Predicting remaining useful life of rolling bearings based on deep feature representation and long short-term memory neural network

For bearing remaining useful life prediction problem, the traditional machine-learning-based methods are generally short of feature representation ability and incapable of adaptive feature extraction. Although deep-learning-based remaining useful life prediction methods proposed in recent years can...

Full description

Saved in:
Bibliographic Details
Published inAdvances in mechanical engineering Vol. 10; no. 12
Main Authors Mao, Wentao, He, Jianliang, Tang, Jiamei, Li, Yuan
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.12.2018
Sage Publications Ltd
SAGE Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For bearing remaining useful life prediction problem, the traditional machine-learning-based methods are generally short of feature representation ability and incapable of adaptive feature extraction. Although deep-learning-based remaining useful life prediction methods proposed in recent years can effectively extract discriminative features for bearing fault, these methods tend to less consider temporal information of fault degradation process. To solve this problem, a new remaining useful life prediction approach based on deep feature representation and long short-term memory neural network is proposed in this article. First, a new criterion, named support vector data normalized correlation coefficient, is proposed to automatically divide the whole bearing life as normal state and fast degradation state. Second, deep features of bearing fault with good representation ability can be obtained from convolutional neural network by means of the marginal spectrum in Hilbert–Huang transform of raw vibration signals and health state label. Finally, by considering the temporal information of degradation process, these features are fed into a long short-term memory neural network to construct a remaining useful life prediction model. Experiments are conducted on bearing data sets of IEEE PHM Challenge 2012. The results show the significance of performance improvement of the proposed method in terms of predictive accuracy and numerical stability.
AbstractList For bearing remaining useful life prediction problem, the traditional machine-learning-based methods are generally short of feature representation ability and incapable of adaptive feature extraction. Although deep-learning-based remaining useful life prediction methods proposed in recent years can effectively extract discriminative features for bearing fault, these methods tend to less consider temporal information of fault degradation process. To solve this problem, a new remaining useful life prediction approach based on deep feature representation and long short-term memory neural network is proposed in this article. First, a new criterion, named support vector data normalized correlation coefficient, is proposed to automatically divide the whole bearing life as normal state and fast degradation state. Second, deep features of bearing fault with good representation ability can be obtained from convolutional neural network by means of the marginal spectrum in Hilbert–Huang transform of raw vibration signals and health state label. Finally, by considering the temporal information of degradation process, these features are fed into a long short-term memory neural network to construct a remaining useful life prediction model. Experiments are conducted on bearing data sets of IEEE PHM Challenge 2012. The results show the significance of performance improvement of the proposed method in terms of predictive accuracy and numerical stability.
Author Li, Yuan
Tang, Jiamei
Mao, Wentao
He, Jianliang
Author_xml – sequence: 1
  givenname: Wentao
  orcidid: 0000-0001-5335-9517
  surname: Mao
  fullname: Mao, Wentao
  email: maowt@htu.edu.cn
– sequence: 2
  givenname: Jianliang
  surname: He
  fullname: He, Jianliang
– sequence: 3
  givenname: Jiamei
  surname: Tang
  fullname: Tang, Jiamei
– sequence: 4
  givenname: Yuan
  surname: Li
  fullname: Li, Yuan
BookMark eNp9Uc9rFjEQXaSCtfbuMeB5Ndnky4-jFLWFgh70vGST2c_UbPI5ySI9-4-bdaVCQU9veHnvzWTmeXeWcoKue8noa8aUesOkVpoJyrRmimnxpDvfqH7jzh5qPjzrLksJEz1QSak05rz7-QnBB1dDOhKExYa0VWuBeY0khhlIngnmGDd6AosNC5lsAU9yIh7gRGawdUVo_hNCgVRtDe3NJk9ibrbyNWPtK-BCFlgy3pMEK9rYoP7I-O1F93S2scDlH7zovrx_9_nqur_9-OHm6u1t7wRTtTd0GgTzk5qVNNpNRjHTvq3kQRkGngqnlBIHTScpB24kF7IV3jgmnJaO8YvuZs_12d6NJwyLxfsx2zD-JjIeR4s1uAjjQXgvdFsRUCmUFNZROQsuuVFUaMdb1qs964T5-wqljnd5xdTGHwfOuBqo4qKp6K5ymEtBmB-6MjpulxsfX65Z5COLC_tCK9oQ_2fsd2OxR_g7zT_1vwDm86oG
CitedBy_id crossref_primary_10_1016_j_jmsy_2021_05_003
crossref_primary_10_3390_app12104839
crossref_primary_10_1016_j_ress_2024_110121
crossref_primary_10_1016_j_isatra_2020_03_017
crossref_primary_10_1002_cpe_7544
crossref_primary_10_3390_math8091403
crossref_primary_10_3390_s23041892
crossref_primary_10_1016_j_ress_2024_109928
crossref_primary_10_1109_ACCESS_2022_3216885
crossref_primary_10_3390_machines12040224
crossref_primary_10_1016_j_compeleceng_2024_109314
crossref_primary_10_1007_s10845_021_01881_1
crossref_primary_10_1016_j_neucom_2020_07_088
crossref_primary_10_1155_2021_6142975
crossref_primary_10_1007_s11047_020_09794_3
crossref_primary_10_1016_j_future_2020_01_048
crossref_primary_10_1109_TIM_2019_2917735
crossref_primary_10_1007_s10489_021_02503_2
crossref_primary_10_1088_2631_8695_ad68c9
crossref_primary_10_1109_TII_2022_3202832
crossref_primary_10_3390_su14106009
crossref_primary_10_1016_j_engappai_2021_104552
crossref_primary_10_3390_en17051010
crossref_primary_10_1016_j_engappai_2022_105662
crossref_primary_10_1155_2023_1091276
crossref_primary_10_1088_1742_6596_2762_1_012053
crossref_primary_10_1186_s10033_021_00570_7
crossref_primary_10_3390_math8091415
crossref_primary_10_3390_s20010166
crossref_primary_10_3390_machines10030176
crossref_primary_10_1109_TIM_2021_3072670
crossref_primary_10_1109_JSEN_2022_3209894
crossref_primary_10_3390_s22207766
crossref_primary_10_3390_e25111477
crossref_primary_10_1108_IJQRM_08_2021_0291
crossref_primary_10_3390_pr12010008
crossref_primary_10_1007_s11831_021_09562_1
crossref_primary_10_1016_j_pnucene_2024_105114
crossref_primary_10_1007_s42417_024_01293_4
crossref_primary_10_1016_j_neucom_2021_04_109
crossref_primary_10_1109_ACCESS_2021_3117002
crossref_primary_10_1016_j_engappai_2023_106303
crossref_primary_10_1016_j_ymssp_2022_108907
crossref_primary_10_1109_JSEN_2022_3185161
crossref_primary_10_1016_j_measurement_2024_116589
crossref_primary_10_3390_en16145312
crossref_primary_10_3390_math8020149
crossref_primary_10_1155_2022_9188776
crossref_primary_10_1007_s11668_024_01921_x
crossref_primary_10_3390_machines12020116
crossref_primary_10_3389_frai_2020_578613
crossref_primary_10_1007_s12206_024_0402_8
crossref_primary_10_1016_j_engfailanal_2022_106414
crossref_primary_10_1109_ACCESS_2019_2950985
crossref_primary_10_1155_2021_6806319
crossref_primary_10_1016_j_eswa_2022_116544
crossref_primary_10_1109_JSEN_2024_3450470
crossref_primary_10_3390_s21196325
crossref_primary_10_1177_1748006X231223777
crossref_primary_10_1016_j_measurement_2021_110276
crossref_primary_10_3390_app12094136
crossref_primary_10_1109_TII_2022_3172704
crossref_primary_10_1007_s40815_021_01220_9
crossref_primary_10_1080_10589759_2025_2465411
crossref_primary_10_1109_TIM_2022_3159010
crossref_primary_10_1016_j_engappai_2023_107726
crossref_primary_10_33262_concienciadigital_v7i3_1_3120
crossref_primary_10_3390_electronics9020323
crossref_primary_10_1016_j_neucom_2021_12_035
crossref_primary_10_1016_j_engappai_2023_107367
crossref_primary_10_1016_j_knosys_2020_105675
crossref_primary_10_1016_j_measurement_2021_109201
crossref_primary_10_1016_j_jmsy_2019_11_008
crossref_primary_10_1016_j_ress_2021_107813
crossref_primary_10_3390_en16207081
crossref_primary_10_1016_j_conengprac_2021_104969
crossref_primary_10_1016_j_engappai_2024_108285
crossref_primary_10_17531_ein_2019_4_10
crossref_primary_10_1109_TIM_2023_3265109
crossref_primary_10_1007_s00366_021_01293_y
crossref_primary_10_3390_electronics13245034
crossref_primary_10_1177_17568293221150171
crossref_primary_10_1007_s11265_023_01845_z
crossref_primary_10_1088_1757_899X_1043_3_032011
crossref_primary_10_3390_s24216906
Cites_doi 10.1007/s00170-013-5065-z
10.1016/j.neucom.2018.04.043
10.1162/neco.1989.1.4.541
10.1016/j.neucom.2018.02.083
10.1016/j.neucom.2017.05.063
10.1016/j.eswa.2007.12.010
10.1016/j.neucom.2017.02.045
10.1016/j.ymssp.2017.12.008
10.1016/j.ymssp.2017.03.034
10.1016/j.microrel.2017.03.021
10.1016/j.ymssp.2015.10.025
10.1162/neco.1997.9.8.1735
10.1016/j.procs.2018.04.271
10.1016/j.ymssp.2012.02.015
10.1016/j.compind.2018.01.005
10.1016/j.measurement.2016.07.054
10.1016/j.engappai.2013.02.006
10.1109/TIE.2013.2270212
10.3901/JME.2010.01.100
10.3390/s17020273
10.1016/j.jmsy.2017.02.013
10.1177/0954406215590167
10.1016/j.renene.2018.04.033
10.1109/TIM.2014.2330494
10.1016/j.eswa.2009.01.063
10.1098/rspa.1998.0193
10.1016/j.ymssp.2017.11.016
10.1016/j.ymssp.2016.12.040
10.1109/TIE.2017.2745473
ContentType Journal Article
Copyright The Author(s) 2018
The Author(s) 2018. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: The Author(s) 2018. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AFRWT
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
H8D
HCIFZ
L6V
L7M
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1177/1687814018817184
DatabaseName Sage Journals Open Access Journals (WRLC)
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Aerospace Database
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: AFRWT
  name: Sage Journals Open Access Journals (WRLC)
  url: http://journals.sagepub.com/
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-8140
ExternalDocumentID oai_doaj_org_article_54dd48069e064764ac06f436397048c3
10_1177_1687814018817184
10.1177_1687814018817184
GrantInformation_xml – fundername: the funding scheme of University Science & Technology Innovation in Henan Province
  grantid: 15HASTIT022
– fundername: National Natural Science Foundation of China
  grantid: 11702087
  funderid: https://doi.org/10.13039/501100001809
– fundername: the foundation of Henan Normal University for Excellent Young Teachers
  grantid: 14YQ007
– fundername: National Natural Science Foundation of China
  grantid: U1704158
  funderid: https://doi.org/10.13039/501100001809
– fundername: China Postdoctoral Science Foundation
  grantid: 2016T90944
  funderid: https://doi.org/10.13039/501100002858
GroupedDBID .DC
0R~
188
23M
2UF
2WC
4.4
54M
5GY
5VS
8FE
8FG
8R4
8R5
AAJPV
AASGM
ABAWP
ABJCF
ABQXT
ACGFS
ACIWK
ACROE
ADBBV
ADOGD
AEDFJ
AENEX
AEUHG
AEWDL
AFCOW
AFKRA
AFKRG
AFRWT
AINHJ
AJUZI
ALMA_UNASSIGNED_HOLDINGS
AUTPY
AYAKG
BCNDV
BDDNI
BENPR
BGLVJ
C1A
CAHYU
CCPQU
CNMHZ
E3Z
EBS
EJD
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
IL9
ITC
J8X
K.F
KQ8
L6V
M7S
O9-
OK1
PHGZM
PHGZT
PIMPY
PTHSS
Q2X
RHU
ROL
SAUOL
SCDPB
SCNPE
SFC
TR2
UGNYK
AAYXX
ACHEB
CITATION
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
H8D
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c417t-90b241db7f7698cb9719878765791ed04c7774580b662396346662d9c14c86c13
IEDL.DBID AFRWT
ISSN 1687-8132
IngestDate Wed Aug 27 01:31:39 EDT 2025
Fri Jul 25 12:18:00 EDT 2025
Thu Apr 24 23:11:10 EDT 2025
Tue Jul 01 05:21:59 EDT 2025
Tue Jun 17 22:47:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords deep feature representation
deep learning
Remaining useful life
health state assessment
long short-term memory
Language English
License This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-90b241db7f7698cb9719878765791ed04c7774580b662396346662d9c14c86c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5335-9517
OpenAccessLink https://journals.sagepub.com/doi/full/10.1177/1687814018817184?utm_source=summon&utm_medium=discovery-provider
PQID 2313720734
PQPubID 237349
ParticipantIDs doaj_primary_oai_doaj_org_article_54dd48069e064764ac06f436397048c3
proquest_journals_2313720734
crossref_primary_10_1177_1687814018817184
crossref_citationtrail_10_1177_1687814018817184
sage_journals_10_1177_1687814018817184
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: New York
PublicationTitle Advances in mechanical engineering
PublicationYear 2018
Publisher SAGE Publications
Sage Publications Ltd
SAGE Publishing
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
– name: SAGE Publishing
References Wu, Yuan, Dong 2018; 275
Guo, Chen, Shen 2016; 93
Guo, Li, Jia 2017; 240
Zhao, Ye, Chen 2010; 46
Xu, Xuan, Shi 2009; 36
Liu, Zuo, Qin 2016; 230
Mosallam, Medjaher, Zerhouni 2013; 69
Jia, Lei, Lin 2016; 73
Shao, Jiang, Zhao 2017; 95
Hu, Li, Shi 2018; 127
Shao, Jiang, Zhang 2018; 65
Liao 2014; 61
LeCun, Boser, Denker 1989; 1
Pham, Yang, Nguyen 2012; 32
Benkedjouh, Medjaher, Zerhouni 2013; 26
Ren, Cui, Sun 2017; 43
Hochreiter, Schmidhuber 1997; 9
Li, Yang, Li 2017; 91
Yang, Oh, Tan 2009; 36
Guo, Lei, Li 2018; 292
Shao, Jiang, Li 2018; 96
Liu, Cheng, Wang 2018; 305
Zhang, Liu, Yu 2017; 75
Yang, Sun, Guo 2018; 131
Zhao, Yan, Wang 2017; 17
Huang, Shen, Long 1998; 454
Li, Li, Yang 2018; 105
Soualhi, Medjaher, Zerhouni 2015; 64
Lei, Li, Guo 2018; 104
bibr33-1687814018817184
bibr8-1687814018817184
bibr16-1687814018817184
bibr17-1687814018817184
bibr11-1687814018817184
Nectoux P (bibr20-1687814018817184)
bibr4-1687814018817184
bibr24-1687814018817184
bibr9-1687814018817184
bibr32-1687814018817184
bibr18-1687814018817184
bibr15-1687814018817184
bibr5-1687814018817184
bibr10-1687814018817184
bibr1-1687814018817184
bibr23-1687814018817184
bibr14-1687814018817184
bibr19-1687814018817184
bibr27-1687814018817184
bibr31-1687814018817184
Wang T (bibr3-1687814018817184)
bibr28-1687814018817184
bibr22-1687814018817184
bibr26-1687814018817184
bibr21-1687814018817184
bibr13-1687814018817184
bibr7-1687814018817184
Benkedjouh T (bibr6-1687814018817184)
bibr29-1687814018817184
bibr30-1687814018817184
bibr12-1687814018817184
bibr25-1687814018817184
Sutrisno E (bibr2-1687814018817184)
References_xml – volume: 230
  start-page: 314
  year: 2016
  end-page: 330
  article-title: Remaining useful life prediction of rolling element bearings based on health state assessment
  publication-title: Proc IMechE, Part C: J Mechanical Engineering Science
– volume: 305
  start-page: 27
  year: 2018
  end-page: 38
  article-title: A method for remaining useful life prediction of crystal oscillators using the Bayesian approach and extreme learning machine under uncertainty
  publication-title: Neurocomputing
– volume: 131
  start-page: 825
  year: 2018
  end-page: 831
  article-title: Aero-material consumption prediction based on linear regression model
  publication-title: Procedia Comput Sci
– volume: 93
  start-page: 490
  year: 2016
  end-page: 502
  article-title: Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis
  publication-title: Measurement
– volume: 64
  start-page: 52
  year: 2015
  end-page: 62
  article-title: Bearing health monitoring based on Hilbert–Huang transform, support vector machine, and regression
  publication-title: IEEE T Instrum Meas
– volume: 46
  start-page: 100
  year: 2010
  end-page: 108
  article-title: Difference spectrum theory of singular value and its application to the fault diagnosis of headstock of lathe
  publication-title: J Mech Eng
– volume: 43
  start-page: 248
  year: 2017
  end-page: 256
  article-title: Multi-bearing remaining useful life collaborative prediction: a deep learning approach
  publication-title: J Manuf Syst
– volume: 105
  start-page: 319
  year: 2018
  end-page: 337
  article-title: A fault diagnosis scheme for planetary gearboxes using adaptive multi-scale morphology filter and modified hierarchical permutation entropy
  publication-title: Mech Syst Signal Pr
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: P Roy Soc Lond A: Mat
– volume: 127
  start-page: 452
  year: 2018
  end-page: 460
  article-title: A prediction method for the real-time remaining useful life of wind turbine bearings based on the wiener process
  publication-title: Renew Energ
– volume: 104
  start-page: 799
  year: 2018
  end-page: 834
  article-title: Machinery health prognostics: a systematic review from data acquisition to RUL prediction
  publication-title: Mech Syst Signal Pr
– volume: 26
  start-page: 1751
  year: 2013
  end-page: 1760
  article-title: Remaining useful life estimation based on nonlinear feature reduction and support vector regression
  publication-title: Eng Appl Artif Intel
– volume: 36
  start-page: 9961
  year: 2009
  end-page: 9968
  article-title: Application of a modified fuzzy ARTMAP with feature-weight learning for the fault diagnosis of bearing
  publication-title: Expert Syst Appl
– volume: 95
  start-page: 187
  year: 2017
  end-page: 204
  article-title: A novel deep autoencoder feature learning method for rotating machinery fault diagnosis
  publication-title: Mech Syst Signal Pr
– volume: 96
  start-page: 27
  year: 2018
  end-page: 39
  article-title: Rolling bearing fault detection using continuous deep belief network with locally linear embedding
  publication-title: Comput Ind
– volume: 75
  start-page: 253
  year: 2017
  end-page: 263
  article-title: EMA remaining useful life prediction with weighted bagging GPR algorithm
  publication-title: Microelectron Reliab
– volume: 240
  start-page: 98
  year: 2017
  end-page: 109
  article-title: A recurrent neural network based health indicator for remaining useful life prediction of bearings
  publication-title: Neurocomputing
– volume: 36
  start-page: 1840
  year: 2009
  end-page: 1849
  article-title: Fault diagnosis of induction motor based on decision trees and adaptive neuro-fuzzy inference
  publication-title: Expert Syst Appl
– volume: 32
  start-page: 320
  year: 2012
  end-page: 330
  article-title: Machine performance degradation assessment and remaining useful life prediction using proportional hazard model and support vector machine
  publication-title: Mech Syst Signal Pr
– volume: 275
  start-page: 167
  year: 2018
  end-page: 179
  article-title: Remaining useful life estimation of engineered systems using vanilla LSTM neural networks
  publication-title: Neurocomputing
– volume: 69
  start-page: 1685
  year: 2013
  end-page: 1699
  article-title: Nonparametric time series modelling for industrial prognostics and health management
  publication-title: Int J Adv Manuf Tech
– volume: 65
  start-page: 2727
  year: 2018
  end-page: 2736
  article-title: Electric locomotive bearing fault diagnosis using novel convolutional deep belief network
  publication-title: IEEE T Ind Electron
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  article-title: Long short-term memory
  publication-title: Neural Comput
– volume: 61
  start-page: 2464
  year: 2014
  end-page: 2472
  article-title: Discovering prognostic features using genetic programming in remaining useful life prediction
  publication-title: IEEE T Ind Electron
– volume: 73
  start-page: 303
  year: 2016
  end-page: 315
  article-title: Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
  publication-title: Mech Syst Signal Pr
– volume: 17
  start-page: E273
  year: 2017
  article-title: Learning to monitor machine health with convolutional bi-directional LSTM networks
  publication-title: Sensors
– volume: 292
  start-page: 142
  year: 2018
  end-page: 150
  article-title: Machinery health indicator construction based on convolutional neural networks considering trend burr
  publication-title: Neurocomputing
– volume: 91
  start-page: 295
  year: 2017
  end-page: 312
  article-title: A fault diagnosis scheme for planetary gearboxes using modified multi-scale symbolic dynamic entropy and mRMR feature selection
  publication-title: Mech Syst Signal Pr
– volume: 1
  start-page: 541
  year: 1989
  end-page: 551
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput
– start-page: 1
  volume-title: 2012 IEEE international conference on prognostics and health management (PHM)
  ident: bibr20-1687814018817184
– ident: bibr8-1687814018817184
  doi: 10.1007/s00170-013-5065-z
– ident: bibr33-1687814018817184
  doi: 10.1016/j.neucom.2018.04.043
– ident: bibr28-1687814018817184
  doi: 10.1162/neco.1989.1.4.541
– ident: bibr15-1687814018817184
  doi: 10.1016/j.neucom.2018.02.083
– ident: bibr24-1687814018817184
  doi: 10.1016/j.neucom.2017.05.063
– ident: bibr12-1687814018817184
  doi: 10.1016/j.eswa.2007.12.010
– ident: bibr26-1687814018817184
  doi: 10.1016/j.neucom.2017.02.045
– ident: bibr10-1687814018817184
  doi: 10.1016/j.ymssp.2017.12.008
– ident: bibr18-1687814018817184
  doi: 10.1016/j.ymssp.2017.03.034
– ident: bibr32-1687814018817184
  doi: 10.1016/j.microrel.2017.03.021
– start-page: 1
  volume-title: 2012 IEEE conference on prognostics and health management (PHM)
  ident: bibr3-1687814018817184
– start-page: 1
  volume-title: 2012 IEEE conference on prognostics and health management (PHM)
  ident: bibr6-1687814018817184
– ident: bibr14-1687814018817184
  doi: 10.1016/j.ymssp.2015.10.025
– ident: bibr23-1687814018817184
  doi: 10.1162/neco.1997.9.8.1735
– ident: bibr31-1687814018817184
  doi: 10.1016/j.procs.2018.04.271
– start-page: 1
  volume-title: 2012 IEEE conference on prognostics and health management (PHM)
  ident: bibr2-1687814018817184
– ident: bibr22-1687814018817184
  doi: 10.1016/j.ymssp.2012.02.015
– ident: bibr17-1687814018817184
  doi: 10.1016/j.compind.2018.01.005
– ident: bibr29-1687814018817184
  doi: 10.1016/j.measurement.2016.07.054
– ident: bibr9-1687814018817184
  doi: 10.1016/j.engappai.2013.02.006
– ident: bibr7-1687814018817184
  doi: 10.1109/TIE.2013.2270212
– ident: bibr30-1687814018817184
  doi: 10.3901/JME.2010.01.100
– ident: bibr25-1687814018817184
  doi: 10.3390/s17020273
– ident: bibr16-1687814018817184
  doi: 10.1016/j.jmsy.2017.02.013
– ident: bibr4-1687814018817184
  doi: 10.1177/0954406215590167
– ident: bibr21-1687814018817184
  doi: 10.1016/j.renene.2018.04.033
– ident: bibr5-1687814018817184
  doi: 10.1109/TIM.2014.2330494
– ident: bibr13-1687814018817184
  doi: 10.1016/j.eswa.2009.01.063
– ident: bibr27-1687814018817184
  doi: 10.1098/rspa.1998.0193
– ident: bibr1-1687814018817184
  doi: 10.1016/j.ymssp.2017.11.016
– ident: bibr11-1687814018817184
  doi: 10.1016/j.ymssp.2016.12.040
– ident: bibr19-1687814018817184
  doi: 10.1109/TIE.2017.2745473
SSID ssib050600699
ssj0000395696
ssib044728254
ssib023771143
Score 2.4741237
Snippet For bearing remaining useful life prediction problem, the traditional machine-learning-based methods are generally short of feature representation ability and...
SourceID doaj
proquest
crossref
sage
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Artificial neural networks
Correlation coefficients
Degradation
Feature extraction
Life prediction
Machine learning
Neural networks
Numerical prediction
Numerical stability
Representations
Roller bearings
Short term
Useful life
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTvSACm3VbRc0hwqJQ7Tx2vHjCAiEOFQ9sBK3KPFDRdrNon0cOPePM-Nkl2ylwoVrYssjezzzjT3-hrGfuqq4qLjNRBABAxQjs7qQMuM-HzsiG5ExZVv8UjcTeXtf3PdKfVFOWEsP3E7cqJDeS5MrG-hZpJKVy1WUgu6jUPlc4vlEn9cLppINFoj7be9ecsSVSexO3BiO9lju-KFE17-DMXtpXcnTXH9iBx1EhPNWtEP2ITRH7GOPOPAz-_t7QRcslLIMizBrqzzAehniegrThxhgHmHR8m1DjcpM5-FAHsvDvAEfwiPEkDg9IdFabp4gNVA1HqZz7Lb8g8g8I8sNM0rHfQLivkTBmjZz_AubXF_dXd5kXTmFzEmuV5nNa3TXvtZRK2tcbTUdOKA1LLTlwefSacSChclrhZgIN6bE0GbsrePSGeW4-Mr2mnkTvjHQufemisHZSksVRZXCIo3gUwSEGH7ARpvJLV3HNU4lL6Yl7-jF_12OATvb9nhseTZeaXtB67VtRwzZ6QPqTdnpTfmW3gzYcLPaZbdtlyWCXaraowWOcUoa8PLrf8J8fw9hfrB9BGKmTZMZsr3VYh2OEeys6pOk188wVfPI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtcmkPJX3RbZOiQyn0YNZajSX5VJKQEHoIoTSQm7H1aAsbe-vdPfScP54ZWd7dFJqrLRlhzeMbzegbxj7puhayFmUmvfQYoBjImgIgEy6fWSIbgRCrLS7VxTV8uylu0oHbMpVVjjYxGmrXWTojnyIOoYYqWsLXxZ-MukZRdjW10HjK9tEEGwy-9k_OLq--jxI1k1qLHQI7AE13NTcSSOx6uUqAPNpuifFCbOolFGqfwVhtm9uc0jNiiBLGCLTp8MCXRcr_Bzh1pzQseqvzA_YiwUx-PMjFS_bEt6_Y8x3ywdfs7qqnJA2VPfPe3w6dIvh66cN6zue_g-dd4P3A2c0bVAg6U-fk9RzvWu68X_DgIy8oj9SY4zWmltet4_MOpy1_IbrPyPrzWyrp_cuJPxMX1g7V52_Y9fnZj9OLLLVkyCwIvcrKvEGX7xodtCqNbUpNhxZoUQtdCu9ysBrxZGHyRiGuQuUGDI9mrrQCrFFWyLdsr-1a_45xnTtn6uBtWWtQQdYxtNIIYKVHmOImbDr-3MomvnJqmzGvRKIo_3c7JuzLZsZi4Op4ZOwJ7ddmHLFsxwdd_7NKSlsV4BwYFBBPV3IV1DZXASTlQtHwWTlhh-NuV0n1l9VWUCfsM0nA9tX_FvP-8e98YM8QppmhiOaQ7a36tT9CKLRqPiZ5vwch9vrl
  priority: 102
  providerName: ProQuest
Title Predicting remaining useful life of rolling bearings based on deep feature representation and long short-term memory neural network
URI https://journals.sagepub.com/doi/full/10.1177/1687814018817184
https://www.proquest.com/docview/2313720734
https://doaj.org/article/54dd48069e064764ac06f436397048c3
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELX4uJRD1RYqtqUrH6pKPZiN147tnBBUbFEPCKEiuEWJ7RSk3QRldw-c-8eZcZxlaVXU00pZRxnZ4_Ebz8wbQj7rouCi4BkTXnhwUIxkZSol4y4ZWyQbkVXItjhXZ1fyx016s0HqvhYmzuD8ENOqQKJgrHF34230KAYZR1yZQNXEjeFgXOXRcjHLu9vuvqkGPsHw9HKGkW2L-ZAPrK9u2yTbY61S2Mjbx5PL69UOGAut-RrhnZQaaztXGotsfImKAD7YegH-RWgChiIxA77dUyz0LzGfnX2hRcAzXLuWShZOt8kb8jrCUnrc6dFbsuHrd2Rnjaxwl_y-aDGog2nStPWzrrMEXc49zBmd3lWeNhVtO45vWsIGwjt4iqeko01Nnff3tPKBR5QGKs2-7KmmRe3otIHX5rfgDTA8LegMU4AfKPJtgmB1l62-R64mpz-_nbHYwoFZyfWCZUkJEMGVutIqM7bMNF5ygAVOdca9S6TVgD9Tk5QKcBgYAwnu1NhllktrlOXiPdmqm9rvE6oT50xReZsVWqpKFMEV0wB4hQdY4wZk1E9ubiO_ObbZmOY8Upr_uRwD8nX1xn3H7fHC2BNcr9U4ZOUOD5r2Vx43eZ5K56QBBfFYwqtkYRNVSYGxUzCUVgzIQb_aea_oOQBs7BSkBXzjC2rA01__EubD_w78SF4BwDNd-s0B2Vq0S_8JQNSiHJJNM_k-jPoPvyen5xeXw3Al8QjokxBf
linkProvider SAGE Publications
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOUAPFU-xpYAPgMQh2jiexM6hQryWLS0Vh1bqLSS2A0jbZMnuquq5_4ffyIyT7G6R6K3XOLaszHjmm3jmG8ZeqjwXMhdpIJ10GKBoCIoYIBA2jAyRjUDpsy2OkvEJfDmNTzfYn74WhtIqe5voDbWtDf0jHyIOoYYqSsLb6e-AukbR7WrfQqNViwN3cY4h22xv_yPK91UUjT4dfxgHXVeBwIBQ8yANC_RatlClSlJtilRR3I1GIVapcDYEoxASxTosEoQGqJ-ACD-yqRFgdGKExHVvsdsgcYwq00efe_2NpFJijS4PQFFl6FLficsvTDr47z2FxOjEtxATCZ51jZHh6iZ1SM-Ij0poLdCDwBXP6RsMXEHFa4lo3jeO7rHtDtTyd60W3mcbrnrAttaoDh-yy28NXQlRkjVv3Fnbl4IvZq5cTPjkV-l4XfKmZQjnBX5n-oPPycdaXlfcOjflpfMspNwTcfZFUxXPK8snNU6b_cRYIiBfw88ogfiCE1snbqxqc90fsZMbEdVjtlnVlXvCuAqt1XnpTJorSEqZ-0BOIVyWDkGRHbBh_3Ez07GjU5OOSSY6QvR_xTFgb5Yzpi0zyDXvvid5Ld8jTm__oG5-ZJ2JyGKwFjQqiKMC4ARyEyYlSLp5RTNr5IDt9tLOOkMzy1bHYsBekwashv63mZ3r13nB7oyPvx5mh_tHB0_ZXQSIuk3f2WWb82bhniEImxfPveZz9v2mj9pf71Ay4g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrYToAfEpthTwAZA4RBvHTuwcEKK0q5ai1QpRqbeQ2A4gbZMluxXqmX_Fr2PGSXa3SPTWaxJHkWc88148fgPwUuU5FzlPA-GEQ4KiZVDEUgbchpEhsRFZ-mqLSXJ0Kj-exWdb8Kc_C0NllX1M9IHa1ob-kY8Qh1BDFSXkqOzKIqYH43fznwF1kKKd1r6dRusiJ-7yF9K3xdvjA7T1qygaH375cBR0HQYCI7laBmlYYAazhSpVkmpTpIo4OAaIWKXc2VAahfAo1mGRIExAX5WI9iObGi6NTgwX-N5bsK2QFYUD2N4_nEw_994cCaX4hnielIrOia68n5T9wqQjAz5vCOQqvqEYT3Dla-SJ633VEV0jdSquNcd8Iq_kUd9u4ApG3ihL85lyfA_udhCXvW998j5sueoB7GwIHz6E39OGNoio5Jo17rztUsEuFg4nnc1-lI7VJWtavXBW4EzT_3xGGdeyumLWuTkrndckZV6Wsz9CVbG8smxW47DFd2QWAWUedk7lxJeMtDvxw6q28v0RnN6IsR7DoKor9wSYCq3VeelMmiuZlCL3tE4heBYOIZIdwqif3Mx0WunUsmOW8U4e_V9zDOHNasS81Qm55tl9stfqOVL49hfq5lvWBYwsltZKjQ7i6DhwInMTJqUUtA-LQdeIIez11s66sLPI1otkCK_JA9a3_vcxu9e_5wXcxmWWfTqenDyFO4gWdVvLsweDZXPhniEiWxbPO9dn8PWmV9tfStQ4dA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+remaining+useful+life+of+rolling+bearings+based+on+deep+feature+representation+and+long+short-term+memory+neural+network&rft.jtitle=Advances+in+mechanical+engineering&rft.au=Mao%2C+Wentao&rft.au=He%2C+Jianliang&rft.au=Tang%2C+Jiamei&rft.au=Li%2C+Yuan&rft.date=2018-12-01&rft.pub=SAGE+Publications&rft.issn=1687-8132&rft.eissn=1687-8140&rft.volume=10&rft.issue=12&rft_id=info:doi/10.1177%2F1687814018817184&rft.externalDocID=10.1177_1687814018817184
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-8132&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-8132&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-8132&client=summon