Ultra-spinning Chow’s black holes in six-dimensional gauged supergravity and their properties
A bstract By taking the ultra-spinning limit as a simple solution-generating trick, a novel class of ultra-spinning charged black hole solutions has been constructed from Chow’s rotating charged black hole with two equal-charge parameters in six-dimensional N = 4 gauged supergravity theory. We inves...
Saved in:
Published in | The journal of high energy physics Vol. 2021; no. 11; pp. 1 - 24 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
05.11.2021
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
By taking the ultra-spinning limit as a simple solution-generating trick, a novel class of ultra-spinning charged black hole solutions has been constructed from Chow’s rotating charged black hole with two equal-charge parameters in six-dimensional
N
= 4 gauged supergravity theory. We investigate their thermodynamical properties and then demonstrate that all thermodynamical quantities completely obey both the differential first law and the Bekenstein-Smarr mass formula. For the six-dimensional ultra-spinning Chow’s black hole with only one rotation parameter, we show that it does not always obey the reverse isoperimetric inequality, thus it can be either sub-entropic or super-entropic, depending upon the ranges of the mass parameter and especially the charge parameter. This property is obviously different from that of the six-dimensional singly-rotating Kerr-AdS super-entropic black hole, which always strictly violates the RII. For the six-dimensional doubly-rotating Chow’s black hole but ultra-spinning only along one spatial axis, we point out that it may also obey or violate the RII, and can be either super-entropic or sub-entropic in general. |
---|---|
AbstractList | A
bstract
By taking the ultra-spinning limit as a simple solution-generating trick, a novel class of ultra-spinning charged black hole solutions has been constructed from Chow’s rotating charged black hole with two equal-charge parameters in six-dimensional
N
= 4 gauged supergravity theory. We investigate their thermodynamical properties and then demonstrate that all thermodynamical quantities completely obey both the differential first law and the Bekenstein-Smarr mass formula. For the six-dimensional ultra-spinning Chow’s black hole with only one rotation parameter, we show that it does not always obey the reverse isoperimetric inequality, thus it can be either sub-entropic or super-entropic, depending upon the ranges of the mass parameter and especially the charge parameter. This property is obviously different from that of the six-dimensional singly-rotating Kerr-AdS super-entropic black hole, which always strictly violates the RII. For the six-dimensional doubly-rotating Chow’s black hole but ultra-spinning only along one spatial axis, we point out that it may also obey or violate the RII, and can be either super-entropic or sub-entropic in general. Abstract By taking the ultra-spinning limit as a simple solution-generating trick, a novel class of ultra-spinning charged black hole solutions has been constructed from Chow’s rotating charged black hole with two equal-charge parameters in six-dimensional N $$ \mathcal{N} $$ = 4 gauged supergravity theory. We investigate their thermodynamical properties and then demonstrate that all thermodynamical quantities completely obey both the differential first law and the Bekenstein-Smarr mass formula. For the six-dimensional ultra-spinning Chow’s black hole with only one rotation parameter, we show that it does not always obey the reverse isoperimetric inequality, thus it can be either sub-entropic or super-entropic, depending upon the ranges of the mass parameter and especially the charge parameter. This property is obviously different from that of the six-dimensional singly-rotating Kerr-AdS super-entropic black hole, which always strictly violates the RII. For the six-dimensional doubly-rotating Chow’s black hole but ultra-spinning only along one spatial axis, we point out that it may also obey or violate the RII, and can be either super-entropic or sub-entropic in general. By taking the ultra-spinning limit as a simple solution-generating trick, a novel class of ultra-spinning charged black hole solutions has been constructed from Chow’s rotating charged black hole with two equal-charge parameters in six-dimensional $$ \mathcal{N} $$ N = 4 gauged supergravity theory. We investigate their thermodynamical properties and then demonstrate that all thermodynamical quantities completely obey both the differential first law and the Bekenstein-Smarr mass formula. For the six-dimensional ultra-spinning Chow’s black hole with only one rotation parameter, we show that it does not always obey the reverse isoperimetric inequality, thus it can be either sub-entropic or super-entropic, depending upon the ranges of the mass parameter and especially the charge parameter. This property is obviously different from that of the six-dimensional singly-rotating Kerr-AdS super-entropic black hole, which always strictly violates the RII. For the six-dimensional doubly-rotating Chow’s black hole but ultra-spinning only along one spatial axis, we point out that it may also obey or violate the RII, and can be either super-entropic or sub-entropic in general. By taking the ultra-spinning limit as a simple solution-generating trick, a novel class of ultra-spinning charged black hole solutions has been constructed from Chow’s rotating charged black hole with two equal-charge parameters in six-dimensional N = 4 gauged supergravity theory. We investigate their thermodynamical properties and then demonstrate that all thermodynamical quantities completely obey both the differential first law and the Bekenstein-Smarr mass formula. For the six-dimensional ultra-spinning Chow’s black hole with only one rotation parameter, we show that it does not always obey the reverse isoperimetric inequality, thus it can be either sub-entropic or super-entropic, depending upon the ranges of the mass parameter and especially the charge parameter. This property is obviously different from that of the six-dimensional singly-rotating Kerr-AdS super-entropic black hole, which always strictly violates the RII. For the six-dimensional doubly-rotating Chow’s black hole but ultra-spinning only along one spatial axis, we point out that it may also obey or violate the RII, and can be either super-entropic or sub-entropic in general. |
ArticleNumber | 31 |
Author | Wu, Di Wu, Shuang-Qing |
Author_xml | – sequence: 1 givenname: Di orcidid: 0000-0002-2509-6729 surname: Wu fullname: Wu, Di email: wdcwnu@163.com organization: College of Physics and Space Science, China West Normal University – sequence: 2 givenname: Shuang-Qing surname: Wu fullname: Wu, Shuang-Qing organization: College of Physics and Space Science, China West Normal University |
BookMark | eNp1kUFv1DAQhS1UJNrCmaslLnAI9Th2HB_RqtCiSnCgZ8uxJ1kvqb3YWaA3_gZ_j1-CS0AgpJ5sjd739GbeCTmKKSIhT4G9BMbU2duL8_cAzznj8IK18IAcA-O66YXSR__8H5GTUnaMgQTNjom5npdsm7IPMYY40c02ffnx7Xuhw2zdR7pNMxYaIi3ha-PDDcYSUrQznexhQk_LYY95yvZzWG6pjZ4uWwyZ7nOq8yVgeUwejnYu-OT3e0quX59_2Fw0V-_eXG5eXTVOgFoay5kTduhQKe07xXDgYyc8tl0_Si-0Yq2UIyjPUSvZWScG73DU0EuQ46jaU3K5-vpkd2afw43NtybZYH4NUp6MrYHcjMa2omuF4qwfQXAmtASFwnk5gO-txer1bPWqa3w6YFnMLh1y3boYLnWrpVDQV5VcVS6nUjKOxoXFLvU89aBhNsDMXS9m7cXc9WJqL5U7-4_7k_Z-gq1Eqco4Yf6b5z7kJ5Wuoag |
CitedBy_id | crossref_primary_10_1007_JHEP06_2024_213 crossref_primary_10_1007_JHEP03_2024_002 crossref_primary_10_1016_j_dark_2024_101617 crossref_primary_10_1103_PhysRevD_107_024024 crossref_primary_10_4236_jmp_2023_146052 crossref_primary_10_1103_PhysRevD_107_084002 crossref_primary_10_1140_epjc_s10052_023_11782_7 crossref_primary_10_1007_JHEP02_2024_086 crossref_primary_10_1088_1475_7516_2024_09_017 crossref_primary_10_1140_epjc_s10052_023_11561_4 crossref_primary_10_1103_PhysRevD_108_084041 |
Cites_doi | 10.1103/PhysRevD.89.084007 10.1103/PhysRevD.79.084018 10.1103/PhysRevLett.115.031101 10.1103/PhysRevD.103.104020 10.1103/PhysRevLett.83.5226 10.1088/0264-9381/1/4/002 10.1016/0370-2693(95)00533-Q 10.1103/PhysRevD.98.024012 10.1103/PhysRevD.103.044014 10.1103/PhysRevD.73.104036 10.1016/j.physletb.2020.135529 10.1103/PhysRevD.97.044001 10.1103/PhysRevD.102.044007 10.1103/PhysRevLett.88.101101 10.1103/PhysRevD.78.064062 10.1103/PhysRevD.56.6475 10.1088/0264-9381/17/2/101 10.1103/PhysRevD.87.104017 10.1063/5.0011432 10.1007/JHEP01(2018)042 10.1103/PhysRevD.94.044037 10.1103/PhysRevD.101.024057 10.1016/0003-4916(86)90186-7 10.1103/PhysRevLett.106.121301 10.1016/0550-3213(82)90049-9 10.1007/JHEP02(2020)195 10.1103/PhysRevD.54.4891 10.1103/PhysRevD.84.024037 10.1088/1361-6382/abd3e0 10.1103/PhysRevD.95.046002 10.1103/PhysRevLett.113.211101 10.1007/JHEP06(2015)096 10.1103/PhysRevD.95.064021 10.1007/JHEP11(2020)041 10.1007/JHEP02(2020)154 10.1103/PhysRevD.72.041901 10.1007/BF01877517 10.1007/JHEP01(2014)127 10.1088/0264-9381/16/4/009 10.1007/JHEP08(2016)148 10.1103/PhysRevD.100.024056 10.1103/PhysRevD.94.064007 10.1103/PhysRevD.101.086006 10.1088/0264-9381/14/5/007 10.1088/0264-9381/27/20/205009 10.1103/PhysRevD.103.024053 10.1088/0264-9381/27/6/065004 10.1142/S0217732320500984 10.1088/0264-9381/23/17/013 10.1088/0264-9381/25/17/175010 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/JHEP11(2021)031 |
DatabaseName | Springer Nature OA Free Journals (Freely Accessible) CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest SciTech Premium Collection Advanced Technologies & Aerospace Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 24 |
ExternalDocumentID | oai_doaj_org_article_a346347208f142049517e4cd5b1d8aae 10_1007_JHEP11_2021_031 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX AMVHM CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c417t-a20c4ab6e779d670eb2f64de368f5d4970355f17d2e9756ac4bdcef918515ff73 |
IEDL.DBID | DOA |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:25:02 EDT 2025 Fri Jul 25 02:30:00 EDT 2025 Thu Apr 24 22:50:36 EDT 2025 Tue Jul 01 00:59:39 EDT 2025 Fri Feb 21 02:47:11 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Black Holes in String Theory Black Holes |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-a20c4ab6e779d670eb2f64de368f5d4970355f17d2e9756ac4bdcef918515ff73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2509-6729 |
OpenAccessLink | https://doaj.org/article/a346347208f142049517e4cd5b1d8aae |
PQID | 2593954718 |
PQPubID | 2034718 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a346347208f142049517e4cd5b1d8aae proquest_journals_2593954718 crossref_citationtrail_10_1007_JHEP11_2021_031 crossref_primary_10_1007_JHEP11_2021_031 springer_journals_10_1007_JHEP11_2021_031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-05 |
PublicationDateYYYYMMDD | 2021-11-05 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | KunduriHKLuciettiJSupersymmetric Black Holes with Lens-Space TopologyPhys. Rev. Lett.20141132111012014PhRvL.113u1101K[arXiv:1408.6083] [INSPIRE] JohnsonCVMartinVLSveskoAMicroscopic description of thermodynamic volume in extended black hole thermodynamicsPhys. Rev. D20201012020PhRvD.101h6006J4103175[arXiv:1911.05286] [INSPIRE] WuDWuPYuHWuS-QAre ultraspinning Kerr-Sen-AdS4black holes always superentropic?Phys. Rev. D20201022020PhRvD.102d4007W4146189[arXiv:2007.02224] [INSPIRE] DolanBPKastorDKubizňákDMannRBTraschenJThermodynamic Volumes and Isoperimetric Inequalities for de Sitter Black HolesPhys. Rev. D2013871040172013PhRvD..87j4017D[arXiv:1301.5926] [INSPIRE] L. Vanzo, Black holes with unusual topology, Phys. Rev. D56 (1997) 6475 [gr-qc/9705004] [INSPIRE]. ChenYTeoEA Rotating black lens solution in five dimensionsPhys. Rev. D2008782008PhRvD..78f4062C2470329[arXiv:0808.0587] [INSPIRE] WuDWuS-QWuPYuHAspects of the dyonic Kerr-Sen-AdS4black hole and its ultraspinning versionPhys. Rev. D20211032021PhRvD.103d4014W[arXiv:2010.13518] [INSPIRE] WuDWuPYuHWuS-QNotes on the thermodynamics of superentropic AdS black holesPhys. Rev. D20201012020PhRvD.101b4057W4068662[arXiv:1912.03576] [INSPIRE] XuZ-MThe correspondence between thermodynamic curvature and isoperimetric theorem from ultraspinning black holePhys. Lett. B202080713552941094351473.83060[arXiv:2006.00665] [INSPIRE] ChenWLüHPopeCNMass of rotating black holes in gauged supergravitiesPhys. Rev. D2006731040362006PhRvD..73j4036C2224733[hep-th/0510081] [INSPIRE] ChowDDKCvetičMLüHPopeCNExtremal Black Hole/CFT Correspondence in (Gauged) SupergravitiesPhys. Rev. D2009792009PhRvD..79h4018C2505604[arXiv:0812.2918] [INSPIRE] CvetičMGibbonsGWPopeCNUniversal Area Product Formulae for Rotating and Charged Black Holes in Four and Higher DimensionsPhys. Rev. Lett.20111061213012011PhRvL.106l1301C27859721255.83065[arXiv:1011.0008] [INSPIRE] AshtekarADasSAsymptotically Anti-de Sitter space-times: Conserved quantitiesClass. Quant. Grav.200017L172000CQGra..17L..17A0943.83023[hep-th/9911230] [INSPIRE] TomizawaSNozawaMSupersymmetric black lenses in five dimensionsPhys. Rev. D2016942016PhRvD..94d4037T3702396[arXiv:1606.06643] [INSPIRE] MyersRCPerryMJBlack holes in higher dimensional space-timesAnn. Phys.19861723041986AnPhy.172..304M8682950601.53081 WuDWuPNull hypersurface caustics for high dimensional superentropic black holesPhys. Rev. D20211031040202021PhRvD.103j4020W4276996[arXiv:2104.10476] [INSPIRE] HawkingSWBlack holes in general relativityCommun. Math. Phys.1972251521972CMaPh..25..152H293962[INSPIRE] AshtekarAMagnonAAsymptotically anti-de Sitter space-timesClass. Quant. Grav.19841L391984CQGra...1L..39A758508[INSPIRE] KunduriHKLuciettiJBlack lenses in string theoryPhys. Rev. D2016942016PhRvD..94f4007K3710304[arXiv:1605.01545] [INSPIRE] ChowDDKEqual charge black holes and seven dimensional gauged supergravityClass. Quant. Grav.2008251750102008CQGra..25q5010C24306791149.83330[arXiv:0711.1975] [INSPIRE] ChowDDKCharged rotating black holes in six-dimensional gauged supergravityClass. Quant. Grav.2010272010CQGra..27f5004C25963571185.83028[arXiv:0808.2728] [INSPIRE] CvetičMLüHPopeCNGauged six-dimensional supergravity from massive type IIAPhys. Rev. Lett.19998352261999PhRvL..83.5226C17357690949.83067[hep-th/9906221] [INSPIRE] ChenWLüHPopeCNGeneral Kerr-NUT-AdS metrics in all dimensionsClass. Quant. Grav.20062353232006CQGra..23.5323C22567501100.83006[hep-th/0604125] [INSPIRE] NodaSOngYCNull Hypersurface Caustics, Closed Null Curves, and Super-EntropyPhys. Rev. D20211032021PhRvD.103b4053N4212463[arXiv:2009.13448] [INSPIRE] R. B. Mann, Pair production of topological anti-de Sitter black holes, Class. Quant. Grav.14 (1997) L109 [gr-qc/9607071] [INSPIRE]. HennigarRAMannRBKubizňákDEntropy Inequality Violations from Ultraspinning Black HolesPhys. Rev. Lett.20151152015PhRvL.115c1101H[arXiv:1411.4309] [INSPIRE] DavidMNianJPando ZayasLAGravitational Cardy Limit and AdS Black Hole EntropyJHEP2020110412020JHEP...11..041D42042441456.83040[arXiv:2005.10251] [INSPIRE] EmparanRReallHSA Rotating black ring solution in five-dimensionsPhys. Rev. Lett.2002881011012002PhRvL..88j1101E1901280[hep-th/0110260] [INSPIRE] J. P. S. Lemos, Cylindrical black hole in general relativity, Phys. Lett. B353 (1995) 46 [gr-qc/9404041] [INSPIRE]. AppelsMCuspineraLGregoryRKrtoušPKubizňákDAre “Superentropic” black holes superentropic?JHEP2020021952020JHEP...02..195A4089086[arXiv:1911.12817] [INSPIRE] AbbottLFDeserSStability of Gravity with a Cosmological ConstantNucl. Phys. B1982195761982NuPhB.195...76A0900.53033[INSPIRE] GoldsteinKJejjalaVLeiYvan LeuvenSLiWProbing the EVH limit of supersymmetric AdS black holesJHEP2020021542020JHEP...02..154G40891271435.83085[arXiv:1910.14293] [INSPIRE] KlemmDFour-dimensional black holes with unusual horizonsPhys. Rev. D2014892014PhRvD..89h4007K[arXiv:1401.3107] [INSPIRE] FlathmannKWassermannNGeodesic equations for particles and light in the black spindle spacetimeJ. Math. Phys.2020611225042020JMP....61l2504F41916381455.83005[arXiv:1912.03974] [INSPIRE] TomizawaSOkudaTAsymptotically flat multiblack lensesPhys. Rev. D2017952017PhRvD..95f4021T3788384[arXiv:1701.06402] [INSPIRE] JohnsonCVInstability of super-entropic black holes in extended thermodynamicsMod. Phys. Lett. A20203520500982020MPLA...3550098J40925161435.83090[arXiv:1906.00993] [INSPIRE] TomizawaSMulticharged black lensPhys. Rev. D20191002019PhRvD.100b4056T4016833[arXiv:1905.07748] [INSPIRE] GnecchiAHristovKKlemmDToldoCVaughanORotating black holes in 4d gauged supergravityJHEP2014011272014JHEP...01..127G31716271333.83080[arXiv:1311.1795] [INSPIRE] HennigarRAKubizňákDMannRBMusokeNUltraspinning limits and super-entropic black holesJHEP2015060962015JHEP...06..096H33702391388.83461[arXiv:1504.07529] [INSPIRE] ChowDDKSymmetries of supergravity black holesClass. Quant. Grav.2010272050092010CQGra..27t5009C27252171202.83121[arXiv:0811.1264] [INSPIRE] ImseisMTNAl BalushiAMannRBNull hypersurfaces in Kerr-Newman-AdS black hole and super-entropic black hole spacetimesClass. Quant. Grav.2021382021CQGra..38d5018I420431907419361[arXiv:2007.04354] [INSPIRE] NoorbakhshSMGhominejadMUltra-Spinning Gauged Supergravity Black Holes and their Kerr/CFT CorrespondencePhys. Rev. D2017952017PhRvD..95d6002N3783909[arXiv:1611.02324] [INSPIRE] BirminghamDTopological black holes in Anti-de Sitter spaceClass. Quant. Grav.19991611971999CQGra..16.1197B16961490933.83025[hep-th/9808032] [INSPIRE] R. B. Mann, Topological black holes: Outside looking in, Annals Israel Phys. Soc.13 (1997) 311 [gr-qc/9709039] [INSPIRE]. TomizawaSCharged black lens in de Sitter spacePhys. Rev. D2018972018PhRvD..97d4001T3799292[arXiv:1712.05132] [INSPIRE] NoorbakhshSMVahidiniaMHExtremal Vanishing Horizon Kerr-AdS Black Holes at Ultraspinning LimitJHEP2018010422018JHEP...01..042N37642331384.83028[arXiv:1708.08654] [INSPIRE] TomizawaSKaluza-Klein black lens in five dimensionsPhys. Rev. D2018982018PhRvD..98b4012T3921651[arXiv:1803.11470] [INSPIRE] R.-G. Cai and Y.-Z. Zhang, Black plane solutions in four-dimensional space-times, Phys. Rev. D54 (1996) 4891 [gr-qc/9609065] [INSPIRE]. ChongZWCvetičMLüHPopeCNFive-dimensional gauged supergravity black holes with independent rotation parametersPhys. Rev. D2005722005PhRvD..72d1901C2175300[hep-th/0505112] [INSPIRE] S. M. Noorbakhsh and M. Ghominejad, Higher Dimensional Charged AdS Black Holes at Ultra-spinning Limit and Their 2d CFT Duals, arXiv:1702.03448 [INSPIRE]. CvetičMGibbonsGWKubizňákDPopeCNBlack Hole Enthalpy and an Entropy Inequality for the Thermodynamic VolumePhys. Rev. D2011842011PhRvD..84b4037C[arXiv:1012.2888] [INSPIRE] SinamuliMMannRBSuper-Entropic Black Holes and the Kerr-CFT CorrespondenceJHEP2016081482016JHEP...08..148S35641841390.83224[arXiv:1512.07597] [INSPIRE] D Wu (17073_CR29) 2020; 102 CV Johnson (17073_CR31) 2020; 35 SM Noorbakhsh (17073_CR28) 2018; 01 S Tomizawa (17073_CR8) 2017; 95 M Cvetič (17073_CR43) 2011; 106 HK Kunduri (17073_CR6) 2016; 94 M Appels (17073_CR21) 2020; 02 HK Kunduri (17073_CR5) 2014; 113 S Tomizawa (17073_CR11) 2019; 100 A Ashtekar (17073_CR50) 2000; 17 ZW Chong (17073_CR52) 2005; 72 SM Noorbakhsh (17073_CR26) 2017; 95 17073_CR14 17073_CR13 17073_CR12 S Tomizawa (17073_CR10) 2018; 98 BP Dolan (17073_CR23) 2013; 87 17073_CR16 DDK Chow (17073_CR42) 2010; 27 17073_CR15 DDK Chow (17073_CR41) 2009; 79 A Gnecchi (17073_CR18) 2014; 01 A Ashtekar (17073_CR49) 1984; 1 M Cvetič (17073_CR22) 2011; 84 RA Hennigar (17073_CR19) 2015; 115 17073_CR27 W Chen (17073_CR46) 2006; 23 R Emparan (17073_CR2) 2002; 88 RA Hennigar (17073_CR24) 2015; 06 LF Abbott (17073_CR51) 1982; 195 RC Myers (17073_CR3) 1986; 172 D Wu (17073_CR30) 2021; 103 K Flathmann (17073_CR35) 2020; 61 D Wu (17073_CR38) 2021; 103 S Tomizawa (17073_CR7) 2016; 94 M Cvetič (17073_CR47) 1999; 83 CV Johnson (17073_CR32) 2020; 101 Z-M Xu (17073_CR34) 2020; 807 SW Hawking (17073_CR1) 1972; 25 S Tomizawa (17073_CR9) 2018; 97 DDK Chow (17073_CR39) 2010; 27 S Noda (17073_CR37) 2021; 103 DDK Chow (17073_CR40) 2008; 25 MTN Imseis (17073_CR36) 2021; 38 D Wu (17073_CR33) 2020; 101 W Chen (17073_CR48) 2006; 73 K Goldstein (17073_CR44) 2020; 02 M David (17073_CR45) 2020; 11 M Sinamuli (17073_CR25) 2016; 08 D Klemm (17073_CR20) 2014; 89 Y Chen (17073_CR4) 2008; 78 D Birmingham (17073_CR17) 1999; 16 |
References_xml | – reference: DolanBPKastorDKubizňákDMannRBTraschenJThermodynamic Volumes and Isoperimetric Inequalities for de Sitter Black HolesPhys. Rev. D2013871040172013PhRvD..87j4017D[arXiv:1301.5926] [INSPIRE] – reference: ChongZWCvetičMLüHPopeCNFive-dimensional gauged supergravity black holes with independent rotation parametersPhys. Rev. D2005722005PhRvD..72d1901C2175300[hep-th/0505112] [INSPIRE] – reference: EmparanRReallHSA Rotating black ring solution in five-dimensionsPhys. Rev. Lett.2002881011012002PhRvL..88j1101E1901280[hep-th/0110260] [INSPIRE] – reference: ChenYTeoEA Rotating black lens solution in five dimensionsPhys. Rev. D2008782008PhRvD..78f4062C2470329[arXiv:0808.0587] [INSPIRE] – reference: L. Vanzo, Black holes with unusual topology, Phys. Rev. D56 (1997) 6475 [gr-qc/9705004] [INSPIRE]. – reference: R. B. Mann, Topological black holes: Outside looking in, Annals Israel Phys. Soc.13 (1997) 311 [gr-qc/9709039] [INSPIRE]. – reference: KunduriHKLuciettiJBlack lenses in string theoryPhys. Rev. D2016942016PhRvD..94f4007K3710304[arXiv:1605.01545] [INSPIRE] – reference: AshtekarADasSAsymptotically Anti-de Sitter space-times: Conserved quantitiesClass. Quant. Grav.200017L172000CQGra..17L..17A0943.83023[hep-th/9911230] [INSPIRE] – reference: FlathmannKWassermannNGeodesic equations for particles and light in the black spindle spacetimeJ. Math. Phys.2020611225042020JMP....61l2504F41916381455.83005[arXiv:1912.03974] [INSPIRE] – reference: TomizawaSKaluza-Klein black lens in five dimensionsPhys. Rev. D2018982018PhRvD..98b4012T3921651[arXiv:1803.11470] [INSPIRE] – reference: ChenWLüHPopeCNMass of rotating black holes in gauged supergravitiesPhys. Rev. D2006731040362006PhRvD..73j4036C2224733[hep-th/0510081] [INSPIRE] – reference: WuDWuS-QWuPYuHAspects of the dyonic Kerr-Sen-AdS4black hole and its ultraspinning versionPhys. Rev. D20211032021PhRvD.103d4014W[arXiv:2010.13518] [INSPIRE] – reference: ImseisMTNAl BalushiAMannRBNull hypersurfaces in Kerr-Newman-AdS black hole and super-entropic black hole spacetimesClass. Quant. Grav.2021382021CQGra..38d5018I420431907419361[arXiv:2007.04354] [INSPIRE] – reference: R. B. Mann, Pair production of topological anti-de Sitter black holes, Class. Quant. Grav.14 (1997) L109 [gr-qc/9607071] [INSPIRE]. – reference: NoorbakhshSMGhominejadMUltra-Spinning Gauged Supergravity Black Holes and their Kerr/CFT CorrespondencePhys. Rev. D2017952017PhRvD..95d6002N3783909[arXiv:1611.02324] [INSPIRE] – reference: ChowDDKCharged rotating black holes in six-dimensional gauged supergravityClass. Quant. Grav.2010272010CQGra..27f5004C25963571185.83028[arXiv:0808.2728] [INSPIRE] – reference: TomizawaSNozawaMSupersymmetric black lenses in five dimensionsPhys. Rev. D2016942016PhRvD..94d4037T3702396[arXiv:1606.06643] [INSPIRE] – reference: J. P. S. Lemos, Cylindrical black hole in general relativity, Phys. Lett. B353 (1995) 46 [gr-qc/9404041] [INSPIRE]. – reference: GnecchiAHristovKKlemmDToldoCVaughanORotating black holes in 4d gauged supergravityJHEP2014011272014JHEP...01..127G31716271333.83080[arXiv:1311.1795] [INSPIRE] – reference: TomizawaSCharged black lens in de Sitter spacePhys. Rev. D2018972018PhRvD..97d4001T3799292[arXiv:1712.05132] [INSPIRE] – reference: BirminghamDTopological black holes in Anti-de Sitter spaceClass. Quant. Grav.19991611971999CQGra..16.1197B16961490933.83025[hep-th/9808032] [INSPIRE] – reference: ChenWLüHPopeCNGeneral Kerr-NUT-AdS metrics in all dimensionsClass. Quant. Grav.20062353232006CQGra..23.5323C22567501100.83006[hep-th/0604125] [INSPIRE] – reference: MyersRCPerryMJBlack holes in higher dimensional space-timesAnn. Phys.19861723041986AnPhy.172..304M8682950601.53081 – reference: JohnsonCVMartinVLSveskoAMicroscopic description of thermodynamic volume in extended black hole thermodynamicsPhys. Rev. D20201012020PhRvD.101h6006J4103175[arXiv:1911.05286] [INSPIRE] – reference: GoldsteinKJejjalaVLeiYvan LeuvenSLiWProbing the EVH limit of supersymmetric AdS black holesJHEP2020021542020JHEP...02..154G40891271435.83085[arXiv:1910.14293] [INSPIRE] – reference: KlemmDFour-dimensional black holes with unusual horizonsPhys. Rev. D2014892014PhRvD..89h4007K[arXiv:1401.3107] [INSPIRE] – reference: WuDWuPNull hypersurface caustics for high dimensional superentropic black holesPhys. Rev. D20211031040202021PhRvD.103j4020W4276996[arXiv:2104.10476] [INSPIRE] – reference: AshtekarAMagnonAAsymptotically anti-de Sitter space-timesClass. Quant. Grav.19841L391984CQGra...1L..39A758508[INSPIRE] – reference: NoorbakhshSMVahidiniaMHExtremal Vanishing Horizon Kerr-AdS Black Holes at Ultraspinning LimitJHEP2018010422018JHEP...01..042N37642331384.83028[arXiv:1708.08654] [INSPIRE] – reference: HennigarRAKubizňákDMannRBMusokeNUltraspinning limits and super-entropic black holesJHEP2015060962015JHEP...06..096H33702391388.83461[arXiv:1504.07529] [INSPIRE] – reference: TomizawaSMulticharged black lensPhys. Rev. D20191002019PhRvD.100b4056T4016833[arXiv:1905.07748] [INSPIRE] – reference: DavidMNianJPando ZayasLAGravitational Cardy Limit and AdS Black Hole EntropyJHEP2020110412020JHEP...11..041D42042441456.83040[arXiv:2005.10251] [INSPIRE] – reference: HawkingSWBlack holes in general relativityCommun. Math. Phys.1972251521972CMaPh..25..152H293962[INSPIRE] – reference: KunduriHKLuciettiJSupersymmetric Black Holes with Lens-Space TopologyPhys. Rev. Lett.20141132111012014PhRvL.113u1101K[arXiv:1408.6083] [INSPIRE] – reference: AbbottLFDeserSStability of Gravity with a Cosmological ConstantNucl. Phys. B1982195761982NuPhB.195...76A0900.53033[INSPIRE] – reference: TomizawaSOkudaTAsymptotically flat multiblack lensesPhys. Rev. D2017952017PhRvD..95f4021T3788384[arXiv:1701.06402] [INSPIRE] – reference: ChowDDKEqual charge black holes and seven dimensional gauged supergravityClass. Quant. Grav.2008251750102008CQGra..25q5010C24306791149.83330[arXiv:0711.1975] [INSPIRE] – reference: XuZ-MThe correspondence between thermodynamic curvature and isoperimetric theorem from ultraspinning black holePhys. Lett. B202080713552941094351473.83060[arXiv:2006.00665] [INSPIRE] – reference: WuDWuPYuHWuS-QAre ultraspinning Kerr-Sen-AdS4black holes always superentropic?Phys. Rev. D20201022020PhRvD.102d4007W4146189[arXiv:2007.02224] [INSPIRE] – reference: ChowDDKSymmetries of supergravity black holesClass. Quant. Grav.2010272050092010CQGra..27t5009C27252171202.83121[arXiv:0811.1264] [INSPIRE] – reference: HennigarRAMannRBKubizňákDEntropy Inequality Violations from Ultraspinning Black HolesPhys. Rev. Lett.20151152015PhRvL.115c1101H[arXiv:1411.4309] [INSPIRE] – reference: CvetičMGibbonsGWPopeCNUniversal Area Product Formulae for Rotating and Charged Black Holes in Four and Higher DimensionsPhys. Rev. Lett.20111061213012011PhRvL.106l1301C27859721255.83065[arXiv:1011.0008] [INSPIRE] – reference: CvetičMGibbonsGWKubizňákDPopeCNBlack Hole Enthalpy and an Entropy Inequality for the Thermodynamic VolumePhys. Rev. D2011842011PhRvD..84b4037C[arXiv:1012.2888] [INSPIRE] – reference: JohnsonCVInstability of super-entropic black holes in extended thermodynamicsMod. Phys. Lett. A20203520500982020MPLA...3550098J40925161435.83090[arXiv:1906.00993] [INSPIRE] – reference: R.-G. Cai and Y.-Z. Zhang, Black plane solutions in four-dimensional space-times, Phys. Rev. D54 (1996) 4891 [gr-qc/9609065] [INSPIRE]. – reference: AppelsMCuspineraLGregoryRKrtoušPKubizňákDAre “Superentropic” black holes superentropic?JHEP2020021952020JHEP...02..195A4089086[arXiv:1911.12817] [INSPIRE] – reference: NodaSOngYCNull Hypersurface Caustics, Closed Null Curves, and Super-EntropyPhys. Rev. D20211032021PhRvD.103b4053N4212463[arXiv:2009.13448] [INSPIRE] – reference: WuDWuPYuHWuS-QNotes on the thermodynamics of superentropic AdS black holesPhys. Rev. D20201012020PhRvD.101b4057W4068662[arXiv:1912.03576] [INSPIRE] – reference: S. M. Noorbakhsh and M. Ghominejad, Higher Dimensional Charged AdS Black Holes at Ultra-spinning Limit and Their 2d CFT Duals, arXiv:1702.03448 [INSPIRE]. – reference: SinamuliMMannRBSuper-Entropic Black Holes and the Kerr-CFT CorrespondenceJHEP2016081482016JHEP...08..148S35641841390.83224[arXiv:1512.07597] [INSPIRE] – reference: ChowDDKCvetičMLüHPopeCNExtremal Black Hole/CFT Correspondence in (Gauged) SupergravitiesPhys. Rev. D2009792009PhRvD..79h4018C2505604[arXiv:0812.2918] [INSPIRE] – reference: CvetičMLüHPopeCNGauged six-dimensional supergravity from massive type IIAPhys. Rev. Lett.19998352261999PhRvL..83.5226C17357690949.83067[hep-th/9906221] [INSPIRE] – volume: 89 year: 2014 ident: 17073_CR20 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.084007 – volume: 79 year: 2009 ident: 17073_CR41 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.79.084018 – volume: 115 year: 2015 ident: 17073_CR19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.031101 – volume: 103 start-page: 104020 year: 2021 ident: 17073_CR38 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.103.104020 – volume: 83 start-page: 5226 year: 1999 ident: 17073_CR47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.5226 – volume: 1 start-page: L39 year: 1984 ident: 17073_CR49 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/1/4/002 – ident: 17073_CR14 doi: 10.1016/0370-2693(95)00533-Q – volume: 98 year: 2018 ident: 17073_CR10 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.98.024012 – volume: 103 year: 2021 ident: 17073_CR30 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.103.044014 – volume: 73 start-page: 104036 year: 2006 ident: 17073_CR48 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.73.104036 – volume: 807 start-page: 135529 year: 2020 ident: 17073_CR34 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2020.135529 – volume: 97 year: 2018 ident: 17073_CR9 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.97.044001 – volume: 102 year: 2020 ident: 17073_CR29 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.044007 – volume: 88 start-page: 101101 year: 2002 ident: 17073_CR2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.101101 – volume: 78 year: 2008 ident: 17073_CR4 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.78.064062 – ident: 17073_CR12 doi: 10.1103/PhysRevD.56.6475 – volume: 17 start-page: L17 year: 2000 ident: 17073_CR50 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/17/2/101 – volume: 87 start-page: 104017 year: 2013 ident: 17073_CR23 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.87.104017 – volume: 61 start-page: 122504 year: 2020 ident: 17073_CR35 publication-title: J. Math. Phys. doi: 10.1063/5.0011432 – volume: 01 start-page: 042 year: 2018 ident: 17073_CR28 publication-title: JHEP doi: 10.1007/JHEP01(2018)042 – volume: 94 year: 2016 ident: 17073_CR7 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.94.044037 – volume: 101 year: 2020 ident: 17073_CR33 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.024057 – volume: 172 start-page: 304 year: 1986 ident: 17073_CR3 publication-title: Ann. Phys. doi: 10.1016/0003-4916(86)90186-7 – volume: 106 start-page: 121301 year: 2011 ident: 17073_CR43 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.121301 – volume: 195 start-page: 76 year: 1982 ident: 17073_CR51 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(82)90049-9 – volume: 02 start-page: 195 year: 2020 ident: 17073_CR21 publication-title: JHEP doi: 10.1007/JHEP02(2020)195 – ident: 17073_CR15 doi: 10.1103/PhysRevD.54.4891 – volume: 84 year: 2011 ident: 17073_CR22 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.84.024037 – volume: 38 year: 2021 ident: 17073_CR36 publication-title: Class. Quant. Grav. doi: 10.1088/1361-6382/abd3e0 – volume: 95 year: 2017 ident: 17073_CR26 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.95.046002 – volume: 113 start-page: 211101 year: 2014 ident: 17073_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.211101 – volume: 06 start-page: 096 year: 2015 ident: 17073_CR24 publication-title: JHEP doi: 10.1007/JHEP06(2015)096 – volume: 95 year: 2017 ident: 17073_CR8 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.95.064021 – volume: 11 start-page: 041 year: 2020 ident: 17073_CR45 publication-title: JHEP doi: 10.1007/JHEP11(2020)041 – volume: 02 start-page: 154 year: 2020 ident: 17073_CR44 publication-title: JHEP doi: 10.1007/JHEP02(2020)154 – volume: 72 year: 2005 ident: 17073_CR52 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.72.041901 – volume: 25 start-page: 152 year: 1972 ident: 17073_CR1 publication-title: Commun. Math. Phys. doi: 10.1007/BF01877517 – volume: 01 start-page: 127 year: 2014 ident: 17073_CR18 publication-title: JHEP doi: 10.1007/JHEP01(2014)127 – volume: 16 start-page: 1197 year: 1999 ident: 17073_CR17 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/16/4/009 – volume: 08 start-page: 148 year: 2016 ident: 17073_CR25 publication-title: JHEP doi: 10.1007/JHEP08(2016)148 – volume: 100 year: 2019 ident: 17073_CR11 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.024056 – volume: 94 year: 2016 ident: 17073_CR6 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.94.064007 – ident: 17073_CR27 – volume: 101 year: 2020 ident: 17073_CR32 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.086006 – ident: 17073_CR13 doi: 10.1088/0264-9381/14/5/007 – volume: 27 start-page: 205009 year: 2010 ident: 17073_CR42 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/27/20/205009 – ident: 17073_CR16 – volume: 103 year: 2021 ident: 17073_CR37 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.103.024053 – volume: 27 year: 2010 ident: 17073_CR39 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/27/6/065004 – volume: 35 start-page: 2050098 year: 2020 ident: 17073_CR31 publication-title: Mod. Phys. Lett. A doi: 10.1142/S0217732320500984 – volume: 23 start-page: 5323 year: 2006 ident: 17073_CR46 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/23/17/013 – volume: 25 start-page: 175010 year: 2008 ident: 17073_CR40 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/25/17/175010 |
SSID | ssj0015190 |
Score | 2.4483495 |
Snippet | A
bstract
By taking the ultra-spinning limit as a simple solution-generating trick, a novel class of ultra-spinning charged black hole solutions has been... By taking the ultra-spinning limit as a simple solution-generating trick, a novel class of ultra-spinning charged black hole solutions has been constructed... Abstract By taking the ultra-spinning limit as a simple solution-generating trick, a novel class of ultra-spinning charged black hole solutions has been... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Black Holes Black Holes in String Theory Classical and Quantum Gravitation Coordinate transformations Elementary Particles High energy physics Inequality Parameters Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory Rotation Spacetime String Theory Supergravity |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbthkIvpU-6bRJ06CE5qLEsybJPpQkblkBDKF3ITei5XQhex94lOfZv5O_ll1TjlTekkF5tyZgZzUMz0vch9CXEKEdtbojURhAO3UNDS0uyvBLRadoYs-E28o_zYjrjZ5fiMhXcunSscvCJvaN2Sws18qOYprNKgCv91lwTYI2C7mqi0HiOdqILLssR2jmenF_83PYRYn6SDYA-mTw6m04uKD2IG356mDH6KBb1kP2P8sx_WqN9xDl9jV6lVBF_3-j2DXrm67foRX9k03bvkJpdrVpNumbRsw7hk9_Lm_s_dx02UJPDwHvb4UWNu8UtcYDhv8HfwHO9nnuHu3XjWyAfimk41rXDfcsAN1CcbwFl9T2anU5-nUxJoksgllO5IjrPLNem8FJWrpBZ3DNHTTjPijIIx6to20IEKl3uKykKbblx1ocqRmwqQpDsAxrVy9p_RFj7aNfGyqCZ4ME6zWxeeeFKFoIT3I7R10FwyiYscaC0uFIDCvJG0gokraKkx-hgO6HZwGg8PfQYNLEdBvjX_YNlO1fJnJRmvGBc5lkZKM_jLkdQ6bl1wlBXau3HaHfQo0pG2amHJTRGh4NuH14_8T-f_v-pz-gljOyvJ4pdNFq1a78X85SV2U-L8S9P0eeV priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals (Freely Accessible) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsNAEF5EEbyIv1itsgcPeohms7vZ5KjFUgTFg4Xelv2tBYmladGjr-Hr-STupEnFigdvIZmFMJPJN7Oz8w1Cpz6gHDGJjoTSPGJQPdQkM1Gc5Dz8NE3AbOhGvrtPe312O-CDmiQJemGW6veXt72bB0LOQopOzmPol17jhAqY0dBJO4tyQQhD4oa35_eiH5BTMfP_CCeXKqAVsHS30GYdEeKruQm30YordtB6dTLTlLtI9p-nExWV41E1XAh3nl5eP98_Sqxh6w3DeNsSjwpcjt4iC1T9c5oNPFSzobO4nI3dBGYMhWgbq8LiqjKAx7AHPwEy1T3U7948dnpRPRUhMoyIaaSS2DClUydEblMRh9Q4KNw6mmaeW5YHF-bcE2ETlwueKsO0Nc7nAZgJ917QfbRavBTuAGHlgvtqI7yinHljFTVJ7rjNqPeWM9NCF43ipKkpw2FyxbNsyI7nmpagaRk03UJniwXjOVvG36LXYImFGNBcVzeC9WXtNVJRllImkjjzhCUhmeFEOGYs18RmSrkWajd2lLXvlTIkdDTnALotdN7Y9vvxH-9z-A_ZI7QBl1VLIm-j1elk5o5DbDLVJ9V3-QWcvd2J priority: 102 providerName: Springer Nature |
Title | Ultra-spinning Chow’s black holes in six-dimensional gauged supergravity and their properties |
URI | https://link.springer.com/article/10.1007/JHEP11(2021)031 https://www.proquest.com/docview/2593954718 https://doaj.org/article/a346347208f142049517e4cd5b1d8aae |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtSqGX0ifdJll06CE5uLFeln1Mlt0ugYZQupCb0DNdCM6y3qU99m_07-WXdMaPpCmEXnox2JaNmBnpm9FI3xDyIQHKMc9dpq1TmcTsoWOlz3JeKZg0PWA2nkb-fFbMF_L0Ql38UeoL94R19MCd4I6skIWQmudlYpKDP6uYjtIH5VgorY04-wLmDcFUnz8AvyQfiHxyfXQ6n54zdgCBPjvMBbuHQS1V_z3_8q-UaIs0sxfkee8i0uOuay_Jo1i_Ik_brZq-eU3M4mqztlmzWrbVhujk2_X3m5-_GupwLY5ivduGLmvaLH9kAbn7O94Nemm3lzHQZruKayw6BO43tXWgbaqArnBRfo3sqm_IYjb9OplnfZmEzEumN5nluZfWFVHrKhQ6h1gZNBCiKMqkgqxgTCuVmA48VloV1ksXfEwVIDVTKWnxluzU13V8R6iNMJ6d18kKJZMPVnheRRVKkVJQ0o_Ix0Fwxvcc4ljK4soM7MedpA1K2oCkR-Tg9oNVR5_xcNMT1MRtM-S9bh-ANZjeGsy_rGFE9gY9mn4wNgYiPFEpROERORx0e_f6gf68_x_92SXP8H_t4UW1R3Y2623cBy9m48bkcTn7NCZPTqZn51_gbsIlXovJuDVluC748W_I__Lt |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYILKpsYaMEHkNpDaLzFyaFCUDpMV3HoSL0Zx8swUpUJyYwKN_5G_wQ_il-CX5apilRuvSa2Zb3dfn7vQ-iND16OGJpHUuci4pA9zElqophmIhhNE3w2VCMfnySjMT84E2cr6HdfCwPPKnub2BhqOzNwR74dwnSWCTCl78vvEaBGQXa1h9BoxeLQ_bwIR7Z6Z_9T4O9bSod7p7ujqEMViAwnch5pGhuu88RJmdlExuFoGTZsHUtSLyzPggoI4Ym01GVSJNrw3Brns-DYiPBesrDuHXSXs-DJoTJ9-HmZtQjRUNy3D4rl9sFo7wshmzS40a2YkWuerwEIuBbV_pOIbfzbcA097AJT_KGVpEdoxRWP0b3mgaipnyA1Pp9XOqrLaYNxhHe_zS7-_LqscQ43gBhQdms8LXA9_RFZQAxou33giV5MnMX1onQVQB2FoB_rwuImQYFLSAVU0NP1KRrfChmfodViVrjnCGsXrEhupNdMcG-sZoZmTtiUeW8FNwP0riecMl3ncgDQOFd9z-WW0goorQKlB2hzOaFsm3bcPPQjcGI5DLptNx9m1UR1yqs04wnjksapJ5yGM5Ug0nFjRU5sqrUboPWej6ozAbW6EtgB2up5e_X7hv28-P9Sr9H90enxkTraPzl8iR7ArKYwUqyj1Xm1cBshQprnrxqxxOjrbevBX_mvI4Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anUC8IK5aYYAfQNoeQmPHjpMHhNjWqtugqhCV9mYcX0qlKQ1Jq8Ebf4O_ws_hl2Dn0mlI422viW1Z53587PMBvLLOy2FFsoDLjAXUVw8znKggJClzRlM5n-1fI3-cxOMZPTljZ1vwu3sL469VdjaxNtR6qfwZ-cCF6VHKvCkd2PZaxPRo9K74FngEKV9p7eA0GhE5NT8uXPpWvT0-crx-Tcho-PlwHLQIA4GimK8CSUJFZRYbzlMd89ClmW7z2kRxYpmmqVMHxizmmpiUs1gqmmllbOqcHGbW8sitewu2uc-KerB9MJxMP21qGC42CrtmQiEfnIyHU4z3iHOq-2GEr_jBGi7gSoz7T1m29naj-3CvDVPR-0auHsCWyR_C7fq6qKoegZidr0oZVMWiRjxCh1-XF39-_qpQ5s8DkcfcrdAiR9Xie6A9fkDT-wPN5XpuNKrWhSk98JFLAZDMNarLFajwhYHSd3h9DLMbIeQT6OXL3OwAksbZlExxKyNGrdIyUiQ1TCeRtZpR1Yc3HeGEavuYeziNc9F1YG4oLTylhaN0H_Y2E4qmhcf1Qw88JzbDfO_t-sOynItWlYWMaBxRTsLEYkpchsUwN1RplmGdSGn6sNvxUbQGoRKX4tuH_Y63l7-v2c_T_y_1Eu44HRAfjienz-Cun1S_kmS70FuVa_PchUur7EUrlwi-3LQq_AVDCCkY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-spinning+Chow%E2%80%99s+black+holes+in+six-dimensional+gauged+supergravity+and+their+properties&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Di+Wu&rft.au=Shuang-Qing+Wu&rft.date=2021-11-05&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2021&rft.issue=11&rft.spage=1&rft.epage=24&rft_id=info:doi/10.1007%2FJHEP11%282021%29031&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a346347208f142049517e4cd5b1d8aae |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |