511976667
– ident: 24715_CR42
  doi: 10.1103/PhysRevB.92.085139
– volume: 87
  year: 2013
  ident: 24715_CR11
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.155114
– volume: 2
  year: 2020
  ident: 24715_CR110
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.043305
– volume: 105
  year: 2022
  ident: 24715_CR134
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.125016
– ident: 24715_CR90
  doi: 10.1103/PhysRevLett.59.799
– volume: 6
  start-page: 15
  year: 2015
  ident: 24715_CR96
  publication-title: Ann. Rev. Condens. Mat. Phys.
  doi: 10.1146/annurev-conmatphys-031214-014726
– volume: 2
  year: 2020
  ident: 24715_CR136
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.043086
– ident: 24715_CR62
  doi: 10.1103/PhysRevLett.93.260602
– ident: 24715_CR67
– volume: 82
  start-page: 277
  year: 2010
  ident: 24715_CR75
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.277
– volume: 11
  start-page: 142
  year: 2021
  ident: 24715_CR18
  publication-title: JHEP
  doi: 10.1007/JHEP11(2021)142
– ident: 24715_CR115
  doi: 10.21468/SciPostPhysCore.4.2.010
– ident: 24715_CR44
  doi: 10.1103/PhysRevLett.108.076804
– volume: 54
  year: 2013
  ident: 24715_CR93
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4838856
– volume: 352
  start-page: 407
  year: 2017
  ident: 24715_CR101
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-016-2796-3
– ident: 24715_CR105
  doi: 10.1103/PhysRevB.98.235155
– ident: 24715_CR94
  doi: 10.1103/PhysRevLett.95.046404
– volume: 85
  year: 2022
  ident: 24715_CR107
  publication-title: Rept. Prog. Phys.
  doi: 10.1088/1361-6633/ac73a0
– volume: 86
  year: 2012
  ident: 24715_CR43
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.045102
– volume: 09
  start-page: 022
  year: 2020
  ident: 24715_CR9
  publication-title: JHEP
  doi: 10.1007/JHEP09(2020)022
– volume: 16
  start-page: 064
  year: 2024
  ident: 24715_CR19
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.16.3.064
– ident: 24715_CR95
  doi: 10.1016/j.aop.2005.11.014
– volume: 125
  year: 2020
  ident: 24715_CR108
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.230602
– volume: 07
  start-page: 069
  year: 2012
  ident: 24715_CR72
  publication-title: JHEP
  doi: 10.1007/JHEP07(2012)069
– ident: 24715_CR102
  doi: 10.1016/0024-3795(75)90075-0
– volume: 551
  start-page: 579
  year: 2017
  ident: 24715_CR104
  publication-title: Nature
  doi: 10.1038/nature24622
– volume: 42
  year: 2009
  ident: 24715_CR77
  publication-title: J. Phys. A
  doi: 10.1088/1751-8113/42/50/504005
– volume: 14
  start-page: 335
  year: 2023
  ident: 24715_CR76
  publication-title: Ann. Rev. Condens. Mat. Phys.
  doi: 10.1146/annurev-conmatphys-031720-030658
– ident: 24715_CR29
– ident: 24715_CR135
– volume: 101
  year: 2020
  ident: 24715_CR5
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.224437
– ident: 24715_CR131
  doi: 10.1103/PhysRevLett.98.160409
– volume: 85
  year: 2012
  ident: 24715_CR127
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.85.125016
– volume: 131
  year: 2023
  ident: 24715_CR124
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.131.166601
– volume: 02
  start-page: 056
  year: 2022
  ident: 24715_CR32
  publication-title: JHEP
  doi: 10.1007/JHEP02(2022)056
– volume: 6
  start-page: 856
  year: 2022
  ident: 24715_CR20
  publication-title: Quantum
  doi: 10.22331/q-2022-11-10-856
– ident: 24715_CR35
– volume: 90
  year: 2014
  ident: 24715_CR12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.235137
– ident: 24715_CR140
  doi: 10.1093/nsr/nwae287
– ident: 24715_CR58
– volume: 101
  year: 2020
  ident: 24715_CR113
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.174204
– volume: 126
  year: 2021
  ident: 24715_CR111
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.120604
– ident: 24715_CR17
– ident: 24715_CR65
  doi: 10.1103/RevModPhys.58.801
– ident: 24715_CR109
  doi: 10.1103/PhysRevB.102.041117
– ident: 24715_CR52
  doi: 10.1016/b978-012189800-7/50004-2
– volume: 2
  start-page: 253
  year: 1998
  ident: 24715_CR83
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.1998.v2.n2.a2
– volume: 118
  year: 2017
  ident: 24715_CR53
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.021601
– ident: 24715_CR23
– ident: 24715_CR114
  doi: 10.1142/9789811231711_0009
– volume: 6
  year: 2016
  ident: 24715_CR54
  publication-title: Phys. Rev. X
– volume: 128
  year: 2022
  ident: 24715_CR79
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.231603
– volume: 17
  start-page: 675
  year: 2021
  ident: 24715_CR106
  publication-title: Nature Phys.
  doi: 10.1038/s41567-021-01230-2
– ident: 24715_CR138
– volume: 03
  start-page: 103
  year: 2021
  ident: 24715_CR10
  publication-title: JHEP
  doi: 10.1007/JHEP03(2021)103
– ident: 24715_CR103
  doi: 10.1143/PTP.32.956
– ident: 24715_CR118
  doi: 10.1103/PhysRevA.88.042318
– ident: 24715_CR91
  doi: 10.1209/0295-5075/95/50001
– ident: 24715_CR130
– ident: 24715_CR120
  doi: 10.1063/1.1499754
– ident: 24715_CR1
  doi: 10.1016/0550-3213(83)90063-9
– ident: 24715_CR92
  doi: 10.1088/1367-2630/14/11/113016
– volume: 2
  start-page: 231
  year: 1998
  ident: 24715_CR82
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.1998.v2.n2.a1
– volume: 0708
  start-page: P08024
  year: 2007
  ident: 24715_CR74
  publication-title: J. Stat. Mech.
– ident: 24715_CR61
  doi: 10.1016/j.physrep.2005.02.006
– volume: 16
  start-page: 089
  year: 2024
  ident: 24715_CR14
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.16.4.089
– volume: 96
  year: 2017
  ident: 24715_CR55
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.195105
– ident: 24715_CR15
  doi: 10.21468/SciPostPhys.16.5.122
– volume: 38
  year: 2021
  ident: 24715_CR70
  publication-title: Class. Quant. Grav.
  doi: 10.1088/1361-6382/ac1082
– volume: 09
  start-page: 133
  year: 2024
  ident: 24715_CR71
  publication-title: JHEP
  doi: 10.1007/JHEP09(2024)133
– volume: 862
  start-page: 1
  year: 2020
  ident: 24715_CR100
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2020.03.003
– ident: 24715_CR24
– ident: 24715_CR47
  doi: 10.1007/BF01608499
– volume: 94
  year: 2016
  ident: 24715_CR40
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.224206
– volume: 90
  year: 2018
  ident: 24715_CR129
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.90.035007
– volume: 125
  year: 2020
  ident: 24715_CR51
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.240405
– ident: 24715_CR16
  doi: 10.1038/ncomms4507
– ident: 24715_CR3
  doi: 10.1103/PhysRevLett.84.3370
– volume: 88
  year: 2016
  ident: 24715_CR13
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.88.035001
– volume: 98
  year: 2018
  ident: 24715_CR50
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.042118
– volume: 91
  year: 2019
  ident: 24715_CR97
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.91.021001
– volume: 81
  year: 2018
  ident: 24715_CR99
  publication-title: Rept. Prog. Phys.
  doi: 10.1088/1361-6633/aac9ed
– volume: 38
  year: 2021
  ident: 24715_CR68
  publication-title: Class. Quant. Grav.
  doi: 10.1088/1361-6382/ac2134
– volume: 15
  start-page: 125
  year: 2023
  ident: 24715_CR33
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.15.3.125
– ident: 24715_CR73
  doi: 10.1038/nature15750
– volume: 97
  year: 2018
  ident: 24715_CR8
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.105011
– volume: 2
  year: 2021
  ident: 24715_CR119
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.2.030313
– ident: 24715_CR2
  doi: 10.1016/0003-4916(61)90115-4
– volume: 89
  year: 2014
  ident: 24715_CR41
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.155424
– ident: 24715_CR116
  doi: 10.1103/PhysRevA.58.883
– volume: 83
  year: 2011
  ident: 24715_CR88
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.035107
– ident: 24715_CR87
  doi: 10.1103/PhysRevB.84.165139
– volume: 02
  start-page: 172
  year: 2015
  ident: 24715_CR98
  publication-title: JHEP
  doi: 10.1007/JHEP02(2015)172
– ident: 24715_CR121
– ident: 24715_CR59
  doi: 10.1103/PhysRevLett.48.344
– volume: 600
  start-page: 142
  year: 2004
  ident: 24715_CR125
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2004.08.072
– volume: 110
  year: 2024
  ident: 24715_CR139
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.110.035155
– volume: 4
  year: 2023
  ident: 24715_CR123
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.4.030317
– ident: 24715_CR48
  doi: 10.1063/1.522979
– volume: 10
  year: 2020
  ident: 24715_CR112
  publication-title: Phys. Rev. X
– volume: 03
  start-page: 040
  year: 2021
  ident: 24715_CR69
  publication-title: JHEP
  doi: 10.1007/JHEP03(2021)040
– volume: 4
  year: 2023
  ident: 24715_CR49
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.4.030328
– ident: 24715_CR64
  doi: 10.1016/S0003-4916(02)00018-0
– volume: 132
  year: 2024
  ident: 24715_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.132.070402
– ident: 24715_CR132
  doi: 10.1143/PTPS.176.384
SSID ssj0015190
Score 2.480601
Snippet A bstract Symmetries and their anomalies are powerful tools for understanding quantum systems. However, realistic systems are often subject to disorders,...
Symmetries and their anomalies are powerful tools for understanding quantum systems. However, realistic systems are often subject to disorders, dissipation and...
Abstract Symmetries and their anomalies are powerful tools for understanding quantum systems. However, realistic systems are often subject to disorders,...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 134
SubjectTerms Anomalies
Classical and Quantum Gravitation
Commutation
Constraints
Density
Discrete Symmetries
Eigenvalues
Elementary Particles
Global Symmetries
Lower bounds
Many body problem
Phase transitions
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
String Theory
Symmetry
t Hooft and Polyakov loops
Topological States of Matter
Wilson
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqJKReKqBFLAXkQw_LIWwcO7HDDRCr1UqteigSt2g8tnths9DsHvj3jPNBu0grLr0mTjR6Y3vmyeM3jH0TQZch-DRBDFmiwGFiHGBiS7Qh9XnQbW_A7z-K2Z2a3-f3_7T6ijVhnTxwB9yEwqfXIFSQFpQPpVUQCiutV9akkLdX9yjmDWSqPz-gvCQdhHxSPZnPbn-KdExEX50LqTZiUCvVv5FfvjkSbSPNdI996lNEftWZts8--PqA7balmth8ZlNi7AvKnn3Dl4EDTUXaEnjzvFi0zbGaSx7LwevfXV04h9rx2CKLP60JxPWCd9rNzRd2N739dTNL-m4ICSqhVwkoVxgpEXOwmdSp8U4XjtafsCoFJZ1BzIIDa4izGQuiRKczMFGP3Qbr5SHbqZe1P2LcaVS5cGhAE_sq0QiwsvCU7GEGNpcjdjHgU2EvFR47VjxUg8hxB2gVAa0I0BEbv37w2KlkbB96HQF_HRblrdsH5PSqd3r1ntNH7GRwV9WvuaaSxJWI7dEmNWLngwv_vt5iz_H_sOcr-xj_F2OaMCdsZ_Vn7U8pWVnZs3ZevgAnGufF
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-QwDI5YENJe0O4CYoBFOewBDoWmSZuU2-6I0QhpEQeQuFWOk3BhyqMzB_49Th-DAHHgVrWO1Npx_Fl2PzP2RwRdhuDTBDFkiQKHiXGAiS3RhtTnQbezAf9fFNNrdX6T3_QkSfFfmHf1-5Pz6dmlSA8pRVdHQqpvbC0XUscZDeNivCwXEAxJB96ej4vehJyWmf8NnHxXAW0Dy-QH2-gRIf_bmfAnW_H1L7bedmZis8kmlKDPCCz7ht8HDrTz6ATgzfNs1s7Cak557P6ub7s2cA6143EiFn9ckM4WM95RNTdb7HpydjWeJv3wgwSV0PMElCuMlIg52Iy-2HinC0fuJqxKQUlnELPgwBpK0YwFUaLTGZhIv26D9XKbrdb3td9h3GlUuXBoQFOyVaIRYGXhCdthBjaXI3Y86KfCnhk8Dqi4qwZO406hVVRoRQodscPlgoeOFONz0X9R4UuxyGbd3iAjV71zVASRvAahgrSgfCitglBYab2yJoW8HLH9wVxV72JNJSk1ouSOzqQROxpM-Pr4k_fZ_YLsHvseL2OkEmafrc6fFv43QZC5PWi33wuAKdWD
  priority: 102
  providerName: Springer Nature
Title Anomalies of average symmetries: entanglement and open quantum systems
URI https://link.springer.com/article/10.1007/JHEP10(2024)134
https://www.proquest.com/docview/3118956318
https://doaj.org/article/937e7a14f3ba4ef9b4af6b3be4b80a59
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEB2aDYVeSj_pNumiQw_JwY1lyZacS0mW3S6BhlC6kJuRRlIuWW8S7x767zvyx4YU0ovAtmzMaDR6Iw3vAXzlQZUh-DRBDFkijcNEO4OJLdGG1OdBtdqAPy-LxVJeXOfX_YZb05dVDjGxDdRujXGP_EQQEiYsTy74_e4-iapR8XS1l9DYg30KwVqPYP98dnn1a3eOQPgkHQh9UnVysZhd8fSIEn55zIV8sha1lP1PcOY_R6PtijN_A697qMjOurF9Cy98_Q5etiWb2LyHOWXuK0LRvmHrwAy5JIUG1vxZrVqRrOaUxbLw-qarD2emdixKZbH7LRlzu2Idh3PzAZbz2e_pIulVERKUXG0SI12hhUDMjc2ESrV3qnA0D7mVqZHCacQsOGM15W7aGl6iU5nRkZfdBuvFRxjV69p_AuYUypw71EZRFlai5saKwhPow8zYXIzh22CfCnvK8KhccVsNZMedQato0IoMOoaj3Qt3HVvG813Po8F33SLNdXtj_XBT9bOmIuzkleEyCGukD6WVJhRWWC-tTk1ejuFwGK6qn3tN9egpYzgehvDx8TP_8_n_nzqAV7FnXLW4PoTR5mHrvxAc2dgJ7On5j0nveXQ1zWRsi-mkTfCpXWZnfwHGw-Pe
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMslOIDSO0hNI6d2EFCVQtdtk9xaKXejJ-9sEnb7Ar1T_EbGeexVSuVW6-JbUUznz2f4_F8AB9pEGUIPk2sDVnCtbOJdNomprQmpD4PotUGPDwqJid87zQ_XYK_w12YmFY5rIntQu1qG_-RbzBkwsjlEYKb5xdJVI2Kp6uDhEYHi31_9Qe3bM3X3e_o309ZNt45_jZJelWBxHIqZonmrpCMWZtrkzGRSu9E4RDH1PBUc-aktVlw2kjc-0ijaWmdyLSMdc1NMJ7huA_gIWcYyePN9PGPxakFsqF0KB-Uio29yc5Pmq5lGAbXKeM3Il8rEHCD1d46iG3j2_gZPO2JKdnqkPQclnz1Ah61CaK2eQnjraqeImf3DakD0TgBcCEizdV02kpyNV9ITEKvzrpsdKIrR6IwF7mYo-vmU9JVjG5ewcm9WOs1LFd15d8AccLynDortcA9X2kl1YYVHimmzbTJ2Qg-D_ZRti9QHnUyfquhtHJnUBUNqtCgI1hbdDjvanPc3XQ7GnzRLBbVbh_Ul2eqn6MKmZoXmvLAjOY-lIbrUBhmPDcy1Xk5gpXBXaqf6Y26xuUI1gcXXr--43ve_n-oD_B4cnx4oA52j_bfwZPYK8ZLKldgeXY59--RCM3Maos-Ar_uG-7_APTgG9g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE-xUMAHkNpD2Dh2YgcJoZbuatvCaoWo1FvqZy9s0ja7Qv1r_DrGeWxVpHLrNYmtaOaz55t4Mh_Ae-pF7r2LI2N8EnFlTSStMpHOjfaxS71otAG_z7LpMT88SU824E__L0woq-z3xGajtpUJ38hHDJkwcnmE4Mh3ZRHz_cmX84soKEiFk9ZeTqOFyJG7-o3pW_35YB99_SFJJuOfX6dRpzAQGU7FMlLcZpIxY1KlEyZi6azILGKaah4rzqw0JvFWaYl5kNSK5saKRMnQ41x77RjOew82RciKBrC5N57Nf6zPMJAbxX0zoViMDqfjOY23EwyKO5TxG3GwkQu4wXH_OZZtot3kMTzqaCrZbXH1BDZc-RTuN-Wipn4Gk92yWiCDdzWpPFG4HHBbIvXVYtEIdNWfSChJL8_a2nSiSkuCTBe5WKEjVwvS9o-un8PxndjrBQzKqnQvgVhheEqtkUpgBpgbSZVmmUPCaRKlUzaEj719CtO1Kw-qGb-KvtFya9AiGLRAgw5hez3gvO3Ucfuje8Hg68dCi-3mQnV5VnQrtkDe5oSi3DOtuPO55spnmmnHtYxVmg9hq3dX0a37urhG6RB2ehde377lfV79f6p38AChXnw7mB29hodhUAieVG7BYHm5cm-QFS312w5-BE7vGvF_Ac7sIWo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomalies+of+average+symmetries%3A+entanglement+and+open+quantum+systems&rft.jtitle=The+journal+of+high+energy+physics&rft.date=2024-10-18&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2024&rft.issue=10&rft.spage=134&rft_id=info:doi/10.1007%2FJHEP10%282024%29134&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon