Anomalies of average symmetries: entanglement and open quantum systems
A bstract Symmetries and their anomalies are powerful tools for understanding quantum systems. However, realistic systems are often subject to disorders, dissipation and decoherence. In many circumstances, symmetries are not exact but only on average. This work investigates the constraints on mixed...
Saved in:
Published in | The journal of high energy physics Vol. 2024; no. 10; pp. 134 - 42 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
18.10.2024
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
Symmetries and their anomalies are powerful tools for understanding quantum systems. However, realistic systems are often subject to disorders, dissipation and decoherence. In many circumstances, symmetries are not exact but only on average. This work investigates the constraints on mixed states resulting from non-commuting average symmetries. We will focus on the cases where the commutation relations of the average symmetry generators are violated by nontrivial phases, and call such average symmetry anomalous. We show that anomalous average symmetry implies degeneracy in the density matrix eigenvalues, and present several lattice examples with average symmetries, including XY chain, Heisenberg chain, and deformed toric code models. In certain cases, the results can be further extended to reduced density matrices, leading to a new lower bound on the entanglement entropy. We discuss several applications in the contexts of many body localization, quantum channels, entanglement phase transitions and also derive new constraints on the Lindbladian evolution of open quantum systems. |
---|---|
AbstractList | Abstract Symmetries and their anomalies are powerful tools for understanding quantum systems. However, realistic systems are often subject to disorders, dissipation and decoherence. In many circumstances, symmetries are not exact but only on average. This work investigates the constraints on mixed states resulting from non-commuting average symmetries. We will focus on the cases where the commutation relations of the average symmetry generators are violated by nontrivial phases, and call such average symmetry anomalous. We show that anomalous average symmetry implies degeneracy in the density matrix eigenvalues, and present several lattice examples with average symmetries, including XY chain, Heisenberg chain, and deformed toric code models. In certain cases, the results can be further extended to reduced density matrices, leading to a new lower bound on the entanglement entropy. We discuss several applications in the contexts of many body localization, quantum channels, entanglement phase transitions and also derive new constraints on the Lindbladian evolution of open quantum systems. A bstract Symmetries and their anomalies are powerful tools for understanding quantum systems. However, realistic systems are often subject to disorders, dissipation and decoherence. In many circumstances, symmetries are not exact but only on average. This work investigates the constraints on mixed states resulting from non-commuting average symmetries. We will focus on the cases where the commutation relations of the average symmetry generators are violated by nontrivial phases, and call such average symmetry anomalous. We show that anomalous average symmetry implies degeneracy in the density matrix eigenvalues, and present several lattice examples with average symmetries, including XY chain, Heisenberg chain, and deformed toric code models. In certain cases, the results can be further extended to reduced density matrices, leading to a new lower bound on the entanglement entropy. We discuss several applications in the contexts of many body localization, quantum channels, entanglement phase transitions and also derive new constraints on the Lindbladian evolution of open quantum systems. Symmetries and their anomalies are powerful tools for understanding quantum systems. However, realistic systems are often subject to disorders, dissipation and decoherence. In many circumstances, symmetries are not exact but only on average. This work investigates the constraints on mixed states resulting from non-commuting average symmetries. We will focus on the cases where the commutation relations of the average symmetry generators are violated by nontrivial phases, and call such average symmetry anomalous. We show that anomalous average symmetry implies degeneracy in the density matrix eigenvalues, and present several lattice examples with average symmetries, including XY chain, Heisenberg chain, and deformed toric code models. In certain cases, the results can be further extended to reduced density matrices, leading to a new lower bound on the entanglement entropy. We discuss several applications in the contexts of many body localization, quantum channels, entanglement phase transitions and also derive new constraints on the Lindbladian evolution of open quantum systems. |
ArticleNumber | 134 |
Author | Hsin, Po-Shen Luo, Zhu-Xi Sun, Hao-Yu |
Author_xml | – sequence: 1 givenname: Po-Shen orcidid: 0000-0002-4764-1476 surname: Hsin fullname: Hsin, Po-Shen organization: Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and Astronomy, University of California Los Angeles – sequence: 2 givenname: Zhu-Xi orcidid: 0000-0001-8715-6582 surname: Luo fullname: Luo, Zhu-Xi email: zhuxi_luo@gatech.edu organization: Department of Physics, Harvard University, School of Physics, Georgia Institute of Technology – sequence: 3 givenname: Hao-Yu orcidid: 0000-0002-7211-3704 surname: Sun fullname: Sun, Hao-Yu organization: Weinberg Institute, Department of Physics, The University of Texas at Austin |
BookMark | eNp1kM1LxDAUxIMouK6evRa86GE1adI29Say6weCHvQcXtLXpUubrElW2P_eaBVF8PSGx_yGYQ7IrnUWCTlm9JxRWl3c386fGD3NaS7OGBc7ZMJoXs-kqOrdX3qfHISwopQVrKYTsriyboC-w5C5NoM39LDELGyHAaNP38sMbQS77HFIIgPbZG6NNnvdgI2bITlDxCEckr0W-oBHX3dKXhbz5-vb2cPjzd311cPMCFbFGYimlJwbU4DOeUUlNlXZCCmZFhQEb6QxeduAllJQqYHVpqlykCXPhW418im5G3MbByu19t0AfqscdOrz4fxSgY-d6VHVvMIKmGi5BoFtrQW0peYahZYUijplnYxZa-9eNxiiWrmNt6m-4ozJuig5k8lVjC7jXQgeW2W6CLFzNnroesWo-phfjfOrj_lVmj9xF3-477b_E3QkQnLaJfqfPv8h7_SGmJo |
CitedBy_id | crossref_primary_10_1093_nsr_nwae287 crossref_primary_10_1103_PhysRevX_15_011069 crossref_primary_10_1103_PhysRevB_111_115137 crossref_primary_10_1103_PhysRevB_111_115123 |
Cites_doi | 10.1088/1751-8113/40/25/S57 10.1007/s00220-023-04859-7 10.1103/PhysRevLett.96.110404 10.1016/S0370-1573(99)00083-6 10.1103/PhysRevB.50.3799 10.1017/cbo9780511535048 10.1103/PhysRevLett.96.110405 10.1103/PhysRevB.69.104431 10.1088/1742-5468/2005/05/P05012 10.1103/PhysRevB.94.205150 10.1007/JHEP05(2018)183 10.1007/3-540-12732-1 10.1103/PhysRevD.94.106002 10.1103/PhysRevLett.128.231602 10.1103/PhysRevB.81.064439 10.21468/SciPostPhys.13.3.066 10.21468/SciPostPhys.15.2.051 10.1103/PhysRevB.96.041122 10.1007/s00220-021-04040-y 10.1007/978-3-319-52573-0 10.1088/1751-8113/42/50/504010 10.1093/ptep/ptab145 10.1103/PhysRevLett.109.130502 10.1103/PRXQuantum.5.020343 10.1103/PhysRevB.98.085140 10.1103/PhysRevB.95.075106 10.1103/PhysRevLett.96.181602 10.1017/cbo9780511976667 10.1103/PhysRevB.92.085139 10.1103/PhysRevB.87.155114 10.1103/PhysRevResearch.2.043305 10.1103/PhysRevD.105.125016 10.1103/PhysRevLett.59.799 10.1146/annurev-conmatphys-031214-014726 10.1103/PhysRevResearch.2.043086 10.1103/PhysRevLett.93.260602 10.1103/RevModPhys.82.277 10.1007/JHEP11(2021)142 10.21468/SciPostPhysCore.4.2.010 10.1103/PhysRevLett.108.076804 10.1063/1.4838856 10.1007/s00220-016-2796-3 10.1103/PhysRevB.98.235155 10.1103/PhysRevLett.95.046404 10.1088/1361-6633/ac73a0 10.1103/PhysRevB.86.045102 10.1007/JHEP09(2020)022 10.21468/SciPostPhys.16.3.064 10.1016/j.aop.2005.11.014 10.1103/PhysRevLett.125.230602 10.1007/JHEP07(2012)069 10.1016/0024-3795(75)90075-0 10.1038/nature24622 10.1088/1751-8113/42/50/504005 10.1146/annurev-conmatphys-031720-030658 10.1103/PhysRevB.101.224437 10.1103/PhysRevLett.98.160409 10.1103/PhysRevD.85.125016 10.1103/PhysRevLett.131.166601 10.1007/JHEP02(2022)056 10.22331/q-2022-11-10-856 10.1103/PhysRevB.90.235137 10.1093/nsr/nwae287 10.1103/PhysRevB.101.174204 10.1103/PhysRevLett.126.120604 10.1103/RevModPhys.58.801 10.1103/PhysRevB.102.041117 10.1016/b978-012189800-7/50004-2 10.4310/ATMP.1998.v2.n2.a2 10.1103/PhysRevLett.118.021601 10.1142/9789811231711_0009 10.1103/PhysRevLett.128.231603 10.1038/s41567-021-01230-2 10.1007/JHEP03(2021)103 10.1143/PTP.32.956 10.1103/PhysRevA.88.042318 10.1209/0295-5075/95/50001 10.1063/1.1499754 10.1016/0550-3213(83)90063-9 10.1088/1367-2630/14/11/113016 10.4310/ATMP.1998.v2.n2.a1 10.1016/j.physrep.2005.02.006 10.21468/SciPostPhys.16.4.089 10.1103/PhysRevB.96.195105 10.21468/SciPostPhys.16.5.122 10.1088/1361-6382/ac1082 10.1007/JHEP09(2024)133 10.1016/j.physrep.2020.03.003 10.1007/BF01608499 10.1103/PhysRevB.94.224206 10.1103/RevModPhys.90.035007 10.1103/PhysRevLett.125.240405 10.1038/ncomms4507 10.1103/PhysRevLett.84.3370 10.1103/RevModPhys.88.035001 10.1103/PhysRevA.98.042118 10.1103/RevModPhys.91.021001 10.1088/1361-6633/aac9ed 10.1088/1361-6382/ac2134 10.21468/SciPostPhys.15.3.125 10.1038/nature15750 10.1103/PhysRevD.97.105011 10.1103/PRXQuantum.2.030313 10.1016/0003-4916(61)90115-4 10.1103/PhysRevB.89.155424 10.1103/PhysRevA.58.883 10.1103/PhysRevB.83.035107 10.1103/PhysRevB.84.165139 10.1007/JHEP02(2015)172 10.1103/PhysRevLett.48.344 10.1016/j.physletb.2004.08.072 10.1103/PhysRevB.110.035155 10.1103/PRXQuantum.4.030317 10.1063/1.522979 10.1007/JHEP03(2021)040 10.1103/PRXQuantum.4.030328 10.1016/S0003-4916(02)00018-0 10.1103/PhysRevLett.132.070402 10.1143/PTPS.176.384 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 Copyright Springer Nature B.V. Oct 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: Copyright Springer Nature B.V. Oct 2024 |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/JHEP10(2024)134 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 42 |
ExternalDocumentID | oai_doaj_org_article_937e7a14f3ba4ef9b4af6b3be4b80a59 10_1007_JHEP10_2024_134 |
GroupedDBID | 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMVHM AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP N5L N9A NB0 O93 OK1 P62 P9T PHGZM PHGZT PIMPY PQGLB PROAC R9I RO9 S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX CITATION ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c417t-a4d6833cc5ab23708ed76d4881b40a43d8cc2fdab88408ba19cd72a86324bfbe3 |
IEDL.DBID | BENPR |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:13:16 EDT 2025 Sun Jul 13 04:20:44 EDT 2025 Thu Apr 24 22:54:29 EDT 2025 Tue Jul 01 05:22:06 EDT 2025 Mon Jul 21 06:08:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Discrete Symmetries Global Symmetries Wilson t Hooft and Polyakov loops Topological States of Matter |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-a4d6833cc5ab23708ed76d4881b40a43d8cc2fdab88408ba19cd72a86324bfbe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8715-6582 0000-0002-4764-1476 0000-0002-7211-3704 |
OpenAccessLink | https://www.proquest.com/docview/3118956318?pq-origsite=%requestingapplication% |
PQID | 3118956318 |
PQPubID | 2034718 |
PageCount | 42 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_937e7a14f3ba4ef9b4af6b3be4b80a59 proquest_journals_3118956318 crossref_citationtrail_10_1007_JHEP10_2024_134 crossref_primary_10_1007_JHEP10_2024_134 springer_journals_10_1007_JHEP10_2024_134 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-18 |
PublicationDateYYYYMMDD | 2024-10-18 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | 24715_CR39 24715_CR37 24715_CR35 S Lieu (24715_CR51) 2020; 125 M Barkeshli (24715_CR14) 2024; 16 A Kitaev (24715_CR38) 2006; 96 24715_CR28 24715_CR27 24715_CR25 S Sang (24715_CR119) 2021; 2 Y Choi (24715_CR134) 2022; 105 24715_CR29 N Seiberg (24715_CR19) 2024; 16 24715_CR24 24715_CR23 24715_CR22 J Maldacena (24715_CR30) 2016; 94 GY Cho (24715_CR55) 2017; 96 D Gaiotto (24715_CR98) 2015; 02 H Casini (24715_CR127) 2012; 85 DV Else (24715_CR5) 2020; 101 S Ryu (24715_CR85) 2006; 96 24715_CR3 24715_CR4 24715_CR1 24715_CR2 X-L Qi (24715_CR32) 2022; 02 H Bernien (24715_CR104) 2017; 551 24715_CR17 24715_CR16 24715_CR15 MA Metlitski (24715_CR56) 2018; 98 M Cheng (24715_CR54) 2016; 6 R Vanhove (24715_CR78) 2022; 128 A Kitaev (24715_CR31) 2018; 05 J Kaidi (24715_CR137) 2023; 404 P Saad (24715_CR71) 2024; 09 24715_CR95 24715_CR94 Z Komargodski (24715_CR10) 2021; 03 24715_CR92 L Kong (24715_CR136) 2020; 2 24715_CR91 24715_CR90 F Minganti (24715_CR50) 2018; 98 T Nishioka (24715_CR129) 2018; 90 V Khemani (24715_CR113) 2020; 101 24715_CR87 A Antinucci (24715_CR33) 2023; 15 H Casini (24715_CR125) 2004; 600 T-C Huang (24715_CR79) 2022; 128 24715_CR81 C de Groot (24715_CR20) 2022; 6 24715_CR80 S Gopalakrishnan (24715_CR100) 2020; 862 P Calabrese (24715_CR77) 2009; 42 K Kawabata (24715_CR49) 2023; 4 SA Parameswaran (24715_CR99) 2018; 81 24715_CR102 24715_CR103 24715_CR105 N O’Dea (24715_CR110) 2020; 2 IC Fulga (24715_CR41) 2014; 89 24715_CR109 24715_CR73 X Chen (24715_CR88) 2011; 83 M Serbyn (24715_CR106) 2021; 17 L Gioia (24715_CR57) 2022; 12 D Harlow (24715_CR86) 2021; 383 M Müller-Lennert (24715_CR93) 2013; 54 Y Chen (24715_CR69) 2021; 03 J Eisert (24715_CR75) 2010; 82 IH Kim (24715_CR124) 2023; 131 F Pollmann (24715_CR36) 2010; 81 24715_CR114 24715_CR115 P Calabrese (24715_CR117) 2012; 109 D Delmastro (24715_CR18) 2021; 11 24715_CR116 24715_CR118 R Fan (24715_CR122) 2024; 5 24715_CR64 O Aharony (24715_CR84) 2000; 323 24715_CR63 24715_CR62 24715_CR61 X Chen (24715_CR11) 2013; 87 24715_CR67 24715_CR66 24715_CR65 K Kawabata (24715_CR34) 2024; 132 R Ma (24715_CR21) 2023; 13 24715_CR60 E Witten (24715_CR83) 1998; 2 AC Potter (24715_CR40) 2016; 94 S Moudgalya (24715_CR107) 2022; 85 24715_CR120 A Belin (24715_CR70) 2021; 38 Z Komargodski (24715_CR72) 2012; 07 24715_CR121 JY Lee (24715_CR123) 2023; 4 24715_CR126 24715_CR59 24715_CR128 24715_CR58 DA Abanin (24715_CR97) 2019; 91 24715_CR6 R Nandkishore (24715_CR96) 2015; 6 S Sachdev (24715_CR26) 2015; 5 24715_CR52 W Ye (24715_CR7) 2022; 13 C Zhang (24715_CR139) 2024; 110 M Freedman (24715_CR101) 2017; 352 SC Furuya (24715_CR53) 2017; 118 P-S Hsin (24715_CR9) 2020; 09 24715_CR130 24715_CR131 24715_CR132 24715_CR133 24715_CR135 MB Hastings (24715_CR74) 2007; 0708 MPA Fisher (24715_CR76) 2023; 14 24715_CR138 24715_CR48 24715_CR47 P Sala (24715_CR112) 2020; 10 24715_CR42 H Shimizu (24715_CR8) 2018; 97 24715_CR46 24715_CR45 DV Else (24715_CR12) 2014; 90 24715_CR44 P-S Hsin (24715_CR68) 2021; 38 E Witten (24715_CR13) 2016; 88 DJ Williamson (24715_CR89) 2016; 94 JM Maldacena (24715_CR82) 1998; 2 24715_CR140 Z Ringel (24715_CR43) 2012; 86 J Ren (24715_CR111) 2021; 126 K Pakrouski (24715_CR108) 2020; 125 |
References_xml | – ident: 24715_CR126 doi: 10.1088/1751-8113/40/25/S57 – volume: 404 start-page: 1021 year: 2023 ident: 24715_CR137 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-023-04859-7 – ident: 24715_CR22 – volume: 96 year: 2006 ident: 24715_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.110404 – volume: 323 start-page: 183 year: 2000 ident: 24715_CR84 publication-title: Phys. Rept. doi: 10.1016/S0370-1573(99)00083-6 – ident: 24715_CR60 doi: 10.1103/PhysRevB.50.3799 – ident: 24715_CR80 doi: 10.1017/cbo9780511535048 – volume: 12 year: 2022 ident: 24715_CR57 publication-title: Phys. Rev. X – ident: 24715_CR37 doi: 10.1103/PhysRevLett.96.110405 – ident: 24715_CR4 doi: 10.1103/PhysRevB.69.104431 – volume: 5 year: 2015 ident: 24715_CR26 publication-title: Phys. Rev. X – volume: 13 year: 2023 ident: 24715_CR21 publication-title: Phys. Rev. X – ident: 24715_CR66 doi: 10.1088/1742-5468/2005/05/P05012 – volume: 94 year: 2016 ident: 24715_CR89 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.205150 – volume: 05 start-page: 183 year: 2018 ident: 24715_CR31 publication-title: JHEP doi: 10.1007/JHEP05(2018)183 – ident: 24715_CR45 doi: 10.1007/3-540-12732-1 – volume: 94 year: 2016 ident: 24715_CR30 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.94.106002 – volume: 128 year: 2022 ident: 24715_CR78 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.231602 – volume: 81 year: 2010 ident: 24715_CR36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.064439 – volume: 13 start-page: 066 year: 2022 ident: 24715_CR7 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.13.3.066 – ident: 24715_CR6 doi: 10.21468/SciPostPhys.15.2.051 – ident: 24715_CR39 doi: 10.1103/PhysRevB.96.041122 – volume: 383 start-page: 1669 year: 2021 ident: 24715_CR86 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-021-04040-y – ident: 24715_CR27 – ident: 24715_CR81 doi: 10.1007/978-3-319-52573-0 – ident: 24715_CR63 doi: 10.1088/1751-8113/42/50/504010 – ident: 24715_CR133 doi: 10.1093/ptep/ptab145 – volume: 109 year: 2012 ident: 24715_CR117 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.130502 – volume: 5 year: 2024 ident: 24715_CR122 publication-title: PRX Quantum doi: 10.1103/PRXQuantum.5.020343 – volume: 98 year: 2018 ident: 24715_CR56 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.085140 – ident: 24715_CR25 doi: 10.1103/PhysRevB.95.075106 – ident: 24715_CR128 – volume: 96 year: 2006 ident: 24715_CR85 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.181602 – ident: 24715_CR28 – ident: 24715_CR46 doi: 10.1017/cbo9780511976667 – ident: 24715_CR42 doi: 10.1103/PhysRevB.92.085139 – volume: 87 year: 2013 ident: 24715_CR11 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.155114 – volume: 2 year: 2020 ident: 24715_CR110 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.043305 – volume: 105 year: 2022 ident: 24715_CR134 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.105.125016 – ident: 24715_CR90 doi: 10.1103/PhysRevLett.59.799 – volume: 6 start-page: 15 year: 2015 ident: 24715_CR96 publication-title: Ann. Rev. Condens. Mat. Phys. doi: 10.1146/annurev-conmatphys-031214-014726 – volume: 2 year: 2020 ident: 24715_CR136 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.043086 – ident: 24715_CR62 doi: 10.1103/PhysRevLett.93.260602 – ident: 24715_CR67 – volume: 82 start-page: 277 year: 2010 ident: 24715_CR75 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.277 – volume: 11 start-page: 142 year: 2021 ident: 24715_CR18 publication-title: JHEP doi: 10.1007/JHEP11(2021)142 – ident: 24715_CR115 doi: 10.21468/SciPostPhysCore.4.2.010 – ident: 24715_CR44 doi: 10.1103/PhysRevLett.108.076804 – volume: 54 year: 2013 ident: 24715_CR93 publication-title: J. Math. Phys. doi: 10.1063/1.4838856 – volume: 352 start-page: 407 year: 2017 ident: 24715_CR101 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-016-2796-3 – ident: 24715_CR105 doi: 10.1103/PhysRevB.98.235155 – ident: 24715_CR94 doi: 10.1103/PhysRevLett.95.046404 – volume: 85 year: 2022 ident: 24715_CR107 publication-title: Rept. Prog. Phys. doi: 10.1088/1361-6633/ac73a0 – volume: 86 year: 2012 ident: 24715_CR43 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.045102 – volume: 09 start-page: 022 year: 2020 ident: 24715_CR9 publication-title: JHEP doi: 10.1007/JHEP09(2020)022 – volume: 16 start-page: 064 year: 2024 ident: 24715_CR19 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.16.3.064 – ident: 24715_CR95 doi: 10.1016/j.aop.2005.11.014 – volume: 125 year: 2020 ident: 24715_CR108 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.230602 – volume: 07 start-page: 069 year: 2012 ident: 24715_CR72 publication-title: JHEP doi: 10.1007/JHEP07(2012)069 – ident: 24715_CR102 doi: 10.1016/0024-3795(75)90075-0 – volume: 551 start-page: 579 year: 2017 ident: 24715_CR104 publication-title: Nature doi: 10.1038/nature24622 – volume: 42 year: 2009 ident: 24715_CR77 publication-title: J. Phys. A doi: 10.1088/1751-8113/42/50/504005 – volume: 14 start-page: 335 year: 2023 ident: 24715_CR76 publication-title: Ann. Rev. Condens. Mat. Phys. doi: 10.1146/annurev-conmatphys-031720-030658 – ident: 24715_CR29 – ident: 24715_CR135 – volume: 101 year: 2020 ident: 24715_CR5 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.224437 – ident: 24715_CR131 doi: 10.1103/PhysRevLett.98.160409 – volume: 85 year: 2012 ident: 24715_CR127 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.85.125016 – volume: 131 year: 2023 ident: 24715_CR124 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.131.166601 – volume: 02 start-page: 056 year: 2022 ident: 24715_CR32 publication-title: JHEP doi: 10.1007/JHEP02(2022)056 – volume: 6 start-page: 856 year: 2022 ident: 24715_CR20 publication-title: Quantum doi: 10.22331/q-2022-11-10-856 – ident: 24715_CR35 – volume: 90 year: 2014 ident: 24715_CR12 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.235137 – ident: 24715_CR140 doi: 10.1093/nsr/nwae287 – ident: 24715_CR58 – volume: 101 year: 2020 ident: 24715_CR113 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.174204 – volume: 126 year: 2021 ident: 24715_CR111 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.120604 – ident: 24715_CR17 – ident: 24715_CR65 doi: 10.1103/RevModPhys.58.801 – ident: 24715_CR109 doi: 10.1103/PhysRevB.102.041117 – ident: 24715_CR52 doi: 10.1016/b978-012189800-7/50004-2 – volume: 2 start-page: 253 year: 1998 ident: 24715_CR83 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.1998.v2.n2.a2 – volume: 118 year: 2017 ident: 24715_CR53 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.021601 – ident: 24715_CR23 – ident: 24715_CR114 doi: 10.1142/9789811231711_0009 – volume: 6 year: 2016 ident: 24715_CR54 publication-title: Phys. Rev. X – volume: 128 year: 2022 ident: 24715_CR79 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.231603 – volume: 17 start-page: 675 year: 2021 ident: 24715_CR106 publication-title: Nature Phys. doi: 10.1038/s41567-021-01230-2 – ident: 24715_CR138 – volume: 03 start-page: 103 year: 2021 ident: 24715_CR10 publication-title: JHEP doi: 10.1007/JHEP03(2021)103 – ident: 24715_CR103 doi: 10.1143/PTP.32.956 – ident: 24715_CR118 doi: 10.1103/PhysRevA.88.042318 – ident: 24715_CR91 doi: 10.1209/0295-5075/95/50001 – ident: 24715_CR130 – ident: 24715_CR120 doi: 10.1063/1.1499754 – ident: 24715_CR1 doi: 10.1016/0550-3213(83)90063-9 – ident: 24715_CR92 doi: 10.1088/1367-2630/14/11/113016 – volume: 2 start-page: 231 year: 1998 ident: 24715_CR82 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.1998.v2.n2.a1 – volume: 0708 start-page: P08024 year: 2007 ident: 24715_CR74 publication-title: J. Stat. Mech. – ident: 24715_CR61 doi: 10.1016/j.physrep.2005.02.006 – volume: 16 start-page: 089 year: 2024 ident: 24715_CR14 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.16.4.089 – volume: 96 year: 2017 ident: 24715_CR55 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.195105 – ident: 24715_CR15 doi: 10.21468/SciPostPhys.16.5.122 – volume: 38 year: 2021 ident: 24715_CR70 publication-title: Class. Quant. Grav. doi: 10.1088/1361-6382/ac1082 – volume: 09 start-page: 133 year: 2024 ident: 24715_CR71 publication-title: JHEP doi: 10.1007/JHEP09(2024)133 – volume: 862 start-page: 1 year: 2020 ident: 24715_CR100 publication-title: Phys. Rept. doi: 10.1016/j.physrep.2020.03.003 – ident: 24715_CR24 – ident: 24715_CR47 doi: 10.1007/BF01608499 – volume: 94 year: 2016 ident: 24715_CR40 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.224206 – volume: 90 year: 2018 ident: 24715_CR129 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.90.035007 – volume: 125 year: 2020 ident: 24715_CR51 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.240405 – ident: 24715_CR16 doi: 10.1038/ncomms4507 – ident: 24715_CR3 doi: 10.1103/PhysRevLett.84.3370 – volume: 88 year: 2016 ident: 24715_CR13 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.88.035001 – volume: 98 year: 2018 ident: 24715_CR50 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.042118 – volume: 91 year: 2019 ident: 24715_CR97 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.91.021001 – volume: 81 year: 2018 ident: 24715_CR99 publication-title: Rept. Prog. Phys. doi: 10.1088/1361-6633/aac9ed – volume: 38 year: 2021 ident: 24715_CR68 publication-title: Class. Quant. Grav. doi: 10.1088/1361-6382/ac2134 – volume: 15 start-page: 125 year: 2023 ident: 24715_CR33 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.15.3.125 – ident: 24715_CR73 doi: 10.1038/nature15750 – volume: 97 year: 2018 ident: 24715_CR8 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.97.105011 – volume: 2 year: 2021 ident: 24715_CR119 publication-title: PRX Quantum doi: 10.1103/PRXQuantum.2.030313 – ident: 24715_CR2 doi: 10.1016/0003-4916(61)90115-4 – volume: 89 year: 2014 ident: 24715_CR41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.155424 – ident: 24715_CR116 doi: 10.1103/PhysRevA.58.883 – volume: 83 year: 2011 ident: 24715_CR88 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.035107 – ident: 24715_CR87 doi: 10.1103/PhysRevB.84.165139 – volume: 02 start-page: 172 year: 2015 ident: 24715_CR98 publication-title: JHEP doi: 10.1007/JHEP02(2015)172 – ident: 24715_CR121 – ident: 24715_CR59 doi: 10.1103/PhysRevLett.48.344 – volume: 600 start-page: 142 year: 2004 ident: 24715_CR125 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2004.08.072 – volume: 110 year: 2024 ident: 24715_CR139 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.110.035155 – volume: 4 year: 2023 ident: 24715_CR123 publication-title: PRX Quantum doi: 10.1103/PRXQuantum.4.030317 – ident: 24715_CR48 doi: 10.1063/1.522979 – volume: 10 year: 2020 ident: 24715_CR112 publication-title: Phys. Rev. X – volume: 03 start-page: 040 year: 2021 ident: 24715_CR69 publication-title: JHEP doi: 10.1007/JHEP03(2021)040 – volume: 4 year: 2023 ident: 24715_CR49 publication-title: PRX Quantum doi: 10.1103/PRXQuantum.4.030328 – ident: 24715_CR64 doi: 10.1016/S0003-4916(02)00018-0 – volume: 132 year: 2024 ident: 24715_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.132.070402 – ident: 24715_CR132 doi: 10.1143/PTPS.176.384 |
SSID | ssj0015190 |
Score | 2.480601 |
Snippet | A
bstract
Symmetries and their anomalies are powerful tools for understanding quantum systems. However, realistic systems are often subject to disorders,... Symmetries and their anomalies are powerful tools for understanding quantum systems. However, realistic systems are often subject to disorders, dissipation and... Abstract Symmetries and their anomalies are powerful tools for understanding quantum systems. However, realistic systems are often subject to disorders,... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 134 |
SubjectTerms | Anomalies Classical and Quantum Gravitation Commutation Constraints Density Discrete Symmetries Eigenvalues Elementary Particles Global Symmetries Lower bounds Many body problem Phase transitions Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory String Theory Symmetry t Hooft and Polyakov loops Topological States of Matter Wilson |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqJKReKqBFLAXkQw_LIWwcO7HDDRCr1UqteigSt2g8tnths9DsHvj3jPNBu0grLr0mTjR6Y3vmyeM3jH0TQZch-DRBDFmiwGFiHGBiS7Qh9XnQbW_A7z-K2Z2a3-f3_7T6ijVhnTxwB9yEwqfXIFSQFpQPpVUQCiutV9akkLdX9yjmDWSqPz-gvCQdhHxSPZnPbn-KdExEX50LqTZiUCvVv5FfvjkSbSPNdI996lNEftWZts8--PqA7balmth8ZlNi7AvKnn3Dl4EDTUXaEnjzvFi0zbGaSx7LwevfXV04h9rx2CKLP60JxPWCd9rNzRd2N739dTNL-m4ICSqhVwkoVxgpEXOwmdSp8U4XjtafsCoFJZ1BzIIDa4izGQuiRKczMFGP3Qbr5SHbqZe1P2LcaVS5cGhAE_sq0QiwsvCU7GEGNpcjdjHgU2EvFR47VjxUg8hxB2gVAa0I0BEbv37w2KlkbB96HQF_HRblrdsH5PSqd3r1ntNH7GRwV9WvuaaSxJWI7dEmNWLngwv_vt5iz_H_sOcr-xj_F2OaMCdsZ_Vn7U8pWVnZs3ZevgAnGufF priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-QwDI5YENJe0O4CYoBFOewBDoWmSZuU2-6I0QhpEQeQuFWOk3BhyqMzB_49Th-DAHHgVrWO1Npx_Fl2PzP2RwRdhuDTBDFkiQKHiXGAiS3RhtTnQbezAf9fFNNrdX6T3_QkSfFfmHf1-5Pz6dmlSA8pRVdHQqpvbC0XUscZDeNivCwXEAxJB96ej4vehJyWmf8NnHxXAW0Dy-QH2-gRIf_bmfAnW_H1L7bedmZis8kmlKDPCCz7ht8HDrTz6ATgzfNs1s7Cak557P6ub7s2cA6143EiFn9ckM4WM95RNTdb7HpydjWeJv3wgwSV0PMElCuMlIg52Iy-2HinC0fuJqxKQUlnELPgwBpK0YwFUaLTGZhIv26D9XKbrdb3td9h3GlUuXBoQFOyVaIRYGXhCdthBjaXI3Y86KfCnhk8Dqi4qwZO406hVVRoRQodscPlgoeOFONz0X9R4UuxyGbd3iAjV71zVASRvAahgrSgfCitglBYab2yJoW8HLH9wVxV72JNJSk1ouSOzqQROxpM-Pr4k_fZ_YLsHvseL2OkEmafrc6fFv43QZC5PWi33wuAKdWD priority: 102 providerName: Springer Nature |
Title | Anomalies of average symmetries: entanglement and open quantum systems |
URI | https://link.springer.com/article/10.1007/JHEP10(2024)134 https://www.proquest.com/docview/3118956318 https://doaj.org/article/937e7a14f3ba4ef9b4af6b3be4b80a59 |
Volume | 2024 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEB2aDYVeSj_pNumiQw_JwY1lyZacS0mW3S6BhlC6kJuRRlIuWW8S7x767zvyx4YU0ovAtmzMaDR6Iw3vAXzlQZUh-DRBDFkijcNEO4OJLdGG1OdBtdqAPy-LxVJeXOfX_YZb05dVDjGxDdRujXGP_EQQEiYsTy74_e4-iapR8XS1l9DYg30KwVqPYP98dnn1a3eOQPgkHQh9UnVysZhd8fSIEn55zIV8sha1lP1PcOY_R6PtijN_A697qMjOurF9Cy98_Q5etiWb2LyHOWXuK0LRvmHrwAy5JIUG1vxZrVqRrOaUxbLw-qarD2emdixKZbH7LRlzu2Idh3PzAZbz2e_pIulVERKUXG0SI12hhUDMjc2ESrV3qnA0D7mVqZHCacQsOGM15W7aGl6iU5nRkZfdBuvFRxjV69p_AuYUypw71EZRFlai5saKwhPow8zYXIzh22CfCnvK8KhccVsNZMedQato0IoMOoaj3Qt3HVvG813Po8F33SLNdXtj_XBT9bOmIuzkleEyCGukD6WVJhRWWC-tTk1ejuFwGK6qn3tN9egpYzgehvDx8TP_8_n_nzqAV7FnXLW4PoTR5mHrvxAc2dgJ7On5j0nveXQ1zWRsi-mkTfCpXWZnfwHGw-Pe |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMslOIDSO0hNI6d2EFCVQtdtk9xaKXejJ-9sEnb7Ar1T_EbGeexVSuVW6-JbUUznz2f4_F8AB9pEGUIPk2sDVnCtbOJdNomprQmpD4PotUGPDwqJid87zQ_XYK_w12YmFY5rIntQu1qG_-RbzBkwsjlEYKb5xdJVI2Kp6uDhEYHi31_9Qe3bM3X3e_o309ZNt45_jZJelWBxHIqZonmrpCMWZtrkzGRSu9E4RDH1PBUc-aktVlw2kjc-0ijaWmdyLSMdc1NMJ7huA_gIWcYyePN9PGPxakFsqF0KB-Uio29yc5Pmq5lGAbXKeM3Il8rEHCD1d46iG3j2_gZPO2JKdnqkPQclnz1Ah61CaK2eQnjraqeImf3DakD0TgBcCEizdV02kpyNV9ITEKvzrpsdKIrR6IwF7mYo-vmU9JVjG5ewcm9WOs1LFd15d8AccLynDortcA9X2kl1YYVHimmzbTJ2Qg-D_ZRti9QHnUyfquhtHJnUBUNqtCgI1hbdDjvanPc3XQ7GnzRLBbVbh_Ul2eqn6MKmZoXmvLAjOY-lIbrUBhmPDcy1Xk5gpXBXaqf6Y26xuUI1gcXXr--43ve_n-oD_B4cnx4oA52j_bfwZPYK8ZLKldgeXY59--RCM3Maos-Ar_uG-7_APTgG9g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE-xUMAHkNpD2Dh2YgcJoZbuatvCaoWo1FvqZy9s0ja7Qv1r_DrGeWxVpHLrNYmtaOaz55t4Mh_Ae-pF7r2LI2N8EnFlTSStMpHOjfaxS71otAG_z7LpMT88SU824E__L0woq-z3xGajtpUJ38hHDJkwcnmE4Mh3ZRHz_cmX84soKEiFk9ZeTqOFyJG7-o3pW_35YB99_SFJJuOfX6dRpzAQGU7FMlLcZpIxY1KlEyZi6azILGKaah4rzqw0JvFWaYl5kNSK5saKRMnQ41x77RjOew82RciKBrC5N57Nf6zPMJAbxX0zoViMDqfjOY23EwyKO5TxG3GwkQu4wXH_OZZtot3kMTzqaCrZbXH1BDZc-RTuN-Wipn4Gk92yWiCDdzWpPFG4HHBbIvXVYtEIdNWfSChJL8_a2nSiSkuCTBe5WKEjVwvS9o-un8PxndjrBQzKqnQvgVhheEqtkUpgBpgbSZVmmUPCaRKlUzaEj719CtO1Kw-qGb-KvtFya9AiGLRAgw5hez3gvO3Ucfuje8Hg68dCi-3mQnV5VnQrtkDe5oSi3DOtuPO55spnmmnHtYxVmg9hq3dX0a37urhG6RB2ehde377lfV79f6p38AChXnw7mB29hodhUAieVG7BYHm5cm-QFS312w5-BE7vGvF_Ac7sIWo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomalies+of+average+symmetries%3A+entanglement+and+open+quantum+systems&rft.jtitle=The+journal+of+high+energy+physics&rft.date=2024-10-18&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2024&rft.issue=10&rft.spage=134&rft_id=info:doi/10.1007%2FJHEP10%282024%29134&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |