NTPDASE4 gene products cooperate with the adenovirus E4orf4 protein through PP2A-dependent and -independent mechanisms and contribute to induction of cell death

The adenovirus E4orf4 protein induces nonclassical apoptosis in mammalian cells through at least two complementing pathways regulated by the interactions of E4orf4 with protein phosphatase 2A (PP2A) and Src kinases. In Saccharomyces cerevisiae cells, which do not express Src, E4orf4 induces PP2A-dep...

Full description

Saved in:
Bibliographic Details
Published inJournal of virology Vol. 88; no. 11; pp. 6318 - 6328
Main Authors Avital-Shacham, Meirav, Sharf, Rakefet, Kleinberger, Tamar
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The adenovirus E4orf4 protein induces nonclassical apoptosis in mammalian cells through at least two complementing pathways regulated by the interactions of E4orf4 with protein phosphatase 2A (PP2A) and Src kinases. In Saccharomyces cerevisiae cells, which do not express Src, E4orf4 induces PP2A-dependent toxicity. The yeast Golgi apyrase Ynd1 was found to contribute to E4orf4-mediated toxicity and to interact with the PP2A-B55α regulatory subunit. In addition, a mammalian Ynd1 orthologue, the NTPDASE4 gene product Golgi UDPase, was shown to physically interact with E4orf4. Here we report that knockdown of NTPDASE4 suppressed E4orf4-induced cell death. Conversely, overexpression of the NTPDASE4 gene products Golgi UDPase and LALP70 enhanced E4orf4-induced cell killing. We found that similarly to results obtained in yeast, the apyrase activity of mammalian UDPase was not required for its contribution to E4orf4-induced toxicity. The interaction between E4orf4 and UDPase had two consequences: a PP2A-dependent one, resulting in increased UDPase levels, and a PP2A-independent outcome that led to dissociation of large UDPase-containing protein complexes. The present report extends our findings in yeast to E4orf4-mediated death of mammalian cells, and combined with previous results, it suggests that the E4orf4-NTPDase4 pathway, partly in association with PP2A, may provide an alternative mechanism for the E4orf4-Src pathway to contribute to the cytoplasmic death function of E4orf4. The adenovirus E4orf4 protein contributes to regulation of the progression of virus infection from the early to the late phase, and when expressed alone, it induces a unique caspase-independent programmed cell death which is more efficient in cancer cells than in normal cells. The interactions of E4orf4 with cellular proteins that mediate its functions, such as PP2A and Src kinases, are highly conserved in evolution. The results presented here reveal that the NTPDASE4 gene product Golgi UDPase, first discovered to contribute to E4orf4 toxicity in Saccharomyces cerevisiae, associates with E4orf4 and plays a role in induction of cell death in mammalian cells. Details of the functional interaction between E4orf4, PP2A, and the UDPase are described. Identification of the evolutionarily conserved mechanisms underlying E4orf4 activity will increase our understanding of the interactions between the virus and the host cell and will contribute to our grasp of the unique mode of E4orf4-induced cell death.
AbstractList The adenovirus E4orf4 protein induces nonclassical apoptosis in mammalian cells through at least two complementing pathways regulated by the interactions of E4orf4 with protein phosphatase 2A (PP2A) and Src kinases. In Saccharomyces cerevisiae cells, which do not express Src, E4orf4 induces PP2A-dependent toxicity. The yeast Golgi apyrase Ynd1 was found to contribute to E4orf4-mediated toxicity and to interact with the PP2A-B55 alpha regulatory subunit. In addition, a mammalian Ynd1 orthologue, the NTPDASE4 gene product Golgi UDPase, was shown to physically interact with E4orf4. Here we report that knockdown of NTPDASE4 suppressed E4orf4-induced cell death. Conversely, overexpression of the NTPDASE4 gene products Golgi UDPase and LALP70 enhanced E4orf4-induced cell killing. We found that similarly to results obtained in yeast, the apyrase activity of mammalian UDPase was not required for its contribution to E4orf4-induced toxicity. The interaction between E4orf4 and UDPase had two consequences: a PP2A-dependent one, resulting in increased UDPase levels, and a PP2A-independent outcome that led to dissociation of large UDPase-containing protein complexes. The present report extends our findings in yeast to E4orf4-mediated death of mammalian cells, and combined with previous results, it suggests that the E4orf4-NTPDase4 pathway, partly in association with PP2A, may provide an alternative mechanism for the E4orf4-Src pathway to contribute to the cytoplasmic death function of E4orf4. IMPORTANCE The adenovirus E4orf4 protein contributes to regulation of the progression of virus infection from the early to the late phase, and when expressed alone, it induces a unique caspase-independent programmed cell death which is more efficient in cancer cells than in normal cells. The interactions of E4orf4 with cellular proteins that mediate its functions, such as PP2A and Src kinases, are highly conserved in evolution. The results presented here reveal that the NTPDASE4 gene product Golgi UDPase, first discovered to contribute to E4orf4 toxicity in Saccharomyces cerevisiae, associates with E4orf4 and plays a role in induction of cell death in mammalian cells. Details of the functional interaction between E4orf4, PP2A, and the UDPase are described. Identification of the evolutionarily conserved mechanisms underlying E4orf4 activity will increase our understanding of the interactions between the virus and the host cell and will contribute to our grasp of the unique mode of E4orf4-induced cell death.
The adenovirus E4orf4 protein induces nonclassical apoptosis in mammalian cells through at least two complementing pathways regulated by the interactions of E4orf4 with protein phosphatase 2A (PP2A) and Src kinases. In Saccharomyces cerevisiae cells, which do not express Src, E4orf4 induces PP2A-dependent toxicity. The yeast Golgi apyrase Ynd1 was found to contribute to E4orf4-mediated toxicity and to interact with the PP2A-B55α regulatory subunit. In addition, a mammalian Ynd1 orthologue, the NTPDASE4 gene product Golgi UDPase, was shown to physically interact with E4orf4. Here we report that knockdown of NTPDASE4 suppressed E4orf4-induced cell death. Conversely, overexpression of the NTPDASE4 gene products Golgi UDPase and LALP70 enhanced E4orf4-induced cell killing. We found that similarly to results obtained in yeast, the apyrase activity of mammalian UDPase was not required for its contribution to E4orf4-induced toxicity. The interaction between E4orf4 and UDPase had two consequences: a PP2A-dependent one, resulting in increased UDPase levels, and a PP2A-independent outcome that led to dissociation of large UDPase-containing protein complexes. The present report extends our findings in yeast to E4orf4-mediated death of mammalian cells, and combined with previous results, it suggests that the E4orf4-NTPDase4 pathway, partly in association with PP2A, may provide an alternative mechanism for the E4orf4-Src pathway to contribute to the cytoplasmic death function of E4orf4. IMPORTANCE The adenovirus E4orf4 protein contributes to regulation of the progression of virus infection from the early to the late phase, and when expressed alone, it induces a unique caspase-independent programmed cell death which is more efficient in cancer cells than in normal cells. The interactions of E4orf4 with cellular proteins that mediate its functions, such as PP2A and Src kinases, are highly conserved in evolution. The results presented here reveal that the NTPDASE4 gene product Golgi UDPase, first discovered to contribute to E4orf4 toxicity in Saccharomyces cerevisiae , associates with E4orf4 and plays a role in induction of cell death in mammalian cells. Details of the functional interaction between E4orf4, PP2A, and the UDPase are described. Identification of the evolutionarily conserved mechanisms underlying E4orf4 activity will increase our understanding of the interactions between the virus and the host cell and will contribute to our grasp of the unique mode of E4orf4-induced cell death.
ABSTRACT The adenovirus E4orf4 protein induces nonclassical apoptosis in mammalian cells through at least two complementing pathways regulated by the interactions of E4orf4 with protein phosphatase 2A (PP2A) and Src kinases. In Saccharomyces cerevisiae cells, which do not express Src, E4orf4 induces PP2A-dependent toxicity. The yeast Golgi apyrase Ynd1 was found to contribute to E4orf4-mediated toxicity and to interact with the PP2A-B55α regulatory subunit. In addition, a mammalian Ynd1 orthologue, the NTPDASE4 gene product Golgi UDPase, was shown to physically interact with E4orf4. Here we report that knockdown of NTPDASE4 suppressed E4orf4-induced cell death. Conversely, overexpression of the NTPDASE4 gene products Golgi UDPase and LALP70 enhanced E4orf4-induced cell killing. We found that similarly to results obtained in yeast, the apyrase activity of mammalian UDPase was not required for its contribution to E4orf4-induced toxicity. The interaction between E4orf4 and UDPase had two consequences: a PP2A-dependent one, resulting in increased UDPase levels, and a PP2A-independent outcome that led to dissociation of large UDPase-containing protein complexes. The present report extends our findings in yeast to E4orf4-mediated death of mammalian cells, and combined with previous results, it suggests that the E4orf4-NTPDase4 pathway, partly in association with PP2A, may provide an alternative mechanism for the E4orf4-Src pathway to contribute to the cytoplasmic death function of E4orf4. IMPORTANCE The adenovirus E4orf4 protein contributes to regulation of the progression of virus infection from the early to the late phase, and when expressed alone, it induces a unique caspase-independent programmed cell death which is more efficient in cancer cells than in normal cells. The interactions of E4orf4 with cellular proteins that mediate its functions, such as PP2A and Src kinases, are highly conserved in evolution. The results presented here reveal that the NTPDASE4 gene product Golgi UDPase, first discovered to contribute to E4orf4 toxicity in Saccharomyces cerevisiae , associates with E4orf4 and plays a role in induction of cell death in mammalian cells. Details of the functional interaction between E4orf4, PP2A, and the UDPase are described. Identification of the evolutionarily conserved mechanisms underlying E4orf4 activity will increase our understanding of the interactions between the virus and the host cell and will contribute to our grasp of the unique mode of E4orf4-induced cell death.
The adenovirus E4orf4 protein induces nonclassical apoptosis in mammalian cells through at least two complementing pathways regulated by the interactions of E4orf4 with protein phosphatase 2A (PP2A) and Src kinases. In Saccharomyces cerevisiae cells, which do not express Src, E4orf4 induces PP2A-dependent toxicity. The yeast Golgi apyrase Ynd1 was found to contribute to E4orf4-mediated toxicity and to interact with the PP2A-B55α regulatory subunit. In addition, a mammalian Ynd1 orthologue, the NTPDASE4 gene product Golgi UDPase, was shown to physically interact with E4orf4. Here we report that knockdown of NTPDASE4 suppressed E4orf4-induced cell death. Conversely, overexpression of the NTPDASE4 gene products Golgi UDPase and LALP70 enhanced E4orf4-induced cell killing. We found that similarly to results obtained in yeast, the apyrase activity of mammalian UDPase was not required for its contribution to E4orf4-induced toxicity. The interaction between E4orf4 and UDPase had two consequences: a PP2A-dependent one, resulting in increased UDPase levels, and a PP2A-independent outcome that led to dissociation of large UDPase-containing protein complexes. The present report extends our findings in yeast to E4orf4-mediated death of mammalian cells, and combined with previous results, it suggests that the E4orf4-NTPDase4 pathway, partly in association with PP2A, may provide an alternative mechanism for the E4orf4-Src pathway to contribute to the cytoplasmic death function of E4orf4. The adenovirus E4orf4 protein contributes to regulation of the progression of virus infection from the early to the late phase, and when expressed alone, it induces a unique caspase-independent programmed cell death which is more efficient in cancer cells than in normal cells. The interactions of E4orf4 with cellular proteins that mediate its functions, such as PP2A and Src kinases, are highly conserved in evolution. The results presented here reveal that the NTPDASE4 gene product Golgi UDPase, first discovered to contribute to E4orf4 toxicity in Saccharomyces cerevisiae, associates with E4orf4 and plays a role in induction of cell death in mammalian cells. Details of the functional interaction between E4orf4, PP2A, and the UDPase are described. Identification of the evolutionarily conserved mechanisms underlying E4orf4 activity will increase our understanding of the interactions between the virus and the host cell and will contribute to our grasp of the unique mode of E4orf4-induced cell death.
Author Avital-Shacham, Meirav
Sharf, Rakefet
Kleinberger, Tamar
Author_xml – sequence: 1
  givenname: Meirav
  surname: Avital-Shacham
  fullname: Avital-Shacham, Meirav
  organization: Department of Molecular Microbiology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
– sequence: 2
  givenname: Rakefet
  surname: Sharf
  fullname: Sharf, Rakefet
– sequence: 3
  givenname: Tamar
  surname: Kleinberger
  fullname: Kleinberger, Tamar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24672025$$D View this record in MEDLINE/PubMed
BookMark eNpVkUtv1DAUhS3Uik4HdqyRlyxI8SuJs0EalSktqmAkCmJnOc7NxGhiB9sp6r_hp9bTF7C60j2fzrlX5xgdOO8AoVeUnFDK5LtP3y9OCOGSFlQ8QwtKGlmUJRUHaEEIY0XJ5Y8jdBzjT0KoEJV4jo6YqGpGWLlAfz5fbT6svq4F3oIDPAXfzSZFbLyfIOgE-LdNA04DYN2B89c2zBGvhQ-92NMJrMtq8PN2wJsNWxUdTOAymrB2HS6s-7sYwQza2TjGO814l4Jt5xySPM5gTrbeYd9jA7sd7kCn4QU67PUuwsuHuUTfztZXp-fF5ZePF6ery8IIWqdCi6qqWt72hjW6rirNoe9lxboaSMmEMES2hDeSsrYWpAHaC0qBSGIqKXgDfIne3_tOcztCZ_K9Qe_UFOyow43y2qr_FWcHtfXXKrtxmT2W6M2DQfC_ZohJjTbu_9AO_BwVLVnTcEYJz-jbe9QEH2OA_imGErUvVeVS1V2piu6dX_972hP82CK_BWxyoUg
CitedBy_id crossref_primary_10_1002_1873_3468_13704
crossref_primary_10_1134_S0026893315020077
crossref_primary_10_1128_JVI_02253_18
crossref_primary_10_3390_v7052334
crossref_primary_10_1007_s00018_014_1782_1
crossref_primary_10_1128_JVI_03710_14
crossref_primary_10_1128_JVI_01365_18
Cites_doi 10.1186/1471-2091-5-8
10.1371/journal.pone.0015539
10.1083/jcb.200201106
10.1128/JVI.00711-09
10.1091/mbc.E09-01-0057
10.1074/jbc.M507281200
10.1007/978-3-540-74264-7_12
10.1006/viro.1999.9663
10.1038/sj.emboj.7600597
10.1074/jbc.273.18.11392
10.1038/sj.onc.1204693
10.1128/JVI.75.9.4444-4447.2001
10.1083/jcb.200104104
10.1128/JVI.74.17.7869-7877.2000
10.1093/emboj/20.4.864
10.1371/journal.ppat.1003742
10.1128/jvi.67.12.7556-7560.1993
10.1016/j.bbcan.2008.05.005
10.1073/pnas.96.18.10080
10.1073/pnas.1220282110
10.1038/sj.onc.1203705
10.1128/JVI.72.9.7144-7153.1998
10.1128/JVI.72.4.2975-2982.1998
10.1038/onc.2008.393
10.1083/jcb.150.5.1037
10.3791/4442
10.1093/nar/gkr231
10.1091/mbc.E05-12-1146
10.1002/ddr.1097
10.1074/jbc.274.46.32704
10.1128/jvi.70.6.3844-3851.1996
10.1242/jcs.112.15.2473
10.1073/pnas.0505482102
10.4161/cc.25707
10.1074/jbc.M001245200
10.1128/JVI.00791-08
10.1128/jvi.66.10.5867-5878.1992
10.1128/JVI.75.2.789-798.2001
10.1083/jcb.140.3.637
10.1038/30277
10.1074/jbc.M400933200
ContentType Journal Article
Copyright Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology
Copyright_xml – notice: Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7U9
8FD
FR3
H94
P64
RC3
5PM
DOI 10.1128/JVI.00381-14
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
AIDS and Cancer Research Abstracts
Genetics Abstracts
Virology and AIDS Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList AIDS and Cancer Research Abstracts

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1098-5514
Editor Imperiale, M. J.
Editor_xml – sequence: 1
  givenname: M. J.
  surname: Imperiale
  fullname: Imperiale, M. J.
EndPage 6328
ExternalDocumentID 10_1128_JVI_00381_14
24672025
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
.GJ
0R~
18M
29L
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
6TJ
85S
AAYJJ
ABPPZ
ACGFO
ACNCT
ADBBV
AENEX
AFFNX
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CGR
CS3
CUY
CVF
D0S
DIK
E3Z
EBS
ECM
EIF
EJD
F20
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
MVM
N9A
NPM
O9-
OHT
OK1
P2P
RHF
RHI
RNS
RPM
RSF
TR2
UCJ
UPT
VH1
W2D
W8F
WH7
WOQ
X7M
Y6R
YQT
ZGI
ZXP
~02
~KM
AAYXX
CITATION
7U9
8FD
FR3
H94
P64
RC3
5PM
ID FETCH-LOGICAL-c417t-a4666b3bfc29a766a3eff862d7e05244c08b039812b7409e1f411e080c68439e3
IEDL.DBID RPM
ISSN 0022-538X
IngestDate Tue Sep 17 21:05:07 EDT 2024
Fri Oct 25 09:19:41 EDT 2024
Thu Sep 12 17:36:18 EDT 2024
Sat Sep 28 08:02:45 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-a4666b3bfc29a766a3eff862d7e05244c08b039812b7409e1f411e080c68439e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://jvi.asm.org/content/jvi/88/11/6318.full.pdf
PMID 24672025
PQID 1529932103
PQPubID 23462
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4093884
proquest_miscellaneous_1529932103
crossref_primary_10_1128_JVI_00381_14
pubmed_primary_24672025
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of virology
PublicationTitleAlternate J Virol
PublicationYear 2014
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References 2288874 - Cell Growth Differ. 1990 Dec;1(12):571-80
23117279 - J Vis Exp. 2012;(68). pii: 4442. doi: 10.3791/4442
10551827 - J Biol Chem. 1999 Nov 12;274(46):32704-11
18653458 - J Virol. 2008 Oct;82(19):9381-8
11134292 - J Virol. 2001 Jan;75(2):789-98
18588945 - Biochim Biophys Acta. 2009 Jan;1795(1):1-15
11470822 - J Cell Biol. 2001 Jul 23;154(2):331-44
10933694 - J Virol. 2000 Sep;74(17):7869-77
19535438 - J Virol. 2009 Sep;83(17):8340-52
16227198 - J Biol Chem. 2005 Dec 16;280(50):41270-7
24244166 - PLoS Pathog. 2013;9(11):e1003742
11179230 - EMBO J. 2001 Feb 15;20(4):864-71
23856577 - Cell Cycle. 2013 Aug 1;12(15):2343-4
8230475 - J Virol. 1993 Dec;67(12):7556-60
9525619 - J Virol. 1998 Apr;72(4):2975-82
10468565 - Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10080-5
1326648 - J Virol. 1992 Oct;66(10):5867-78
23613593 - Proc Natl Acad Sci U S A. 2013 May 7;110(19):E1724-33
21124936 - PLoS One. 2010;5(11):e15539
10949930 - Oncogene. 2000 Aug 3;19(33):3757-65
16093310 - Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12123-8
15775987 - EMBO J. 2005 Mar 23;24(6):1211-21
9456323 - J Cell Biol. 1998 Feb 9;140(3):637-45
19641023 - Mol Biol Cell. 2009 Sep;20(18):4091-106
11536041 - Oncogene. 2001 Aug 30;20(38):5279-90
18955965 - Oncogene. 2009 Jan 22;28(3):390-400
15200686 - BMC Biochem. 2004 Jun 16;5:8
10858452 - J Biol Chem. 2000 Jun 23;275(25):19018-24
10973994 - J Cell Biol. 2000 Sep 4;150(5):1037-56
15171615 - Prog Mol Subcell Biol. 2004;36:245-67
16687574 - Mol Biol Cell. 2006 Jul;17(7):3329-44
9696808 - J Virol. 1998 Sep;72(9):7144-53
10191196 - Virology. 1999 Apr 10;256(2):313-21
10393803 - J Cell Sci. 1999 Aug;112 ( Pt 15):2473-84
9556635 - J Biol Chem. 1998 May 1;273(18):11392-9
21546548 - Nucleic Acids Res. 2011 Aug;39(15):6414-27
11287598 - J Virol. 2001 May;75(9):4444-7
15070897 - J Biol Chem. 2004 Jun 11;279(24):25905-15
9603524 - Nature. 1998 May 14;393(6681):185-7
8648720 - J Virol. 1996 Jun;70(6):3844-51
12163473 - J Cell Biol. 2002 Aug 5;158(3):519-28
e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
Hinds P (e_1_3_2_36_2) 1990; 1
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_34_2
  doi: 10.1186/1471-2091-5-8
– ident: e_1_3_2_30_2
  doi: 10.1371/journal.pone.0015539
– ident: e_1_3_2_41_2
  doi: 10.1083/jcb.200201106
– ident: e_1_3_2_24_2
  doi: 10.1128/JVI.00711-09
– ident: e_1_3_2_26_2
  doi: 10.1091/mbc.E09-01-0057
– ident: e_1_3_2_12_2
  doi: 10.1074/jbc.M507281200
– ident: e_1_3_2_22_2
  doi: 10.1007/978-3-540-74264-7_12
– ident: e_1_3_2_6_2
  doi: 10.1006/viro.1999.9663
– ident: e_1_3_2_8_2
  doi: 10.1038/sj.emboj.7600597
– ident: e_1_3_2_33_2
  doi: 10.1074/jbc.273.18.11392
– ident: e_1_3_2_13_2
  doi: 10.1038/sj.onc.1204693
– ident: e_1_3_2_10_2
  doi: 10.1128/JVI.75.9.4444-4447.2001
– ident: e_1_3_2_11_2
  doi: 10.1083/jcb.200104104
– volume: 1
  start-page: 571
  year: 1990
  ident: e_1_3_2_36_2
  article-title: Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells: a comparison of the “hot spot” mutant phenotypes
  publication-title: Cell Growth Differ.
  contributor:
    fullname: Hinds P
– ident: e_1_3_2_20_2
  doi: 10.1128/JVI.74.17.7869-7877.2000
– ident: e_1_3_2_4_2
  doi: 10.1093/emboj/20.4.864
– ident: e_1_3_2_23_2
  doi: 10.1371/journal.ppat.1003742
– ident: e_1_3_2_17_2
  doi: 10.1128/jvi.67.12.7556-7560.1993
– ident: e_1_3_2_21_2
  doi: 10.1016/j.bbcan.2008.05.005
– ident: e_1_3_2_9_2
  doi: 10.1073/pnas.96.18.10080
– ident: e_1_3_2_14_2
  doi: 10.1073/pnas.1220282110
– ident: e_1_3_2_19_2
  doi: 10.1038/sj.onc.1203705
– ident: e_1_3_2_43_2
  doi: 10.1128/JVI.72.9.7144-7153.1998
– ident: e_1_3_2_35_2
  doi: 10.1128/JVI.72.4.2975-2982.1998
– ident: e_1_3_2_39_2
  doi: 10.1038/onc.2008.393
– ident: e_1_3_2_18_2
  doi: 10.1083/jcb.150.5.1037
– ident: e_1_3_2_37_2
  doi: 10.3791/4442
– ident: e_1_3_2_16_2
  doi: 10.1093/nar/gkr231
– ident: e_1_3_2_27_2
  doi: 10.1091/mbc.E05-12-1146
– ident: e_1_3_2_29_2
  doi: 10.1002/ddr.1097
– ident: e_1_3_2_28_2
  doi: 10.1074/jbc.274.46.32704
– ident: e_1_3_2_3_2
  doi: 10.1128/jvi.70.6.3844-3851.1996
– ident: e_1_3_2_32_2
  doi: 10.1242/jcs.112.15.2473
– ident: e_1_3_2_42_2
  doi: 10.1073/pnas.0505482102
– ident: e_1_3_2_15_2
  doi: 10.4161/cc.25707
– ident: e_1_3_2_31_2
  doi: 10.1074/jbc.M001245200
– ident: e_1_3_2_2_2
  doi: 10.1128/JVI.00791-08
– ident: e_1_3_2_7_2
  doi: 10.1128/jvi.66.10.5867-5878.1992
– ident: e_1_3_2_40_2
  doi: 10.1128/JVI.75.2.789-798.2001
– ident: e_1_3_2_38_2
  doi: 10.1083/jcb.140.3.637
– ident: e_1_3_2_5_2
  doi: 10.1038/30277
– ident: e_1_3_2_25_2
  doi: 10.1074/jbc.M400933200
SSID ssj0014464
Score 2.2139387
Snippet The adenovirus E4orf4 protein induces nonclassical apoptosis in mammalian cells through at least two complementing pathways regulated by the interactions of...
ABSTRACT The adenovirus E4orf4 protein induces nonclassical apoptosis in mammalian cells through at least two complementing pathways regulated by the...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 6318
SubjectTerms Adenovirus
Apoptosis - genetics
Apoptosis - physiology
Apyrase - metabolism
Blotting, Western
Chromatography, Gel
DNA Primers - genetics
Gene Knockdown Techniques
Glutathione Transferase
Golgi Apparatus - metabolism
HEK293 Cells
Humans
Image Processing, Computer-Assisted
Immunoprecipitation
Nucleoside-Triphosphatase - metabolism
Plasmids - genetics
Protein Phosphatase 2 - metabolism
Pyrophosphatases - genetics
Pyrophosphatases - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins - metabolism
Viral Proteins - metabolism
Viral Proteins - toxicity
Virus-Cell Interactions
Title NTPDASE4 gene products cooperate with the adenovirus E4orf4 protein through PP2A-dependent and -independent mechanisms and contribute to induction of cell death
URI https://www.ncbi.nlm.nih.gov/pubmed/24672025
https://search.proquest.com/docview/1529932103
https://pubmed.ncbi.nlm.nih.gov/PMC4093884
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ni9swEBW7C4VeSr-bblum0B6V2LJkyceQZNldyGLobsnNyLJMA4kdYqfQf7M_tSPZDk1761myMcxIes-aeY-QLwq5v4h5QmUhCor4tqR5ITSV1nKumRLSuEbh5V18_cBvV2J1RsTQC-OL9k2-Hleb7bha__C1lbutmQx1YpN0OUNOEinFJ-fkHBN0oOj91QHyGz5IhONqXg3V7kxNbr_fjP3VGA2dHw_DTQK5vzg9kv7BmX-XS_5x_lw9J8964AjT7gNfkDNbvSRPOivJX6_I4919Op9-W3BwQtKQdkKuDczqeud0ky24P66AcA-muNXUP9f7QwMLXu9L7mY700voTXsgTdmUznt73BZ0VQC9OfrltrC0rl943WwbP-YUrrxvloW2BmcG4psloC5hZjcbmDuY-Zo8XC3uZ9e0d1-ghoeypZojs8mjvDQs0TKOdWTLEvlPIW0gEBSYQOVBlCBAyCUGxIYlD0OLANTEClGOjd6Qi6qu7DsCTJqCyTAxLI44D3QijCh0bkNVWlGwYES-DgHIdp3IRubJCVMZxizzMUOSMiKfh-hkuArc1YaubH1oMkQhCLSQvkYj8raL1vFNQ5hHRJ7E8TjBKWyfjmDieaXtPtHe__eTl-QpIize1ZZ9IBft_mA_Iopp808-a38Dldzxig
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db5swFLW6TtP2su9u2acnbY8mYGwMj1GSKumaCGlplTdkjNGiJRAFUqn7NfupuzYQLd3T9myDgHttn4Ovz0HocwjcnwcsIiLjGQF8m5M045IIrRmTNORCmYPCs3kwuWIXS748Qbw7C2OL9lW6cor1xilW321t5Xaj-l2dWD-eDYGT-GHI-vfQfRivLutIert5AAyHdSLh0L7s6t1p2L-4njp2c4x4xpGHwjQB7J8fL0p_Ic27BZN_rEDnT9B19-xN4ckPZ1-njvp5R9bxn1_uKXrcYlI8aJqfoRNdPEcPGpfK2xfo13wRjwbfxgwbjWocNxqxFR6W5dZIMmtsfuZiQJJ4ALNYebPa7Ss8ZuUuZ6a38dPErR8QjmM6IKPWebfGssgwmR6seGs80-Yo8qraVLbNiGdZSy6N6xIbnxF7DgOXOR7q9RqPDIJ9ia7Ox4vhhLTGDkQxT9REMiBNqZ_mikZSBIH0dZ4DtcqEdjngDeWGqetHgD1SAZ9DeznzPA3YVgUhACjtn6HToiz0a4SpUBkVXqRo4DPmyogrnslUe2GueUbdHvrSRTbZNvodieU9NEwgGRKbDMB_euhTF_YEBpjZNZGFLvdVAgAHMBwwY7-HXjVpcLhTlz89JI4S5NDBiHcft0DYrYh3G-Y3_33lR_RwsphdJpfT-de36BEAOdaUsL1Dp_Vur98DWKrTD3Zo_Abz6BOT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLVgEGg2vGHK8yLB0nk4Tpwsqz40HWgViRlUsYkSxxEVbVI1KRJ8DZ_KtZNUnWE3aztRknttnxNfn0PIxxC5vx_wiIrczyni24JmuZ9SoRTnKQt9IfVB4fkiOL_iF0t_eWT1ZYr2ZbayyvXGKlc_TG3ldiPtvk7Mjucj5CReGHJ7mxf2XXIPx6wT9ES920BAlsN7oXBsX_Y17yy0L77NLLNBRl3tysNwqmCOtso-Xpj-Q5s3iyaPVqHpI_K9f_62-OSntW8yS_65Ie14qxd8TB522BSGbZcn5I4qn5L7rVvl72fk7-IyHg-_TjhorWqIW63YGkZVtdXSzAr0T11ARAlDnM2qX6vdvoYJr3YF1721ryZ0vkAQx2xIx50DbwNpmQOdHSx5G5grfSR5VW9q06ZFtIw1l4KmAu03Ys5jQFXASK3XMNZI9jm5mk4uR-e0M3igkruioSlH8pR5WSFZlIogSD1VFEixcqEcH3GHdMLM8SLEIJnAT6LcgruuQowrgxCBlPJekJOyKtUZASZkzoQbSRZ4nDtp5Es_TzPlhoXyc-YMyKc-usm21fFIDP9hYYIJkZiEQB40IB_60Cc40PTuSVqqal8nCHQQyyFD9gbkZZsKhzv1OTQg4lqSHDpoEe_rLRh6I-bdhfrVra98Tx7E42nyZbb4_JqcIp7jbSXbG3LS7PbqLWKmJntnRsc_mCgWEw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NTPDASE4+Gene+Products+Cooperate+with+the+Adenovirus+E4orf4+Protein+through+PP2A-Dependent+and+-Independent+Mechanisms+and+Contribute+to+Induction+of+Cell+Death&rft.jtitle=Journal+of+virology&rft.au=Avital-Shacham%2C+Meirav&rft.au=Sharf%2C+Rakefet&rft.au=Kleinberger%2C+Tamar&rft.date=2014-06-01&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=88&rft.issue=11&rft.spage=6318&rft.epage=6328&rft_id=info:doi/10.1128%2FJVI.00381-14&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_JVI_00381_14
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon