Predicting remaining useful life of rolling bearings based on deep feature representation and long short-term memory neural network
For bearing remaining useful life prediction problem, the traditional machine-learning-based methods are generally short of feature representation ability and incapable of adaptive feature extraction. Although deep-learning-based remaining useful life prediction methods proposed in recent years can...
Saved in:
Published in | Advances in mechanical engineering Vol. 10; no. 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.12.2018
Sage Publications Ltd SAGE Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For bearing remaining useful life prediction problem, the traditional machine-learning-based methods are generally short of feature representation ability and incapable of adaptive feature extraction. Although deep-learning-based remaining useful life prediction methods proposed in recent years can effectively extract discriminative features for bearing fault, these methods tend to less consider temporal information of fault degradation process. To solve this problem, a new remaining useful life prediction approach based on deep feature representation and long short-term memory neural network is proposed in this article. First, a new criterion, named support vector data normalized correlation coefficient, is proposed to automatically divide the whole bearing life as normal state and fast degradation state. Second, deep features of bearing fault with good representation ability can be obtained from convolutional neural network by means of the marginal spectrum in Hilbert–Huang transform of raw vibration signals and health state label. Finally, by considering the temporal information of degradation process, these features are fed into a long short-term memory neural network to construct a remaining useful life prediction model. Experiments are conducted on bearing data sets of IEEE PHM Challenge 2012. The results show the significance of performance improvement of the proposed method in terms of predictive accuracy and numerical stability. |
---|---|
AbstractList | For bearing remaining useful life prediction problem, the traditional machine-learning-based methods are generally short of feature representation ability and incapable of adaptive feature extraction. Although deep-learning-based remaining useful life prediction methods proposed in recent years can effectively extract discriminative features for bearing fault, these methods tend to less consider temporal information of fault degradation process. To solve this problem, a new remaining useful life prediction approach based on deep feature representation and long short-term memory neural network is proposed in this article. First, a new criterion, named support vector data normalized correlation coefficient, is proposed to automatically divide the whole bearing life as normal state and fast degradation state. Second, deep features of bearing fault with good representation ability can be obtained from convolutional neural network by means of the marginal spectrum in Hilbert–Huang transform of raw vibration signals and health state label. Finally, by considering the temporal information of degradation process, these features are fed into a long short-term memory neural network to construct a remaining useful life prediction model. Experiments are conducted on bearing data sets of IEEE PHM Challenge 2012. The results show the significance of performance improvement of the proposed method in terms of predictive accuracy and numerical stability. |
Author | Li, Yuan Tang, Jiamei Mao, Wentao He, Jianliang |
Author_xml | – sequence: 1 givenname: Wentao orcidid: 0000-0001-5335-9517 surname: Mao fullname: Mao, Wentao email: maowt@htu.edu.cn – sequence: 2 givenname: Jianliang surname: He fullname: He, Jianliang – sequence: 3 givenname: Jiamei surname: Tang fullname: Tang, Jiamei – sequence: 4 givenname: Yuan surname: Li fullname: Li, Yuan |
BookMark | eNp9Uc9rFjEQXaSCtfbuMeB5Ndnky4-jFLWFgh70vGST2c_UbPI5ySI9-4-bdaVCQU9veHnvzWTmeXeWcoKue8noa8aUesOkVpoJyrRmimnxpDvfqH7jzh5qPjzrLksJEz1QSak05rz7-QnBB1dDOhKExYa0VWuBeY0khhlIngnmGDd6AosNC5lsAU9yIh7gRGawdUVo_hNCgVRtDe3NJk9ibrbyNWPtK-BCFlgy3pMEK9rYoP7I-O1F93S2scDlH7zovrx_9_nqur_9-OHm6u1t7wRTtTd0GgTzk5qVNNpNRjHTvq3kQRkGngqnlBIHTScpB24kF7IV3jgmnJaO8YvuZs_12d6NJwyLxfsx2zD-JjIeR4s1uAjjQXgvdFsRUCmUFNZROQsuuVFUaMdb1qs964T5-wqljnd5xdTGHwfOuBqo4qKp6K5ymEtBmB-6MjpulxsfX65Z5COLC_tCK9oQ_2fsd2OxR_g7zT_1vwDm86oG |
CitedBy_id | crossref_primary_10_1016_j_jmsy_2021_05_003 crossref_primary_10_3390_app12104839 crossref_primary_10_1016_j_ress_2024_110121 crossref_primary_10_1016_j_isatra_2020_03_017 crossref_primary_10_1002_cpe_7544 crossref_primary_10_3390_math8091403 crossref_primary_10_3390_s23041892 crossref_primary_10_1016_j_ress_2024_109928 crossref_primary_10_1109_ACCESS_2022_3216885 crossref_primary_10_3390_machines12040224 crossref_primary_10_1016_j_compeleceng_2024_109314 crossref_primary_10_1007_s10845_021_01881_1 crossref_primary_10_1016_j_neucom_2020_07_088 crossref_primary_10_1155_2021_6142975 crossref_primary_10_1007_s11047_020_09794_3 crossref_primary_10_1016_j_future_2020_01_048 crossref_primary_10_1109_TIM_2019_2917735 crossref_primary_10_1007_s10489_021_02503_2 crossref_primary_10_1088_2631_8695_ad68c9 crossref_primary_10_1109_TII_2022_3202832 crossref_primary_10_3390_su14106009 crossref_primary_10_1016_j_engappai_2021_104552 crossref_primary_10_3390_en17051010 crossref_primary_10_1016_j_engappai_2022_105662 crossref_primary_10_1155_2023_1091276 crossref_primary_10_1088_1742_6596_2762_1_012053 crossref_primary_10_1186_s10033_021_00570_7 crossref_primary_10_3390_math8091415 crossref_primary_10_3390_s20010166 crossref_primary_10_3390_machines10030176 crossref_primary_10_1109_TIM_2021_3072670 crossref_primary_10_1109_JSEN_2022_3209894 crossref_primary_10_3390_s22207766 crossref_primary_10_3390_e25111477 crossref_primary_10_1108_IJQRM_08_2021_0291 crossref_primary_10_3390_pr12010008 crossref_primary_10_1007_s11831_021_09562_1 crossref_primary_10_1016_j_pnucene_2024_105114 crossref_primary_10_1007_s42417_024_01293_4 crossref_primary_10_1016_j_neucom_2021_04_109 crossref_primary_10_1109_ACCESS_2021_3117002 crossref_primary_10_1016_j_engappai_2023_106303 crossref_primary_10_1016_j_ymssp_2022_108907 crossref_primary_10_1109_JSEN_2022_3185161 crossref_primary_10_1016_j_measurement_2024_116589 crossref_primary_10_3390_en16145312 crossref_primary_10_3390_math8020149 crossref_primary_10_1155_2022_9188776 crossref_primary_10_1007_s11668_024_01921_x crossref_primary_10_3390_machines12020116 crossref_primary_10_3389_frai_2020_578613 crossref_primary_10_1007_s12206_024_0402_8 crossref_primary_10_1016_j_engfailanal_2022_106414 crossref_primary_10_1109_ACCESS_2019_2950985 crossref_primary_10_1155_2021_6806319 crossref_primary_10_1016_j_eswa_2022_116544 crossref_primary_10_1109_JSEN_2024_3450470 crossref_primary_10_3390_s21196325 crossref_primary_10_1177_1748006X231223777 crossref_primary_10_1016_j_measurement_2021_110276 crossref_primary_10_3390_app12094136 crossref_primary_10_1109_TII_2022_3172704 crossref_primary_10_1007_s40815_021_01220_9 crossref_primary_10_1080_10589759_2025_2465411 crossref_primary_10_1109_TIM_2022_3159010 crossref_primary_10_1016_j_engappai_2023_107726 crossref_primary_10_33262_concienciadigital_v7i3_1_3120 crossref_primary_10_3390_electronics9020323 crossref_primary_10_1016_j_neucom_2021_12_035 crossref_primary_10_1016_j_engappai_2023_107367 crossref_primary_10_1016_j_knosys_2020_105675 crossref_primary_10_1016_j_measurement_2021_109201 crossref_primary_10_1016_j_jmsy_2019_11_008 crossref_primary_10_1016_j_ress_2021_107813 crossref_primary_10_3390_en16207081 crossref_primary_10_1016_j_conengprac_2021_104969 crossref_primary_10_1016_j_engappai_2024_108285 crossref_primary_10_17531_ein_2019_4_10 crossref_primary_10_1109_TIM_2023_3265109 crossref_primary_10_1007_s00366_021_01293_y crossref_primary_10_3390_electronics13245034 crossref_primary_10_1177_17568293221150171 crossref_primary_10_1007_s11265_023_01845_z crossref_primary_10_1088_1757_899X_1043_3_032011 crossref_primary_10_3390_s24216906 |
Cites_doi | 10.1007/s00170-013-5065-z 10.1016/j.neucom.2018.04.043 10.1162/neco.1989.1.4.541 10.1016/j.neucom.2018.02.083 10.1016/j.neucom.2017.05.063 10.1016/j.eswa.2007.12.010 10.1016/j.neucom.2017.02.045 10.1016/j.ymssp.2017.12.008 10.1016/j.ymssp.2017.03.034 10.1016/j.microrel.2017.03.021 10.1016/j.ymssp.2015.10.025 10.1162/neco.1997.9.8.1735 10.1016/j.procs.2018.04.271 10.1016/j.ymssp.2012.02.015 10.1016/j.compind.2018.01.005 10.1016/j.measurement.2016.07.054 10.1016/j.engappai.2013.02.006 10.1109/TIE.2013.2270212 10.3901/JME.2010.01.100 10.3390/s17020273 10.1016/j.jmsy.2017.02.013 10.1177/0954406215590167 10.1016/j.renene.2018.04.033 10.1109/TIM.2014.2330494 10.1016/j.eswa.2009.01.063 10.1098/rspa.1998.0193 10.1016/j.ymssp.2017.11.016 10.1016/j.ymssp.2016.12.040 10.1109/TIE.2017.2745473 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 The Author(s) 2018. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: The Author(s) 2018. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AFRWT AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 H8D HCIFZ L6V L7M M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1177/1687814018817184 |
DatabaseName | Sage Journals Open Access Journals (WRLC) CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database Aerospace Database SciTech Premium Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: AFRWT name: Sage Journals Open Access Journals (WRLC) url: http://journals.sagepub.com/ sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1687-8140 |
ExternalDocumentID | oai_doaj_org_article_54dd48069e064764ac06f436397048c3 10_1177_1687814018817184 10.1177_1687814018817184 |
GrantInformation_xml | – fundername: the funding scheme of University Science & Technology Innovation in Henan Province grantid: 15HASTIT022 – fundername: National Natural Science Foundation of China grantid: 11702087 funderid: https://doi.org/10.13039/501100001809 – fundername: the foundation of Henan Normal University for Excellent Young Teachers grantid: 14YQ007 – fundername: National Natural Science Foundation of China grantid: U1704158 funderid: https://doi.org/10.13039/501100001809 – fundername: China Postdoctoral Science Foundation grantid: 2016T90944 funderid: https://doi.org/10.13039/501100002858 |
GroupedDBID | .DC 0R~ 188 23M 2UF 2WC 4.4 54M 5GY 5VS 8FE 8FG 8R4 8R5 AAJPV AASGM ABAWP ABJCF ABQXT ACGFS ACIWK ACROE ADBBV ADOGD AEDFJ AENEX AEUHG AEWDL AFCOW AFKRA AFKRG AFRWT AINHJ AJUZI ALMA_UNASSIGNED_HOLDINGS AUTPY AYAKG BCNDV BDDNI BENPR BGLVJ C1A CAHYU CCPQU CNMHZ E3Z EBS EJD GROUPED_DOAJ H13 HCIFZ IAO IEA IL9 ITC J8X K.F KQ8 L6V M7S O9- OK1 PHGZM PHGZT PIMPY PTHSS Q2X RHU ROL SAUOL SCDPB SCNPE SFC TR2 UGNYK AAYXX ACHEB CITATION 7TB 8FD ABUWG AZQEC DWQXO FR3 H8D L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c417t-90b241db7f7698cb9719878765791ed04c7774580b662396346662d9c14c86c13 |
IEDL.DBID | AFRWT |
ISSN | 1687-8132 |
IngestDate | Wed Aug 27 01:31:39 EDT 2025 Fri Jul 25 12:18:00 EDT 2025 Thu Apr 24 23:11:10 EDT 2025 Tue Jul 01 05:21:59 EDT 2025 Tue Jun 17 22:47:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | deep feature representation deep learning Remaining useful life health state assessment long short-term memory |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-90b241db7f7698cb9719878765791ed04c7774580b662396346662d9c14c86c13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5335-9517 |
OpenAccessLink | https://journals.sagepub.com/doi/full/10.1177/1687814018817184?utm_source=summon&utm_medium=discovery-provider |
PQID | 2313720734 |
PQPubID | 237349 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_54dd48069e064764ac06f436397048c3 proquest_journals_2313720734 crossref_primary_10_1177_1687814018817184 crossref_citationtrail_10_1177_1687814018817184 sage_journals_10_1177_1687814018817184 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: New York |
PublicationTitle | Advances in mechanical engineering |
PublicationYear | 2018 |
Publisher | SAGE Publications Sage Publications Ltd SAGE Publishing |
Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd – name: SAGE Publishing |
References | Wu, Yuan, Dong 2018; 275 Guo, Chen, Shen 2016; 93 Guo, Li, Jia 2017; 240 Zhao, Ye, Chen 2010; 46 Xu, Xuan, Shi 2009; 36 Liu, Zuo, Qin 2016; 230 Mosallam, Medjaher, Zerhouni 2013; 69 Jia, Lei, Lin 2016; 73 Shao, Jiang, Zhao 2017; 95 Hu, Li, Shi 2018; 127 Shao, Jiang, Zhang 2018; 65 Liao 2014; 61 LeCun, Boser, Denker 1989; 1 Pham, Yang, Nguyen 2012; 32 Benkedjouh, Medjaher, Zerhouni 2013; 26 Ren, Cui, Sun 2017; 43 Hochreiter, Schmidhuber 1997; 9 Li, Yang, Li 2017; 91 Yang, Oh, Tan 2009; 36 Guo, Lei, Li 2018; 292 Shao, Jiang, Li 2018; 96 Liu, Cheng, Wang 2018; 305 Zhang, Liu, Yu 2017; 75 Yang, Sun, Guo 2018; 131 Zhao, Yan, Wang 2017; 17 Huang, Shen, Long 1998; 454 Li, Li, Yang 2018; 105 Soualhi, Medjaher, Zerhouni 2015; 64 Lei, Li, Guo 2018; 104 bibr33-1687814018817184 bibr8-1687814018817184 bibr16-1687814018817184 bibr17-1687814018817184 bibr11-1687814018817184 Nectoux P (bibr20-1687814018817184) bibr4-1687814018817184 bibr24-1687814018817184 bibr9-1687814018817184 bibr32-1687814018817184 bibr18-1687814018817184 bibr15-1687814018817184 bibr5-1687814018817184 bibr10-1687814018817184 bibr1-1687814018817184 bibr23-1687814018817184 bibr14-1687814018817184 bibr19-1687814018817184 bibr27-1687814018817184 bibr31-1687814018817184 Wang T (bibr3-1687814018817184) bibr28-1687814018817184 bibr22-1687814018817184 bibr26-1687814018817184 bibr21-1687814018817184 bibr13-1687814018817184 bibr7-1687814018817184 Benkedjouh T (bibr6-1687814018817184) bibr29-1687814018817184 bibr30-1687814018817184 bibr12-1687814018817184 bibr25-1687814018817184 Sutrisno E (bibr2-1687814018817184) |
References_xml | – volume: 230 start-page: 314 year: 2016 end-page: 330 article-title: Remaining useful life prediction of rolling element bearings based on health state assessment publication-title: Proc IMechE, Part C: J Mechanical Engineering Science – volume: 305 start-page: 27 year: 2018 end-page: 38 article-title: A method for remaining useful life prediction of crystal oscillators using the Bayesian approach and extreme learning machine under uncertainty publication-title: Neurocomputing – volume: 131 start-page: 825 year: 2018 end-page: 831 article-title: Aero-material consumption prediction based on linear regression model publication-title: Procedia Comput Sci – volume: 93 start-page: 490 year: 2016 end-page: 502 article-title: Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis publication-title: Measurement – volume: 64 start-page: 52 year: 2015 end-page: 62 article-title: Bearing health monitoring based on Hilbert–Huang transform, support vector machine, and regression publication-title: IEEE T Instrum Meas – volume: 46 start-page: 100 year: 2010 end-page: 108 article-title: Difference spectrum theory of singular value and its application to the fault diagnosis of headstock of lathe publication-title: J Mech Eng – volume: 43 start-page: 248 year: 2017 end-page: 256 article-title: Multi-bearing remaining useful life collaborative prediction: a deep learning approach publication-title: J Manuf Syst – volume: 105 start-page: 319 year: 2018 end-page: 337 article-title: A fault diagnosis scheme for planetary gearboxes using adaptive multi-scale morphology filter and modified hierarchical permutation entropy publication-title: Mech Syst Signal Pr – volume: 454 start-page: 903 year: 1998 end-page: 995 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: P Roy Soc Lond A: Mat – volume: 127 start-page: 452 year: 2018 end-page: 460 article-title: A prediction method for the real-time remaining useful life of wind turbine bearings based on the wiener process publication-title: Renew Energ – volume: 104 start-page: 799 year: 2018 end-page: 834 article-title: Machinery health prognostics: a systematic review from data acquisition to RUL prediction publication-title: Mech Syst Signal Pr – volume: 26 start-page: 1751 year: 2013 end-page: 1760 article-title: Remaining useful life estimation based on nonlinear feature reduction and support vector regression publication-title: Eng Appl Artif Intel – volume: 36 start-page: 9961 year: 2009 end-page: 9968 article-title: Application of a modified fuzzy ARTMAP with feature-weight learning for the fault diagnosis of bearing publication-title: Expert Syst Appl – volume: 95 start-page: 187 year: 2017 end-page: 204 article-title: A novel deep autoencoder feature learning method for rotating machinery fault diagnosis publication-title: Mech Syst Signal Pr – volume: 96 start-page: 27 year: 2018 end-page: 39 article-title: Rolling bearing fault detection using continuous deep belief network with locally linear embedding publication-title: Comput Ind – volume: 75 start-page: 253 year: 2017 end-page: 263 article-title: EMA remaining useful life prediction with weighted bagging GPR algorithm publication-title: Microelectron Reliab – volume: 240 start-page: 98 year: 2017 end-page: 109 article-title: A recurrent neural network based health indicator for remaining useful life prediction of bearings publication-title: Neurocomputing – volume: 36 start-page: 1840 year: 2009 end-page: 1849 article-title: Fault diagnosis of induction motor based on decision trees and adaptive neuro-fuzzy inference publication-title: Expert Syst Appl – volume: 32 start-page: 320 year: 2012 end-page: 330 article-title: Machine performance degradation assessment and remaining useful life prediction using proportional hazard model and support vector machine publication-title: Mech Syst Signal Pr – volume: 275 start-page: 167 year: 2018 end-page: 179 article-title: Remaining useful life estimation of engineered systems using vanilla LSTM neural networks publication-title: Neurocomputing – volume: 69 start-page: 1685 year: 2013 end-page: 1699 article-title: Nonparametric time series modelling for industrial prognostics and health management publication-title: Int J Adv Manuf Tech – volume: 65 start-page: 2727 year: 2018 end-page: 2736 article-title: Electric locomotive bearing fault diagnosis using novel convolutional deep belief network publication-title: IEEE T Ind Electron – volume: 9 start-page: 1735 year: 1997 end-page: 1780 article-title: Long short-term memory publication-title: Neural Comput – volume: 61 start-page: 2464 year: 2014 end-page: 2472 article-title: Discovering prognostic features using genetic programming in remaining useful life prediction publication-title: IEEE T Ind Electron – volume: 73 start-page: 303 year: 2016 end-page: 315 article-title: Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data publication-title: Mech Syst Signal Pr – volume: 17 start-page: E273 year: 2017 article-title: Learning to monitor machine health with convolutional bi-directional LSTM networks publication-title: Sensors – volume: 292 start-page: 142 year: 2018 end-page: 150 article-title: Machinery health indicator construction based on convolutional neural networks considering trend burr publication-title: Neurocomputing – volume: 91 start-page: 295 year: 2017 end-page: 312 article-title: A fault diagnosis scheme for planetary gearboxes using modified multi-scale symbolic dynamic entropy and mRMR feature selection publication-title: Mech Syst Signal Pr – volume: 1 start-page: 541 year: 1989 end-page: 551 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput – start-page: 1 volume-title: 2012 IEEE international conference on prognostics and health management (PHM) ident: bibr20-1687814018817184 – ident: bibr8-1687814018817184 doi: 10.1007/s00170-013-5065-z – ident: bibr33-1687814018817184 doi: 10.1016/j.neucom.2018.04.043 – ident: bibr28-1687814018817184 doi: 10.1162/neco.1989.1.4.541 – ident: bibr15-1687814018817184 doi: 10.1016/j.neucom.2018.02.083 – ident: bibr24-1687814018817184 doi: 10.1016/j.neucom.2017.05.063 – ident: bibr12-1687814018817184 doi: 10.1016/j.eswa.2007.12.010 – ident: bibr26-1687814018817184 doi: 10.1016/j.neucom.2017.02.045 – ident: bibr10-1687814018817184 doi: 10.1016/j.ymssp.2017.12.008 – ident: bibr18-1687814018817184 doi: 10.1016/j.ymssp.2017.03.034 – ident: bibr32-1687814018817184 doi: 10.1016/j.microrel.2017.03.021 – start-page: 1 volume-title: 2012 IEEE conference on prognostics and health management (PHM) ident: bibr3-1687814018817184 – start-page: 1 volume-title: 2012 IEEE conference on prognostics and health management (PHM) ident: bibr6-1687814018817184 – ident: bibr14-1687814018817184 doi: 10.1016/j.ymssp.2015.10.025 – ident: bibr23-1687814018817184 doi: 10.1162/neco.1997.9.8.1735 – ident: bibr31-1687814018817184 doi: 10.1016/j.procs.2018.04.271 – start-page: 1 volume-title: 2012 IEEE conference on prognostics and health management (PHM) ident: bibr2-1687814018817184 – ident: bibr22-1687814018817184 doi: 10.1016/j.ymssp.2012.02.015 – ident: bibr17-1687814018817184 doi: 10.1016/j.compind.2018.01.005 – ident: bibr29-1687814018817184 doi: 10.1016/j.measurement.2016.07.054 – ident: bibr9-1687814018817184 doi: 10.1016/j.engappai.2013.02.006 – ident: bibr7-1687814018817184 doi: 10.1109/TIE.2013.2270212 – ident: bibr30-1687814018817184 doi: 10.3901/JME.2010.01.100 – ident: bibr25-1687814018817184 doi: 10.3390/s17020273 – ident: bibr16-1687814018817184 doi: 10.1016/j.jmsy.2017.02.013 – ident: bibr4-1687814018817184 doi: 10.1177/0954406215590167 – ident: bibr21-1687814018817184 doi: 10.1016/j.renene.2018.04.033 – ident: bibr5-1687814018817184 doi: 10.1109/TIM.2014.2330494 – ident: bibr13-1687814018817184 doi: 10.1016/j.eswa.2009.01.063 – ident: bibr27-1687814018817184 doi: 10.1098/rspa.1998.0193 – ident: bibr1-1687814018817184 doi: 10.1016/j.ymssp.2017.11.016 – ident: bibr11-1687814018817184 doi: 10.1016/j.ymssp.2016.12.040 – ident: bibr19-1687814018817184 doi: 10.1109/TIE.2017.2745473 |
SSID | ssib050600699 ssj0000395696 ssib044728254 ssib023771143 |
Score | 2.4741237 |
Snippet | For bearing remaining useful life prediction problem, the traditional machine-learning-based methods are generally short of feature representation ability and... |
SourceID | doaj proquest crossref sage |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Artificial neural networks Correlation coefficients Degradation Feature extraction Life prediction Machine learning Neural networks Numerical prediction Numerical stability Representations Roller bearings Short term Useful life |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTvSACm3VbRc0hwqJQ7Tx2vHjCAiEOFQ9sBK3KPFDRdrNon0cOPePM-Nkl2ylwoVrYssjezzzjT3-hrGfuqq4qLjNRBABAxQjs7qQMuM-HzsiG5ExZVv8UjcTeXtf3PdKfVFOWEsP3E7cqJDeS5MrG-hZpJKVy1WUgu6jUPlc4vlEn9cLppINFoj7be9ecsSVSexO3BiO9lju-KFE17-DMXtpXcnTXH9iBx1EhPNWtEP2ITRH7GOPOPAz-_t7QRcslLIMizBrqzzAehniegrThxhgHmHR8m1DjcpM5-FAHsvDvAEfwiPEkDg9IdFabp4gNVA1HqZz7Lb8g8g8I8sNM0rHfQLivkTBmjZz_AubXF_dXd5kXTmFzEmuV5nNa3TXvtZRK2tcbTUdOKA1LLTlwefSacSChclrhZgIN6bE0GbsrePSGeW4-Mr2mnkTvjHQufemisHZSksVRZXCIo3gUwSEGH7ARpvJLV3HNU4lL6Yl7-jF_12OATvb9nhseTZeaXtB67VtRwzZ6QPqTdnpTfmW3gzYcLPaZbdtlyWCXaraowWOcUoa8PLrf8J8fw9hfrB9BGKmTZMZsr3VYh2OEeys6pOk188wVfPI priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtcmkPJX3RbZOiQyn0YNZajSX5VJKQEHoIoTSQm7H1aAsbe-vdPfScP54ZWd7dFJqrLRlhzeMbzegbxj7puhayFmUmvfQYoBjImgIgEy6fWSIbgRCrLS7VxTV8uylu0oHbMpVVjjYxGmrXWTojnyIOoYYqWsLXxZ-MukZRdjW10HjK9tEEGwy-9k_OLq--jxI1k1qLHQI7AE13NTcSSOx6uUqAPNpuifFCbOolFGqfwVhtm9uc0jNiiBLGCLTp8MCXRcr_Bzh1pzQseqvzA_YiwUx-PMjFS_bEt6_Y8x3ywdfs7qqnJA2VPfPe3w6dIvh66cN6zue_g-dd4P3A2c0bVAg6U-fk9RzvWu68X_DgIy8oj9SY4zWmltet4_MOpy1_IbrPyPrzWyrp_cuJPxMX1g7V52_Y9fnZj9OLLLVkyCwIvcrKvEGX7xodtCqNbUpNhxZoUQtdCu9ysBrxZGHyRiGuQuUGDI9mrrQCrFFWyLdsr-1a_45xnTtn6uBtWWtQQdYxtNIIYKVHmOImbDr-3MomvnJqmzGvRKIo_3c7JuzLZsZi4Op4ZOwJ7ddmHLFsxwdd_7NKSlsV4BwYFBBPV3IV1DZXASTlQtHwWTlhh-NuV0n1l9VWUCfsM0nA9tX_FvP-8e98YM8QppmhiOaQ7a36tT9CKLRqPiZ5vwch9vrl priority: 102 providerName: ProQuest |
Title | Predicting remaining useful life of rolling bearings based on deep feature representation and long short-term memory neural network |
URI | https://journals.sagepub.com/doi/full/10.1177/1687814018817184 https://www.proquest.com/docview/2313720734 https://doaj.org/article/54dd48069e064764ac06f436397048c3 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELX4uJRD1RYqtqUrH6pKPZiN147tnBBUbFEPCKEiuEWJ7RSk3QRldw-c-8eZcZxlaVXU00pZRxnZ4_Ebz8wbQj7rouCi4BkTXnhwUIxkZSol4y4ZWyQbkVXItjhXZ1fyx016s0HqvhYmzuD8ENOqQKJgrHF34230KAYZR1yZQNXEjeFgXOXRcjHLu9vuvqkGPsHw9HKGkW2L-ZAPrK9u2yTbY61S2Mjbx5PL69UOGAut-RrhnZQaaztXGotsfImKAD7YegH-RWgChiIxA77dUyz0LzGfnX2hRcAzXLuWShZOt8kb8jrCUnrc6dFbsuHrd2Rnjaxwl_y-aDGog2nStPWzrrMEXc49zBmd3lWeNhVtO45vWsIGwjt4iqeko01Nnff3tPKBR5QGKs2-7KmmRe3otIHX5rfgDTA8LegMU4AfKPJtgmB1l62-R64mpz-_nbHYwoFZyfWCZUkJEMGVutIqM7bMNF5ygAVOdca9S6TVgD9Tk5QKcBgYAwnu1NhllktrlOXiPdmqm9rvE6oT50xReZsVWqpKFMEV0wB4hQdY4wZk1E9ubiO_ObbZmOY8Upr_uRwD8nX1xn3H7fHC2BNcr9U4ZOUOD5r2Vx43eZ5K56QBBfFYwqtkYRNVSYGxUzCUVgzIQb_aea_oOQBs7BSkBXzjC2rA01__EubD_w78SF4BwDNd-s0B2Vq0S_8JQNSiHJJNM_k-jPoPvyen5xeXw3Al8QjokxBf |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOUAPFU-xpYAPgMQh2jiexM6hQryWLS0Vh1bqLSS2A0jbZMnuquq5_4ffyIyT7G6R6K3XOLaszHjmm3jmG8ZeqjwXMhdpIJ10GKBoCIoYIBA2jAyRjUDpsy2OkvEJfDmNTzfYn74WhtIqe5voDbWtDf0jHyIOoYYqSsLb6e-AukbR7WrfQqNViwN3cY4h22xv_yPK91UUjT4dfxgHXVeBwIBQ8yANC_RatlClSlJtilRR3I1GIVapcDYEoxASxTosEoQGqJ-ACD-yqRFgdGKExHVvsdsgcYwq00efe_2NpFJijS4PQFFl6FLficsvTDr47z2FxOjEtxATCZ51jZHh6iZ1SM-Ij0poLdCDwBXP6RsMXEHFa4lo3jeO7rHtDtTyd60W3mcbrnrAttaoDh-yy28NXQlRkjVv3Fnbl4IvZq5cTPjkV-l4XfKmZQjnBX5n-oPPycdaXlfcOjflpfMspNwTcfZFUxXPK8snNU6b_cRYIiBfw88ogfiCE1snbqxqc90fsZMbEdVjtlnVlXvCuAqt1XnpTJorSEqZ-0BOIVyWDkGRHbBh_3Ez07GjU5OOSSY6QvR_xTFgb5Yzpi0zyDXvvid5Ld8jTm__oG5-ZJ2JyGKwFjQqiKMC4ARyEyYlSLp5RTNr5IDt9tLOOkMzy1bHYsBekwashv63mZ3r13nB7oyPvx5mh_tHB0_ZXQSIuk3f2WWb82bhniEImxfPveZz9v2mj9pf71Ay4g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrYToAfEpthTwAZA4RBvHTuwcEKK0q5ai1QpRqbeQ2A4gbZMluxXqmX_Fr2PGSXa3SPTWaxJHkWc88148fgPwUuU5FzlPA-GEQ4KiZVDEUgbchpEhsRFZ-mqLSXJ0Kj-exWdb8Kc_C0NllX1M9IHa1ob-kY8Qh1BDFSXkqOzKIqYH43fznwF1kKKd1r6dRusiJ-7yF9K3xdvjA7T1qygaH375cBR0HQYCI7laBmlYYAazhSpVkmpTpIo4OAaIWKXc2VAahfAo1mGRIExAX5WI9iObGi6NTgwX-N5bsK2QFYUD2N4_nEw_994cCaX4hnielIrOia68n5T9wqQjAz5vCOQqvqEYT3Dla-SJ633VEV0jdSquNcd8Iq_kUd9u4ApG3ihL85lyfA_udhCXvW998j5sueoB7GwIHz6E39OGNoio5Jo17rztUsEuFg4nnc1-lI7VJWtavXBW4EzT_3xGGdeyumLWuTkrndckZV6Wsz9CVbG8smxW47DFd2QWAWUedk7lxJeMtDvxw6q28v0RnN6IsR7DoKor9wSYCq3VeelMmiuZlCL3tE4heBYOIZIdwqif3Mx0WunUsmOW8U4e_V9zDOHNasS81Qm55tl9stfqOVL49hfq5lvWBYwsltZKjQ7i6DhwInMTJqUUtA-LQdeIIez11s66sLPI1otkCK_JA9a3_vcxu9e_5wXcxmWWfTqenDyFO4gWdVvLsweDZXPhniEiWxbPO9dn8PWmV9tfStQ4dA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+remaining+useful+life+of+rolling+bearings+based+on+deep+feature+representation+and+long+short-term+memory+neural+network&rft.jtitle=Advances+in+mechanical+engineering&rft.au=Mao%2C+Wentao&rft.au=He%2C+Jianliang&rft.au=Tang%2C+Jiamei&rft.au=Li%2C+Yuan&rft.date=2018-12-01&rft.pub=SAGE+Publications&rft.issn=1687-8132&rft.eissn=1687-8140&rft.volume=10&rft.issue=12&rft_id=info:doi/10.1177%2F1687814018817184&rft.externalDocID=10.1177_1687814018817184 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-8132&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-8132&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-8132&client=summon |