Ultra-spinning Chow’s black holes in six-dimensional gauged supergravity and their properties

A bstract By taking the ultra-spinning limit as a simple solution-generating trick, a novel class of ultra-spinning charged black hole solutions has been constructed from Chow’s rotating charged black hole with two equal-charge parameters in six-dimensional N = 4 gauged supergravity theory. We inves...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2021; no. 11; pp. 1 - 24
Main Authors Wu, Di, Wu, Shuang-Qing
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 05.11.2021
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract By taking the ultra-spinning limit as a simple solution-generating trick, a novel class of ultra-spinning charged black hole solutions has been constructed from Chow’s rotating charged black hole with two equal-charge parameters in six-dimensional N = 4 gauged supergravity theory. We investigate their thermodynamical properties and then demonstrate that all thermodynamical quantities completely obey both the differential first law and the Bekenstein-Smarr mass formula. For the six-dimensional ultra-spinning Chow’s black hole with only one rotation parameter, we show that it does not always obey the reverse isoperimetric inequality, thus it can be either sub-entropic or super-entropic, depending upon the ranges of the mass parameter and especially the charge parameter. This property is obviously different from that of the six-dimensional singly-rotating Kerr-AdS super-entropic black hole, which always strictly violates the RII. For the six-dimensional doubly-rotating Chow’s black hole but ultra-spinning only along one spatial axis, we point out that it may also obey or violate the RII, and can be either super-entropic or sub-entropic in general.
AbstractList A bstract By taking the ultra-spinning limit as a simple solution-generating trick, a novel class of ultra-spinning charged black hole solutions has been constructed from Chow’s rotating charged black hole with two equal-charge parameters in six-dimensional N = 4 gauged supergravity theory. We investigate their thermodynamical properties and then demonstrate that all thermodynamical quantities completely obey both the differential first law and the Bekenstein-Smarr mass formula. For the six-dimensional ultra-spinning Chow’s black hole with only one rotation parameter, we show that it does not always obey the reverse isoperimetric inequality, thus it can be either sub-entropic or super-entropic, depending upon the ranges of the mass parameter and especially the charge parameter. This property is obviously different from that of the six-dimensional singly-rotating Kerr-AdS super-entropic black hole, which always strictly violates the RII. For the six-dimensional doubly-rotating Chow’s black hole but ultra-spinning only along one spatial axis, we point out that it may also obey or violate the RII, and can be either super-entropic or sub-entropic in general.
Abstract By taking the ultra-spinning limit as a simple solution-generating trick, a novel class of ultra-spinning charged black hole solutions has been constructed from Chow’s rotating charged black hole with two equal-charge parameters in six-dimensional N $$ \mathcal{N} $$ = 4 gauged supergravity theory. We investigate their thermodynamical properties and then demonstrate that all thermodynamical quantities completely obey both the differential first law and the Bekenstein-Smarr mass formula. For the six-dimensional ultra-spinning Chow’s black hole with only one rotation parameter, we show that it does not always obey the reverse isoperimetric inequality, thus it can be either sub-entropic or super-entropic, depending upon the ranges of the mass parameter and especially the charge parameter. This property is obviously different from that of the six-dimensional singly-rotating Kerr-AdS super-entropic black hole, which always strictly violates the RII. For the six-dimensional doubly-rotating Chow’s black hole but ultra-spinning only along one spatial axis, we point out that it may also obey or violate the RII, and can be either super-entropic or sub-entropic in general.
By taking the ultra-spinning limit as a simple solution-generating trick, a novel class of ultra-spinning charged black hole solutions has been constructed from Chow’s rotating charged black hole with two equal-charge parameters in six-dimensional $$ \mathcal{N} $$ N = 4 gauged supergravity theory. We investigate their thermodynamical properties and then demonstrate that all thermodynamical quantities completely obey both the differential first law and the Bekenstein-Smarr mass formula. For the six-dimensional ultra-spinning Chow’s black hole with only one rotation parameter, we show that it does not always obey the reverse isoperimetric inequality, thus it can be either sub-entropic or super-entropic, depending upon the ranges of the mass parameter and especially the charge parameter. This property is obviously different from that of the six-dimensional singly-rotating Kerr-AdS super-entropic black hole, which always strictly violates the RII. For the six-dimensional doubly-rotating Chow’s black hole but ultra-spinning only along one spatial axis, we point out that it may also obey or violate the RII, and can be either super-entropic or sub-entropic in general.
By taking the ultra-spinning limit as a simple solution-generating trick, a novel class of ultra-spinning charged black hole solutions has been constructed from Chow’s rotating charged black hole with two equal-charge parameters in six-dimensional N = 4 gauged supergravity theory. We investigate their thermodynamical properties and then demonstrate that all thermodynamical quantities completely obey both the differential first law and the Bekenstein-Smarr mass formula. For the six-dimensional ultra-spinning Chow’s black hole with only one rotation parameter, we show that it does not always obey the reverse isoperimetric inequality, thus it can be either sub-entropic or super-entropic, depending upon the ranges of the mass parameter and especially the charge parameter. This property is obviously different from that of the six-dimensional singly-rotating Kerr-AdS super-entropic black hole, which always strictly violates the RII. For the six-dimensional doubly-rotating Chow’s black hole but ultra-spinning only along one spatial axis, we point out that it may also obey or violate the RII, and can be either super-entropic or sub-entropic in general.
ArticleNumber 31
Author Wu, Di
Wu, Shuang-Qing
Author_xml – sequence: 1
  givenname: Di
  orcidid: 0000-0002-2509-6729
  surname: Wu
  fullname: Wu, Di
  email: wdcwnu@163.com
  organization: College of Physics and Space Science, China West Normal University
– sequence: 2
  givenname: Shuang-Qing
  surname: Wu
  fullname: Wu, Shuang-Qing
  organization: College of Physics and Space Science, China West Normal University
BookMark eNp1kUFv1DAQhS1UJNrCmaslLnAI9Th2HB_RqtCiSnCgZ8uxJ1kvqb3YWaA3_gZ_j1-CS0AgpJ5sjd739GbeCTmKKSIhT4G9BMbU2duL8_cAzznj8IK18IAcA-O66YXSR__8H5GTUnaMgQTNjom5npdsm7IPMYY40c02ffnx7Xuhw2zdR7pNMxYaIi3ha-PDDcYSUrQznexhQk_LYY95yvZzWG6pjZ4uWwyZ7nOq8yVgeUwejnYu-OT3e0quX59_2Fw0V-_eXG5eXTVOgFoay5kTduhQKe07xXDgYyc8tl0_Si-0Yq2UIyjPUSvZWScG73DU0EuQ46jaU3K5-vpkd2afw43NtybZYH4NUp6MrYHcjMa2omuF4qwfQXAmtASFwnk5gO-txer1bPWqa3w6YFnMLh1y3boYLnWrpVDQV5VcVS6nUjKOxoXFLvU89aBhNsDMXS9m7cXc9WJqL5U7-4_7k_Z-gq1Eqco4Yf6b5z7kJ5Wuoag
CitedBy_id crossref_primary_10_1007_JHEP06_2024_213
crossref_primary_10_1007_JHEP03_2024_002
crossref_primary_10_1016_j_dark_2024_101617
crossref_primary_10_1103_PhysRevD_107_024024
crossref_primary_10_4236_jmp_2023_146052
crossref_primary_10_1103_PhysRevD_107_084002
crossref_primary_10_1140_epjc_s10052_023_11782_7
crossref_primary_10_1007_JHEP02_2024_086
crossref_primary_10_1088_1475_7516_2024_09_017
crossref_primary_10_1140_epjc_s10052_023_11561_4
crossref_primary_10_1103_PhysRevD_108_084041
Cites_doi 10.1103/PhysRevD.89.084007
10.1103/PhysRevD.79.084018
10.1103/PhysRevLett.115.031101
10.1103/PhysRevD.103.104020
10.1103/PhysRevLett.83.5226
10.1088/0264-9381/1/4/002
10.1016/0370-2693(95)00533-Q
10.1103/PhysRevD.98.024012
10.1103/PhysRevD.103.044014
10.1103/PhysRevD.73.104036
10.1016/j.physletb.2020.135529
10.1103/PhysRevD.97.044001
10.1103/PhysRevD.102.044007
10.1103/PhysRevLett.88.101101
10.1103/PhysRevD.78.064062
10.1103/PhysRevD.56.6475
10.1088/0264-9381/17/2/101
10.1103/PhysRevD.87.104017
10.1063/5.0011432
10.1007/JHEP01(2018)042
10.1103/PhysRevD.94.044037
10.1103/PhysRevD.101.024057
10.1016/0003-4916(86)90186-7
10.1103/PhysRevLett.106.121301
10.1016/0550-3213(82)90049-9
10.1007/JHEP02(2020)195
10.1103/PhysRevD.54.4891
10.1103/PhysRevD.84.024037
10.1088/1361-6382/abd3e0
10.1103/PhysRevD.95.046002
10.1103/PhysRevLett.113.211101
10.1007/JHEP06(2015)096
10.1103/PhysRevD.95.064021
10.1007/JHEP11(2020)041
10.1007/JHEP02(2020)154
10.1103/PhysRevD.72.041901
10.1007/BF01877517
10.1007/JHEP01(2014)127
10.1088/0264-9381/16/4/009
10.1007/JHEP08(2016)148
10.1103/PhysRevD.100.024056
10.1103/PhysRevD.94.064007
10.1103/PhysRevD.101.086006
10.1088/0264-9381/14/5/007
10.1088/0264-9381/27/20/205009
10.1103/PhysRevD.103.024053
10.1088/0264-9381/27/6/065004
10.1142/S0217732320500984
10.1088/0264-9381/23/17/013
10.1088/0264-9381/25/17/175010
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP11(2021)031
DatabaseName Springer Nature OA Free Journals (Freely Accessible)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest SciTech Premium Collection
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 24
ExternalDocumentID oai_doaj_org_article_a346347208f142049517e4cd5b1d8aae
10_1007_JHEP11_2021_031
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AMVHM
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c417t-a20c4ab6e779d670eb2f64de368f5d4970355f17d2e9756ac4bdcef918515ff73
IEDL.DBID DOA
ISSN 1029-8479
IngestDate Wed Aug 27 01:25:02 EDT 2025
Fri Jul 25 02:30:00 EDT 2025
Thu Apr 24 22:50:36 EDT 2025
Tue Jul 01 00:59:39 EDT 2025
Fri Feb 21 02:47:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Black Holes in String Theory
Black Holes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-a20c4ab6e779d670eb2f64de368f5d4970355f17d2e9756ac4bdcef918515ff73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2509-6729
OpenAccessLink https://doaj.org/article/a346347208f142049517e4cd5b1d8aae
PQID 2593954718
PQPubID 2034718
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_a346347208f142049517e4cd5b1d8aae
proquest_journals_2593954718
crossref_citationtrail_10_1007_JHEP11_2021_031
crossref_primary_10_1007_JHEP11_2021_031
springer_journals_10_1007_JHEP11_2021_031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-05
PublicationDateYYYYMMDD 2021-11-05
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-05
  day: 05
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References KunduriHKLuciettiJSupersymmetric Black Holes with Lens-Space TopologyPhys. Rev. Lett.20141132111012014PhRvL.113u1101K[arXiv:1408.6083] [INSPIRE]
JohnsonCVMartinVLSveskoAMicroscopic description of thermodynamic volume in extended black hole thermodynamicsPhys. Rev. D20201012020PhRvD.101h6006J4103175[arXiv:1911.05286] [INSPIRE]
WuDWuPYuHWuS-QAre ultraspinning Kerr-Sen-AdS4black holes always superentropic?Phys. Rev. D20201022020PhRvD.102d4007W4146189[arXiv:2007.02224] [INSPIRE]
DolanBPKastorDKubizňákDMannRBTraschenJThermodynamic Volumes and Isoperimetric Inequalities for de Sitter Black HolesPhys. Rev. D2013871040172013PhRvD..87j4017D[arXiv:1301.5926] [INSPIRE]
L. Vanzo, Black holes with unusual topology, Phys. Rev. D56 (1997) 6475 [gr-qc/9705004] [INSPIRE].
ChenYTeoEA Rotating black lens solution in five dimensionsPhys. Rev. D2008782008PhRvD..78f4062C2470329[arXiv:0808.0587] [INSPIRE]
WuDWuS-QWuPYuHAspects of the dyonic Kerr-Sen-AdS4black hole and its ultraspinning versionPhys. Rev. D20211032021PhRvD.103d4014W[arXiv:2010.13518] [INSPIRE]
WuDWuPYuHWuS-QNotes on the thermodynamics of superentropic AdS black holesPhys. Rev. D20201012020PhRvD.101b4057W4068662[arXiv:1912.03576] [INSPIRE]
XuZ-MThe correspondence between thermodynamic curvature and isoperimetric theorem from ultraspinning black holePhys. Lett. B202080713552941094351473.83060[arXiv:2006.00665] [INSPIRE]
ChenWLüHPopeCNMass of rotating black holes in gauged supergravitiesPhys. Rev. D2006731040362006PhRvD..73j4036C2224733[hep-th/0510081] [INSPIRE]
ChowDDKCvetičMLüHPopeCNExtremal Black Hole/CFT Correspondence in (Gauged) SupergravitiesPhys. Rev. D2009792009PhRvD..79h4018C2505604[arXiv:0812.2918] [INSPIRE]
CvetičMGibbonsGWPopeCNUniversal Area Product Formulae for Rotating and Charged Black Holes in Four and Higher DimensionsPhys. Rev. Lett.20111061213012011PhRvL.106l1301C27859721255.83065[arXiv:1011.0008] [INSPIRE]
AshtekarADasSAsymptotically Anti-de Sitter space-times: Conserved quantitiesClass. Quant. Grav.200017L172000CQGra..17L..17A0943.83023[hep-th/9911230] [INSPIRE]
TomizawaSNozawaMSupersymmetric black lenses in five dimensionsPhys. Rev. D2016942016PhRvD..94d4037T3702396[arXiv:1606.06643] [INSPIRE]
MyersRCPerryMJBlack holes in higher dimensional space-timesAnn. Phys.19861723041986AnPhy.172..304M8682950601.53081
WuDWuPNull hypersurface caustics for high dimensional superentropic black holesPhys. Rev. D20211031040202021PhRvD.103j4020W4276996[arXiv:2104.10476] [INSPIRE]
HawkingSWBlack holes in general relativityCommun. Math. Phys.1972251521972CMaPh..25..152H293962[INSPIRE]
AshtekarAMagnonAAsymptotically anti-de Sitter space-timesClass. Quant. Grav.19841L391984CQGra...1L..39A758508[INSPIRE]
KunduriHKLuciettiJBlack lenses in string theoryPhys. Rev. D2016942016PhRvD..94f4007K3710304[arXiv:1605.01545] [INSPIRE]
ChowDDKEqual charge black holes and seven dimensional gauged supergravityClass. Quant. Grav.2008251750102008CQGra..25q5010C24306791149.83330[arXiv:0711.1975] [INSPIRE]
ChowDDKCharged rotating black holes in six-dimensional gauged supergravityClass. Quant. Grav.2010272010CQGra..27f5004C25963571185.83028[arXiv:0808.2728] [INSPIRE]
CvetičMLüHPopeCNGauged six-dimensional supergravity from massive type IIAPhys. Rev. Lett.19998352261999PhRvL..83.5226C17357690949.83067[hep-th/9906221] [INSPIRE]
ChenWLüHPopeCNGeneral Kerr-NUT-AdS metrics in all dimensionsClass. Quant. Grav.20062353232006CQGra..23.5323C22567501100.83006[hep-th/0604125] [INSPIRE]
NodaSOngYCNull Hypersurface Caustics, Closed Null Curves, and Super-EntropyPhys. Rev. D20211032021PhRvD.103b4053N4212463[arXiv:2009.13448] [INSPIRE]
R. B. Mann, Pair production of topological anti-de Sitter black holes, Class. Quant. Grav.14 (1997) L109 [gr-qc/9607071] [INSPIRE].
HennigarRAMannRBKubizňákDEntropy Inequality Violations from Ultraspinning Black HolesPhys. Rev. Lett.20151152015PhRvL.115c1101H[arXiv:1411.4309] [INSPIRE]
DavidMNianJPando ZayasLAGravitational Cardy Limit and AdS Black Hole EntropyJHEP2020110412020JHEP...11..041D42042441456.83040[arXiv:2005.10251] [INSPIRE]
EmparanRReallHSA Rotating black ring solution in five-dimensionsPhys. Rev. Lett.2002881011012002PhRvL..88j1101E1901280[hep-th/0110260] [INSPIRE]
J. P. S. Lemos, Cylindrical black hole in general relativity, Phys. Lett. B353 (1995) 46 [gr-qc/9404041] [INSPIRE].
AppelsMCuspineraLGregoryRKrtoušPKubizňákDAre “Superentropic” black holes superentropic?JHEP2020021952020JHEP...02..195A4089086[arXiv:1911.12817] [INSPIRE]
AbbottLFDeserSStability of Gravity with a Cosmological ConstantNucl. Phys. B1982195761982NuPhB.195...76A0900.53033[INSPIRE]
GoldsteinKJejjalaVLeiYvan LeuvenSLiWProbing the EVH limit of supersymmetric AdS black holesJHEP2020021542020JHEP...02..154G40891271435.83085[arXiv:1910.14293] [INSPIRE]
KlemmDFour-dimensional black holes with unusual horizonsPhys. Rev. D2014892014PhRvD..89h4007K[arXiv:1401.3107] [INSPIRE]
FlathmannKWassermannNGeodesic equations for particles and light in the black spindle spacetimeJ. Math. Phys.2020611225042020JMP....61l2504F41916381455.83005[arXiv:1912.03974] [INSPIRE]
TomizawaSOkudaTAsymptotically flat multiblack lensesPhys. Rev. D2017952017PhRvD..95f4021T3788384[arXiv:1701.06402] [INSPIRE]
JohnsonCVInstability of super-entropic black holes in extended thermodynamicsMod. Phys. Lett. A20203520500982020MPLA...3550098J40925161435.83090[arXiv:1906.00993] [INSPIRE]
TomizawaSMulticharged black lensPhys. Rev. D20191002019PhRvD.100b4056T4016833[arXiv:1905.07748] [INSPIRE]
GnecchiAHristovKKlemmDToldoCVaughanORotating black holes in 4d gauged supergravityJHEP2014011272014JHEP...01..127G31716271333.83080[arXiv:1311.1795] [INSPIRE]
HennigarRAKubizňákDMannRBMusokeNUltraspinning limits and super-entropic black holesJHEP2015060962015JHEP...06..096H33702391388.83461[arXiv:1504.07529] [INSPIRE]
ChowDDKSymmetries of supergravity black holesClass. Quant. Grav.2010272050092010CQGra..27t5009C27252171202.83121[arXiv:0811.1264] [INSPIRE]
ImseisMTNAl BalushiAMannRBNull hypersurfaces in Kerr-Newman-AdS black hole and super-entropic black hole spacetimesClass. Quant. Grav.2021382021CQGra..38d5018I420431907419361[arXiv:2007.04354] [INSPIRE]
NoorbakhshSMGhominejadMUltra-Spinning Gauged Supergravity Black Holes and their Kerr/CFT CorrespondencePhys. Rev. D2017952017PhRvD..95d6002N3783909[arXiv:1611.02324] [INSPIRE]
BirminghamDTopological black holes in Anti-de Sitter spaceClass. Quant. Grav.19991611971999CQGra..16.1197B16961490933.83025[hep-th/9808032] [INSPIRE]
R. B. Mann, Topological black holes: Outside looking in, Annals Israel Phys. Soc.13 (1997) 311 [gr-qc/9709039] [INSPIRE].
TomizawaSCharged black lens in de Sitter spacePhys. Rev. D2018972018PhRvD..97d4001T3799292[arXiv:1712.05132] [INSPIRE]
NoorbakhshSMVahidiniaMHExtremal Vanishing Horizon Kerr-AdS Black Holes at Ultraspinning LimitJHEP2018010422018JHEP...01..042N37642331384.83028[arXiv:1708.08654] [INSPIRE]
TomizawaSKaluza-Klein black lens in five dimensionsPhys. Rev. D2018982018PhRvD..98b4012T3921651[arXiv:1803.11470] [INSPIRE]
R.-G. Cai and Y.-Z. Zhang, Black plane solutions in four-dimensional space-times, Phys. Rev. D54 (1996) 4891 [gr-qc/9609065] [INSPIRE].
ChongZWCvetičMLüHPopeCNFive-dimensional gauged supergravity black holes with independent rotation parametersPhys. Rev. D2005722005PhRvD..72d1901C2175300[hep-th/0505112] [INSPIRE]
S. M. Noorbakhsh and M. Ghominejad, Higher Dimensional Charged AdS Black Holes at Ultra-spinning Limit and Their 2d CFT Duals, arXiv:1702.03448 [INSPIRE].
CvetičMGibbonsGWKubizňákDPopeCNBlack Hole Enthalpy and an Entropy Inequality for the Thermodynamic VolumePhys. Rev. D2011842011PhRvD..84b4037C[arXiv:1012.2888] [INSPIRE]
SinamuliMMannRBSuper-Entropic Black Holes and the Kerr-CFT CorrespondenceJHEP2016081482016JHEP...08..148S35641841390.83224[arXiv:1512.07597] [INSPIRE]
D Wu (17073_CR29) 2020; 102
CV Johnson (17073_CR31) 2020; 35
SM Noorbakhsh (17073_CR28) 2018; 01
S Tomizawa (17073_CR8) 2017; 95
M Cvetič (17073_CR43) 2011; 106
HK Kunduri (17073_CR6) 2016; 94
M Appels (17073_CR21) 2020; 02
HK Kunduri (17073_CR5) 2014; 113
S Tomizawa (17073_CR11) 2019; 100
A Ashtekar (17073_CR50) 2000; 17
ZW Chong (17073_CR52) 2005; 72
SM Noorbakhsh (17073_CR26) 2017; 95
17073_CR14
17073_CR13
17073_CR12
S Tomizawa (17073_CR10) 2018; 98
BP Dolan (17073_CR23) 2013; 87
17073_CR16
DDK Chow (17073_CR42) 2010; 27
17073_CR15
DDK Chow (17073_CR41) 2009; 79
A Gnecchi (17073_CR18) 2014; 01
A Ashtekar (17073_CR49) 1984; 1
M Cvetič (17073_CR22) 2011; 84
RA Hennigar (17073_CR19) 2015; 115
17073_CR27
W Chen (17073_CR46) 2006; 23
R Emparan (17073_CR2) 2002; 88
RA Hennigar (17073_CR24) 2015; 06
LF Abbott (17073_CR51) 1982; 195
RC Myers (17073_CR3) 1986; 172
D Wu (17073_CR30) 2021; 103
K Flathmann (17073_CR35) 2020; 61
D Wu (17073_CR38) 2021; 103
S Tomizawa (17073_CR7) 2016; 94
M Cvetič (17073_CR47) 1999; 83
CV Johnson (17073_CR32) 2020; 101
Z-M Xu (17073_CR34) 2020; 807
SW Hawking (17073_CR1) 1972; 25
S Tomizawa (17073_CR9) 2018; 97
DDK Chow (17073_CR39) 2010; 27
S Noda (17073_CR37) 2021; 103
DDK Chow (17073_CR40) 2008; 25
MTN Imseis (17073_CR36) 2021; 38
D Wu (17073_CR33) 2020; 101
W Chen (17073_CR48) 2006; 73
K Goldstein (17073_CR44) 2020; 02
M David (17073_CR45) 2020; 11
M Sinamuli (17073_CR25) 2016; 08
D Klemm (17073_CR20) 2014; 89
Y Chen (17073_CR4) 2008; 78
D Birmingham (17073_CR17) 1999; 16
References_xml – reference: DolanBPKastorDKubizňákDMannRBTraschenJThermodynamic Volumes and Isoperimetric Inequalities for de Sitter Black HolesPhys. Rev. D2013871040172013PhRvD..87j4017D[arXiv:1301.5926] [INSPIRE]
– reference: ChongZWCvetičMLüHPopeCNFive-dimensional gauged supergravity black holes with independent rotation parametersPhys. Rev. D2005722005PhRvD..72d1901C2175300[hep-th/0505112] [INSPIRE]
– reference: EmparanRReallHSA Rotating black ring solution in five-dimensionsPhys. Rev. Lett.2002881011012002PhRvL..88j1101E1901280[hep-th/0110260] [INSPIRE]
– reference: ChenYTeoEA Rotating black lens solution in five dimensionsPhys. Rev. D2008782008PhRvD..78f4062C2470329[arXiv:0808.0587] [INSPIRE]
– reference: L. Vanzo, Black holes with unusual topology, Phys. Rev. D56 (1997) 6475 [gr-qc/9705004] [INSPIRE].
– reference: R. B. Mann, Topological black holes: Outside looking in, Annals Israel Phys. Soc.13 (1997) 311 [gr-qc/9709039] [INSPIRE].
– reference: KunduriHKLuciettiJBlack lenses in string theoryPhys. Rev. D2016942016PhRvD..94f4007K3710304[arXiv:1605.01545] [INSPIRE]
– reference: AshtekarADasSAsymptotically Anti-de Sitter space-times: Conserved quantitiesClass. Quant. Grav.200017L172000CQGra..17L..17A0943.83023[hep-th/9911230] [INSPIRE]
– reference: FlathmannKWassermannNGeodesic equations for particles and light in the black spindle spacetimeJ. Math. Phys.2020611225042020JMP....61l2504F41916381455.83005[arXiv:1912.03974] [INSPIRE]
– reference: TomizawaSKaluza-Klein black lens in five dimensionsPhys. Rev. D2018982018PhRvD..98b4012T3921651[arXiv:1803.11470] [INSPIRE]
– reference: ChenWLüHPopeCNMass of rotating black holes in gauged supergravitiesPhys. Rev. D2006731040362006PhRvD..73j4036C2224733[hep-th/0510081] [INSPIRE]
– reference: WuDWuS-QWuPYuHAspects of the dyonic Kerr-Sen-AdS4black hole and its ultraspinning versionPhys. Rev. D20211032021PhRvD.103d4014W[arXiv:2010.13518] [INSPIRE]
– reference: ImseisMTNAl BalushiAMannRBNull hypersurfaces in Kerr-Newman-AdS black hole and super-entropic black hole spacetimesClass. Quant. Grav.2021382021CQGra..38d5018I420431907419361[arXiv:2007.04354] [INSPIRE]
– reference: R. B. Mann, Pair production of topological anti-de Sitter black holes, Class. Quant. Grav.14 (1997) L109 [gr-qc/9607071] [INSPIRE].
– reference: NoorbakhshSMGhominejadMUltra-Spinning Gauged Supergravity Black Holes and their Kerr/CFT CorrespondencePhys. Rev. D2017952017PhRvD..95d6002N3783909[arXiv:1611.02324] [INSPIRE]
– reference: ChowDDKCharged rotating black holes in six-dimensional gauged supergravityClass. Quant. Grav.2010272010CQGra..27f5004C25963571185.83028[arXiv:0808.2728] [INSPIRE]
– reference: TomizawaSNozawaMSupersymmetric black lenses in five dimensionsPhys. Rev. D2016942016PhRvD..94d4037T3702396[arXiv:1606.06643] [INSPIRE]
– reference: J. P. S. Lemos, Cylindrical black hole in general relativity, Phys. Lett. B353 (1995) 46 [gr-qc/9404041] [INSPIRE].
– reference: GnecchiAHristovKKlemmDToldoCVaughanORotating black holes in 4d gauged supergravityJHEP2014011272014JHEP...01..127G31716271333.83080[arXiv:1311.1795] [INSPIRE]
– reference: TomizawaSCharged black lens in de Sitter spacePhys. Rev. D2018972018PhRvD..97d4001T3799292[arXiv:1712.05132] [INSPIRE]
– reference: BirminghamDTopological black holes in Anti-de Sitter spaceClass. Quant. Grav.19991611971999CQGra..16.1197B16961490933.83025[hep-th/9808032] [INSPIRE]
– reference: ChenWLüHPopeCNGeneral Kerr-NUT-AdS metrics in all dimensionsClass. Quant. Grav.20062353232006CQGra..23.5323C22567501100.83006[hep-th/0604125] [INSPIRE]
– reference: MyersRCPerryMJBlack holes in higher dimensional space-timesAnn. Phys.19861723041986AnPhy.172..304M8682950601.53081
– reference: JohnsonCVMartinVLSveskoAMicroscopic description of thermodynamic volume in extended black hole thermodynamicsPhys. Rev. D20201012020PhRvD.101h6006J4103175[arXiv:1911.05286] [INSPIRE]
– reference: GoldsteinKJejjalaVLeiYvan LeuvenSLiWProbing the EVH limit of supersymmetric AdS black holesJHEP2020021542020JHEP...02..154G40891271435.83085[arXiv:1910.14293] [INSPIRE]
– reference: KlemmDFour-dimensional black holes with unusual horizonsPhys. Rev. D2014892014PhRvD..89h4007K[arXiv:1401.3107] [INSPIRE]
– reference: WuDWuPNull hypersurface caustics for high dimensional superentropic black holesPhys. Rev. D20211031040202021PhRvD.103j4020W4276996[arXiv:2104.10476] [INSPIRE]
– reference: AshtekarAMagnonAAsymptotically anti-de Sitter space-timesClass. Quant. Grav.19841L391984CQGra...1L..39A758508[INSPIRE]
– reference: NoorbakhshSMVahidiniaMHExtremal Vanishing Horizon Kerr-AdS Black Holes at Ultraspinning LimitJHEP2018010422018JHEP...01..042N37642331384.83028[arXiv:1708.08654] [INSPIRE]
– reference: HennigarRAKubizňákDMannRBMusokeNUltraspinning limits and super-entropic black holesJHEP2015060962015JHEP...06..096H33702391388.83461[arXiv:1504.07529] [INSPIRE]
– reference: TomizawaSMulticharged black lensPhys. Rev. D20191002019PhRvD.100b4056T4016833[arXiv:1905.07748] [INSPIRE]
– reference: DavidMNianJPando ZayasLAGravitational Cardy Limit and AdS Black Hole EntropyJHEP2020110412020JHEP...11..041D42042441456.83040[arXiv:2005.10251] [INSPIRE]
– reference: HawkingSWBlack holes in general relativityCommun. Math. Phys.1972251521972CMaPh..25..152H293962[INSPIRE]
– reference: KunduriHKLuciettiJSupersymmetric Black Holes with Lens-Space TopologyPhys. Rev. Lett.20141132111012014PhRvL.113u1101K[arXiv:1408.6083] [INSPIRE]
– reference: AbbottLFDeserSStability of Gravity with a Cosmological ConstantNucl. Phys. B1982195761982NuPhB.195...76A0900.53033[INSPIRE]
– reference: TomizawaSOkudaTAsymptotically flat multiblack lensesPhys. Rev. D2017952017PhRvD..95f4021T3788384[arXiv:1701.06402] [INSPIRE]
– reference: ChowDDKEqual charge black holes and seven dimensional gauged supergravityClass. Quant. Grav.2008251750102008CQGra..25q5010C24306791149.83330[arXiv:0711.1975] [INSPIRE]
– reference: XuZ-MThe correspondence between thermodynamic curvature and isoperimetric theorem from ultraspinning black holePhys. Lett. B202080713552941094351473.83060[arXiv:2006.00665] [INSPIRE]
– reference: WuDWuPYuHWuS-QAre ultraspinning Kerr-Sen-AdS4black holes always superentropic?Phys. Rev. D20201022020PhRvD.102d4007W4146189[arXiv:2007.02224] [INSPIRE]
– reference: ChowDDKSymmetries of supergravity black holesClass. Quant. Grav.2010272050092010CQGra..27t5009C27252171202.83121[arXiv:0811.1264] [INSPIRE]
– reference: HennigarRAMannRBKubizňákDEntropy Inequality Violations from Ultraspinning Black HolesPhys. Rev. Lett.20151152015PhRvL.115c1101H[arXiv:1411.4309] [INSPIRE]
– reference: CvetičMGibbonsGWPopeCNUniversal Area Product Formulae for Rotating and Charged Black Holes in Four and Higher DimensionsPhys. Rev. Lett.20111061213012011PhRvL.106l1301C27859721255.83065[arXiv:1011.0008] [INSPIRE]
– reference: CvetičMGibbonsGWKubizňákDPopeCNBlack Hole Enthalpy and an Entropy Inequality for the Thermodynamic VolumePhys. Rev. D2011842011PhRvD..84b4037C[arXiv:1012.2888] [INSPIRE]
– reference: JohnsonCVInstability of super-entropic black holes in extended thermodynamicsMod. Phys. Lett. A20203520500982020MPLA...3550098J40925161435.83090[arXiv:1906.00993] [INSPIRE]
– reference: R.-G. Cai and Y.-Z. Zhang, Black plane solutions in four-dimensional space-times, Phys. Rev. D54 (1996) 4891 [gr-qc/9609065] [INSPIRE].
– reference: AppelsMCuspineraLGregoryRKrtoušPKubizňákDAre “Superentropic” black holes superentropic?JHEP2020021952020JHEP...02..195A4089086[arXiv:1911.12817] [INSPIRE]
– reference: NodaSOngYCNull Hypersurface Caustics, Closed Null Curves, and Super-EntropyPhys. Rev. D20211032021PhRvD.103b4053N4212463[arXiv:2009.13448] [INSPIRE]
– reference: WuDWuPYuHWuS-QNotes on the thermodynamics of superentropic AdS black holesPhys. Rev. D20201012020PhRvD.101b4057W4068662[arXiv:1912.03576] [INSPIRE]
– reference: S. M. Noorbakhsh and M. Ghominejad, Higher Dimensional Charged AdS Black Holes at Ultra-spinning Limit and Their 2d CFT Duals, arXiv:1702.03448 [INSPIRE].
– reference: SinamuliMMannRBSuper-Entropic Black Holes and the Kerr-CFT CorrespondenceJHEP2016081482016JHEP...08..148S35641841390.83224[arXiv:1512.07597] [INSPIRE]
– reference: ChowDDKCvetičMLüHPopeCNExtremal Black Hole/CFT Correspondence in (Gauged) SupergravitiesPhys. Rev. D2009792009PhRvD..79h4018C2505604[arXiv:0812.2918] [INSPIRE]
– reference: CvetičMLüHPopeCNGauged six-dimensional supergravity from massive type IIAPhys. Rev. Lett.19998352261999PhRvL..83.5226C17357690949.83067[hep-th/9906221] [INSPIRE]
– volume: 89
  year: 2014
  ident: 17073_CR20
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.084007
– volume: 79
  year: 2009
  ident: 17073_CR41
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.79.084018
– volume: 115
  year: 2015
  ident: 17073_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.031101
– volume: 103
  start-page: 104020
  year: 2021
  ident: 17073_CR38
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.104020
– volume: 83
  start-page: 5226
  year: 1999
  ident: 17073_CR47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.5226
– volume: 1
  start-page: L39
  year: 1984
  ident: 17073_CR49
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/1/4/002
– ident: 17073_CR14
  doi: 10.1016/0370-2693(95)00533-Q
– volume: 98
  year: 2018
  ident: 17073_CR10
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.024012
– volume: 103
  year: 2021
  ident: 17073_CR30
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.044014
– volume: 73
  start-page: 104036
  year: 2006
  ident: 17073_CR48
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.73.104036
– volume: 807
  start-page: 135529
  year: 2020
  ident: 17073_CR34
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2020.135529
– volume: 97
  year: 2018
  ident: 17073_CR9
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.044001
– volume: 102
  year: 2020
  ident: 17073_CR29
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.044007
– volume: 88
  start-page: 101101
  year: 2002
  ident: 17073_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.101101
– volume: 78
  year: 2008
  ident: 17073_CR4
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.064062
– ident: 17073_CR12
  doi: 10.1103/PhysRevD.56.6475
– volume: 17
  start-page: L17
  year: 2000
  ident: 17073_CR50
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/17/2/101
– volume: 87
  start-page: 104017
  year: 2013
  ident: 17073_CR23
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.87.104017
– volume: 61
  start-page: 122504
  year: 2020
  ident: 17073_CR35
  publication-title: J. Math. Phys.
  doi: 10.1063/5.0011432
– volume: 01
  start-page: 042
  year: 2018
  ident: 17073_CR28
  publication-title: JHEP
  doi: 10.1007/JHEP01(2018)042
– volume: 94
  year: 2016
  ident: 17073_CR7
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.044037
– volume: 101
  year: 2020
  ident: 17073_CR33
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.024057
– volume: 172
  start-page: 304
  year: 1986
  ident: 17073_CR3
  publication-title: Ann. Phys.
  doi: 10.1016/0003-4916(86)90186-7
– volume: 106
  start-page: 121301
  year: 2011
  ident: 17073_CR43
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.121301
– volume: 195
  start-page: 76
  year: 1982
  ident: 17073_CR51
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(82)90049-9
– volume: 02
  start-page: 195
  year: 2020
  ident: 17073_CR21
  publication-title: JHEP
  doi: 10.1007/JHEP02(2020)195
– ident: 17073_CR15
  doi: 10.1103/PhysRevD.54.4891
– volume: 84
  year: 2011
  ident: 17073_CR22
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.84.024037
– volume: 38
  year: 2021
  ident: 17073_CR36
  publication-title: Class. Quant. Grav.
  doi: 10.1088/1361-6382/abd3e0
– volume: 95
  year: 2017
  ident: 17073_CR26
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.95.046002
– volume: 113
  start-page: 211101
  year: 2014
  ident: 17073_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.211101
– volume: 06
  start-page: 096
  year: 2015
  ident: 17073_CR24
  publication-title: JHEP
  doi: 10.1007/JHEP06(2015)096
– volume: 95
  year: 2017
  ident: 17073_CR8
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.95.064021
– volume: 11
  start-page: 041
  year: 2020
  ident: 17073_CR45
  publication-title: JHEP
  doi: 10.1007/JHEP11(2020)041
– volume: 02
  start-page: 154
  year: 2020
  ident: 17073_CR44
  publication-title: JHEP
  doi: 10.1007/JHEP02(2020)154
– volume: 72
  year: 2005
  ident: 17073_CR52
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.72.041901
– volume: 25
  start-page: 152
  year: 1972
  ident: 17073_CR1
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01877517
– volume: 01
  start-page: 127
  year: 2014
  ident: 17073_CR18
  publication-title: JHEP
  doi: 10.1007/JHEP01(2014)127
– volume: 16
  start-page: 1197
  year: 1999
  ident: 17073_CR17
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/16/4/009
– volume: 08
  start-page: 148
  year: 2016
  ident: 17073_CR25
  publication-title: JHEP
  doi: 10.1007/JHEP08(2016)148
– volume: 100
  year: 2019
  ident: 17073_CR11
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.024056
– volume: 94
  year: 2016
  ident: 17073_CR6
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.064007
– ident: 17073_CR27
– volume: 101
  year: 2020
  ident: 17073_CR32
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.086006
– ident: 17073_CR13
  doi: 10.1088/0264-9381/14/5/007
– volume: 27
  start-page: 205009
  year: 2010
  ident: 17073_CR42
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/27/20/205009
– ident: 17073_CR16
– volume: 103
  year: 2021
  ident: 17073_CR37
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.024053
– volume: 27
  year: 2010
  ident: 17073_CR39
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/27/6/065004
– volume: 35
  start-page: 2050098
  year: 2020
  ident: 17073_CR31
  publication-title: Mod. Phys. Lett. A
  doi: 10.1142/S0217732320500984
– volume: 23
  start-page: 5323
  year: 2006
  ident: 17073_CR46
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/23/17/013
– volume: 25
  start-page: 175010
  year: 2008
  ident: 17073_CR40
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/25/17/175010
SSID ssj0015190
Score 2.4483495
Snippet A bstract By taking the ultra-spinning limit as a simple solution-generating trick, a novel class of ultra-spinning charged black hole solutions has been...
By taking the ultra-spinning limit as a simple solution-generating trick, a novel class of ultra-spinning charged black hole solutions has been constructed...
Abstract By taking the ultra-spinning limit as a simple solution-generating trick, a novel class of ultra-spinning charged black hole solutions has been...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Black Holes
Black Holes in String Theory
Classical and Quantum Gravitation
Coordinate transformations
Elementary Particles
High energy physics
Inequality
Parameters
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Rotation
Spacetime
String Theory
Supergravity
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbthkIvpU-6bRJ06CE5qLEsybJPpQkblkBDKF3ITei5XQhex94lOfZv5O_ll1TjlTekkF5tyZgZzUMz0vch9CXEKEdtbojURhAO3UNDS0uyvBLRadoYs-E28o_zYjrjZ5fiMhXcunSscvCJvaN2Sws18qOYprNKgCv91lwTYI2C7mqi0HiOdqILLssR2jmenF_83PYRYn6SDYA-mTw6m04uKD2IG356mDH6KBb1kP2P8sx_WqN9xDl9jV6lVBF_3-j2DXrm67foRX9k03bvkJpdrVpNumbRsw7hk9_Lm_s_dx02UJPDwHvb4UWNu8UtcYDhv8HfwHO9nnuHu3XjWyAfimk41rXDfcsAN1CcbwFl9T2anU5-nUxJoksgllO5IjrPLNem8FJWrpBZ3DNHTTjPijIIx6to20IEKl3uKykKbblx1ocqRmwqQpDsAxrVy9p_RFj7aNfGyqCZ4ME6zWxeeeFKFoIT3I7R10FwyiYscaC0uFIDCvJG0gokraKkx-hgO6HZwGg8PfQYNLEdBvjX_YNlO1fJnJRmvGBc5lkZKM_jLkdQ6bl1wlBXau3HaHfQo0pG2amHJTRGh4NuH14_8T-f_v-pz-gljOyvJ4pdNFq1a78X85SV2U-L8S9P0eeV
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals (Freely Accessible)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsNAEF5EEbyIv1itsgcPeohms7vZ5KjFUgTFg4Xelv2tBYmladGjr-Hr-STupEnFigdvIZmFMJPJN7Oz8w1Cpz6gHDGJjoTSPGJQPdQkM1Gc5Dz8NE3AbOhGvrtPe312O-CDmiQJemGW6veXt72bB0LOQopOzmPol17jhAqY0dBJO4tyQQhD4oa35_eiH5BTMfP_CCeXKqAVsHS30GYdEeKruQm30YordtB6dTLTlLtI9p-nExWV41E1XAh3nl5eP98_Sqxh6w3DeNsSjwpcjt4iC1T9c5oNPFSzobO4nI3dBGYMhWgbq8LiqjKAx7AHPwEy1T3U7948dnpRPRUhMoyIaaSS2DClUydEblMRh9Q4KNw6mmaeW5YHF-bcE2ETlwueKsO0Nc7nAZgJ917QfbRavBTuAGHlgvtqI7yinHljFTVJ7rjNqPeWM9NCF43ipKkpw2FyxbNsyI7nmpagaRk03UJniwXjOVvG36LXYImFGNBcVzeC9WXtNVJRllImkjjzhCUhmeFEOGYs18RmSrkWajd2lLXvlTIkdDTnALotdN7Y9vvxH-9z-A_ZI7QBl1VLIm-j1elk5o5DbDLVJ9V3-QWcvd2J
  priority: 102
  providerName: Springer Nature
Title Ultra-spinning Chow’s black holes in six-dimensional gauged supergravity and their properties
URI https://link.springer.com/article/10.1007/JHEP11(2021)031
https://www.proquest.com/docview/2593954718
https://doaj.org/article/a346347208f142049517e4cd5b1d8aae
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtSqGX0ifdJll06CE5uLFeln1Mlt0ugYZQupCb0DNdCM6y3qU99m_07-WXdMaPpCmEXnox2JaNmBnpm9FI3xDyIQHKMc9dpq1TmcTsoWOlz3JeKZg0PWA2nkb-fFbMF_L0Ql38UeoL94R19MCd4I6skIWQmudlYpKDP6uYjtIH5VgorY04-wLmDcFUnz8AvyQfiHxyfXQ6n54zdgCBPjvMBbuHQS1V_z3_8q-UaIs0sxfkee8i0uOuay_Jo1i_Ik_brZq-eU3M4mqztlmzWrbVhujk2_X3m5-_GupwLY5ivduGLmvaLH9kAbn7O94Nemm3lzHQZruKayw6BO43tXWgbaqArnBRfo3sqm_IYjb9OplnfZmEzEumN5nluZfWFVHrKhQ6h1gZNBCiKMqkgqxgTCuVmA48VloV1ksXfEwVIDVTKWnxluzU13V8R6iNMJ6d18kKJZMPVnheRRVKkVJQ0o_Ix0Fwxvcc4ljK4soM7MedpA1K2oCkR-Tg9oNVR5_xcNMT1MRtM-S9bh-ANZjeGsy_rGFE9gY9mn4wNgYiPFEpROERORx0e_f6gf68_x_92SXP8H_t4UW1R3Y2623cBy9m48bkcTn7NCZPTqZn51_gbsIlXovJuDVluC748W_I__Lt
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYILKpsYaMEHkNpDaLzFyaFCUDpMV3HoSL0Zx8swUpUJyYwKN_5G_wQ_il-CX5apilRuvSa2Zb3dfn7vQ-iND16OGJpHUuci4pA9zElqophmIhhNE3w2VCMfnySjMT84E2cr6HdfCwPPKnub2BhqOzNwR74dwnSWCTCl78vvEaBGQXa1h9BoxeLQ_bwIR7Z6Z_9T4O9bSod7p7ujqEMViAwnch5pGhuu88RJmdlExuFoGTZsHUtSLyzPggoI4Ym01GVSJNrw3Brns-DYiPBesrDuHXSXs-DJoTJ9-HmZtQjRUNy3D4rl9sFo7wshmzS40a2YkWuerwEIuBbV_pOIbfzbcA097AJT_KGVpEdoxRWP0b3mgaipnyA1Pp9XOqrLaYNxhHe_zS7-_LqscQ43gBhQdms8LXA9_RFZQAxou33giV5MnMX1onQVQB2FoB_rwuImQYFLSAVU0NP1KRrfChmfodViVrjnCGsXrEhupNdMcG-sZoZmTtiUeW8FNwP0riecMl3ncgDQOFd9z-WW0goorQKlB2hzOaFsm3bcPPQjcGI5DLptNx9m1UR1yqs04wnjksapJ5yGM5Ug0nFjRU5sqrUboPWej6ozAbW6EtgB2up5e_X7hv28-P9Sr9H90enxkTraPzl8iR7ArKYwUqyj1Xm1cBshQprnrxqxxOjrbevBX_mvI4Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anUC8IK5aYYAfQNoeQmPHjpMHhNjWqtugqhCV9mYcX0qlKQ1Jq8Ebf4O_ws_hl2Dn0mlI422viW1Z53587PMBvLLOy2FFsoDLjAXUVw8znKggJClzRlM5n-1fI3-cxOMZPTljZ1vwu3sL469VdjaxNtR6qfwZ-cCF6VHKvCkd2PZaxPRo9K74FngEKV9p7eA0GhE5NT8uXPpWvT0-crx-Tcho-PlwHLQIA4GimK8CSUJFZRYbzlMd89ClmW7z2kRxYpmmqVMHxizmmpiUs1gqmmllbOqcHGbW8sitewu2uc-KerB9MJxMP21qGC42CrtmQiEfnIyHU4z3iHOq-2GEr_jBGi7gSoz7T1m29naj-3CvDVPR-0auHsCWyR_C7fq6qKoegZidr0oZVMWiRjxCh1-XF39-_qpQ5s8DkcfcrdAiR9Xie6A9fkDT-wPN5XpuNKrWhSk98JFLAZDMNarLFajwhYHSd3h9DLMbIeQT6OXL3OwAksbZlExxKyNGrdIyUiQ1TCeRtZpR1Yc3HeGEavuYeziNc9F1YG4oLTylhaN0H_Y2E4qmhcf1Qw88JzbDfO_t-sOynItWlYWMaBxRTsLEYkpchsUwN1RplmGdSGn6sNvxUbQGoRKX4tuH_Y63l7-v2c_T_y_1Eu44HRAfjienz-Cun1S_kmS70FuVa_PchUur7EUrlwi-3LQq_AVDCCkY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-spinning+Chow%E2%80%99s+black+holes+in+six-dimensional+gauged+supergravity+and+their+properties&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Di+Wu&rft.au=Shuang-Qing+Wu&rft.date=2021-11-05&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2021&rft.issue=11&rft.spage=1&rft.epage=24&rft_id=info:doi/10.1007%2FJHEP11%282021%29031&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a346347208f142049517e4cd5b1d8aae
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon