Human Movement Training With a Cable Driven ARm EXoskeleton (CAREX)
In recent years, the authors have proposed lightweight exoskeleton designs for upper arm rehabilitation using multi-stage cable-driven parallel mechanism. Previously, the authors have demonstrated via experiments that it is possible to apply "assist-as-needed" forces in all directions at t...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 23; no. 1; pp. 84 - 92 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, the authors have proposed lightweight exoskeleton designs for upper arm rehabilitation using multi-stage cable-driven parallel mechanism. Previously, the authors have demonstrated via experiments that it is possible to apply "assist-as-needed" forces in all directions at the end-effector with such an exoskeleton acting on an anthropomorphic machine arm. A human-exoskeleton interface was also presented to show the feasibility of CAREX on human subjects. The goals of this paper are to 1) further address issues when CAREX is mounted on human subjects, e.g., generation of continuous cable tension trajectories 2) demonstrate the feasibility and effectiveness of CAREX on movement training of healthy human subjects and a stroke patient. In this research, CAREX is rigidly attached to an arm orthosis worn by human subjects. The cable routing points are optimized to achieve a relatively large "tensioned" static workspace. A new cable tension planner based on quadratic programming is used to generate continuous cable tension trajectory for smooth motion. Experiments were carried out on eight healthy subjects. The experimental results show that CAREX can help the subjects move closer to a prescribed circular path using the force fields generated by the exoskeleton. The subjects also adapt to the path shortly after training. CAREX was also evaluated on a stroke patient to test the feasibility of its use on patients with neural impairment. The results show that the patient was able to move closer to a prescribed straight line path with the "assist-as-needed" force field. |
---|---|
AbstractList | In recent years, the authors have proposed lightweight exoskeleton designs for upper arm rehabilitation using multi-stage cable-driven parallel mechanism. Previously, the authors have demonstrated via experiments that it is possible to apply "assist-as-needed" forces in all directions at the end-effector with such an exoskeleton acting on an anthropomorphic machine arm. A human-exoskeleton interface was also presented to show the feasibility of CAREX on human subjects. The goals of this paper are to 1) further address issues when CAREX is mounted on human subjects, e.g., generation of continuous cable tension trajectories 2) demonstrate the feasibility and effectiveness of CAREX on movement training of healthy human subjects and a stroke patient. In this research, CAREX is rigidly attached to an arm orthosis worn by human subjects. The cable routing points are optimized to achieve a relatively large "tensioned" static workspace. A new cable tension planner based on quadratic programming is used to generate continuous cable tension trajectory for smooth motion. Experiments were carried out on eight healthy subjects. The experimental results show that CAREX can help the subjects move closer to a prescribed circular path using the force fields generated by the exoskeleton. The subjects also adapt to the path shortly after training. CAREX was also evaluated on a stroke patient to test the feasibility of its use on patients with neural impairment. The results show that the patient was able to move closer to a prescribed straight line path with the "assist-as-needed" force field. In recent years, the authors have proposed lightweight exoskeleton designs for upper arm rehabilitation using multi-stage cable-driven parallel mechanism. Previously, the authors have demonstrated via experiments that it is possible to apply "assist-as-needed" forces in all directions at the end-effector with such an exoskeleton acting on an anthropomorphic machine arm. A human-exoskeleton interface was also presented to show the feasibility of CAREX on human subjects. The goals of this paper are to 1) further address issues when CAREX is mounted on human subjects, e.g., generation of continuous cable tension trajectories 2) demonstrate the feasibility and effectiveness of CAREX on movement training of healthy human subjects and a stroke patient. In this research, CAREX is rigidly attached to an arm orthosis worn by human subjects. The cable routing points are optimized to achieve a relatively large "tensioned" static workspace. A new cable tension planner based on quadratic programming is used to generate continuous cable tension trajectory for smooth motion. Experiments were carried out on eight healthy subjects. The experimental results show that CAREX can help the subjects move closer to a prescribed circular path using the force fields generated by the exoskeleton. The subjects also adapt to the path shortly after training. CAREX was also evaluated on a stroke patient to test the feasibility of its use on patients with neural impairment. The results show that the patient was able to move closer to a prescribed straight line path with the "assist-as-needed" force field.In recent years, the authors have proposed lightweight exoskeleton designs for upper arm rehabilitation using multi-stage cable-driven parallel mechanism. Previously, the authors have demonstrated via experiments that it is possible to apply "assist-as-needed" forces in all directions at the end-effector with such an exoskeleton acting on an anthropomorphic machine arm. A human-exoskeleton interface was also presented to show the feasibility of CAREX on human subjects. The goals of this paper are to 1) further address issues when CAREX is mounted on human subjects, e.g., generation of continuous cable tension trajectories 2) demonstrate the feasibility and effectiveness of CAREX on movement training of healthy human subjects and a stroke patient. In this research, CAREX is rigidly attached to an arm orthosis worn by human subjects. The cable routing points are optimized to achieve a relatively large "tensioned" static workspace. A new cable tension planner based on quadratic programming is used to generate continuous cable tension trajectory for smooth motion. Experiments were carried out on eight healthy subjects. The experimental results show that CAREX can help the subjects move closer to a prescribed circular path using the force fields generated by the exoskeleton. The subjects also adapt to the path shortly after training. CAREX was also evaluated on a stroke patient to test the feasibility of its use on patients with neural impairment. The results show that the patient was able to move closer to a prescribed straight line path with the "assist-as-needed" force field. |
Author | Scholz, John P. Jin, Xin Gera Dutta, Geetanjali Agrawal, Sunil K. Mao, Ying |
Author_xml | – sequence: 1 givenname: Ying surname: Mao fullname: Mao, Ying organization: GE Global Research, 1 Research Circle, Niskayuna – sequence: 2 givenname: Xin surname: Jin fullname: Jin, Xin organization: Department of Mechanical Engineering, Columbia University, New York – sequence: 3 givenname: Geetanjali surname: Gera Dutta fullname: Gera Dutta, Geetanjali organization: Department of Neurology, Oregon Health Sciences University, Portland – sequence: 4 givenname: John P. surname: Scholz fullname: Scholz, John P. organization: Department of Physical Therapy, University of Delaware, Newark – sequence: 5 givenname: Sunil K. surname: Agrawal fullname: Agrawal, Sunil K. email: agrawal@udel.edu organization: Department of Mechanical Engineering, Columbia University, New York |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24919202$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1v1DAQhi1URD_gD4CEInEphyzjb_u4CgtFKiAti-jN8mYn4JLYJU4q8e9J2C2HHlBPnsPzvCPPe0qOYopIyHMKC0rBvtl8-rJeLRhQsWCcWaDmETmhUpoSGIWjeeaiFJzBMTnN-RqAaiX1E3LMhKWWATsh1cXY-Vh8TLfYYRyKTe9DDPF78S0MPwpfVH7bYvG2D7cYi-W6K1ZXKf_EFocUi_NquV5dvX5KHje-zfjs8J6Rr-9Wm-qivPz8_kO1vCxrQfVQWpyW70BqbmqthWka3whV-92WMxS2UQa95mJXY6OUpI2WlHIvtaiN8NIwfkbO97k3ffo1Yh5cF3KNbesjpjE7qpQ1klpQD0FBgLJgH4AKqbVVhk_oq3vodRr7OP15pgRII_Qc-PJAjdsOd-6mD53vf7u7o0-A2QN1n3LusXF1GPwQUhym67eOgpv7dX_7dXO_7tDvpLJ76l36f6UXeykg4j9BGaakAP4Hjbiruw |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2018_2868988 crossref_primary_10_3233_THC_171300 crossref_primary_10_2339_politeknik_725310 crossref_primary_10_1007_s12206_021_0637_6 crossref_primary_10_1016_j_mechatronics_2021_102519 crossref_primary_10_1051_itmconf_20160601001 crossref_primary_10_1016_j_advengsoft_2018_11_006 crossref_primary_10_3390_sym10090412 crossref_primary_10_1007_s40141_016_0139_0 crossref_primary_10_1109_LRA_2018_2809919 crossref_primary_10_1115_1_4034015 crossref_primary_10_1016_j_advengsoft_2018_03_004 crossref_primary_10_1177_09544062211026344 crossref_primary_10_1016_j_robot_2020_103445 crossref_primary_10_3389_fnins_2023_1128332 crossref_primary_10_1109_TNSRE_2019_2933381 crossref_primary_10_3389_frobt_2022_739088 crossref_primary_10_1016_j_isatra_2018_11_009 crossref_primary_10_1063_5_0218295 crossref_primary_10_1007_s11465_021_0651_5 crossref_primary_10_3390_mi10010008 crossref_primary_10_1109_ACCESS_2018_2887233 crossref_primary_10_1177_0959651819898945 crossref_primary_10_1109_LRA_2017_2678600 crossref_primary_10_1109_TMECH_2016_2618888 crossref_primary_10_1016_j_conengprac_2024_106035 crossref_primary_10_1145_3526106 crossref_primary_10_1155_2023_5722499 crossref_primary_10_1016_j_mechatronics_2016_10_013 crossref_primary_10_1109_ACCESS_2017_2702188 crossref_primary_10_1109_ACCESS_2019_2921839 crossref_primary_10_1115_1_4042399 crossref_primary_10_1109_LRA_2017_2724758 crossref_primary_10_1186_s10033_018_0267_9 crossref_primary_10_1115_1_4033695 crossref_primary_10_1109_ACCESS_2018_2852757 crossref_primary_10_1017_S0263574723001248 crossref_primary_10_3901_CJME_2015_1120_137 crossref_primary_10_1007_s12206_018_0136_y crossref_primary_10_1177_1545968319887685 crossref_primary_10_1115_1_4062792 crossref_primary_10_3233_THC_202392 crossref_primary_10_1109_THMS_2017_2700634 crossref_primary_10_3233_THC_174714 crossref_primary_10_3390_app11052080 crossref_primary_10_1109_TNSRE_2018_2815656 crossref_primary_10_1515_bmt_2019_0267 crossref_primary_10_3390_app9102099 crossref_primary_10_1080_00207721_2020_1764659 crossref_primary_10_1007_s10055_023_00794_z crossref_primary_10_1115_1_4046030 crossref_primary_10_1017_S0263574723001273 crossref_primary_10_1109_TMECH_2019_2917294 crossref_primary_10_3390_act12040178 crossref_primary_10_1109_TRO_2019_2930915 crossref_primary_10_1109_RBME_2016_2552201 crossref_primary_10_3390_app9081710 crossref_primary_10_1016_j_advengsoft_2018_01_011 crossref_primary_10_1115_1_4064982 crossref_primary_10_1016_j_jbmt_2021_03_012 crossref_primary_10_3390_robotics11060154 crossref_primary_10_1142_S0219519421500469 crossref_primary_10_4995_riai_2017_8820 crossref_primary_10_1080_17483107_2019_1629110 crossref_primary_10_1177_0954406219846536 crossref_primary_10_1016_j_mechmachtheory_2018_11_003 crossref_primary_10_1007_s11465_022_0693_3 crossref_primary_10_1115_1_4047984 crossref_primary_10_1007_s11044_024_09977_1 crossref_primary_10_1109_ACCESS_2024_3515141 crossref_primary_10_1109_TSMC_2017_2771227 crossref_primary_10_1115_1_4052972 crossref_primary_10_1007_s10846_019_01063_5 crossref_primary_10_3390_s16122121 crossref_primary_10_1115_1_4054639 crossref_primary_10_1007_s10846_022_01611_6 crossref_primary_10_1109_TRO_2023_3286073 crossref_primary_10_1109_TASE_2023_3328338 crossref_primary_10_1115_1_4032103 crossref_primary_10_1109_TMRB_2023_3310086 crossref_primary_10_3389_fbioe_2024_1392599 crossref_primary_10_1007_s00542_024_05673_4 |
Cites_doi | 10.1115/1.3191724 10.1310/BQM5-6YGB-MVJ5-WVCR 10.1109/TNSRE.2008.2008280 10.1109/TMECH.2007.901934 10.1109/TRO.2012.2189496 10.1109/WHC.2005.15 10.1109/ROBOT.2009.5152545 10.1109/86.662623 10.1682/JRRD.2005.04.0076 10.1109/IEMBS.1993.978943 10.1523/JNEUROSCI.2266-06.2006 10.1155/2009/962956 10.1001/archneur.1997.00550160075019 10.1109/AIM.2007.4412446 10.1109/TRO.2009.2019147 10.1109/TNSRE.2006.881565 10.1109/ICAR.2005.1507459 10.1115/1.4025926 10.1177/1545968307305457 10.1186/1743-0003-4-8 10.1016/S0966-6362(01)00155-2 10.1109/TNSRE.2009.2033061 10.1109/ICRA.2011.5980142 10.1007/s11517-011-0809-0 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2015 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2015 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TNSRE.2014.2329018 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic Engineering Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 92 |
ExternalDocumentID | 3552827741 24919202 10_1109_TNSRE_2014_2329018 6826540 |
Genre | orig-research Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institute of General Medical Sciences-NIGMS grantid: 8 P20 GM103446-12 – fundername: Delaware INBRE program grantid: 5P20RR016472-12 – fundername: National Center for Medical Rehabilitation Research grantid: HD38582 – fundername: NIGMS NIH HHS grantid: 8 P20 GM103446-12 – fundername: NICHD NIH HHS grantid: HD38582 – fundername: NCRR NIH HHS grantid: 5P20RR016472-12 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c417t-9e657d05738c7748ffaf46cadb32e49f68ea734dcef6651f75113a574c84a5823 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Fri Jul 11 01:27:07 EDT 2025 Fri Jul 11 03:11:59 EDT 2025 Thu Jul 10 17:13:03 EDT 2025 Fri Jul 25 03:32:23 EDT 2025 Mon Jul 21 05:56:51 EDT 2025 Tue Jul 01 00:43:12 EDT 2025 Thu Apr 24 23:03:49 EDT 2025 Wed Aug 27 02:51:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-9e657d05738c7748ffaf46cadb32e49f68ea734dcef6651f75113a574c84a5823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 24919202 |
PQID | 1644058479 |
PQPubID | 85423 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1645779683 pubmed_primary_24919202 ieee_primary_6826540 proquest_miscellaneous_1669851906 proquest_journals_1644058479 crossref_citationtrail_10_1109_TNSRE_2014_2329018 crossref_primary_10_1109_TNSRE_2014_2329018 proquest_miscellaneous_1660406909 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-Jan. 2015-1-00 2015-Jan 20150101 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-Jan. |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2015 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 verhoeven (ref26) 2004 mao (ref15) 2010 ref24 ref23 ref25 ref20 ref22 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 mao (ref21) 2012 |
References_xml | – start-page: 4334 year: 2010 ident: ref15 article-title: Wearable cable-driven upper arm exoskeleton?Motion with transmitted joint force and moment minimization publication-title: Proc IEEE Int Conf Robot Automat – ident: ref23 doi: 10.1115/1.3191724 – ident: ref2 doi: 10.1310/BQM5-6YGB-MVJ5-WVCR – ident: ref19 doi: 10.1109/TNSRE.2008.2008280 – ident: ref10 doi: 10.1109/TMECH.2007.901934 – ident: ref17 doi: 10.1109/TRO.2012.2189496 – ident: ref9 doi: 10.1109/WHC.2005.15 – ident: ref14 doi: 10.1109/ROBOT.2009.5152545 – ident: ref5 doi: 10.1109/86.662623 – year: 2004 ident: ref26 publication-title: Analysis of the workspace of tendon-based Stewart platforms – ident: ref3 doi: 10.1682/JRRD.2005.04.0076 – ident: ref6 doi: 10.1109/IEMBS.1993.978943 – ident: ref24 doi: 10.1523/JNEUROSCI.2266-06.2006 – ident: ref7 doi: 10.1155/2009/962956 – start-page: 2457 year: 2012 ident: ref21 article-title: Cable driven arm exoskeleton (CAREX): Transition from experiments on a mechanical arm to the human arm publication-title: Proc IEEE Int Conf Robot Automat – ident: ref1 doi: 10.1001/archneur.1997.00550160075019 – ident: ref11 doi: 10.1109/AIM.2007.4412446 – ident: ref13 doi: 10.1109/TRO.2009.2019147 – ident: ref12 doi: 10.1109/TNSRE.2006.881565 – ident: ref8 doi: 10.1109/ICAR.2005.1507459 – ident: ref22 doi: 10.1115/1.4025926 – ident: ref4 doi: 10.1177/1545968307305457 – ident: ref18 doi: 10.1186/1743-0003-4-8 – ident: ref27 doi: 10.1016/S0966-6362(01)00155-2 – ident: ref20 doi: 10.1109/TNSRE.2009.2033061 – ident: ref16 doi: 10.1109/ICRA.2011.5980142 – ident: ref25 doi: 10.1007/s11517-011-0809-0 |
SSID | ssj0017657 |
Score | 2.4780486 |
Snippet | In recent years, the authors have proposed lightweight exoskeleton designs for upper arm rehabilitation using multi-stage cable-driven parallel mechanism.... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 84 |
SubjectTerms | Arm - physiology Artificial Limbs Assistive devices cable-driven robots Cables Carex Computer Systems Exoskeletons Feasibility Force Human Human subjects Humans Joints Joints - anatomy & histology Joints - physiology Learning - physiology medical robotics Movement - physiology Optimization parallel robots Patients Prosthesis Design Rehabilitation Rehabilitation - methods rehabilitation robotics Robotics Shoulder Stroke Rehabilitation Strokes Training Trajectories Trajectory |
Title | Human Movement Training With a Cable Driven ARm EXoskeleton (CAREX) |
URI | https://ieeexplore.ieee.org/document/6826540 https://www.ncbi.nlm.nih.gov/pubmed/24919202 https://www.proquest.com/docview/1644058479 https://www.proquest.com/docview/1645779683 https://www.proquest.com/docview/1660406909 https://www.proquest.com/docview/1669851906 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8BT3vZ-NhHN0CetE2btpQkduz4seqK0KTy0BWtb5HjXASCNQjSl_31nJ0PMQQVb5F6qWyfL_e7s-93AJ9yVMZyjAMh0QYijXhgyKsEKidnV3KNxtMXT0_lyZn4tUgWG_Cjr4VBRH_5DIfu0Z_lF5VduVTZkSQsTAhjEzYpcGtqtfoTAyU9qycZsAgEj8OuQCbUR_PT37OJu8UlhoQfyAG6Jn0UdhC4abMpnT_yDVaexpre5xy_gmk32uaqyeVwVedD--8BkeNzp7MNL1vwyUbNbtmBDVzuwuf7RMNs3rAMsC9s9h-H9x6Mfb6fTSvPMF6zedtcgv25qM-ZYWNXhMV-3rjPJxvN_rLJorq9JK9G6JJ9HY9mk8W313B2PJmPT4K2BUNgRaTqQCMta-FIE1NLQDEtS1MKaU2R8xiFLmWKRnFRWCylTKJSEX7jJlHCpsIkaczfwNayWuI7YLHB3IRo4lILYU2UR9YmRWoJc5KlWjmAqFNEZtu5uTYZV5mPU0KdeT1mTo9Zq8cBfO_fuW7YOdZK7zkl9JLt-g9gv9N31hrwbUZRJEFZct16AB_7n8n03HmKWWK18jKJUlqmfJ2MDF1xcbj2f6Qm4KtDWoO3zX7rx9ht0_ePj_0DvKAZJk1OaB-26psVHhBKqvNDbx53NiMJMw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB4tywEuvJZHYQEjAQIt6SaxY8fHqnRVYNtDyYreIseZCLTQoN30wq9n7DwECCpukepUtseT7_PY8w3A8wKVsRzjQEi0gUgjHhhClUAVBHYV12i8fPFiKedn4v06We_BmyEXBhH95TMcu0d_ll_WdutCZceSuDAxjCtwlXA_idtsreHMQEmv60kuLALB47BPkQn1cbb8uJq5e1xiTAyCINCV6aONB9GbLp7SI5IvsfJvtulR5-QmLPr-tpdNzsfbphjbH39IOf7vgG7BjY5-skm7Xm7DHm7uwItfpYZZ1uoMsJds9ZuK9wFMfcSfLWqvMd6wrCsvwT59aT4zw6YuDYu9vXAfUDZZfWOzdX15TrhG_JK9mk5Ws_Xru3B2Msum86ArwhBYEakm0EjTWjrZxNQSVUyrylRCWlMWPEahK5miUVyUFispk6hSxOC4SZSwqTBJGvN7sL-pN_gAWGywMCGauNJCWBMVkbVJmVpineSrVo4g6g2R225srlDG19zvVEKdezvmzo55Z8cRHA3vfG_1OXa2PnBGGFp28z-Cw97eeefClzntI4nMEnjrETwbfibncycqZoP11rdJlNIy5bvayNClF4c7_0dqor46pDm43663oY_9Mn34974_hWvzbHGan75bfngE12m0SRshOoT95mKLj4kzNcUT7yo_ATHkDH0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+movement+training+with+a+cable+driven+ARm+EXoskeleton+%28CAREX%29&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Mao%2C+Ying&rft.au=Jin%2C+Xin&rft.au=Gera+Dutta%2C+Geetanjali&rft.au=Scholz%2C+John+P&rft.date=2015-01-01&rft.eissn=1558-0210&rft.volume=23&rft.issue=1&rft.spage=84&rft_id=info:doi/10.1109%2FTNSRE.2014.2329018&rft_id=info%3Apmid%2F24919202&rft.externalDocID=24919202 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |