NTPDASE4 gene products cooperate with the adenovirus E4orf4 protein through PP2A-dependent and -independent mechanisms and contribute to induction of cell death
The adenovirus E4orf4 protein induces nonclassical apoptosis in mammalian cells through at least two complementing pathways regulated by the interactions of E4orf4 with protein phosphatase 2A (PP2A) and Src kinases. In Saccharomyces cerevisiae cells, which do not express Src, E4orf4 induces PP2A-dep...
Saved in:
Published in | Journal of virology Vol. 88; no. 11; pp. 6318 - 6328 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.06.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The adenovirus E4orf4 protein induces nonclassical apoptosis in mammalian cells through at least two complementing pathways regulated by the interactions of E4orf4 with protein phosphatase 2A (PP2A) and Src kinases. In Saccharomyces cerevisiae cells, which do not express Src, E4orf4 induces PP2A-dependent toxicity. The yeast Golgi apyrase Ynd1 was found to contribute to E4orf4-mediated toxicity and to interact with the PP2A-B55α regulatory subunit. In addition, a mammalian Ynd1 orthologue, the NTPDASE4 gene product Golgi UDPase, was shown to physically interact with E4orf4. Here we report that knockdown of NTPDASE4 suppressed E4orf4-induced cell death. Conversely, overexpression of the NTPDASE4 gene products Golgi UDPase and LALP70 enhanced E4orf4-induced cell killing. We found that similarly to results obtained in yeast, the apyrase activity of mammalian UDPase was not required for its contribution to E4orf4-induced toxicity. The interaction between E4orf4 and UDPase had two consequences: a PP2A-dependent one, resulting in increased UDPase levels, and a PP2A-independent outcome that led to dissociation of large UDPase-containing protein complexes. The present report extends our findings in yeast to E4orf4-mediated death of mammalian cells, and combined with previous results, it suggests that the E4orf4-NTPDase4 pathway, partly in association with PP2A, may provide an alternative mechanism for the E4orf4-Src pathway to contribute to the cytoplasmic death function of E4orf4.
The adenovirus E4orf4 protein contributes to regulation of the progression of virus infection from the early to the late phase, and when expressed alone, it induces a unique caspase-independent programmed cell death which is more efficient in cancer cells than in normal cells. The interactions of E4orf4 with cellular proteins that mediate its functions, such as PP2A and Src kinases, are highly conserved in evolution. The results presented here reveal that the NTPDASE4 gene product Golgi UDPase, first discovered to contribute to E4orf4 toxicity in Saccharomyces cerevisiae, associates with E4orf4 and plays a role in induction of cell death in mammalian cells. Details of the functional interaction between E4orf4, PP2A, and the UDPase are described. Identification of the evolutionarily conserved mechanisms underlying E4orf4 activity will increase our understanding of the interactions between the virus and the host cell and will contribute to our grasp of the unique mode of E4orf4-induced cell death. |
---|---|
AbstractList | The adenovirus E4orf4 protein induces nonclassical apoptosis in mammalian cells through at least two complementing pathways regulated by the interactions of E4orf4 with protein phosphatase 2A (PP2A) and Src kinases. In Saccharomyces cerevisiae cells, which do not express Src, E4orf4 induces PP2A-dependent toxicity. The yeast Golgi apyrase Ynd1 was found to contribute to E4orf4-mediated toxicity and to interact with the PP2A-B55 alpha regulatory subunit. In addition, a mammalian Ynd1 orthologue, the NTPDASE4 gene product Golgi UDPase, was shown to physically interact with E4orf4. Here we report that knockdown of NTPDASE4 suppressed E4orf4-induced cell death. Conversely, overexpression of the NTPDASE4 gene products Golgi UDPase and LALP70 enhanced E4orf4-induced cell killing. We found that similarly to results obtained in yeast, the apyrase activity of mammalian UDPase was not required for its contribution to E4orf4-induced toxicity. The interaction between E4orf4 and UDPase had two consequences: a PP2A-dependent one, resulting in increased UDPase levels, and a PP2A-independent outcome that led to dissociation of large UDPase-containing protein complexes. The present report extends our findings in yeast to E4orf4-mediated death of mammalian cells, and combined with previous results, it suggests that the E4orf4-NTPDase4 pathway, partly in association with PP2A, may provide an alternative mechanism for the E4orf4-Src pathway to contribute to the cytoplasmic death function of E4orf4. IMPORTANCE The adenovirus E4orf4 protein contributes to regulation of the progression of virus infection from the early to the late phase, and when expressed alone, it induces a unique caspase-independent programmed cell death which is more efficient in cancer cells than in normal cells. The interactions of E4orf4 with cellular proteins that mediate its functions, such as PP2A and Src kinases, are highly conserved in evolution. The results presented here reveal that the NTPDASE4 gene product Golgi UDPase, first discovered to contribute to E4orf4 toxicity in Saccharomyces cerevisiae, associates with E4orf4 and plays a role in induction of cell death in mammalian cells. Details of the functional interaction between E4orf4, PP2A, and the UDPase are described. Identification of the evolutionarily conserved mechanisms underlying E4orf4 activity will increase our understanding of the interactions between the virus and the host cell and will contribute to our grasp of the unique mode of E4orf4-induced cell death. The adenovirus E4orf4 protein induces nonclassical apoptosis in mammalian cells through at least two complementing pathways regulated by the interactions of E4orf4 with protein phosphatase 2A (PP2A) and Src kinases. In Saccharomyces cerevisiae cells, which do not express Src, E4orf4 induces PP2A-dependent toxicity. The yeast Golgi apyrase Ynd1 was found to contribute to E4orf4-mediated toxicity and to interact with the PP2A-B55α regulatory subunit. In addition, a mammalian Ynd1 orthologue, the NTPDASE4 gene product Golgi UDPase, was shown to physically interact with E4orf4. Here we report that knockdown of NTPDASE4 suppressed E4orf4-induced cell death. Conversely, overexpression of the NTPDASE4 gene products Golgi UDPase and LALP70 enhanced E4orf4-induced cell killing. We found that similarly to results obtained in yeast, the apyrase activity of mammalian UDPase was not required for its contribution to E4orf4-induced toxicity. The interaction between E4orf4 and UDPase had two consequences: a PP2A-dependent one, resulting in increased UDPase levels, and a PP2A-independent outcome that led to dissociation of large UDPase-containing protein complexes. The present report extends our findings in yeast to E4orf4-mediated death of mammalian cells, and combined with previous results, it suggests that the E4orf4-NTPDase4 pathway, partly in association with PP2A, may provide an alternative mechanism for the E4orf4-Src pathway to contribute to the cytoplasmic death function of E4orf4. IMPORTANCE The adenovirus E4orf4 protein contributes to regulation of the progression of virus infection from the early to the late phase, and when expressed alone, it induces a unique caspase-independent programmed cell death which is more efficient in cancer cells than in normal cells. The interactions of E4orf4 with cellular proteins that mediate its functions, such as PP2A and Src kinases, are highly conserved in evolution. The results presented here reveal that the NTPDASE4 gene product Golgi UDPase, first discovered to contribute to E4orf4 toxicity in Saccharomyces cerevisiae , associates with E4orf4 and plays a role in induction of cell death in mammalian cells. Details of the functional interaction between E4orf4, PP2A, and the UDPase are described. Identification of the evolutionarily conserved mechanisms underlying E4orf4 activity will increase our understanding of the interactions between the virus and the host cell and will contribute to our grasp of the unique mode of E4orf4-induced cell death. ABSTRACT The adenovirus E4orf4 protein induces nonclassical apoptosis in mammalian cells through at least two complementing pathways regulated by the interactions of E4orf4 with protein phosphatase 2A (PP2A) and Src kinases. In Saccharomyces cerevisiae cells, which do not express Src, E4orf4 induces PP2A-dependent toxicity. The yeast Golgi apyrase Ynd1 was found to contribute to E4orf4-mediated toxicity and to interact with the PP2A-B55α regulatory subunit. In addition, a mammalian Ynd1 orthologue, the NTPDASE4 gene product Golgi UDPase, was shown to physically interact with E4orf4. Here we report that knockdown of NTPDASE4 suppressed E4orf4-induced cell death. Conversely, overexpression of the NTPDASE4 gene products Golgi UDPase and LALP70 enhanced E4orf4-induced cell killing. We found that similarly to results obtained in yeast, the apyrase activity of mammalian UDPase was not required for its contribution to E4orf4-induced toxicity. The interaction between E4orf4 and UDPase had two consequences: a PP2A-dependent one, resulting in increased UDPase levels, and a PP2A-independent outcome that led to dissociation of large UDPase-containing protein complexes. The present report extends our findings in yeast to E4orf4-mediated death of mammalian cells, and combined with previous results, it suggests that the E4orf4-NTPDase4 pathway, partly in association with PP2A, may provide an alternative mechanism for the E4orf4-Src pathway to contribute to the cytoplasmic death function of E4orf4. IMPORTANCE The adenovirus E4orf4 protein contributes to regulation of the progression of virus infection from the early to the late phase, and when expressed alone, it induces a unique caspase-independent programmed cell death which is more efficient in cancer cells than in normal cells. The interactions of E4orf4 with cellular proteins that mediate its functions, such as PP2A and Src kinases, are highly conserved in evolution. The results presented here reveal that the NTPDASE4 gene product Golgi UDPase, first discovered to contribute to E4orf4 toxicity in Saccharomyces cerevisiae , associates with E4orf4 and plays a role in induction of cell death in mammalian cells. Details of the functional interaction between E4orf4, PP2A, and the UDPase are described. Identification of the evolutionarily conserved mechanisms underlying E4orf4 activity will increase our understanding of the interactions between the virus and the host cell and will contribute to our grasp of the unique mode of E4orf4-induced cell death. The adenovirus E4orf4 protein induces nonclassical apoptosis in mammalian cells through at least two complementing pathways regulated by the interactions of E4orf4 with protein phosphatase 2A (PP2A) and Src kinases. In Saccharomyces cerevisiae cells, which do not express Src, E4orf4 induces PP2A-dependent toxicity. The yeast Golgi apyrase Ynd1 was found to contribute to E4orf4-mediated toxicity and to interact with the PP2A-B55α regulatory subunit. In addition, a mammalian Ynd1 orthologue, the NTPDASE4 gene product Golgi UDPase, was shown to physically interact with E4orf4. Here we report that knockdown of NTPDASE4 suppressed E4orf4-induced cell death. Conversely, overexpression of the NTPDASE4 gene products Golgi UDPase and LALP70 enhanced E4orf4-induced cell killing. We found that similarly to results obtained in yeast, the apyrase activity of mammalian UDPase was not required for its contribution to E4orf4-induced toxicity. The interaction between E4orf4 and UDPase had two consequences: a PP2A-dependent one, resulting in increased UDPase levels, and a PP2A-independent outcome that led to dissociation of large UDPase-containing protein complexes. The present report extends our findings in yeast to E4orf4-mediated death of mammalian cells, and combined with previous results, it suggests that the E4orf4-NTPDase4 pathway, partly in association with PP2A, may provide an alternative mechanism for the E4orf4-Src pathway to contribute to the cytoplasmic death function of E4orf4. The adenovirus E4orf4 protein contributes to regulation of the progression of virus infection from the early to the late phase, and when expressed alone, it induces a unique caspase-independent programmed cell death which is more efficient in cancer cells than in normal cells. The interactions of E4orf4 with cellular proteins that mediate its functions, such as PP2A and Src kinases, are highly conserved in evolution. The results presented here reveal that the NTPDASE4 gene product Golgi UDPase, first discovered to contribute to E4orf4 toxicity in Saccharomyces cerevisiae, associates with E4orf4 and plays a role in induction of cell death in mammalian cells. Details of the functional interaction between E4orf4, PP2A, and the UDPase are described. Identification of the evolutionarily conserved mechanisms underlying E4orf4 activity will increase our understanding of the interactions between the virus and the host cell and will contribute to our grasp of the unique mode of E4orf4-induced cell death. |
Author | Avital-Shacham, Meirav Sharf, Rakefet Kleinberger, Tamar |
Author_xml | – sequence: 1 givenname: Meirav surname: Avital-Shacham fullname: Avital-Shacham, Meirav organization: Department of Molecular Microbiology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel – sequence: 2 givenname: Rakefet surname: Sharf fullname: Sharf, Rakefet – sequence: 3 givenname: Tamar surname: Kleinberger fullname: Kleinberger, Tamar |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24672025$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkUtv1DAUhS3Uik4HdqyRlyxI8SuJs0EalSktqmAkCmJnOc7NxGhiB9sp6r_hp9bTF7C60j2fzrlX5xgdOO8AoVeUnFDK5LtP3y9OCOGSFlQ8QwtKGlmUJRUHaEEIY0XJ5Y8jdBzjT0KoEJV4jo6YqGpGWLlAfz5fbT6svq4F3oIDPAXfzSZFbLyfIOgE-LdNA04DYN2B89c2zBGvhQ-92NMJrMtq8PN2wJsNWxUdTOAymrB2HS6s-7sYwQza2TjGO814l4Jt5xySPM5gTrbeYd9jA7sd7kCn4QU67PUuwsuHuUTfztZXp-fF5ZePF6ery8IIWqdCi6qqWt72hjW6rirNoe9lxboaSMmEMES2hDeSsrYWpAHaC0qBSGIqKXgDfIne3_tOcztCZ_K9Qe_UFOyow43y2qr_FWcHtfXXKrtxmT2W6M2DQfC_ZohJjTbu_9AO_BwVLVnTcEYJz-jbe9QEH2OA_imGErUvVeVS1V2piu6dX_972hP82CK_BWxyoUg |
CitedBy_id | crossref_primary_10_1002_1873_3468_13704 crossref_primary_10_1134_S0026893315020077 crossref_primary_10_1128_JVI_02253_18 crossref_primary_10_3390_v7052334 crossref_primary_10_1007_s00018_014_1782_1 crossref_primary_10_1128_JVI_03710_14 crossref_primary_10_1128_JVI_01365_18 |
Cites_doi | 10.1186/1471-2091-5-8 10.1371/journal.pone.0015539 10.1083/jcb.200201106 10.1128/JVI.00711-09 10.1091/mbc.E09-01-0057 10.1074/jbc.M507281200 10.1007/978-3-540-74264-7_12 10.1006/viro.1999.9663 10.1038/sj.emboj.7600597 10.1074/jbc.273.18.11392 10.1038/sj.onc.1204693 10.1128/JVI.75.9.4444-4447.2001 10.1083/jcb.200104104 10.1128/JVI.74.17.7869-7877.2000 10.1093/emboj/20.4.864 10.1371/journal.ppat.1003742 10.1128/jvi.67.12.7556-7560.1993 10.1016/j.bbcan.2008.05.005 10.1073/pnas.96.18.10080 10.1073/pnas.1220282110 10.1038/sj.onc.1203705 10.1128/JVI.72.9.7144-7153.1998 10.1128/JVI.72.4.2975-2982.1998 10.1038/onc.2008.393 10.1083/jcb.150.5.1037 10.3791/4442 10.1093/nar/gkr231 10.1091/mbc.E05-12-1146 10.1002/ddr.1097 10.1074/jbc.274.46.32704 10.1128/jvi.70.6.3844-3851.1996 10.1242/jcs.112.15.2473 10.1073/pnas.0505482102 10.4161/cc.25707 10.1074/jbc.M001245200 10.1128/JVI.00791-08 10.1128/jvi.66.10.5867-5878.1992 10.1128/JVI.75.2.789-798.2001 10.1083/jcb.140.3.637 10.1038/30277 10.1074/jbc.M400933200 |
ContentType | Journal Article |
Copyright | Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7U9 8FD FR3 H94 P64 RC3 5PM |
DOI | 10.1128/JVI.00381-14 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef AIDS and Cancer Research Abstracts Genetics Abstracts Virology and AIDS Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | AIDS and Cancer Research Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1098-5514 |
Editor | Imperiale, M. J. |
Editor_xml | – sequence: 1 givenname: M. J. surname: Imperiale fullname: Imperiale, M. J. |
EndPage | 6328 |
ExternalDocumentID | 10_1128_JVI_00381_14 24672025 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .55 .GJ 0R~ 18M 29L 2WC 39C 3O- 4.4 41~ 53G 5GY 5RE 5VS 6TJ 85S AAYJJ ABPPZ ACGFO ACNCT ADBBV AENEX AFFNX AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CGR CS3 CUY CVF D0S DIK E3Z EBS ECM EIF EJD F20 F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 MVM N9A NPM O9- OHT OK1 P2P RHF RHI RNS RPM RSF TR2 UCJ UPT VH1 W2D W8F WH7 WOQ X7M Y6R YQT ZGI ZXP ~02 ~KM AAYXX CITATION 7U9 8FD FR3 H94 P64 RC3 5PM |
ID | FETCH-LOGICAL-c417t-a4666b3bfc29a766a3eff862d7e05244c08b039812b7409e1f411e080c68439e3 |
IEDL.DBID | RPM |
ISSN | 0022-538X |
IngestDate | Tue Sep 17 21:05:07 EDT 2024 Fri Oct 25 09:19:41 EDT 2024 Thu Sep 12 17:36:18 EDT 2024 Sat Sep 28 08:02:45 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-a4666b3bfc29a766a3eff862d7e05244c08b039812b7409e1f411e080c68439e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://jvi.asm.org/content/jvi/88/11/6318.full.pdf |
PMID | 24672025 |
PQID | 1529932103 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4093884 proquest_miscellaneous_1529932103 crossref_primary_10_1128_JVI_00381_14 pubmed_primary_24672025 |
PublicationCentury | 2000 |
PublicationDate | 2014-06-01 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of virology |
PublicationTitleAlternate | J Virol |
PublicationYear | 2014 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | 2288874 - Cell Growth Differ. 1990 Dec;1(12):571-80 23117279 - J Vis Exp. 2012;(68). pii: 4442. doi: 10.3791/4442 10551827 - J Biol Chem. 1999 Nov 12;274(46):32704-11 18653458 - J Virol. 2008 Oct;82(19):9381-8 11134292 - J Virol. 2001 Jan;75(2):789-98 18588945 - Biochim Biophys Acta. 2009 Jan;1795(1):1-15 11470822 - J Cell Biol. 2001 Jul 23;154(2):331-44 10933694 - J Virol. 2000 Sep;74(17):7869-77 19535438 - J Virol. 2009 Sep;83(17):8340-52 16227198 - J Biol Chem. 2005 Dec 16;280(50):41270-7 24244166 - PLoS Pathog. 2013;9(11):e1003742 11179230 - EMBO J. 2001 Feb 15;20(4):864-71 23856577 - Cell Cycle. 2013 Aug 1;12(15):2343-4 8230475 - J Virol. 1993 Dec;67(12):7556-60 9525619 - J Virol. 1998 Apr;72(4):2975-82 10468565 - Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10080-5 1326648 - J Virol. 1992 Oct;66(10):5867-78 23613593 - Proc Natl Acad Sci U S A. 2013 May 7;110(19):E1724-33 21124936 - PLoS One. 2010;5(11):e15539 10949930 - Oncogene. 2000 Aug 3;19(33):3757-65 16093310 - Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12123-8 15775987 - EMBO J. 2005 Mar 23;24(6):1211-21 9456323 - J Cell Biol. 1998 Feb 9;140(3):637-45 19641023 - Mol Biol Cell. 2009 Sep;20(18):4091-106 11536041 - Oncogene. 2001 Aug 30;20(38):5279-90 18955965 - Oncogene. 2009 Jan 22;28(3):390-400 15200686 - BMC Biochem. 2004 Jun 16;5:8 10858452 - J Biol Chem. 2000 Jun 23;275(25):19018-24 10973994 - J Cell Biol. 2000 Sep 4;150(5):1037-56 15171615 - Prog Mol Subcell Biol. 2004;36:245-67 16687574 - Mol Biol Cell. 2006 Jul;17(7):3329-44 9696808 - J Virol. 1998 Sep;72(9):7144-53 10191196 - Virology. 1999 Apr 10;256(2):313-21 10393803 - J Cell Sci. 1999 Aug;112 ( Pt 15):2473-84 9556635 - J Biol Chem. 1998 May 1;273(18):11392-9 21546548 - Nucleic Acids Res. 2011 Aug;39(15):6414-27 11287598 - J Virol. 2001 May;75(9):4444-7 15070897 - J Biol Chem. 2004 Jun 11;279(24):25905-15 9603524 - Nature. 1998 May 14;393(6681):185-7 8648720 - J Virol. 1996 Jun;70(6):3844-51 12163473 - J Cell Biol. 2002 Aug 5;158(3):519-28 e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 Hinds P (e_1_3_2_36_2) 1990; 1 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_34_2 doi: 10.1186/1471-2091-5-8 – ident: e_1_3_2_30_2 doi: 10.1371/journal.pone.0015539 – ident: e_1_3_2_41_2 doi: 10.1083/jcb.200201106 – ident: e_1_3_2_24_2 doi: 10.1128/JVI.00711-09 – ident: e_1_3_2_26_2 doi: 10.1091/mbc.E09-01-0057 – ident: e_1_3_2_12_2 doi: 10.1074/jbc.M507281200 – ident: e_1_3_2_22_2 doi: 10.1007/978-3-540-74264-7_12 – ident: e_1_3_2_6_2 doi: 10.1006/viro.1999.9663 – ident: e_1_3_2_8_2 doi: 10.1038/sj.emboj.7600597 – ident: e_1_3_2_33_2 doi: 10.1074/jbc.273.18.11392 – ident: e_1_3_2_13_2 doi: 10.1038/sj.onc.1204693 – ident: e_1_3_2_10_2 doi: 10.1128/JVI.75.9.4444-4447.2001 – ident: e_1_3_2_11_2 doi: 10.1083/jcb.200104104 – volume: 1 start-page: 571 year: 1990 ident: e_1_3_2_36_2 article-title: Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells: a comparison of the “hot spot” mutant phenotypes publication-title: Cell Growth Differ. contributor: fullname: Hinds P – ident: e_1_3_2_20_2 doi: 10.1128/JVI.74.17.7869-7877.2000 – ident: e_1_3_2_4_2 doi: 10.1093/emboj/20.4.864 – ident: e_1_3_2_23_2 doi: 10.1371/journal.ppat.1003742 – ident: e_1_3_2_17_2 doi: 10.1128/jvi.67.12.7556-7560.1993 – ident: e_1_3_2_21_2 doi: 10.1016/j.bbcan.2008.05.005 – ident: e_1_3_2_9_2 doi: 10.1073/pnas.96.18.10080 – ident: e_1_3_2_14_2 doi: 10.1073/pnas.1220282110 – ident: e_1_3_2_19_2 doi: 10.1038/sj.onc.1203705 – ident: e_1_3_2_43_2 doi: 10.1128/JVI.72.9.7144-7153.1998 – ident: e_1_3_2_35_2 doi: 10.1128/JVI.72.4.2975-2982.1998 – ident: e_1_3_2_39_2 doi: 10.1038/onc.2008.393 – ident: e_1_3_2_18_2 doi: 10.1083/jcb.150.5.1037 – ident: e_1_3_2_37_2 doi: 10.3791/4442 – ident: e_1_3_2_16_2 doi: 10.1093/nar/gkr231 – ident: e_1_3_2_27_2 doi: 10.1091/mbc.E05-12-1146 – ident: e_1_3_2_29_2 doi: 10.1002/ddr.1097 – ident: e_1_3_2_28_2 doi: 10.1074/jbc.274.46.32704 – ident: e_1_3_2_3_2 doi: 10.1128/jvi.70.6.3844-3851.1996 – ident: e_1_3_2_32_2 doi: 10.1242/jcs.112.15.2473 – ident: e_1_3_2_42_2 doi: 10.1073/pnas.0505482102 – ident: e_1_3_2_15_2 doi: 10.4161/cc.25707 – ident: e_1_3_2_31_2 doi: 10.1074/jbc.M001245200 – ident: e_1_3_2_2_2 doi: 10.1128/JVI.00791-08 – ident: e_1_3_2_7_2 doi: 10.1128/jvi.66.10.5867-5878.1992 – ident: e_1_3_2_40_2 doi: 10.1128/JVI.75.2.789-798.2001 – ident: e_1_3_2_38_2 doi: 10.1083/jcb.140.3.637 – ident: e_1_3_2_5_2 doi: 10.1038/30277 – ident: e_1_3_2_25_2 doi: 10.1074/jbc.M400933200 |
SSID | ssj0014464 |
Score | 2.2139387 |
Snippet | The adenovirus E4orf4 protein induces nonclassical apoptosis in mammalian cells through at least two complementing pathways regulated by the interactions of... ABSTRACT The adenovirus E4orf4 protein induces nonclassical apoptosis in mammalian cells through at least two complementing pathways regulated by the... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 6318 |
SubjectTerms | Adenovirus Apoptosis - genetics Apoptosis - physiology Apyrase - metabolism Blotting, Western Chromatography, Gel DNA Primers - genetics Gene Knockdown Techniques Glutathione Transferase Golgi Apparatus - metabolism HEK293 Cells Humans Image Processing, Computer-Assisted Immunoprecipitation Nucleoside-Triphosphatase - metabolism Plasmids - genetics Protein Phosphatase 2 - metabolism Pyrophosphatases - genetics Pyrophosphatases - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae Proteins - metabolism Viral Proteins - metabolism Viral Proteins - toxicity Virus-Cell Interactions |
Title | NTPDASE4 gene products cooperate with the adenovirus E4orf4 protein through PP2A-dependent and -independent mechanisms and contribute to induction of cell death |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24672025 https://search.proquest.com/docview/1529932103 https://pubmed.ncbi.nlm.nih.gov/PMC4093884 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ni9swEBW7C4VeSr-bblum0B6V2LJkyceQZNldyGLobsnNyLJMA4kdYqfQf7M_tSPZDk1761myMcxIes-aeY-QLwq5v4h5QmUhCor4tqR5ITSV1nKumRLSuEbh5V18_cBvV2J1RsTQC-OL9k2-Hleb7bha__C1lbutmQx1YpN0OUNOEinFJ-fkHBN0oOj91QHyGz5IhONqXg3V7kxNbr_fjP3VGA2dHw_DTQK5vzg9kv7BmX-XS_5x_lw9J8964AjT7gNfkDNbvSRPOivJX6_I4919Op9-W3BwQtKQdkKuDczqeud0ky24P66AcA-muNXUP9f7QwMLXu9L7mY700voTXsgTdmUznt73BZ0VQC9OfrltrC0rl943WwbP-YUrrxvloW2BmcG4psloC5hZjcbmDuY-Zo8XC3uZ9e0d1-ghoeypZojs8mjvDQs0TKOdWTLEvlPIW0gEBSYQOVBlCBAyCUGxIYlD0OLANTEClGOjd6Qi6qu7DsCTJqCyTAxLI44D3QijCh0bkNVWlGwYES-DgHIdp3IRubJCVMZxizzMUOSMiKfh-hkuArc1YaubH1oMkQhCLSQvkYj8raL1vFNQ5hHRJ7E8TjBKWyfjmDieaXtPtHe__eTl-QpIize1ZZ9IBft_mA_Iopp808-a38Dldzxig |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db5swFLW6TtP2su9u2acnbY8mYGwMj1GSKumaCGlplTdkjNGiJRAFUqn7NfupuzYQLd3T9myDgHttn4Ovz0HocwjcnwcsIiLjGQF8m5M045IIrRmTNORCmYPCs3kwuWIXS748Qbw7C2OL9lW6cor1xilW321t5Xaj-l2dWD-eDYGT-GHI-vfQfRivLutIert5AAyHdSLh0L7s6t1p2L-4njp2c4x4xpGHwjQB7J8fL0p_Ic27BZN_rEDnT9B19-xN4ckPZ1-njvp5R9bxn1_uKXrcYlI8aJqfoRNdPEcPGpfK2xfo13wRjwbfxgwbjWocNxqxFR6W5dZIMmtsfuZiQJJ4ALNYebPa7Ss8ZuUuZ6a38dPErR8QjmM6IKPWebfGssgwmR6seGs80-Yo8qraVLbNiGdZSy6N6xIbnxF7DgOXOR7q9RqPDIJ9ia7Ox4vhhLTGDkQxT9REMiBNqZ_mikZSBIH0dZ4DtcqEdjngDeWGqetHgD1SAZ9DeznzPA3YVgUhACjtn6HToiz0a4SpUBkVXqRo4DPmyogrnslUe2GueUbdHvrSRTbZNvodieU9NEwgGRKbDMB_euhTF_YEBpjZNZGFLvdVAgAHMBwwY7-HXjVpcLhTlz89JI4S5NDBiHcft0DYrYh3G-Y3_33lR_RwsphdJpfT-de36BEAOdaUsL1Dp_Vur98DWKrTD3Zo_Abz6BOT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLVgEGg2vGHK8yLB0nk4Tpwsqz40HWgViRlUsYkSxxEVbVI1KRJ8DZ_KtZNUnWE3aztRknttnxNfn0PIxxC5vx_wiIrczyni24JmuZ9SoRTnKQt9IfVB4fkiOL_iF0t_eWT1ZYr2ZbayyvXGKlc_TG3ldiPtvk7Mjucj5CReGHJ7mxf2XXIPx6wT9ES920BAlsN7oXBsX_Y17yy0L77NLLNBRl3tysNwqmCOtso-Xpj-Q5s3iyaPVqHpI_K9f_62-OSntW8yS_65Ie14qxd8TB522BSGbZcn5I4qn5L7rVvl72fk7-IyHg-_TjhorWqIW63YGkZVtdXSzAr0T11ARAlDnM2qX6vdvoYJr3YF1721ryZ0vkAQx2xIx50DbwNpmQOdHSx5G5grfSR5VW9q06ZFtIw1l4KmAu03Ys5jQFXASK3XMNZI9jm5mk4uR-e0M3igkruioSlH8pR5WSFZlIogSD1VFEixcqEcH3GHdMLM8SLEIJnAT6LcgruuQowrgxCBlPJekJOyKtUZASZkzoQbSRZ4nDtp5Es_TzPlhoXyc-YMyKc-usm21fFIDP9hYYIJkZiEQB40IB_60Cc40PTuSVqqal8nCHQQyyFD9gbkZZsKhzv1OTQg4lqSHDpoEe_rLRh6I-bdhfrVra98Tx7E42nyZbb4_JqcIp7jbSXbG3LS7PbqLWKmJntnRsc_mCgWEw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NTPDASE4+Gene+Products+Cooperate+with+the+Adenovirus+E4orf4+Protein+through+PP2A-Dependent+and+-Independent+Mechanisms+and+Contribute+to+Induction+of+Cell+Death&rft.jtitle=Journal+of+virology&rft.au=Avital-Shacham%2C+Meirav&rft.au=Sharf%2C+Rakefet&rft.au=Kleinberger%2C+Tamar&rft.date=2014-06-01&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=88&rft.issue=11&rft.spage=6318&rft.epage=6328&rft_id=info:doi/10.1128%2FJVI.00381-14&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_JVI_00381_14 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |