Human Movement Training With a Cable Driven ARm EXoskeleton (CAREX)

In recent years, the authors have proposed lightweight exoskeleton designs for upper arm rehabilitation using multi-stage cable-driven parallel mechanism. Previously, the authors have demonstrated via experiments that it is possible to apply "assist-as-needed" forces in all directions at t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 23; no. 1; pp. 84 - 92
Main Authors Mao, Ying, Jin, Xin, Gera Dutta, Geetanjali, Scholz, John P., Agrawal, Sunil K.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, the authors have proposed lightweight exoskeleton designs for upper arm rehabilitation using multi-stage cable-driven parallel mechanism. Previously, the authors have demonstrated via experiments that it is possible to apply "assist-as-needed" forces in all directions at the end-effector with such an exoskeleton acting on an anthropomorphic machine arm. A human-exoskeleton interface was also presented to show the feasibility of CAREX on human subjects. The goals of this paper are to 1) further address issues when CAREX is mounted on human subjects, e.g., generation of continuous cable tension trajectories 2) demonstrate the feasibility and effectiveness of CAREX on movement training of healthy human subjects and a stroke patient. In this research, CAREX is rigidly attached to an arm orthosis worn by human subjects. The cable routing points are optimized to achieve a relatively large "tensioned" static workspace. A new cable tension planner based on quadratic programming is used to generate continuous cable tension trajectory for smooth motion. Experiments were carried out on eight healthy subjects. The experimental results show that CAREX can help the subjects move closer to a prescribed circular path using the force fields generated by the exoskeleton. The subjects also adapt to the path shortly after training. CAREX was also evaluated on a stroke patient to test the feasibility of its use on patients with neural impairment. The results show that the patient was able to move closer to a prescribed straight line path with the "assist-as-needed" force field.
AbstractList In recent years, the authors have proposed lightweight exoskeleton designs for upper arm rehabilitation using multi-stage cable-driven parallel mechanism. Previously, the authors have demonstrated via experiments that it is possible to apply "assist-as-needed" forces in all directions at the end-effector with such an exoskeleton acting on an anthropomorphic machine arm. A human-exoskeleton interface was also presented to show the feasibility of CAREX on human subjects. The goals of this paper are to 1) further address issues when CAREX is mounted on human subjects, e.g., generation of continuous cable tension trajectories 2) demonstrate the feasibility and effectiveness of CAREX on movement training of healthy human subjects and a stroke patient. In this research, CAREX is rigidly attached to an arm orthosis worn by human subjects. The cable routing points are optimized to achieve a relatively large "tensioned" static workspace. A new cable tension planner based on quadratic programming is used to generate continuous cable tension trajectory for smooth motion. Experiments were carried out on eight healthy subjects. The experimental results show that CAREX can help the subjects move closer to a prescribed circular path using the force fields generated by the exoskeleton. The subjects also adapt to the path shortly after training. CAREX was also evaluated on a stroke patient to test the feasibility of its use on patients with neural impairment. The results show that the patient was able to move closer to a prescribed straight line path with the "assist-as-needed" force field.
In recent years, the authors have proposed lightweight exoskeleton designs for upper arm rehabilitation using multi-stage cable-driven parallel mechanism. Previously, the authors have demonstrated via experiments that it is possible to apply "assist-as-needed" forces in all directions at the end-effector with such an exoskeleton acting on an anthropomorphic machine arm. A human-exoskeleton interface was also presented to show the feasibility of CAREX on human subjects. The goals of this paper are to 1) further address issues when CAREX is mounted on human subjects, e.g., generation of continuous cable tension trajectories 2) demonstrate the feasibility and effectiveness of CAREX on movement training of healthy human subjects and a stroke patient. In this research, CAREX is rigidly attached to an arm orthosis worn by human subjects. The cable routing points are optimized to achieve a relatively large "tensioned" static workspace. A new cable tension planner based on quadratic programming is used to generate continuous cable tension trajectory for smooth motion. Experiments were carried out on eight healthy subjects. The experimental results show that CAREX can help the subjects move closer to a prescribed circular path using the force fields generated by the exoskeleton. The subjects also adapt to the path shortly after training. CAREX was also evaluated on a stroke patient to test the feasibility of its use on patients with neural impairment. The results show that the patient was able to move closer to a prescribed straight line path with the "assist-as-needed" force field.In recent years, the authors have proposed lightweight exoskeleton designs for upper arm rehabilitation using multi-stage cable-driven parallel mechanism. Previously, the authors have demonstrated via experiments that it is possible to apply "assist-as-needed" forces in all directions at the end-effector with such an exoskeleton acting on an anthropomorphic machine arm. A human-exoskeleton interface was also presented to show the feasibility of CAREX on human subjects. The goals of this paper are to 1) further address issues when CAREX is mounted on human subjects, e.g., generation of continuous cable tension trajectories 2) demonstrate the feasibility and effectiveness of CAREX on movement training of healthy human subjects and a stroke patient. In this research, CAREX is rigidly attached to an arm orthosis worn by human subjects. The cable routing points are optimized to achieve a relatively large "tensioned" static workspace. A new cable tension planner based on quadratic programming is used to generate continuous cable tension trajectory for smooth motion. Experiments were carried out on eight healthy subjects. The experimental results show that CAREX can help the subjects move closer to a prescribed circular path using the force fields generated by the exoskeleton. The subjects also adapt to the path shortly after training. CAREX was also evaluated on a stroke patient to test the feasibility of its use on patients with neural impairment. The results show that the patient was able to move closer to a prescribed straight line path with the "assist-as-needed" force field.
Author Scholz, John P.
Jin, Xin
Gera Dutta, Geetanjali
Agrawal, Sunil K.
Mao, Ying
Author_xml – sequence: 1
  givenname: Ying
  surname: Mao
  fullname: Mao, Ying
  organization: GE Global Research, 1 Research Circle, Niskayuna
– sequence: 2
  givenname: Xin
  surname: Jin
  fullname: Jin, Xin
  organization: Department of Mechanical Engineering, Columbia University, New York
– sequence: 3
  givenname: Geetanjali
  surname: Gera Dutta
  fullname: Gera Dutta, Geetanjali
  organization: Department of Neurology, Oregon Health Sciences University, Portland
– sequence: 4
  givenname: John P.
  surname: Scholz
  fullname: Scholz, John P.
  organization: Department of Physical Therapy, University of Delaware, Newark
– sequence: 5
  givenname: Sunil K.
  surname: Agrawal
  fullname: Agrawal, Sunil K.
  email: agrawal@udel.edu
  organization: Department of Mechanical Engineering, Columbia University, New York
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24919202$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhi1URD_gD4CEInEphyzjb_u4CgtFKiAti-jN8mYn4JLYJU4q8e9J2C2HHlBPnsPzvCPPe0qOYopIyHMKC0rBvtl8-rJeLRhQsWCcWaDmETmhUpoSGIWjeeaiFJzBMTnN-RqAaiX1E3LMhKWWATsh1cXY-Vh8TLfYYRyKTe9DDPF78S0MPwpfVH7bYvG2D7cYi-W6K1ZXKf_EFocUi_NquV5dvX5KHje-zfjs8J6Rr-9Wm-qivPz8_kO1vCxrQfVQWpyW70BqbmqthWka3whV-92WMxS2UQa95mJXY6OUpI2WlHIvtaiN8NIwfkbO97k3ffo1Yh5cF3KNbesjpjE7qpQ1klpQD0FBgLJgH4AKqbVVhk_oq3vodRr7OP15pgRII_Qc-PJAjdsOd-6mD53vf7u7o0-A2QN1n3LusXF1GPwQUhym67eOgpv7dX_7dXO_7tDvpLJ76l36f6UXeykg4j9BGaakAP4Hjbiruw
CODEN ITNSB3
CitedBy_id crossref_primary_10_1109_ACCESS_2018_2868988
crossref_primary_10_3233_THC_171300
crossref_primary_10_2339_politeknik_725310
crossref_primary_10_1007_s12206_021_0637_6
crossref_primary_10_1016_j_mechatronics_2021_102519
crossref_primary_10_1051_itmconf_20160601001
crossref_primary_10_1016_j_advengsoft_2018_11_006
crossref_primary_10_3390_sym10090412
crossref_primary_10_1007_s40141_016_0139_0
crossref_primary_10_1109_LRA_2018_2809919
crossref_primary_10_1115_1_4034015
crossref_primary_10_1016_j_advengsoft_2018_03_004
crossref_primary_10_1177_09544062211026344
crossref_primary_10_1016_j_robot_2020_103445
crossref_primary_10_3389_fnins_2023_1128332
crossref_primary_10_1109_TNSRE_2019_2933381
crossref_primary_10_3389_frobt_2022_739088
crossref_primary_10_1016_j_isatra_2018_11_009
crossref_primary_10_1063_5_0218295
crossref_primary_10_1007_s11465_021_0651_5
crossref_primary_10_3390_mi10010008
crossref_primary_10_1109_ACCESS_2018_2887233
crossref_primary_10_1177_0959651819898945
crossref_primary_10_1109_LRA_2017_2678600
crossref_primary_10_1109_TMECH_2016_2618888
crossref_primary_10_1016_j_conengprac_2024_106035
crossref_primary_10_1145_3526106
crossref_primary_10_1155_2023_5722499
crossref_primary_10_1016_j_mechatronics_2016_10_013
crossref_primary_10_1109_ACCESS_2017_2702188
crossref_primary_10_1109_ACCESS_2019_2921839
crossref_primary_10_1115_1_4042399
crossref_primary_10_1109_LRA_2017_2724758
crossref_primary_10_1186_s10033_018_0267_9
crossref_primary_10_1115_1_4033695
crossref_primary_10_1109_ACCESS_2018_2852757
crossref_primary_10_1017_S0263574723001248
crossref_primary_10_3901_CJME_2015_1120_137
crossref_primary_10_1007_s12206_018_0136_y
crossref_primary_10_1177_1545968319887685
crossref_primary_10_1115_1_4062792
crossref_primary_10_3233_THC_202392
crossref_primary_10_1109_THMS_2017_2700634
crossref_primary_10_3233_THC_174714
crossref_primary_10_3390_app11052080
crossref_primary_10_1109_TNSRE_2018_2815656
crossref_primary_10_1515_bmt_2019_0267
crossref_primary_10_3390_app9102099
crossref_primary_10_1080_00207721_2020_1764659
crossref_primary_10_1007_s10055_023_00794_z
crossref_primary_10_1115_1_4046030
crossref_primary_10_1017_S0263574723001273
crossref_primary_10_1109_TMECH_2019_2917294
crossref_primary_10_3390_act12040178
crossref_primary_10_1109_TRO_2019_2930915
crossref_primary_10_1109_RBME_2016_2552201
crossref_primary_10_3390_app9081710
crossref_primary_10_1016_j_advengsoft_2018_01_011
crossref_primary_10_1115_1_4064982
crossref_primary_10_1016_j_jbmt_2021_03_012
crossref_primary_10_3390_robotics11060154
crossref_primary_10_1142_S0219519421500469
crossref_primary_10_4995_riai_2017_8820
crossref_primary_10_1080_17483107_2019_1629110
crossref_primary_10_1177_0954406219846536
crossref_primary_10_1016_j_mechmachtheory_2018_11_003
crossref_primary_10_1007_s11465_022_0693_3
crossref_primary_10_1115_1_4047984
crossref_primary_10_1007_s11044_024_09977_1
crossref_primary_10_1109_ACCESS_2024_3515141
crossref_primary_10_1109_TSMC_2017_2771227
crossref_primary_10_1115_1_4052972
crossref_primary_10_1007_s10846_019_01063_5
crossref_primary_10_3390_s16122121
crossref_primary_10_1115_1_4054639
crossref_primary_10_1007_s10846_022_01611_6
crossref_primary_10_1109_TRO_2023_3286073
crossref_primary_10_1109_TASE_2023_3328338
crossref_primary_10_1115_1_4032103
crossref_primary_10_1109_TMRB_2023_3310086
crossref_primary_10_3389_fbioe_2024_1392599
crossref_primary_10_1007_s00542_024_05673_4
Cites_doi 10.1115/1.3191724
10.1310/BQM5-6YGB-MVJ5-WVCR
10.1109/TNSRE.2008.2008280
10.1109/TMECH.2007.901934
10.1109/TRO.2012.2189496
10.1109/WHC.2005.15
10.1109/ROBOT.2009.5152545
10.1109/86.662623
10.1682/JRRD.2005.04.0076
10.1109/IEMBS.1993.978943
10.1523/JNEUROSCI.2266-06.2006
10.1155/2009/962956
10.1001/archneur.1997.00550160075019
10.1109/AIM.2007.4412446
10.1109/TRO.2009.2019147
10.1109/TNSRE.2006.881565
10.1109/ICAR.2005.1507459
10.1115/1.4025926
10.1177/1545968307305457
10.1186/1743-0003-4-8
10.1016/S0966-6362(01)00155-2
10.1109/TNSRE.2009.2033061
10.1109/ICRA.2011.5980142
10.1007/s11517-011-0809-0
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2014.2329018
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE

MEDLINE - Academic
Engineering Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 92
ExternalDocumentID 3552827741
24919202
10_1109_TNSRE_2014_2329018
6826540
Genre orig-research
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of General Medical Sciences-NIGMS
  grantid: 8 P20 GM103446-12
– fundername: Delaware INBRE program
  grantid: 5P20RR016472-12
– fundername: National Center for Medical Rehabilitation Research
  grantid: HD38582
– fundername: NIGMS NIH HHS
  grantid: 8 P20 GM103446-12
– fundername: NICHD NIH HHS
  grantid: HD38582
– fundername: NCRR NIH HHS
  grantid: 5P20RR016472-12
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c417t-9e657d05738c7748ffaf46cadb32e49f68ea734dcef6651f75113a574c84a5823
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Fri Jul 11 01:27:07 EDT 2025
Fri Jul 11 03:11:59 EDT 2025
Thu Jul 10 17:13:03 EDT 2025
Fri Jul 25 03:32:23 EDT 2025
Mon Jul 21 05:56:51 EDT 2025
Tue Jul 01 00:43:12 EDT 2025
Thu Apr 24 23:03:49 EDT 2025
Wed Aug 27 02:51:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-9e657d05738c7748ffaf46cadb32e49f68ea734dcef6651f75113a574c84a5823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24919202
PQID 1644058479
PQPubID 85423
PageCount 9
ParticipantIDs proquest_miscellaneous_1645779683
pubmed_primary_24919202
ieee_primary_6826540
proquest_miscellaneous_1669851906
proquest_journals_1644058479
crossref_citationtrail_10_1109_TNSRE_2014_2329018
crossref_primary_10_1109_TNSRE_2014_2329018
proquest_miscellaneous_1660406909
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-Jan.
2015-1-00
2015-Jan
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-Jan.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
verhoeven (ref26) 2004
mao (ref15) 2010
ref24
ref23
ref25
ref20
ref22
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
mao (ref21) 2012
References_xml – start-page: 4334
  year: 2010
  ident: ref15
  article-title: Wearable cable-driven upper arm exoskeleton?Motion with transmitted joint force and moment minimization
  publication-title: Proc IEEE Int Conf Robot Automat
– ident: ref23
  doi: 10.1115/1.3191724
– ident: ref2
  doi: 10.1310/BQM5-6YGB-MVJ5-WVCR
– ident: ref19
  doi: 10.1109/TNSRE.2008.2008280
– ident: ref10
  doi: 10.1109/TMECH.2007.901934
– ident: ref17
  doi: 10.1109/TRO.2012.2189496
– ident: ref9
  doi: 10.1109/WHC.2005.15
– ident: ref14
  doi: 10.1109/ROBOT.2009.5152545
– ident: ref5
  doi: 10.1109/86.662623
– year: 2004
  ident: ref26
  publication-title: Analysis of the workspace of tendon-based Stewart platforms
– ident: ref3
  doi: 10.1682/JRRD.2005.04.0076
– ident: ref6
  doi: 10.1109/IEMBS.1993.978943
– ident: ref24
  doi: 10.1523/JNEUROSCI.2266-06.2006
– ident: ref7
  doi: 10.1155/2009/962956
– start-page: 2457
  year: 2012
  ident: ref21
  article-title: Cable driven arm exoskeleton (CAREX): Transition from experiments on a mechanical arm to the human arm
  publication-title: Proc IEEE Int Conf Robot Automat
– ident: ref1
  doi: 10.1001/archneur.1997.00550160075019
– ident: ref11
  doi: 10.1109/AIM.2007.4412446
– ident: ref13
  doi: 10.1109/TRO.2009.2019147
– ident: ref12
  doi: 10.1109/TNSRE.2006.881565
– ident: ref8
  doi: 10.1109/ICAR.2005.1507459
– ident: ref22
  doi: 10.1115/1.4025926
– ident: ref4
  doi: 10.1177/1545968307305457
– ident: ref18
  doi: 10.1186/1743-0003-4-8
– ident: ref27
  doi: 10.1016/S0966-6362(01)00155-2
– ident: ref20
  doi: 10.1109/TNSRE.2009.2033061
– ident: ref16
  doi: 10.1109/ICRA.2011.5980142
– ident: ref25
  doi: 10.1007/s11517-011-0809-0
SSID ssj0017657
Score 2.4780486
Snippet In recent years, the authors have proposed lightweight exoskeleton designs for upper arm rehabilitation using multi-stage cable-driven parallel mechanism....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 84
SubjectTerms Arm - physiology
Artificial Limbs
Assistive devices
cable-driven robots
Cables
Carex
Computer Systems
Exoskeletons
Feasibility
Force
Human
Human subjects
Humans
Joints
Joints - anatomy & histology
Joints - physiology
Learning - physiology
medical robotics
Movement - physiology
Optimization
parallel robots
Patients
Prosthesis Design
Rehabilitation
Rehabilitation - methods
rehabilitation robotics
Robotics
Shoulder
Stroke Rehabilitation
Strokes
Training
Trajectories
Trajectory
Title Human Movement Training With a Cable Driven ARm EXoskeleton (CAREX)
URI https://ieeexplore.ieee.org/document/6826540
https://www.ncbi.nlm.nih.gov/pubmed/24919202
https://www.proquest.com/docview/1644058479
https://www.proquest.com/docview/1645779683
https://www.proquest.com/docview/1660406909
https://www.proquest.com/docview/1669851906
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8BT3vZ-NhHN0CetE2btpQkduz4seqK0KTy0BWtb5HjXASCNQjSl_31nJ0PMQQVb5F6qWyfL_e7s-93AJ9yVMZyjAMh0QYijXhgyKsEKidnV3KNxtMXT0_lyZn4tUgWG_Cjr4VBRH_5DIfu0Z_lF5VduVTZkSQsTAhjEzYpcGtqtfoTAyU9qycZsAgEj8OuQCbUR_PT37OJu8UlhoQfyAG6Jn0UdhC4abMpnT_yDVaexpre5xy_gmk32uaqyeVwVedD--8BkeNzp7MNL1vwyUbNbtmBDVzuwuf7RMNs3rAMsC9s9h-H9x6Mfb6fTSvPMF6zedtcgv25qM-ZYWNXhMV-3rjPJxvN_rLJorq9JK9G6JJ9HY9mk8W313B2PJmPT4K2BUNgRaTqQCMta-FIE1NLQDEtS1MKaU2R8xiFLmWKRnFRWCylTKJSEX7jJlHCpsIkaczfwNayWuI7YLHB3IRo4lILYU2UR9YmRWoJc5KlWjmAqFNEZtu5uTYZV5mPU0KdeT1mTo9Zq8cBfO_fuW7YOdZK7zkl9JLt-g9gv9N31hrwbUZRJEFZct16AB_7n8n03HmKWWK18jKJUlqmfJ2MDF1xcbj2f6Qm4KtDWoO3zX7rx9ht0_ePj_0DvKAZJk1OaB-26psVHhBKqvNDbx53NiMJMw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB4tywEuvJZHYQEjAQIt6SaxY8fHqnRVYNtDyYreIseZCLTQoN30wq9n7DwECCpukepUtseT7_PY8w3A8wKVsRzjQEi0gUgjHhhClUAVBHYV12i8fPFiKedn4v06We_BmyEXBhH95TMcu0d_ll_WdutCZceSuDAxjCtwlXA_idtsreHMQEmv60kuLALB47BPkQn1cbb8uJq5e1xiTAyCINCV6aONB9GbLp7SI5IvsfJvtulR5-QmLPr-tpdNzsfbphjbH39IOf7vgG7BjY5-skm7Xm7DHm7uwItfpYZZ1uoMsJds9ZuK9wFMfcSfLWqvMd6wrCsvwT59aT4zw6YuDYu9vXAfUDZZfWOzdX15TrhG_JK9mk5Ws_Xru3B2Msum86ArwhBYEakm0EjTWjrZxNQSVUyrylRCWlMWPEahK5miUVyUFispk6hSxOC4SZSwqTBJGvN7sL-pN_gAWGywMCGauNJCWBMVkbVJmVpineSrVo4g6g2R225srlDG19zvVEKdezvmzo55Z8cRHA3vfG_1OXa2PnBGGFp28z-Cw97eeefClzntI4nMEnjrETwbfibncycqZoP11rdJlNIy5bvayNClF4c7_0dqor46pDm43663oY_9Mn34974_hWvzbHGan75bfngE12m0SRshOoT95mKLj4kzNcUT7yo_ATHkDH0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+movement+training+with+a+cable+driven+ARm+EXoskeleton+%28CAREX%29&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Mao%2C+Ying&rft.au=Jin%2C+Xin&rft.au=Gera+Dutta%2C+Geetanjali&rft.au=Scholz%2C+John+P&rft.date=2015-01-01&rft.eissn=1558-0210&rft.volume=23&rft.issue=1&rft.spage=84&rft_id=info:doi/10.1109%2FTNSRE.2014.2329018&rft_id=info%3Apmid%2F24919202&rft.externalDocID=24919202
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon