Heterozygous splice mutation in PIK3R1 causes human immunodeficiency with lymphoproliferation due to dominant activation of PI3K
Class IA phosphatidylinositol 3-kinases (PI3K), which generate PIP3 as a signal for cell growth and proliferation, exist as an intracellular complex of a catalytic subunit bound to a regulatory subunit. We and others have previously reported that heterozygous mutations in PIK3CD encoding the p110δ c...
Saved in:
Published in | The Journal of experimental medicine Vol. 211; no. 13; pp. 2537 - 2547 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The Rockefeller University Press
15.12.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Class IA phosphatidylinositol 3-kinases (PI3K), which generate PIP3 as a signal for cell growth and proliferation, exist as an intracellular complex of a catalytic subunit bound to a regulatory subunit. We and others have previously reported that heterozygous mutations in PIK3CD encoding the p110δ catalytic PI3K subunit cause a unique disorder termed p110δ-activating mutations causing senescent T cells, lymphadenopathy, and immunodeficiency (PASLI) disease. We report four patients from three families with a similar disease who harbor a recently reported heterozygous splice site mutation in PIK3R1, which encodes the p85α, p55α, and p50α regulatory PI3K subunits. These patients suffer from recurrent sinopulmonary infections and lymphoproliferation, exhibit hyperactive PI3K signaling, and have prominent expansion and skewing of peripheral blood CD8+ T cells toward terminally differentiated senescent effector cells with short telomeres. The PIK3R1 splice site mutation causes skipping of an exon, corresponding to loss of amino acid residues 434–475 in the inter-SH2 domain. The mutant p85α protein is expressed at low levels in patient cells and activates PI3K signaling when overexpressed in T cells from healthy subjects due to qualitative and quantitative binding changes in the p85α–p110δ complex and failure of the C-terminal region to properly inhibit p110δ catalytic activity. |
---|---|
AbstractList | Lucas et al. identify humans with a gain-of-function mutation in PIK3R1, encoding the p85 alpha subunit of PI3K. The splice site mutation causes in-frame skipping of exon 11, resulting in altered p85 alpha association with p110 delta that stabilizes the catalytic subunit but fails to properly inhibit catalytic activity. The patients have immunodeficiency and lymphoproliferation with skewing of CD8+ T cells toward terminally differentiated and senescent effector cells that have shortened telomeres. Class IA phosphatidylinositol 3-kinases (PI3K), which generate PIP3 as a signal for cell growth and proliferation, exist as an intracellular complex of a catalytic subunit bound to a regulatory subunit. We and others have previously reported that heterozygous mutations in PIK3CD encoding the p110 delta catalytic PI3K subunit cause a unique disorder termed p110 delta -activating mutations causing senescent T cells, lymphadenopathy, and immunodeficiency (PASLI) disease. We report four patients from three families with a similar disease who harbor a recently reported heterozygous splice site mutation in PIK3R1, which encodes the p85 alpha , p55 alpha , and p50 alpha regulatory PI3K subunits. These patients suffer from recurrent sinopulmonary infections and lymphoproliferation, exhibit hyperactive PI3K signaling, and have prominent expansion and skewing of peripheral blood CD8+ T cells toward terminally differentiated senescent effector cells with short telomeres. The PIK3R1 splice site mutation causes skipping of an exon, corresponding to loss of amino acid residues 434-475 in the inter-SH2 domain. The mutant p85 alpha protein is expressed at low levels in patient cells and activates PI3K signaling when overexpressed in T cells from healthy subjects due to qualitative and quantitative binding changes in the p85 alpha -p110 delta complex and failure of the C-terminal region to properly inhibit p110 delta catalytic activity. Class IA phosphatidylinositol 3-kinases (PI3K), which generate PIP3 as a signal for cell growth and proliferation, exist as an intracellular complex of a catalytic subunit bound to a regulatory subunit. We and others have previously reported that heterozygous mutations in PIK3CD encoding the p110δ catalytic PI3K subunit cause a unique disorder termed p110δ-activating mutations causing senescent T cells, lymphadenopathy, and immunodeficiency (PASLI) disease. We report four patients from three families with a similar disease who harbor a recently reported heterozygous splice site mutation in PIK3R1, which encodes the p85α, p55α, and p50α regulatory PI3K subunits. These patients suffer from recurrent sinopulmonary infections and lymphoproliferation, exhibit hyperactive PI3K signaling, and have prominent expansion and skewing of peripheral blood CD8(+) T cells toward terminally differentiated senescent effector cells with short telomeres. The PIK3R1 splice site mutation causes skipping of an exon, corresponding to loss of amino acid residues 434-475 in the inter-SH2 domain. The mutant p85α protein is expressed at low levels in patient cells and activates PI3K signaling when overexpressed in T cells from healthy subjects due to qualitative and quantitative binding changes in the p85α-p110δ complex and failure of the C-terminal region to properly inhibit p110δ catalytic activity.Class IA phosphatidylinositol 3-kinases (PI3K), which generate PIP3 as a signal for cell growth and proliferation, exist as an intracellular complex of a catalytic subunit bound to a regulatory subunit. We and others have previously reported that heterozygous mutations in PIK3CD encoding the p110δ catalytic PI3K subunit cause a unique disorder termed p110δ-activating mutations causing senescent T cells, lymphadenopathy, and immunodeficiency (PASLI) disease. We report four patients from three families with a similar disease who harbor a recently reported heterozygous splice site mutation in PIK3R1, which encodes the p85α, p55α, and p50α regulatory PI3K subunits. These patients suffer from recurrent sinopulmonary infections and lymphoproliferation, exhibit hyperactive PI3K signaling, and have prominent expansion and skewing of peripheral blood CD8(+) T cells toward terminally differentiated senescent effector cells with short telomeres. The PIK3R1 splice site mutation causes skipping of an exon, corresponding to loss of amino acid residues 434-475 in the inter-SH2 domain. The mutant p85α protein is expressed at low levels in patient cells and activates PI3K signaling when overexpressed in T cells from healthy subjects due to qualitative and quantitative binding changes in the p85α-p110δ complex and failure of the C-terminal region to properly inhibit p110δ catalytic activity. Lucas et al. identify humans with a gain-of-function mutation in PIK3R1 , encoding the p85α subunit of PI3K. The splice site mutation causes in-frame skipping of exon 11, resulting in altered p85α association with p110δ that stabilizes the catalytic subunit but fails to properly inhibit catalytic activity. The patients have immunodeficiency and lymphoproliferation with skewing of CD8 + T cells toward terminally differentiated and senescent effector cells that have shortened telomeres. Class IA phosphatidylinositol 3-kinases (PI3K), which generate PIP 3 as a signal for cell growth and proliferation, exist as an intracellular complex of a catalytic subunit bound to a regulatory subunit. We and others have previously reported that heterozygous mutations in PIK3CD encoding the p110δ catalytic PI3K subunit cause a unique disorder termed p110δ-activating mutations causing senescent T cells, lymphadenopathy, and immunodeficiency (PASLI) disease. We report four patients from three families with a similar disease who harbor a recently reported heterozygous splice site mutation in PIK3R1 , which encodes the p85α, p55α, and p50α regulatory PI3K subunits. These patients suffer from recurrent sinopulmonary infections and lymphoproliferation, exhibit hyperactive PI3K signaling, and have prominent expansion and skewing of peripheral blood CD8 + T cells toward terminally differentiated senescent effector cells with short telomeres. The PIK3R1 splice site mutation causes skipping of an exon, corresponding to loss of amino acid residues 434–475 in the inter-SH2 domain. The mutant p85α protein is expressed at low levels in patient cells and activates PI3K signaling when overexpressed in T cells from healthy subjects due to qualitative and quantitative binding changes in the p85α–p110δ complex and failure of the C-terminal region to properly inhibit p110δ catalytic activity. Class IA phosphatidylinositol 3-kinases (PI3K), which generate PIP3 as a signal for cell growth and proliferation, exist as an intracellular complex of a catalytic subunit bound to a regulatory subunit. We and others have previously reported that heterozygous mutations in PIK3CD encoding the p110δ catalytic PI3K subunit cause a unique disorder termed p110δ-activating mutations causing senescent T cells, lymphadenopathy, and immunodeficiency (PASLI) disease. We report four patients from three families with a similar disease who harbor a recently reported heterozygous splice site mutation in PIK3R1, which encodes the p85α, p55α, and p50α regulatory PI3K subunits. These patients suffer from recurrent sinopulmonary infections and lymphoproliferation, exhibit hyperactive PI3K signaling, and have prominent expansion and skewing of peripheral blood CD8+ T cells toward terminally differentiated senescent effector cells with short telomeres. The PIK3R1 splice site mutation causes skipping of an exon, corresponding to loss of amino acid residues 434–475 in the inter-SH2 domain. The mutant p85α protein is expressed at low levels in patient cells and activates PI3K signaling when overexpressed in T cells from healthy subjects due to qualitative and quantitative binding changes in the p85α–p110δ complex and failure of the C-terminal region to properly inhibit p110δ catalytic activity. |
Author | Lucas, Carrie L. Pozos, Tamara Matthews, Helen Barlan, Isil Zhang, Yu Wang, Ying Richards, Michael Ozen, Ahmet Su, Helen C. Wang, Xiaochuan Venida, Anthony Butrick, Morgan Hughes, Jason McElwee, Joshua Lenardo, Michael J. Rao, V. Koneti Price, Susan Biancalana, Matthew |
AuthorAffiliation | 9 Pediatric Allergy and Immunology, Marmara University, Istanbul 34660, Turkey 5 Department of Clinical Immunology, Children’s Hospital of Fudan University, Shanghai 200433, China 6 Merck Research Laboratories, Merck & Co, Boston, MA 02115 1 Molecular Development of the Immune System Section, Laboratory of Immunology ; 2 NIAID Clinical Genomics Program ; 3 Human Immunological Diseases Unit, Laboratory of Host Defenses ; and 4 Intramural Clinical Management and Operations Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 7 Hematology/Oncology Clinic and 8 Infectious Diseases and Immunology, Children’s Hospitals and Clinics of Minnesota, Minneapolis, MN 55404 |
AuthorAffiliation_xml | – name: 6 Merck Research Laboratories, Merck & Co, Boston, MA 02115 – name: 7 Hematology/Oncology Clinic and 8 Infectious Diseases and Immunology, Children’s Hospitals and Clinics of Minnesota, Minneapolis, MN 55404 – name: 9 Pediatric Allergy and Immunology, Marmara University, Istanbul 34660, Turkey – name: 1 Molecular Development of the Immune System Section, Laboratory of Immunology ; 2 NIAID Clinical Genomics Program ; 3 Human Immunological Diseases Unit, Laboratory of Host Defenses ; and 4 Intramural Clinical Management and Operations Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 – name: 5 Department of Clinical Immunology, Children’s Hospital of Fudan University, Shanghai 200433, China |
Author_xml | – sequence: 1 givenname: Carrie L. surname: Lucas fullname: Lucas, Carrie L. – sequence: 2 givenname: Yu surname: Zhang fullname: Zhang, Yu – sequence: 3 givenname: Anthony surname: Venida fullname: Venida, Anthony – sequence: 4 givenname: Ying surname: Wang fullname: Wang, Ying – sequence: 5 givenname: Jason surname: Hughes fullname: Hughes, Jason – sequence: 6 givenname: Joshua surname: McElwee fullname: McElwee, Joshua – sequence: 7 givenname: Morgan surname: Butrick fullname: Butrick, Morgan – sequence: 8 givenname: Helen surname: Matthews fullname: Matthews, Helen – sequence: 9 givenname: Susan surname: Price fullname: Price, Susan – sequence: 10 givenname: Matthew surname: Biancalana fullname: Biancalana, Matthew – sequence: 11 givenname: Xiaochuan surname: Wang fullname: Wang, Xiaochuan – sequence: 12 givenname: Michael surname: Richards fullname: Richards, Michael – sequence: 13 givenname: Tamara surname: Pozos fullname: Pozos, Tamara – sequence: 14 givenname: Isil surname: Barlan fullname: Barlan, Isil – sequence: 15 givenname: Ahmet surname: Ozen fullname: Ozen, Ahmet – sequence: 16 givenname: V. Koneti surname: Rao fullname: Rao, V. Koneti – sequence: 17 givenname: Helen C. surname: Su fullname: Su, Helen C. – sequence: 18 givenname: Michael J. surname: Lenardo fullname: Lenardo, Michael J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25488983$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFrFDEUh4NU7Hb15lly9ODUl2RmkrkIUqwtLSjSe8hm3nRTJsk6ybSsJ__0RqYtKoKnQN6XH7-X74gchBiQkNcMjhmo-v0N-mMOrGay6Z6RFWtqqLpGqAOyAuC8YgDykByldAOFqpv2BTnkTa1Up8SK_DzDjFP8sb-Oc6JpNzqL1M_ZZBcDdYF-Pb8Q3xi1Zk6Y6Hb2plx7P4fY4-Csw2D39M7lLR33freNuymObsBpCehnpDnSPnoXTMjU2Oxul1EcSra4eEmeD2ZM-OrhXJOr009XJ2fV5ZfP5ycfLytbNsuV4aD6AVXbCmC26RSi5bKFDbetBFRMyaEDWQswEqCxbc8F74wZesM3Sog1-bDE7uaNx95iyJMZ9W5y3kx7HY3Tf06C2-rreKtr3kpesxLw9iFgit9nTFl7lyyOowlYvk4zBaVcI0H-H22FbFrRFQFr8ub3Wk99HgUV4N0C2CmmNOHwhDDQv_zr4l8_-i84_wu3bnFZlnLjvx_dA31MtdE |
CitedBy_id | crossref_primary_10_1038_s41598_017_03689_7 crossref_primary_10_1016_j_jaci_2016_01_026 crossref_primary_10_1007_s10875_016_0306_1 crossref_primary_10_1146_annurev_immunol_041015_055620 crossref_primary_10_1111_cei_12706 crossref_primary_10_1038_nrrheum_2017_198 crossref_primary_10_1097_MD_0000000000032816 crossref_primary_10_1016_j_coi_2021_04_010 crossref_primary_10_1016_j_molmed_2015_04_002 crossref_primary_10_1097_ACI_0000000000000947 crossref_primary_10_3389_fimmu_2019_00753 crossref_primary_10_3324_haematol_2020_263251 crossref_primary_10_3389_fped_2021_688022 crossref_primary_10_1159_000515390 crossref_primary_10_1097_INF_0000000000004737 crossref_primary_10_1016_j_jaci_2018_08_011 crossref_primary_10_1101_cshperspect_a036996 crossref_primary_10_1158_1078_0432_CCR_21_4272 crossref_primary_10_1016_j_jaci_2017_03_026 crossref_primary_10_3389_fimmu_2019_02000 crossref_primary_10_3389_fped_2024_1494945 crossref_primary_10_1007_s10238_023_01259_y crossref_primary_10_3389_fped_2021_652405 crossref_primary_10_1111_imr_12725 crossref_primary_10_1111_imr_12728 crossref_primary_10_1111_imcb_12169 crossref_primary_10_1016_j_clim_2016_09_011 crossref_primary_10_1002_pbc_27260 crossref_primary_10_1016_j_clim_2015_04_014 crossref_primary_10_1182_blood_2017_08_801191 crossref_primary_10_3389_fimmu_2024_1508780 crossref_primary_10_1016_j_cellimm_2019_103989 crossref_primary_10_1073_pnas_1617244114 crossref_primary_10_1016_j_jaci_2019_03_017 crossref_primary_10_1007_s10875_016_0305_2 crossref_primary_10_1016_j_jaci_2021_04_036 crossref_primary_10_1016_j_jaci_2024_11_038 crossref_primary_10_1007_s10875_017_0407_5 crossref_primary_10_1042_BST20170467 crossref_primary_10_1084_jem_20221020 crossref_primary_10_3389_fimmu_2021_708908 crossref_primary_10_1016_j_clim_2015_12_008 crossref_primary_10_1016_j_clim_2018_06_011 crossref_primary_10_3389_fimmu_2018_02172 crossref_primary_10_1016_j_jff_2022_105296 crossref_primary_10_1038_s41379_018_0200_x crossref_primary_10_1111_pai_14245 crossref_primary_10_3389_fimmu_2018_01758 crossref_primary_10_3390_cancers13143517 crossref_primary_10_3389_fmolb_2019_00118 crossref_primary_10_3389_fimmu_2018_00543 crossref_primary_10_3389_fimmu_2021_790455 crossref_primary_10_1016_j_jaci_2015_04_049 crossref_primary_10_1084_jem_20180010 crossref_primary_10_3389_fped_2017_00049 crossref_primary_10_1016_j_microc_2022_107961 crossref_primary_10_1007_s10875_024_01705_w crossref_primary_10_1016_j_molimm_2017_04_005 crossref_primary_10_3390_jcm9030818 crossref_primary_10_1159_000503997 crossref_primary_10_1158_0008_5472_CAN_20_0911 crossref_primary_10_1002_ijc_33002 crossref_primary_10_15406_jpnc_2023_13_00485 crossref_primary_10_1016_j_rare_2024_100028 crossref_primary_10_1016_j_coi_2015_09_001 crossref_primary_10_3389_fimmu_2024_1499415 crossref_primary_10_3389_fimmu_2018_00966 crossref_primary_10_1038_bcj_2017_15 crossref_primary_10_3389_fimmu_2019_02325 crossref_primary_10_1053_j_seminoncol_2016_11_011 crossref_primary_10_1007_s12325_024_03066_7 crossref_primary_10_3389_fped_2018_00121 crossref_primary_10_1016_j_virol_2015_02_040 crossref_primary_10_1016_j_clim_2021_108664 crossref_primary_10_1007_s11926_019_0854_5 crossref_primary_10_1016_j_jaci_2015_02_037 crossref_primary_10_1007_s10875_020_00843_1 crossref_primary_10_1111_imr_13067 crossref_primary_10_3389_fped_2019_00353 crossref_primary_10_1093_cei_uxae107 crossref_primary_10_1016_j_annonc_2022_03_011 crossref_primary_10_7554_eLife_94420 crossref_primary_10_1016_j_jaci_2016_09_040 crossref_primary_10_3389_fimmu_2019_02593 crossref_primary_10_1080_1744666X_2018_1424627 crossref_primary_10_3389_fped_2021_703056 crossref_primary_10_3389_fped_2021_703853 crossref_primary_10_1038_s41467_019_12311_5 crossref_primary_10_1007_s40272_016_0175_3 crossref_primary_10_1016_j_coi_2021_09_008 crossref_primary_10_1093_infdis_jiaa232 crossref_primary_10_1007_s10875_019_00612_9 crossref_primary_10_1016_j_jaci_2017_01_004 crossref_primary_10_3389_fimmu_2017_02005 crossref_primary_10_1016_j_it_2023_12_006 crossref_primary_10_1016_j_jaci_2023_06_015 crossref_primary_10_1016_j_jbior_2019_100657 crossref_primary_10_1182_blood_2019002072 crossref_primary_10_1002_pbc_28091 crossref_primary_10_1016_j_anai_2018_07_043 crossref_primary_10_3389_fimmu_2019_02589 crossref_primary_10_4049_jimmunol_2000326 crossref_primary_10_1136_jmedgenet_2015_103690 crossref_primary_10_1182_blood_2022018546 crossref_primary_10_1111_bcp_14509 crossref_primary_10_26508_lsa_201900506 crossref_primary_10_1007_s10875_017_0462_y crossref_primary_10_15690_vramn15828 crossref_primary_10_1016_j_clim_2017_01_004 crossref_primary_10_1002_JLB_2MIR0817_349R crossref_primary_10_18786_2072_0505_2023_51_049 crossref_primary_10_3389_fped_2021_615724 crossref_primary_10_1016_j_yexcr_2021_112824 crossref_primary_10_1097_BOR_0000000000000207 crossref_primary_10_3389_fped_2021_697706 crossref_primary_10_1080_1744666X_2021_1945443 crossref_primary_10_3390_pathogens13030259 crossref_primary_10_1016_j_tranon_2018_11_003 crossref_primary_10_1080_15412555_2024_2379811 crossref_primary_10_1111_nyas_12937 crossref_primary_10_18632_oncotarget_4884 crossref_primary_10_2174_1871530319666190225114739 crossref_primary_10_3389_fimmu_2017_01824 crossref_primary_10_3389_fimmu_2023_1279652 crossref_primary_10_3389_fimmu_2018_00369 crossref_primary_10_33393_grhta_2025_3199 crossref_primary_10_1007_s12026_021_09179_3 crossref_primary_10_1016_j_str_2019_11_013 crossref_primary_10_1097_ACI_0000000000000319 crossref_primary_10_1038_s41573_022_00582_5 crossref_primary_10_1016_j_clim_2015_10_008 crossref_primary_10_1089_dna_2020_6222 crossref_primary_10_1093_immadv_ltae009 crossref_primary_10_3389_fimmu_2023_1208567 crossref_primary_10_18632_aging_104074 crossref_primary_10_1016_j_molcel_2018_08_005 crossref_primary_10_1038_nri_2016_93 crossref_primary_10_1182_hematology_2019000051 crossref_primary_10_1016_j_coi_2015_01_005 crossref_primary_10_1007_s12016_019_08738_9 crossref_primary_10_3389_fimmu_2020_00338 crossref_primary_10_1016_j_jaci_2023_03_026 crossref_primary_10_1111_pai_12585 crossref_primary_10_1016_j_jaci_2016_03_022 crossref_primary_10_1186_s40348_023_00167_1 crossref_primary_10_1111_imcb_12345 crossref_primary_10_4049_jimmunol_1501375 crossref_primary_10_1182_blood_2019000929 crossref_primary_10_1097_ACI_0000000000000217 crossref_primary_10_1016_j_rare_2025_100071 crossref_primary_10_1016_j_coph_2015_05_017 crossref_primary_10_1016_j_clim_2016_01_009 crossref_primary_10_3389_fped_2022_839111 crossref_primary_10_1097_MPH_0000000000002214 crossref_primary_10_1172_JCI162137 crossref_primary_10_3390_genes14010187 crossref_primary_10_3389_fimmu_2018_00338 crossref_primary_10_1007_s10875_023_01626_0 crossref_primary_10_1172_jci_insight_88766 crossref_primary_10_7705_biomedica_7436 crossref_primary_10_18632_aging_204533 crossref_primary_10_3389_fimmu_2018_01423 crossref_primary_10_1016_j_jaip_2023_01_048 crossref_primary_10_3389_fimmu_2018_00575 crossref_primary_10_12688_f1000research_26928_1 crossref_primary_10_1007_s13721_024_00444_7 crossref_primary_10_1182_hematology_2024000537 crossref_primary_10_12688_f1000research_10594_1 crossref_primary_10_1038_s41577_022_00701_8 crossref_primary_10_1002_ijc_32201 crossref_primary_10_1016_j_jim_2025_113818 crossref_primary_10_1016_j_jaci_2015_11_004 crossref_primary_10_3389_fimmu_2018_00446 crossref_primary_10_1080_25785826_2023_2210366 crossref_primary_10_3389_fimmu_2018_00568 crossref_primary_10_3389_fped_2023_1179788 crossref_primary_10_3389_fimmu_2018_00445 crossref_primary_10_1080_08820139_2020_1863982 crossref_primary_10_1186_s12935_023_03094_3 crossref_primary_10_1016_j_revmed_2021_03_328 crossref_primary_10_1038_bmt_2017_189 crossref_primary_10_3389_fimmu_2017_01221 crossref_primary_10_1016_j_jaip_2023_09_016 crossref_primary_10_3389_fped_2018_00402 crossref_primary_10_1016_j_jaci_2018_05_023 crossref_primary_10_1084_jem_20221105 crossref_primary_10_3389_fimmu_2018_00237 crossref_primary_10_1016_j_jaci_2016_03_055 crossref_primary_10_1186_s13023_024_03215_9 crossref_primary_10_3389_fimmu_2020_571321 crossref_primary_10_3389_fimmu_2020_00149 crossref_primary_10_1016_j_cell_2021_07_038 crossref_primary_10_1016_j_immuni_2017_06_005 crossref_primary_10_1182_blood_2021013164 crossref_primary_10_1016_j_clim_2021_108910 crossref_primary_10_1007_s10875_016_0281_6 crossref_primary_10_1016_j_semcancer_2024_08_004 crossref_primary_10_1016_j_humimm_2018_10_015 crossref_primary_10_7554_eLife_94420_3 crossref_primary_10_1016_j_jaci_2016_06_021 crossref_primary_10_1016_j_gendis_2019_09_015 crossref_primary_10_1182_bloodadvances_2023011000 crossref_primary_10_1111_pai_13634 crossref_primary_10_1016_j_clim_2017_03_004 crossref_primary_10_7759_cureus_62983 crossref_primary_10_3389_fimmu_2022_932715 crossref_primary_10_1038_s41423_020_00520_8 crossref_primary_10_1007_s10875_022_01218_4 crossref_primary_10_1007_s10875_020_00873_9 crossref_primary_10_1016_j_jaci_2023_09_032 crossref_primary_10_47671_TVG_77_21_080 |
Cites_doi | 10.1074/jbc.M305602200 10.1038/ng.2331 10.1182/blood-2013-11-538546 10.1073/pnas.0700373104 10.1128/MCB.25.5.1596-1607.2005 10.1002/j.1460-2075.1994.tb06289.x 10.1016/j.ajhg.2013.05.023 10.1073/pnas.1009652107 10.1128/MCB.18.3.1379 10.1016/j.ccr.2009.10.016 10.1182/blood-2013-11-537555 10.1016/S1470-2045(14)70052-X 10.1126/science.1164382 10.1002/ajmg.a.36552 10.1042/BST0350199 10.1007/s10875-014-0012-9 10.1016/j.ajhg.2013.06.005 10.1128/MCB.22.3.965-977.2002 10.1172/JCI0213305 10.1038/ng.2332 10.1038/nature07385 10.1038/ng.2329 10.1158/0008-5472.CAN-11-0549 10.1172/JCI75746 10.1126/science.1243292 10.1016/j.jaci.2014.02.020 10.1016/j.tibs.2005.02.008 10.1073/pnas.0607899103 10.1016/j.ajhg.2013.05.019 10.1016/j.gde.2009.11.002 10.1038/ni.2771 10.1038/81715 10.1016/j.str.2011.06.003 10.1186/1471-2350-15-51 10.1084/jem.20112533 10.1182/blood-2013-11-535047 10.1182/blood-2010-03-275305 |
ContentType | Journal Article |
Copyright | 2014 |
Copyright_xml | – notice: 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7T5 7U9 H94 5PM |
DOI | 10.1084/jem.20141759 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Immunology Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts Virology and AIDS Abstracts |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | PIK3R1 mutation augments PI3K signaling in new PID |
EISSN | 1540-9538 |
EndPage | 2547 |
ExternalDocumentID | PMC4267241 25488983 10_1084_jem_20141759 |
Genre | Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Intramural NIH HHS |
GroupedDBID | --- -~X 18M 29K 2WC 36B 4.4 53G 5GY 5RE 5VS AAYXX ABOCM ABZEH ACGFO ACNCT ACPRK ADBBV AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C45 CITATION CS3 D-I DIK DU5 E3Z EBS EJD EMB F5P F9R GX1 H13 HYE IH2 K-O KQ8 L7B N9A O5R O5S OK1 P2P P6G R.V RHI SJN TR2 TRP UHB W8F WOQ CGR CUY CVF ECM EIF NPM 7X8 7T5 7U9 H94 5PM |
ID | FETCH-LOGICAL-c417t-a208dfe866301c598eec2760b2c670e8187f907430a7005c6d2329aafda2b833 |
ISSN | 0022-1007 1540-9538 |
IngestDate | Thu Aug 21 18:10:33 EDT 2025 Thu Jul 10 19:35:29 EDT 2025 Fri Jul 11 13:07:20 EDT 2025 Thu Apr 03 07:00:40 EDT 2025 Thu Apr 24 23:00:32 EDT 2025 Tue Jul 01 03:30:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c417t-a208dfe866301c598eec2760b2c670e8187f907430a7005c6d2329aafda2b833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4267241 |
PMID | 25488983 |
PQID | 1637563998 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4267241 proquest_miscellaneous_1808665707 proquest_miscellaneous_1637563998 pubmed_primary_25488983 crossref_primary_10_1084_jem_20141759 crossref_citationtrail_10_1084_jem_20141759 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-12-15 |
PublicationDateYYYYMMDD | 2014-12-15 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of experimental medicine |
PublicationTitleAlternate | J Exp Med |
PublicationYear | 2014 |
Publisher | The Rockefeller University Press |
Publisher_xml | – name: The Rockefeller University Press |
References | Chudasama (2023072602034167800_bib7) 2013; 93 Vanhaesebroeck (2023072602034167800_bib34) 2005; 30 Crank (2023072602034167800_bib9) 2014; 34 Zhao (2023072602034167800_bib37) 2006; 103 Ueki (2023072602034167800_bib32) 2003; 278 Urick (2023072602034167800_bib33) 2011; 71 Dyment (2023072602034167800_bib12) 2013; 93 Lannutti (2023072602034167800_bib22) 2011; 117 Fruman (2023072602034167800_bib14) 2000; 26 Rivière (2023072602034167800_bib28) 2012; 44 Deau (2023072602034167800_bib10) 2014; 124 Keppler-Noreuil (2023072602034167800_bib20) 2014; 164 Mauvais-Jarvis (2023072602034167800_bib26) 2002; 109 Yu (2023072602034167800_bib36) 1998; 18 Lee (2023072602034167800_bib23) 2012; 44 Parsons (2023072602034167800_bib27) 2008; 321 Lindhurst (2023072602034167800_bib24) 2012; 44 Ueki (2023072602034167800_bib31) 2002; 22 Geering (2023072602034167800_bib15) 2007; 104 Geering (2023072602034167800_bib16) 2007; 35 Jaiswal (2023072602034167800_bib18) 2009; 16 Angulo (2023072602034167800_bib1) 2013; 342 Cancer Genome Atlas Research Network (2023072602034167800_bib6) 2008; 455 Bárcena (2023072602034167800_bib2) 2014; 15 Wong (2023072602034167800_bib35) 2010; 20 Kahl (2023072602034167800_bib19) 2014; 123 Sun (2023072602034167800_bib29) 2010; 107 Brachmann (2023072602034167800_bib3) 2005; 25 Flinn (2023072602034167800_bib13) 2014; 123 Kracker (2023072602034167800_bib21) 2014; 134 Thauvin-Robinet (2023072602034167800_bib30) 2013; 93 Conley (2023072602034167800_bib8) 2012; 209 Gilbert (2023072602034167800_bib17) 2014; 15 Burke (2023072602034167800_bib5) 2011; 19 Lucas (2023072602034167800_bib25) 2014; 15 Brown (2023072602034167800_bib4) 2014; 123 Dhand (2023072602034167800_bib11) 1994; 13 20959606 - Blood. 2011 Jan 13;117(2):591-4 11062485 - Nat Genet. 2000 Nov;26(3):379-82 11784871 - Mol Cell Biol. 2002 Feb;22(3):965-77 17470792 - Proc Natl Acad Sci U S A. 2007 May 8;104(19):7809-14 24610295 - J Clin Immunol. 2014 Apr;34(3):272-6 23810378 - Am J Hum Genet. 2013 Jul 11;93(1):141-9 8313896 - EMBO J. 1994 Feb 1;13(3):511-21 24615776 - Blood. 2014 May 29;123(22):3406-13 22729222 - Nat Genet. 2012 Aug;44(8):928-33 18772396 - Science. 2008 Sep 26;321(5897):1807-12 24782230 - Am J Med Genet A. 2014 Jul;164A(7):1713-33 24698326 - J Allergy Clin Immunol. 2014 Jul;134(1):233-6 21827948 - Structure. 2011 Aug 10;19(8):1127-37 19962665 - Cancer Cell. 2009 Dec 8;16(6):463-74 17060635 - Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16296-300 24136356 - Science. 2013 Nov 15;342(6160):866-71 24165795 - Nat Immunol. 2014 Jan;15(1):88-97 17371237 - Biochem Soc Trans. 2007 Apr;35(Pt 2):199-203 21478295 - Cancer Res. 2011 Jun 15;71(12):4061-7 15713620 - Mol Cell Biol. 2005 Mar;25(5):1596-607 11781359 - J Clin Invest. 2002 Jan;109(1):141-9 9488453 - Mol Cell Biol. 1998 Mar;18(3):1379-87 18772890 - Nature. 2008 Oct 23;455(7216):1061-8 20713702 - Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15547-52 22351933 - J Exp Med. 2012 Mar 12;209(3):463-70 20006486 - Curr Opin Genet Dev. 2010 Feb;20(1):87-90 24809089 - Lancet Oncol. 2014 Mar;15(3):e108 23810379 - Am J Hum Genet. 2013 Jul 11;93(1):150-7 24886349 - BMC Med Genet. 2014;15:51 22729224 - Nat Genet. 2012 Aug;44(8):934-40 23810382 - Am J Hum Genet. 2013 Jul 11;93(1):158-66 24615777 - Blood. 2014 May 29;123(22):3390-7 15817396 - Trends Biochem Sci. 2005 Apr;30(4):194-204 24615778 - Blood. 2014 May 29;123(22):3398-405 14504291 - J Biol Chem. 2003 Nov 28;278(48):48453-66 25133428 - J Clin Invest. 2014 Sep;124(9):3923-8 22729223 - Nat Genet. 2012 Aug;44(8):941-5 |
References_xml | – volume: 278 start-page: 48453 year: 2003 ident: 2023072602034167800_bib32 article-title: Positive and negative roles of p85α and p85β regulatory subunits of phosphoinositide 3-kinase in insulin signaling publication-title: J. Biol. Chem. doi: 10.1074/jbc.M305602200 – volume: 44 start-page: 934 year: 2012 ident: 2023072602034167800_bib28 article-title: De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes publication-title: Nat. Genet. doi: 10.1038/ng.2331 – volume: 123 start-page: 3406 year: 2014 ident: 2023072602034167800_bib13 article-title: Idelalisib, a selective inhibitor of phosphatidylinositol 3-kinase-δ, as therapy for previously treated indolent non-Hodgkin lymphoma publication-title: Blood. doi: 10.1182/blood-2013-11-538546 – volume: 104 start-page: 7809 year: 2007 ident: 2023072602034167800_bib15 article-title: Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.0700373104 – volume: 25 start-page: 1596 year: 2005 ident: 2023072602034167800_bib3 article-title: Phosphoinositide 3-kinase catalytic subunit deletion and regulatory subunit deletion have opposite effects on insulin sensitivity in mice publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.5.1596-1607.2005 – volume: 13 start-page: 511 year: 1994 ident: 2023072602034167800_bib11 article-title: PI 3-kinase: structural and functional analysis of intersubunit interactions publication-title: EMBO J. doi: 10.1002/j.1460-2075.1994.tb06289.x – volume: 93 start-page: 150 year: 2013 ident: 2023072602034167800_bib7 article-title: SHORT syndrome with partial lipodystrophy due to impaired phosphatidylinositol 3 kinase signaling publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2013.05.023 – volume: 107 start-page: 15547 year: 2010 ident: 2023072602034167800_bib29 article-title: Cancer-derived mutations in the regulatory subunit p85α of phosphoinositide 3-kinase function through the catalytic subunit p110α publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1009652107 – volume: 18 start-page: 1379 year: 1998 ident: 2023072602034167800_bib36 article-title: Regulation of the p85/p110 phosphatidylinositol 3′-kinase: stabilization and inhibition of the p110α catalytic subunit by the p85 regulatory subunit publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.18.3.1379 – volume: 16 start-page: 463 year: 2009 ident: 2023072602034167800_bib18 article-title: Somatic mutations in p85α promote tumorigenesis through class IA PI3K activation publication-title: Cancer Cell. doi: 10.1016/j.ccr.2009.10.016 – volume: 123 start-page: 3398 year: 2014 ident: 2023072602034167800_bib19 article-title: A phase 1 study of the PI3Kδ inhibitor idelalisib in patients with relapsed/refractory mantle cell lymphoma (MCL) publication-title: Blood. doi: 10.1182/blood-2013-11-537555 – volume: 15 start-page: e108 year: 2014 ident: 2023072602034167800_bib17 article-title: Idelalisib: targeting PI3Kδ in B-cell malignancies publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(14)70052-X – volume: 321 start-page: 1807 year: 2008 ident: 2023072602034167800_bib27 article-title: An integrated genomic analysis of human glioblastoma multiforme publication-title: Science. doi: 10.1126/science.1164382 – volume: 164 start-page: 1713 year: 2014 ident: 2023072602034167800_bib20 article-title: Clinical delineation and natural history of the PIK3CA-related overgrowth spectrum publication-title: Am. J. Med. Genet. A. doi: 10.1002/ajmg.a.36552 – volume: 35 start-page: 199 year: 2007 ident: 2023072602034167800_bib16 article-title: Regulation of class IA PI3Ks: is there a role for monomeric PI3K subunits? publication-title: Biochem. Soc. Trans. doi: 10.1042/BST0350199 – volume: 34 start-page: 272 year: 2014 ident: 2023072602034167800_bib9 article-title: Mutations in PIK3CD can cause hyper IgM syndrome (HIGM) associated with increased cancer susceptibility publication-title: J. Clin. Immunol. doi: 10.1007/s10875-014-0012-9 – volume: 93 start-page: 158 year: 2013 ident: 2023072602034167800_bib12 article-title: Mutations in PIK3R1 cause SHORT syndrome publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2013.06.005 – volume: 22 start-page: 965 year: 2002 ident: 2023072602034167800_bib31 article-title: Molecular balance between the regulatory and catalytic subunits of phosphoinositide 3-kinase regulates cell signaling and survival publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.22.3.965-977.2002 – volume: 109 start-page: 141 year: 2002 ident: 2023072602034167800_bib26 article-title: Reduced expression of the murine p85α subunit of phosphoinositide 3-kinase improves insulin signaling and ameliorates diabetes publication-title: J. Clin. Invest. doi: 10.1172/JCI0213305 – volume: 44 start-page: 928 year: 2012 ident: 2023072602034167800_bib24 article-title: Mosaic overgrowth with fibroadipose hyperplasia is caused by somatic activating mutations in PIK3CA publication-title: Nat. Genet. doi: 10.1038/ng.2332 – volume: 455 start-page: 1061 year: 2008 ident: 2023072602034167800_bib6 article-title: Comprehensive genomic characterization defines human glioblastoma genes and core pathways publication-title: Nature. doi: 10.1038/nature07385 – volume: 44 start-page: 941 year: 2012 ident: 2023072602034167800_bib23 article-title: De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly publication-title: Nat. Genet. doi: 10.1038/ng.2329 – volume: 71 start-page: 4061 year: 2011 ident: 2023072602034167800_bib33 article-title: PIK3R1 (p85α) is somatically mutated at high frequency in primary endometrial cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-0549 – volume: 124 start-page: 3923 year: 2014 ident: 2023072602034167800_bib10 article-title: A human immunodeficiency caused by mutations in the PIK3R1 gene publication-title: J. Clin. Invest. doi: 10.1172/JCI75746 – volume: 342 start-page: 866 year: 2013 ident: 2023072602034167800_bib1 article-title: Phosphoinositide 3-kinase δ gene mutation predisposes to respiratory infection and airway damage publication-title: Science. doi: 10.1126/science.1243292 – volume: 134 start-page: 233 year: 2014 ident: 2023072602034167800_bib21 article-title: Occurrence of B-cell lymphomas in patients with activated phosphoinositide 3-kinase δ syndrome publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2014.02.020 – volume: 30 start-page: 194 year: 2005 ident: 2023072602034167800_bib34 article-title: Signalling by PI3K isoforms: insights from gene-targeted mice publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2005.02.008 – volume: 103 start-page: 16296 year: 2006 ident: 2023072602034167800_bib37 article-title: The p110α isoform of PI3K is essential for proper growth factor signaling and oncogenic transformation publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.0607899103 – volume: 93 start-page: 141 year: 2013 ident: 2023072602034167800_bib30 article-title: PIK3R1 mutations cause syndromic insulin resistance with lipoatrophy publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2013.05.019 – volume: 20 start-page: 87 year: 2010 ident: 2023072602034167800_bib35 article-title: Targeting the PI3K signaling pathway in cancer publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2009.11.002 – volume: 15 start-page: 88 year: 2014 ident: 2023072602034167800_bib25 article-title: Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency publication-title: Nat. Immunol. doi: 10.1038/ni.2771 – volume: 26 start-page: 379 year: 2000 ident: 2023072602034167800_bib14 article-title: Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85α publication-title: Nat. Genet. doi: 10.1038/81715 – volume: 19 start-page: 1127 year: 2011 ident: 2023072602034167800_bib5 article-title: Dynamics of the phosphoinositide 3-kinase p110δ interaction with p85α and membranes reveals aspects of regulation distinct from p110α publication-title: Structure. doi: 10.1016/j.str.2011.06.003 – volume: 15 start-page: 51 year: 2014 ident: 2023072602034167800_bib2 article-title: Exome sequencing identifies a novel mutation in PIK3R1 as the cause of SHORT syndrome publication-title: BMC Med. Genet. doi: 10.1186/1471-2350-15-51 – volume: 209 start-page: 463 year: 2012 ident: 2023072602034167800_bib8 article-title: Agammaglobulinemia and absent B lineage cells in a patient lacking the p85α subunit of PI3K publication-title: J. Exp. Med. doi: 10.1084/jem.20112533 – volume: 123 start-page: 3390 year: 2014 ident: 2023072602034167800_bib4 article-title: Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110δ, for relapsed/refractory chronic lymphocytic leukemia publication-title: Blood. doi: 10.1182/blood-2013-11-535047 – volume: 117 start-page: 591 year: 2011 ident: 2023072602034167800_bib22 article-title: CAL-101, a p110δ selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability publication-title: Blood. doi: 10.1182/blood-2010-03-275305 – reference: 9488453 - Mol Cell Biol. 1998 Mar;18(3):1379-87 – reference: 20006486 - Curr Opin Genet Dev. 2010 Feb;20(1):87-90 – reference: 20959606 - Blood. 2011 Jan 13;117(2):591-4 – reference: 11062485 - Nat Genet. 2000 Nov;26(3):379-82 – reference: 19962665 - Cancer Cell. 2009 Dec 8;16(6):463-74 – reference: 20713702 - Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15547-52 – reference: 24615778 - Blood. 2014 May 29;123(22):3398-405 – reference: 17060635 - Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16296-300 – reference: 21478295 - Cancer Res. 2011 Jun 15;71(12):4061-7 – reference: 18772890 - Nature. 2008 Oct 23;455(7216):1061-8 – reference: 24165795 - Nat Immunol. 2014 Jan;15(1):88-97 – reference: 21827948 - Structure. 2011 Aug 10;19(8):1127-37 – reference: 22729224 - Nat Genet. 2012 Aug;44(8):934-40 – reference: 24136356 - Science. 2013 Nov 15;342(6160):866-71 – reference: 25133428 - J Clin Invest. 2014 Sep;124(9):3923-8 – reference: 24809089 - Lancet Oncol. 2014 Mar;15(3):e108 – reference: 24615776 - Blood. 2014 May 29;123(22):3406-13 – reference: 8313896 - EMBO J. 1994 Feb 1;13(3):511-21 – reference: 18772396 - Science. 2008 Sep 26;321(5897):1807-12 – reference: 23810379 - Am J Hum Genet. 2013 Jul 11;93(1):150-7 – reference: 23810382 - Am J Hum Genet. 2013 Jul 11;93(1):158-66 – reference: 15817396 - Trends Biochem Sci. 2005 Apr;30(4):194-204 – reference: 22729223 - Nat Genet. 2012 Aug;44(8):941-5 – reference: 15713620 - Mol Cell Biol. 2005 Mar;25(5):1596-607 – reference: 24615777 - Blood. 2014 May 29;123(22):3390-7 – reference: 24782230 - Am J Med Genet A. 2014 Jul;164A(7):1713-33 – reference: 14504291 - J Biol Chem. 2003 Nov 28;278(48):48453-66 – reference: 24886349 - BMC Med Genet. 2014;15:51 – reference: 24698326 - J Allergy Clin Immunol. 2014 Jul;134(1):233-6 – reference: 22729222 - Nat Genet. 2012 Aug;44(8):928-33 – reference: 11781359 - J Clin Invest. 2002 Jan;109(1):141-9 – reference: 24610295 - J Clin Immunol. 2014 Apr;34(3):272-6 – reference: 11784871 - Mol Cell Biol. 2002 Feb;22(3):965-77 – reference: 22351933 - J Exp Med. 2012 Mar 12;209(3):463-70 – reference: 23810378 - Am J Hum Genet. 2013 Jul 11;93(1):141-9 – reference: 17371237 - Biochem Soc Trans. 2007 Apr;35(Pt 2):199-203 – reference: 17470792 - Proc Natl Acad Sci U S A. 2007 May 8;104(19):7809-14 |
SSID | ssj0014456 |
Score | 2.5757225 |
Snippet | Class IA phosphatidylinositol 3-kinases (PI3K), which generate PIP3 as a signal for cell growth and proliferation, exist as an intracellular complex of a... Lucas et al. identify humans with a gain-of-function mutation in PIK3R1, encoding the p85 alpha subunit of PI3K. The splice site mutation causes in-frame... Lucas et al. identify humans with a gain-of-function mutation in PIK3R1 , encoding the p85α subunit of PI3K. The splice site mutation causes in-frame skipping... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2537 |
SubjectTerms | Adolescent Adult Alternative Splicing - genetics Antibody Formation Base Sequence Catalytic Domain CD8-Positive T-Lymphocytes - immunology Cell Differentiation Child, Preschool Enzyme Activation Exons - genetics Female Genes, Dominant Heterozygote Humans Immunologic Deficiency Syndromes - enzymology Immunologic Deficiency Syndromes - genetics Immunologic Deficiency Syndromes - immunology Lymphoproliferative Disorders - enzymology Lymphoproliferative Disorders - genetics Lymphoproliferative Disorders - immunology Male Molecular Sequence Data Mutation - genetics Pedigree Phosphatidylinositol 3-Kinases - chemistry Phosphatidylinositol 3-Kinases - genetics Protein Structure, Tertiary Sequence Deletion Signal Transduction Telomere - metabolism TOR Serine-Threonine Kinases - antagonists & inhibitors TOR Serine-Threonine Kinases - metabolism |
Title | Heterozygous splice mutation in PIK3R1 causes human immunodeficiency with lymphoproliferation due to dominant activation of PI3K |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25488983 https://www.proquest.com/docview/1637563998 https://www.proquest.com/docview/1808665707 https://pubmed.ncbi.nlm.nih.gov/PMC4267241 |
Volume | 211 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwGLXKkBAviDsdFxkJnqqAGyex84jQpo6VgVCGylNkO86oNJJpTZC2B8RP57PjXFoKGrxElWs5ac6pfT77uyD0IpY043FOPcZD7QWchF6sIunJSEoRKQ42kXWQPYpmx8G7RbgYjX4Mo0sq-Updbo0r-R9UoQ1wNVGy_4BsNyg0wGfAF66AMFyvhPHM-LKUlxcnxo91ZU6i9eRb7fwHlzC7HRzST9OJEvVKr1w5vqUJCCkzbTJH2LBLuxN7egGolmemhE-uHSmy2pbVyMrGW8am3fjeKcyPB_RwqGz7GDOrbtcqB2we4M9NpTXnbgKm-qTbgO62r7_UbdNnXSwzMchz0B8BuK7t4uv2LqY2Q2ITvTmIJTB-GsP52HezryMeHU6vYZMhxi3VYNyyrcsA4YFZBrRJNTANQCHF_XLXHvEffUj3j-fzNNlbJNfQdR_MDBssvuhchMDWtNV_u6d0gRMw-uvh2OuS5jc7ZdPddqBfktvoloMGv2lYdAeNdHEX3XjvkLmHfg7JhBsy4ZZMeFnghky4IRO2ZMKbZMKGTHgLmTCQCVclbsmEezLhMseGTPdRsr-XvJ15rjyHp-BnV57wCc9yzUGzkqkKY6618llEpK8iRjQoQZabrRdKBIO5XkUZqPdYiDwTvuSUPkA7RVnoRwhnfqB8GZvcejxQjMmQKyaIkLHQVER6jCbtC06VS11vKqicptaFggcpwJG2cIzRy673WZOy5Q_9nrdYpTCnmoMyUWh4xynYKCw00p3_pQ8nJlUkI2yMHjb4dncDXnIeczpGbA35roPJ6b7-TbH8anO7g2BmIKp3r3Dfx-hm_596gnaq81o_BYVcyWeWxr8Af83D-Q |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterozygous+splice+mutation+in+PIK3R1+causes+human+immunodeficiency+with+lymphoproliferation+due+to+dominant+activation+of+PI3K&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Lucas%2C+Carrie+L&rft.au=Zhang%2C+Yu&rft.au=Venida%2C+Anthony&rft.au=Wang%2C+Ying&rft.date=2014-12-15&rft.issn=0022-1007&rft.volume=211&rft.issue=13&rft.spage=2537&rft.epage=2547&rft_id=info:doi/10.1084%2Fjem.20141759&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon |