Global Metabolic Regulation of the Snow Alga Chlamydomonas nivalis in Response to Nitrate or Phosphate Deprivation by a Metabolome Profile Analysis

In the present work, Chlamydomonas nivalis, a model species of snow algae, was used to illustrate the metabolic regulation mechanism of microalgae under nutrient deprivation stress. The seed culture was inoculated into the medium without nitrate or phosphate to reveal the cell responses by a metabol...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 17; no. 5; p. 694
Main Authors Lu, Na, Chen, Jun-Hui, Wei, Dong, Chen, Feng, Chen, Gu
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 10.05.2016
Subjects
Online AccessGet full text
ISSN1422-0067
1422-0067
DOI10.3390/ijms17050694

Cover

Loading…
Abstract In the present work, Chlamydomonas nivalis, a model species of snow algae, was used to illustrate the metabolic regulation mechanism of microalgae under nutrient deprivation stress. The seed culture was inoculated into the medium without nitrate or phosphate to reveal the cell responses by a metabolome profile analysis using gas chromatography time-of-flight mass spectrometry (GC/TOF-MS). One hundred and seventy-one of the identified metabolites clustered into five groups by the orthogonal partial least squares discriminant analysis (OPLS-DA) model. Among them, thirty of the metabolites in the nitrate-deprived group and thirty-nine of the metabolites in the phosphate-deprived group were selected and identified as “responding biomarkers” by this metabolomic approach. A significant change in the abundance of biomarkers indicated that the enhanced biosynthesis of carbohydrates and fatty acids coupled with the decreased biosynthesis of amino acids, N-compounds and organic acids in all the stress groups. The up- or down-regulation of these biomarkers in the metabolic network provides new insights into the global metabolic regulation and internal relationships within amino acid and fatty acid synthesis, glycolysis, the tricarboxylic acid cycle (TCA) and the Calvin cycle in the snow alga under nitrate or phosphate deprivation stress.
AbstractList In the present work, Chlamydomonas nivalis , a model species of snow algae, was used to illustrate the metabolic regulation mechanism of microalgae under nutrient deprivation stress. The seed culture was inoculated into the medium without nitrate or phosphate to reveal the cell responses by a metabolome profile analysis using gas chromatography time-of-flight mass spectrometry (GC/TOF-MS). One hundred and seventy-one of the identified metabolites clustered into five groups by the orthogonal partial least squares discriminant analysis (OPLS-DA) model. Among them, thirty of the metabolites in the nitrate-deprived group and thirty-nine of the metabolites in the phosphate-deprived group were selected and identified as “responding biomarkers” by this metabolomic approach. A significant change in the abundance of biomarkers indicated that the enhanced biosynthesis of carbohydrates and fatty acids coupled with the decreased biosynthesis of amino acids, N -compounds and organic acids in all the stress groups. The up- or down-regulation of these biomarkers in the metabolic network provides new insights into the global metabolic regulation and internal relationships within amino acid and fatty acid synthesis, glycolysis, the tricarboxylic acid cycle (TCA) and the Calvin cycle in the snow alga under nitrate or phosphate deprivation stress.
In the present work, Chlamydomonas nivalis, a model species of snow algae, was used to illustrate the metabolic regulation mechanism of microalgae under nutrient deprivation stress. The seed culture was inoculated into the medium without nitrate or phosphate to reveal the cell responses by a metabolome profile analysis using gas chromatography time-of-flight mass spectrometry (GC/TOF-MS). One hundred and seventy-one of the identified metabolites clustered into five groups by the orthogonal partial least squares discriminant analysis (OPLS-DA) model. Among them, thirty of the metabolites in the nitrate-deprived group and thirty-nine of the metabolites in the phosphate-deprived group were selected and identified as "responding biomarkers" by this metabolomic approach. A significant change in the abundance of biomarkers indicated that the enhanced biosynthesis of carbohydrates and fatty acids coupled with the decreased biosynthesis of amino acids, N-compounds and organic acids in all the stress groups. The up- or down-regulation of these biomarkers in the metabolic network provides new insights into the global metabolic regulation and internal relationships within amino acid and fatty acid synthesis, glycolysis, the tricarboxylic acid cycle (TCA) and the Calvin cycle in the snow alga under nitrate or phosphate deprivation stress.In the present work, Chlamydomonas nivalis, a model species of snow algae, was used to illustrate the metabolic regulation mechanism of microalgae under nutrient deprivation stress. The seed culture was inoculated into the medium without nitrate or phosphate to reveal the cell responses by a metabolome profile analysis using gas chromatography time-of-flight mass spectrometry (GC/TOF-MS). One hundred and seventy-one of the identified metabolites clustered into five groups by the orthogonal partial least squares discriminant analysis (OPLS-DA) model. Among them, thirty of the metabolites in the nitrate-deprived group and thirty-nine of the metabolites in the phosphate-deprived group were selected and identified as "responding biomarkers" by this metabolomic approach. A significant change in the abundance of biomarkers indicated that the enhanced biosynthesis of carbohydrates and fatty acids coupled with the decreased biosynthesis of amino acids, N-compounds and organic acids in all the stress groups. The up- or down-regulation of these biomarkers in the metabolic network provides new insights into the global metabolic regulation and internal relationships within amino acid and fatty acid synthesis, glycolysis, the tricarboxylic acid cycle (TCA) and the Calvin cycle in the snow alga under nitrate or phosphate deprivation stress.
In the present work, Chlamydomonas nivalis, a model species of snow algae, was used to illustrate the metabolic regulation mechanism of microalgae under nutrient deprivation stress. The seed culture was inoculated into the medium without nitrate or phosphate to reveal the cell responses by a metabolome profile analysis using gas chromatography time-of-flight mass spectrometry (GC/TOF-MS). One hundred and seventy-one of the identified metabolites clustered into five groups by the orthogonal partial least squares discriminant analysis (OPLS-DA) model. Among them, thirty of the metabolites in the nitrate-deprived group and thirty-nine of the metabolites in the phosphate-deprived group were selected and identified as “responding biomarkers” by this metabolomic approach. A significant change in the abundance of biomarkers indicated that the enhanced biosynthesis of carbohydrates and fatty acids coupled with the decreased biosynthesis of amino acids, N-compounds and organic acids in all the stress groups. The up- or down-regulation of these biomarkers in the metabolic network provides new insights into the global metabolic regulation and internal relationships within amino acid and fatty acid synthesis, glycolysis, the tricarboxylic acid cycle (TCA) and the Calvin cycle in the snow alga under nitrate or phosphate deprivation stress.
Author Chen, Feng
Chen, Gu
Wei, Dong
Lu, Na
Chen, Jun-Hui
AuthorAffiliation 1 School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; lvnahzau@gmail.com (N.L.); handcj@126.com (J.-H.C.); sfchencoe@pku.edu.cn (F.C.); chengu@scut.edu.cn (G.C.)
2 Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
AuthorAffiliation_xml – name: 2 Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
– name: 1 School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; lvnahzau@gmail.com (N.L.); handcj@126.com (J.-H.C.); sfchencoe@pku.edu.cn (F.C.); chengu@scut.edu.cn (G.C.)
Author_xml – sequence: 1
  givenname: Na
  surname: Lu
  fullname: Lu, Na
– sequence: 2
  givenname: Jun-Hui
  surname: Chen
  fullname: Chen, Jun-Hui
– sequence: 3
  givenname: Dong
  orcidid: 0000-0002-9709-2823
  surname: Wei
  fullname: Wei, Dong
– sequence: 4
  givenname: Feng
  surname: Chen
  fullname: Chen, Feng
– sequence: 5
  givenname: Gu
  orcidid: 0000-0002-2221-8006
  surname: Chen
  fullname: Chen, Gu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27171077$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhS3Uij5gxxp5yaIDfiWON0ijoRSktlQ81pGTXE9cOb5D7Cma38EfJtOXhgqJlW3d7557rHOPyF7ECIS84uytlIa989dD4poVrDTqGTnkSogZY6Xe27kfkKOUrhkTUhTmOTkQmmvOtD4kv88CNjbQC8i2weBb-hWW62Czx0jR0dwD_RbxF52HpaWLPthh0-GA0SYa_Y0NPlEfp6a0wpiAZqSXPo82A8WRXvWYVv328QFW44TfyjYbah8G4gD0akTnA9B5tGGTfHpB9p0NCV7en8fkx8fT74tPs_MvZ58X8_NZq7jOMyNV1ahOllVjLONOMC1d0-oOBGuhgqIDJ1lXqpJVtumc09LI0naKt64snJXH5P2d7mrdDNC1ECfjoZ6MDnbc1Gh9_Xcl-r5e4k2tqooXgk0Cb-4FRvy5hpTrwacWQrARcJ1qXkktGVPG_B_VlVFGar5FX-_aevTzENoEnNwB7YgpjeAeEc7q7U7Uuzsx4eIJ3vp8m8T0KR_-3fQHSy2-Cw
CitedBy_id crossref_primary_10_1093_femsec_fiz064
crossref_primary_10_1016_j_scitotenv_2021_149035
crossref_primary_10_3390_ijms22031247
crossref_primary_10_1016_j_biortech_2019_122242
crossref_primary_10_1016_j_biortech_2022_127874
crossref_primary_10_1016_j_scitotenv_2021_146687
crossref_primary_10_1080_07388551_2019_1597828
crossref_primary_10_1016_j_algal_2021_102368
crossref_primary_10_1002_lipd_12143
crossref_primary_10_1007_s00216_017_0776_x
crossref_primary_10_1016_j_algal_2018_08_014
crossref_primary_10_1016_j_cub_2017_07_014
crossref_primary_10_1016_j_plantsci_2019_02_008
crossref_primary_10_1016_j_algal_2023_103137
crossref_primary_10_1016_j_sajb_2021_08_026
crossref_primary_10_1007_s12010_017_2484_6
crossref_primary_10_2989_16085914_2020_1835604
crossref_primary_10_3390_molecules23071558
crossref_primary_10_1002_lno_10624
crossref_primary_10_1016_j_algal_2022_102838
crossref_primary_10_1016_j_bej_2021_108130
crossref_primary_10_1016_j_jenvman_2023_118945
crossref_primary_10_1093_femsec_fiad088
Cites_doi 10.3390/en6094607
10.1007/s11306-011-0356-6
10.1038/srep10373
10.1104/pp.95.4.1089
10.1021/ac5014755
10.1111/j.1365-313X.2006.02992.x
10.1007/s00018-012-1091-5
10.1128/EC.00272-09
10.1105/tpc.113.122523
10.1093/plankt/13.2.373
10.1099/mic.0.27883-0
10.1021/bi501113u
10.1016/j.cbpa.2013.04.007
10.1104/pp.111.184333
10.1093/oxfordjournals.jbchem.a122108
10.1111/tpj.12747
10.1111/1574-6941.12299
10.1186/1746-1448-5-8
10.1093/nar/gkr988
10.1186/1746-4811-4-7
10.1007/978-1-59745-244-1_1
10.1104/pp.110.165159
10.1515/BOT.2009.083
10.1021/ac0713510
10.1021/acs.analchem.5b04491
10.1111/j.1574-6968.2008.01154.x
10.1021/jf802088a
10.1104/pp.105.071589
10.1007/s11306-012-0463-z
10.1104/pp.111.175281
10.3390/metabo4020184
10.1111/j.0022-3646.1996.00402.x
10.1016/j.jembe.2011.05.010
10.1021/pr034020m
10.1016/j.plantsci.2014.11.015
10.1016/j.procbio.2012.04.011
10.1023/A:1013713905833
10.1016/j.tplants.2012.02.005
10.1039/b920913a
10.1007/s10681-015-1572-3
10.3389/fpls.2014.00805
10.1002/ejlt.201100248
10.1016/j.procbio.2013.02.028
10.1046/j.1529-8817.2000.99070.x
10.1586/14737159.2015.974562
10.1080/00032719.2012.673094
10.1021/ac9019522
10.1016/j.micron.2008.01.001
ContentType Journal Article
Copyright 2016 by the authors; licensee MDPI, Basel, Switzerland. 2016
Copyright_xml – notice: 2016 by the authors; licensee MDPI, Basel, Switzerland. 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
M7N
5PM
DOI 10.3390/ijms17050694
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
DatabaseTitleList
MEDLINE - Academic
CrossRef
Neurosciences Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
EndPage 694
ExternalDocumentID PMC4881520
27171077
10_3390_ijms17050694
Genre Journal Article
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
IPNFZ
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TR2
TUS
UKHRP
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
7X8
7TK
M7N
5PM
ID FETCH-LOGICAL-c417t-9348b4d368b9a01f2073fbc7de20ce8e5def30d64608abdff73936ad41cf65fa3
IEDL.DBID M48
ISSN 1422-0067
IngestDate Thu Aug 21 13:55:38 EDT 2025
Fri Jul 11 06:35:43 EDT 2025
Fri Jul 11 09:05:23 EDT 2025
Mon Jul 21 05:54:04 EDT 2025
Tue Jul 01 03:29:43 EDT 2025
Thu Apr 24 23:07:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords GC/TOF-MS
Chlamydomonas nivalis
nutrient deprivation
OPLS-DA
metabolome profile
responding biomarker
Language English
License https://creativecommons.org/licenses/by/4.0
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-9348b4d368b9a01f2073fbc7de20ce8e5def30d64608abdff73936ad41cf65fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to the work and should be regarded as co-first authors.
ORCID 0000-0002-9709-2823
0000-0002-2221-8006
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms17050694
PMID 27171077
PQID 1789493719
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4881520
proquest_miscellaneous_1837300499
proquest_miscellaneous_1789493719
pubmed_primary_27171077
crossref_primary_10_3390_ijms17050694
crossref_citationtrail_10_3390_ijms17050694
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160510
PublicationDateYYYYMMDD 2016-05-10
PublicationDate_xml – month: 5
  year: 2016
  text: 20160510
  day: 10
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2016
Publisher MDPI
Publisher_xml – name: MDPI
References Juneja (ref_39) 2013; 6
Rady (ref_4) 1995; 35
Lai (ref_30) 2011; 405
Veyel (ref_15) 2014; 4
Wiencke (ref_1) 2009; 52
Muratsubaki (ref_43) 1987; 102
Lukes (ref_46) 2014; 89
ref_16
Theodorou (ref_38) 1991; 95
Fiehn (ref_11) 2002; 48
Kind (ref_51) 2009; 81
Kanehisa (ref_45) 2012; 40
Lu (ref_28) 2012; 114
Gaude (ref_3) 2007; 49
Miller (ref_35) 2010; 154
ref_24
Bielecka (ref_10) 2015; 5
Ito (ref_37) 2013; 9
Cajka (ref_18) 2016; 88
Vidoudez (ref_22) 2012; 8
Kang (ref_31) 2008; 56
Peterson (ref_13) 2014; 86
Scholten (ref_32) 2016; 207
Sirithanakorn (ref_44) 2014; 53
Schwarz (ref_2) 2005; 151
Wienkoop (ref_19) 2010; 6
Park (ref_8) 2015; 81
Blatti (ref_33) 2013; 17
Lu (ref_26) 2012; 47
Lu (ref_5) 2013; 48
Hebeler (ref_41) 1992; 34
Beisken (ref_12) 2015; 15
Obata (ref_14) 2012; 69
Fernie (ref_21) 2012; 17
Flynn (ref_36) 1991; 13
Wiklund (ref_17) 2008; 80
Fiehn (ref_50) 2007; 358
Lu (ref_27) 2012; 45
Irihimovitch (ref_47) 2008; 283
Kanehisa (ref_23) 1996; 59
Diaz (ref_20) 2008; 39
Schmollinger (ref_6) 2014; 26
Soga (ref_7) 2003; 2
Guerrini (ref_29) 2000; 36
Bolling (ref_49) 2005; 139
Wang (ref_34) 2009; 8
Plaxton (ref_48) 2011; 156
ref_9
Siderius (ref_40) 1996; 32
Hockin (ref_25) 2012; 158
(ref_42) 2015; 231
17270009 - Plant J. 2007 Feb;49(4):729-39
25166283 - Anal Chem. 2014 Oct 21;86(20):10044-51
23463323 - Metabolomics. 2013 Mar;9(Suppl 1):178-187
17035677 - Methods Mol Biol. 2007;358:3-17
18442406 - Plant Methods. 2008 Apr 28;4:7
23683348 - Curr Opin Chem Biol. 2013 Jun;17(3):496-505
24957022 - Metabolites. 2014 Apr 11;4(2):184-217
25354566 - Expert Rev Mol Diagn. 2015 Jan;15(1):97-109
25674096 - Front Plant Sci. 2015 Jan 28;5:805
16079330 - Microbiology. 2005 Aug;151(Pt 8):2503-14
18329888 - Micron. 2008 Oct;39(7):819-24
21562330 - Plant Physiol. 2011 Jul;156(3):1006-15
20935180 - Plant Physiol. 2010 Dec;154(4):1737-52
16306140 - Plant Physiol. 2005 Dec;139(4):1995-2005
22080510 - Nucleic Acids Res. 2012 Jan;40(Database issue):D109-14
18410347 - FEMS Microbiol Lett. 2008 Jun;283(1):1-8
20358043 - Mol Biosyst. 2010 Jun;6(6):1018-31
3325498 - J Biochem. 1987 Oct;102(4):705-14
19880756 - Eukaryot Cell. 2009 Dec;8(12):1856-68
19053358 - J Agric Food Chem. 2008 Dec 24;56(24):11589-95
26637011 - Anal Chem. 2016 Jan 5;88(1):524-45
22065419 - Plant Physiol. 2012 Jan;158(1):299-312
24748044 - Plant Cell. 2014 Apr 18;26(4):1410-1435
25330457 - Biochemistry. 2014 Nov 18;53(45):7100-6
19928838 - Anal Chem. 2009 Dec 15;81(24):10038-48
26020491 - Sci Rep. 2015;5:10373
24698015 - FEMS Microbiol Ecol. 2014 Aug;89(2):303-15
11860207 - Plant Mol Biol. 2002 Jan;48(1-2):155-71
25575997 - Plant Sci. 2015 Feb;231:124-30
19735556 - Saline Systems. 2009 Sep 07;5:8
14582645 - J Proteome Res. 2003 Sep-Oct;2(5):488-94
22885821 - Cell Mol Life Sci. 2012 Oct;69(19):3225-43
16668095 - Plant Physiol. 1991 Apr;95(4):1089-95
25515814 - Plant J. 2015 Feb;81(4):611-24
18027910 - Anal Chem. 2008 Jan 1;80(1):115-22
22465020 - Trends Plant Sci. 2012 Jul;17(7):395-403
References_xml – volume: 6
  start-page: 4607
  year: 2013
  ident: ref_39
  article-title: Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A review
  publication-title: Energies
  doi: 10.3390/en6094607
– volume: 8
  start-page: 654
  year: 2012
  ident: ref_22
  article-title: Comparative metabolomics of the diatom skeletonema marinoi in different growth phases
  publication-title: Metabolomics
  doi: 10.1007/s11306-011-0356-6
– ident: ref_9
  doi: 10.1038/srep10373
– volume: 95
  start-page: 1089
  year: 1991
  ident: ref_38
  article-title: Effects of phosphorus limitation on respiratory metabolism in the green alga selenastrum minutum
  publication-title: Plant Physiol.
  doi: 10.1104/pp.95.4.1089
– volume: 86
  start-page: 10044
  year: 2014
  ident: ref_13
  article-title: Development of a GC/quadrupole-orbitrap mass spectrometer, part II: New approaches for discovery metabolomics
  publication-title: Anal. Chem.
  doi: 10.1021/ac5014755
– volume: 49
  start-page: 729
  year: 2007
  ident: ref_3
  article-title: Nitrogen deficiency in arabidopsis affects galactolipid composition and gene expression and results in accumulation of fatty acid phytyl esters
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2006.02992.x
– volume: 69
  start-page: 3225
  year: 2012
  ident: ref_14
  article-title: The use of metabolomics to dissect plant responses to abiotic stresses
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-012-1091-5
– volume: 8
  start-page: 1856
  year: 2009
  ident: ref_34
  article-title: Algal lipid bodies: Stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.00272-09
– volume: 26
  start-page: 1410
  year: 2014
  ident: ref_6
  article-title: Nitrogen-sparing mechanisms in Chlamydomonas affect the transcriptome, the proteome, and photosynthetic metabolism
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.122523
– volume: 13
  start-page: 373
  year: 1991
  ident: ref_36
  article-title: Algal carbon-nitrogen metabolism: A biochemical basis for modelling the interactions between nitrate and ammonium uptake
  publication-title: J. Plankton Res.
  doi: 10.1093/plankt/13.2.373
– volume: 151
  start-page: 2503
  year: 2005
  ident: ref_2
  article-title: Acclimation of unicellular cyanobacteria to macronutrient deficiency: Emergence of a complex network of cellular responses
  publication-title: Microbiol. SGM
  doi: 10.1099/mic.0.27883-0
– volume: 53
  start-page: 7100
  year: 2014
  ident: ref_44
  article-title: Mechanisms of inhibition of Rhizobium etli pyruvate carboxylase by l-aspartate
  publication-title: Biochemistry
  doi: 10.1021/bi501113u
– volume: 17
  start-page: 496
  year: 2013
  ident: ref_33
  article-title: Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2013.04.007
– volume: 158
  start-page: 299
  year: 2012
  ident: ref_25
  article-title: The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.184333
– volume: 59
  start-page: 34
  year: 1996
  ident: ref_23
  article-title: Toward pathway engineering: A new database of genetic and molecular pathways
  publication-title: Sci. Technol. Jpn.
– volume: 102
  start-page: 705
  year: 1987
  ident: ref_43
  article-title: Regulation of reductive production of succinate under anaerobic conditions in baker's yeast
  publication-title: J. Biochem.
  doi: 10.1093/oxfordjournals.jbchem.a122108
– volume: 81
  start-page: 611
  year: 2015
  ident: ref_8
  article-title: The response of Chlamydomonas reinhardtii to nitrogen deprivation: A systems biology analysis
  publication-title: Plant J.
  doi: 10.1111/tpj.12747
– volume: 89
  start-page: 303
  year: 2014
  ident: ref_46
  article-title: Temperature dependence of photosynthesis and thylakoid lipid composition in the red snow alga Chlamydomonas cf. nivalis (Chlorophyceae)
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/1574-6941.12299
– ident: ref_24
  doi: 10.1186/1746-1448-5-8
– volume: 40
  start-page: 109
  year: 2012
  ident: ref_45
  article-title: Kegg for integration and interpretation of large-scale molecular data sets
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr988
– ident: ref_16
  doi: 10.1186/1746-4811-4-7
– volume: 358
  start-page: 3
  year: 2007
  ident: ref_50
  article-title: Metabolite profiling in blood plasma
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-59745-244-1_1
– volume: 154
  start-page: 1737
  year: 2010
  ident: ref_35
  article-title: Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.165159
– volume: 52
  start-page: 479
  year: 2009
  ident: ref_1
  article-title: Biology of polar benthic algae
  publication-title: Bot. Mar.
  doi: 10.1515/BOT.2009.083
– volume: 80
  start-page: 115
  year: 2008
  ident: ref_17
  article-title: Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using opls class models
  publication-title: Anal. Chem.
  doi: 10.1021/ac0713510
– volume: 88
  start-page: 524
  year: 2016
  ident: ref_18
  article-title: Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b04491
– volume: 283
  start-page: 1
  year: 2008
  ident: ref_47
  article-title: Phosphate and sulfur limitation responses in the chloroplast of Chlamydomonas reinhardtii
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2008.01154.x
– volume: 56
  start-page: 11589
  year: 2008
  ident: ref_31
  article-title: Application of a 1H nuclear magnetic resonance (NMR) metabolomics approach combined with orthogonal projections to latent structure-discriminant analysis as an efficient tool for discriminating between korean and chinese herbal medicines
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf802088a
– volume: 139
  start-page: 1995
  year: 2005
  ident: ref_49
  article-title: Metabolite profiling of Chlamydomonas reinhardtii under nutrient deprivation
  publication-title: Plant Physiol.
  doi: 10.1104/pp.105.071589
– volume: 9
  start-page: 178
  year: 2013
  ident: ref_37
  article-title: Metabolic and morphological changes of an oil accumulating trebouxiophycean alga in nitrogen-deficient conditions
  publication-title: Metabolomics
  doi: 10.1007/s11306-012-0463-z
– volume: 156
  start-page: 1006
  year: 2011
  ident: ref_48
  article-title: Metabolic adaptations of phosphate-starved plants
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.175281
– volume: 4
  start-page: 184
  year: 2014
  ident: ref_15
  article-title: Rationales and approaches for studying metabolism in eukaryotic microalgae
  publication-title: Metabolites
  doi: 10.3390/metabo4020184
– volume: 32
  start-page: 402
  year: 1996
  ident: ref_40
  article-title: Chlamydomonas eugametos (Chlorophyta) stores phosphate in polyphosphate bodies together with calcium
  publication-title: J. Phycol.
  doi: 10.1111/j.0022-3646.1996.00402.x
– volume: 35
  start-page: 139
  year: 1995
  ident: ref_4
  article-title: Effect of phosphorus starvation on growth, photosynthesis and some metabolic processes in the unicellular green alga chlorella kessleri
  publication-title: Phyton
– volume: 405
  start-page: 6
  year: 2011
  ident: ref_30
  article-title: Responses of the growth and biochemical composition of prorocentrum donghaiense to different nitrogen and phosphorus concentrations
  publication-title: J. Exp. Mar. Biol. Ecol.
  doi: 10.1016/j.jembe.2011.05.010
– volume: 2
  start-page: 488
  year: 2003
  ident: ref_7
  article-title: Quantitative metabolome analysis using capillary electrophoresis mass spectrometry
  publication-title: J. Proteome Res.
  doi: 10.1021/pr034020m
– volume: 231
  start-page: 124
  year: 2015
  ident: ref_42
  article-title: Phosphite cannot be used as a phosphorus source but is non-toxic for microalgae
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2014.11.015
– volume: 47
  start-page: 1163
  year: 2012
  ident: ref_26
  article-title: Regulation of lipid metabolism in the snow alga Chlamydomonas nivalis in response to NACL stress: An integrated analysis by cytomic and lipidomic approaches
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2012.04.011
– volume: 48
  start-page: 155
  year: 2002
  ident: ref_11
  article-title: Metabolomics—The link between genotypes and phenotypes
  publication-title: Plant Mol. Biol.
  doi: 10.1023/A:1013713905833
– volume: 17
  start-page: 395
  year: 2012
  ident: ref_21
  article-title: Leveraging metabolomics for functional investigations in sequenced marine diatoms
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2012.02.005
– volume: 6
  start-page: 1018
  year: 2010
  ident: ref_19
  article-title: Targeted proteomics for Chlamydomonas reinhardtii combined with rapid subcellular protein fractionation, metabolomics and metabolic flux analyses
  publication-title: Mol. Biosyst.
  doi: 10.1039/b920913a
– volume: 34
  start-page: 199
  year: 1992
  ident: ref_41
  article-title: Phosphate regulation and compartmentation in Chlamydomonas reinhardtii studied by in vivo p-31-NMR
  publication-title: Photosynth. Res.
– volume: 207
  start-page: 1
  year: 2016
  ident: ref_32
  article-title: Improving phosphorus use efficiency in agriculture: Opportunities for breeding
  publication-title: Euphytica
  doi: 10.1007/s10681-015-1572-3
– volume: 5
  start-page: 1
  year: 2015
  ident: ref_10
  article-title: Transcriptome and metabolome analysis of plant sulfate starvation and resupply provides novel information on transcriptional regulation of metabolism associated with sulfur, nitrogen and phosphorus nutritional responses in arabidopsis
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2014.00805
– volume: 114
  start-page: 253
  year: 2012
  ident: ref_28
  article-title: Lipidomic profiling and discovery of lipid biomarkers in snow alga Chlamydomonas nivalis under salt stress
  publication-title: Eur. J. Lipid Sci. Technol.
  doi: 10.1002/ejlt.201100248
– volume: 48
  start-page: 605
  year: 2013
  ident: ref_5
  article-title: Lipidomic profiling reveals lipid regulation in the snow alga Chlamydomonas nivalis in response to nitrate or phosphate deprivation
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2013.02.028
– volume: 36
  start-page: 882
  year: 2000
  ident: ref_29
  article-title: Metabolic responses of the diatom Achnanthes brevipes (bacillariophyceae) to nutrient limitation
  publication-title: J. Phycol.
  doi: 10.1046/j.1529-8817.2000.99070.x
– volume: 15
  start-page: 97
  year: 2015
  ident: ref_12
  article-title: Getting the right answers: Understanding metabolomics challenges
  publication-title: Expert Rev. Mol. Diagn.
  doi: 10.1586/14737159.2015.974562
– volume: 45
  start-page: 1172
  year: 2012
  ident: ref_27
  article-title: Fatty acids profiling and biomarker identification in snow alga Chlamydomonas nivalis by NACL stress using GC/MS and multivariate statistical analysis
  publication-title: Anal. Lett.
  doi: 10.1080/00032719.2012.673094
– volume: 81
  start-page: 10038
  year: 2009
  ident: ref_51
  article-title: Fiehnlib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-fight gas chromatography/mass spectrometry
  publication-title: Anal. Chem.
  doi: 10.1021/ac9019522
– volume: 39
  start-page: 819
  year: 2008
  ident: ref_20
  article-title: Hydrophobic characterization of intracellular lipids in situ by nile red red/yellow emission ratio
  publication-title: Micron
  doi: 10.1016/j.micron.2008.01.001
– reference: 25330457 - Biochemistry. 2014 Nov 18;53(45):7100-6
– reference: 19735556 - Saline Systems. 2009 Sep 07;5:8
– reference: 16668095 - Plant Physiol. 1991 Apr;95(4):1089-95
– reference: 21562330 - Plant Physiol. 2011 Jul;156(3):1006-15
– reference: 18410347 - FEMS Microbiol Lett. 2008 Jun;283(1):1-8
– reference: 25515814 - Plant J. 2015 Feb;81(4):611-24
– reference: 23683348 - Curr Opin Chem Biol. 2013 Jun;17(3):496-505
– reference: 22080510 - Nucleic Acids Res. 2012 Jan;40(Database issue):D109-14
– reference: 19880756 - Eukaryot Cell. 2009 Dec;8(12):1856-68
– reference: 20935180 - Plant Physiol. 2010 Dec;154(4):1737-52
– reference: 18329888 - Micron. 2008 Oct;39(7):819-24
– reference: 24698015 - FEMS Microbiol Ecol. 2014 Aug;89(2):303-15
– reference: 16079330 - Microbiology. 2005 Aug;151(Pt 8):2503-14
– reference: 25166283 - Anal Chem. 2014 Oct 21;86(20):10044-51
– reference: 25674096 - Front Plant Sci. 2015 Jan 28;5:805
– reference: 11860207 - Plant Mol Biol. 2002 Jan;48(1-2):155-71
– reference: 18442406 - Plant Methods. 2008 Apr 28;4:7
– reference: 19928838 - Anal Chem. 2009 Dec 15;81(24):10038-48
– reference: 14582645 - J Proteome Res. 2003 Sep-Oct;2(5):488-94
– reference: 25575997 - Plant Sci. 2015 Feb;231:124-30
– reference: 19053358 - J Agric Food Chem. 2008 Dec 24;56(24):11589-95
– reference: 18027910 - Anal Chem. 2008 Jan 1;80(1):115-22
– reference: 16306140 - Plant Physiol. 2005 Dec;139(4):1995-2005
– reference: 26020491 - Sci Rep. 2015;5:10373
– reference: 17270009 - Plant J. 2007 Feb;49(4):729-39
– reference: 24748044 - Plant Cell. 2014 Apr 18;26(4):1410-1435
– reference: 26637011 - Anal Chem. 2016 Jan 5;88(1):524-45
– reference: 17035677 - Methods Mol Biol. 2007;358:3-17
– reference: 23463323 - Metabolomics. 2013 Mar;9(Suppl 1):178-187
– reference: 20358043 - Mol Biosyst. 2010 Jun;6(6):1018-31
– reference: 24957022 - Metabolites. 2014 Apr 11;4(2):184-217
– reference: 25354566 - Expert Rev Mol Diagn. 2015 Jan;15(1):97-109
– reference: 22885821 - Cell Mol Life Sci. 2012 Oct;69(19):3225-43
– reference: 22465020 - Trends Plant Sci. 2012 Jul;17(7):395-403
– reference: 22065419 - Plant Physiol. 2012 Jan;158(1):299-312
– reference: 3325498 - J Biochem. 1987 Oct;102(4):705-14
SSID ssj0023259
Score 2.282603
Snippet In the present work, Chlamydomonas nivalis, a model species of snow algae, was used to illustrate the metabolic regulation mechanism of microalgae under...
In the present work, Chlamydomonas nivalis , a model species of snow algae, was used to illustrate the metabolic regulation mechanism of microalgae under...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 694
SubjectTerms Chlamydomonas - metabolism
Chlamydomonas nivalis
Metabolome
Nitrates - metabolism
Nitrogen - deficiency
Phosphates - deficiency
Stress, Physiological
Title Global Metabolic Regulation of the Snow Alga Chlamydomonas nivalis in Response to Nitrate or Phosphate Deprivation by a Metabolome Profile Analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/27171077
https://www.proquest.com/docview/1789493719
https://www.proquest.com/docview/1837300499
https://pubmed.ncbi.nlm.nih.gov/PMC4881520
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3bjtMwEB3tRUi8IJZrga0GCZ5QIGkcO3lAaFm2rJC2qhYq9S2yY5sGdZPSZoF-Bz_MOJdqywLiJUqUsSx5xp45sXMOwDOrKY9wwzwW2Mxj0nBPxsrQndI2CKMs1jXb54ifTtiHaTTdgU5ttB3A1R-hndOTmiznL398Xb-hCf_aIU6C7K_yLxcrxwrj_uHchX3KScJN0TO22U-gsqGWTXMfPDy3QDdH4K-13k5O1yrO3w9OXslEw9twqy0h8ajx-QHsmOIO3GhEJdd34WdD449npiIHz_MMzxu9efIAlhap4sOPRfkdj-afJR7PKCTWuqRolCss8m-OEBHzghrVh2cNViWO8prDFssljmflajFzD-_MYtlKo6Fao-w6LC8MjhslcOwoT-7BZHjy6fjUa6UXvIxGr_KSkMWK6ZDHKpF-YAe0EliVCW0GfmZiE2ljQ19zxv3YedU6Yj0uNQsyyyMrw_uwV5SFeQgoQpENtNJG-YwZzqlxEglaaAMrfKlVD150Y55mLS-5k8eYp4RPnIfSqx7qwfON9aLh4_iL3dPOfSlNGLcLIgtTXq7SQMQJcyyAyT9sCLaHNRrswYPG5ZveBgSACTOLHoitYNgYOMLu7TdFPquJu2mxpHLJf_Qf_T6Gm1Saca_miX0Ce9Xy0hxS-VOpPuyKqaBrPHzfh_23J6Pxed8lpKhfx_wvgwENVQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+Metabolic+Regulation+of+the+Snow+Alga+Chlamydomonas+nivalis+in+Response+to+Nitrate+or+Phosphate+Deprivation+by+a+Metabolome+Profile+Analysis&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Lu%2C+Na&rft.au=Chen%2C+Jun-Hui&rft.au=Wei%2C+Dong&rft.au=Chen%2C+Feng&rft.date=2016-05-10&rft.issn=1422-0067&rft.volume=17&rft.issue=5&rft.spage=694&rft.epage=694&rft_id=info:doi/10.3390%2Fijms17050694&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon