A Boosting-Based Spatial-Spectral Model for Stroke Patients' EEG Analysis in Rehabilitation Training

Studies have shown that a motor imagery electro encephalogram (EEG)-based brain-computer interface (BCI) system can be used as a rehabilitation tool for stroke patients. Efficient classification of EEG from stroke patients is fundamental in the BCI-based stroke rehabilitation systems. One of the mos...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 24; no. 1; pp. 169 - 179
Main Authors Liu, Ye, Zhang, Hao, Chen, Min, Zhang, Liqing
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2015.2466079

Cover

Abstract Studies have shown that a motor imagery electro encephalogram (EEG)-based brain-computer interface (BCI) system can be used as a rehabilitation tool for stroke patients. Efficient classification of EEG from stroke patients is fundamental in the BCI-based stroke rehabilitation systems. One of the most successful algorithms for EEG classification is the common spatial patterns (CSP). However, studies have reported that the performance of CSP heavily relies on its operational frequency band and channels configuration. To the best of our knowledge, there is no agreed upon clinical conclusion about motor imagery patterns of stroke patients. In this case, it is not available to obtain the active channels and frequency bands related to brain activities of stroke patients beforehand. Hence, for using the CSP algorithm, we usually set a relatively broad frequency range and channels, or try to find subject-related frequency bands and channels. To address this problem, we propose an adaptive boosting algorithm to perform autonomous selection of key channels and frequency band. In the proposed method, the spatial-spectral configurations are divided into multiple preconditions, and a new heuristic supervisor of stochastic gradient boost strategy is utilized to train weak classifiers under these preconditions. Extensive experiment comparisons have been performed on three datasets including two benchmark datasets from the famous BCI competition III and BCI competition IV as well as one self-acquired dataset from stroke patients. Results show that our algorithm yields relatively higher classification accuracies compared with seven state-of-the-art approaches. In addition, the spatial patterns (spatial weights) and spectral patterns (bandpass filters) determined by the algorithm can also be used for further analysis of the data, e.g., for brain source localization and physiological knowledge exploration.
AbstractList Studies have shown that a motor imagery electro encephalogram (EEG)-based brain-computer interface (BCI) system can be used as a rehabilitation tool for stroke patients. Efficient classification of EEG from stroke patients is fundamental in the BCI-based stroke rehabilitation systems. One of the most successful algorithms for EEG classification is the common spatial patterns (CSP). However, studies have reported that the performance of CSP heavily relies on its operational frequency band and channels configuration. To the best of our knowledge, there is no agreed upon clinical conclusion about motor imagery patterns of stroke patients. In this case, it is not available to obtain the active channels and frequency bands related to brain activities of stroke patients beforehand. Hence, for using the CSP algorithm, we usually set a relatively broad frequency range and channels, or try to find subject-related frequency bands and channels. To address this problem, we propose an adaptive boosting algorithm to perform autonomous selection of key channels and frequency band. In the proposed method, the spatial-spectral configurations are divided into multiple preconditions, and a new heuristic supervisor of stochastic gradient boost strategy is utilized to train weak classifiers under these preconditions. Extensive experiment comparisons have been performed on three datasets including two benchmark datasets from the famous BCI competition III and BCI competition IV as well as one self-acquired dataset from stroke patients. Results show that our algorithm yields relatively higher classification accuracies compared with seven state-of-the-art approaches. In addition, the spatial patterns (spatial weights) and spectral patterns (bandpass filters) determined by the algorithm can also be used for further analysis of the data, e.g., for brain source localization and physiological knowledge exploration.
Studies have shown that a motor imagery electro encephalogram (EEG)-based brain-computer interface (BCI) system can be used as a rehabilitation tool for stroke patients. Efficient classification of EEG from stroke patients is fundamental in the BCI-based stroke rehabilitation systems. One of the most successful algorithms for EEG classification is the common spatial patterns (CSP). However, studies have reported that the performance of CSP heavily relies on its operational frequency band and channels configuration. To the best of our knowledge, there is no agreed upon clinical conclusion about motor imagery patterns of stroke patients. In this case, it is not available to obtain the active channels and frequency bands related to brain activities of stroke patients beforehand. Hence, for using the CSP algorithm, we usually set a relatively broad frequency range and channels, or try to find subject-related frequency bands and channels. To address this problem, we propose an adaptive boosting algorithm to perform autonomous selection of key channels and frequency band. In the proposed method, the spatial-spectral configurations are divided into multiple preconditions, and a new heuristic supervisor of stochastic gradient boost strategy is utilized to train weak classifiers under these preconditions. Extensive experiment comparisons have been performed on three datasets including two benchmark datasets from the famous BCI competition III and BCI competition IV as well as one self-acquired dataset from stroke patients. Results show that our algorithm yields relatively higher classification accuracies compared with seven state-of-the-art approaches. In addition, the spatial patterns (spatial weights) and spectral patterns (bandpass filters) determined by the algorithm can also be used for further analysis of the data, e.g., for brain source localization and physiological knowledge exploration.Studies have shown that a motor imagery electro encephalogram (EEG)-based brain-computer interface (BCI) system can be used as a rehabilitation tool for stroke patients. Efficient classification of EEG from stroke patients is fundamental in the BCI-based stroke rehabilitation systems. One of the most successful algorithms for EEG classification is the common spatial patterns (CSP). However, studies have reported that the performance of CSP heavily relies on its operational frequency band and channels configuration. To the best of our knowledge, there is no agreed upon clinical conclusion about motor imagery patterns of stroke patients. In this case, it is not available to obtain the active channels and frequency bands related to brain activities of stroke patients beforehand. Hence, for using the CSP algorithm, we usually set a relatively broad frequency range and channels, or try to find subject-related frequency bands and channels. To address this problem, we propose an adaptive boosting algorithm to perform autonomous selection of key channels and frequency band. In the proposed method, the spatial-spectral configurations are divided into multiple preconditions, and a new heuristic supervisor of stochastic gradient boost strategy is utilized to train weak classifiers under these preconditions. Extensive experiment comparisons have been performed on three datasets including two benchmark datasets from the famous BCI competition III and BCI competition IV as well as one self-acquired dataset from stroke patients. Results show that our algorithm yields relatively higher classification accuracies compared with seven state-of-the-art approaches. In addition, the spatial patterns (spatial weights) and spectral patterns (bandpass filters) determined by the algorithm can also be used for further analysis of the data, e.g., for brain source localization and physiological knowledge exploration.
Author Chen, Min
Liu, Ye
Zhang, Hao
Zhang, Liqing
Author_xml – sequence: 1
  givenname: Ye
  surname: Liu
  fullname: Liu, Ye
  organization: Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Hao
  surname: Zhang
  fullname: Zhang, Hao
  organization: The Robotics Institute, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
– sequence: 3
  givenname: Min
  surname: Chen
  fullname: Chen, Min
  organization: Credit Operations Department, Citibank (China) Co. Ltd, Shanghai, China
– sequence: 4
  givenname: Liqing
  surname: Zhang
  fullname: Zhang, Liqing
  email: zhang-lq@cs.sjtu.edu.cn
  organization: Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26302519$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtPGzEURi1Exav8gVaqLHXRbib4ObaXAQVaiZaKhPXIY3vA1LFTe7Lg39chKQsWFZKl68X57rXvOQb7MUUHwAeMJhgjdbb4Ob-dTQjCfEJY2yKh9sAR5lw2iGC0v7lT1jBK0CE4LuURISxaLg7AIWkpIhyrI2Cn8DylMvp435zr4iycr_TodWjmK2fGrAP8kawLcEgZzsecfjv4qwIujuULnM2u4DTq8FR8gT7CW_egex_8WIkU4SJrH2vn9-DdoENxp7t6Au4uZ4uLb831zdX3i-l1YxgWY6MQGXhf_2FVzwZLuBkEUUxISRnllupBc9rXpwtj28EaLh1CTNJec20ItvQEfN32XeX0Z-3K2C19MS4EHV1alw4L2eJ6lHoD2hIq6mz8FhQpJKkkFf38Cn1M61wXtKGqGEZUiyr1aUet-6Wz3Sr7pc5P3T8rFSBbwORUSnbDC4JRt1HfPavvNuq7nfoakq9CZuehWvTh_9GP26h3zr3MEgQzIjn9C2--uQ8
CODEN ITNSB3
CitedBy_id crossref_primary_10_1155_2020_8882764
crossref_primary_10_1109_TNSRE_2020_3001990
crossref_primary_10_1142_S0129065722500393
crossref_primary_10_1109_ACCESS_2019_2917327
crossref_primary_10_1109_ACCESS_2020_3003056
crossref_primary_10_1016_j_bspc_2022_103612
crossref_primary_10_1007_s13721_020_00246_7
crossref_primary_10_1186_s40779_023_00502_7
crossref_primary_10_3389_fnins_2021_778488
crossref_primary_10_1109_TNSRE_2021_3123969
crossref_primary_10_3390_s24072323
crossref_primary_10_3390_app12094796
crossref_primary_10_1109_TNSRE_2019_2922713
crossref_primary_10_1109_ACCESS_2022_3190798
crossref_primary_10_1016_j_artmed_2019_101754
crossref_primary_10_1088_1741_2552_abd577
crossref_primary_10_1007_s11571_024_10154_5
crossref_primary_10_1016_j_physrep_2021_03_002
crossref_primary_10_1007_s12530_019_09272_x
crossref_primary_10_1109_TBME_2018_2882075
crossref_primary_10_3389_fnins_2023_1203059
crossref_primary_10_3233_JIFS_169567
crossref_primary_10_1109_TNSRE_2021_3059429
crossref_primary_10_3390_s21062173
crossref_primary_10_3390_app112311252
crossref_primary_10_1016_j_asoc_2018_07_006
crossref_primary_10_1088_1741_2560_13_6_061002
crossref_primary_10_1109_JSEN_2022_3220930
crossref_primary_10_1109_TNSRE_2017_2655542
Cites_doi 10.1109/TBME.2006.883649
10.1109/TAU.1967.1161901
10.1515/bmt-2013-4446
10.1016/j.jneumeth.2013.11.009
10.1109/TBME.2005.851521
10.1109/TBME.2008.919125
10.1109/CNE.2007.369647
10.1371/journal.pone.0042922
10.1109/TPAMI.2014.2330598
10.1145/1961189.1961199
10.1007/s00221-012-3166-9
10.1109/TBME.2010.2082539
10.1109/86.895946
10.1109/TNSRE.2006.875642
10.1109/TBME.2004.826691
10.1109/TBME.2014.2300164
10.1214/aos/1013203451
10.1177/001316446002000104
10.1088/1741-2560/11/3/036001
10.1016/j.patcog.2011.04.018
10.1109/TNSRE.2011.2168542
10.1016/S0167-9473(01)00065-2
10.1186/1471-2202-11-S1-P127
10.1177/155005941104200411
10.1161/hs1101.097401
10.1186/1743-0003-11-9
10.1161/STROKEAHA.107.505313
10.1161/01.STR.0000017100.68294.52
10.1109/ICVR.2011.5971813
10.1214/009053605000000255
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2015.2466079
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE

Materials Research Database
Engineering Research Database
Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 179
ExternalDocumentID 3918065241
26302519
10_1109_TNSRE_2015_2466079
7214285
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c417t-902f5b607d9b4fd25cf72947883435d3afa53b6307cd6fdc58e00483ba5ac21d3
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Thu Jul 10 17:14:50 EDT 2025
Fri Jul 11 04:28:29 EDT 2025
Fri Jul 11 15:05:34 EDT 2025
Fri Jul 25 03:17:07 EDT 2025
Mon Jul 21 06:04:45 EDT 2025
Thu Apr 24 22:54:43 EDT 2025
Tue Jul 01 00:43:14 EDT 2025
Wed Aug 27 02:51:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-902f5b607d9b4fd25cf72947883435d3afa53b6307cd6fdc58e00483ba5ac21d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26302519
PQID 1755842960
PQPubID 85423
PageCount 11
ParticipantIDs crossref_primary_10_1109_TNSRE_2015_2466079
proquest_miscellaneous_1760908382
proquest_journals_1755842960
proquest_miscellaneous_1786186199
pubmed_primary_26302519
crossref_citationtrail_10_1109_TNSRE_2015_2466079
ieee_primary_7214285
proquest_miscellaneous_1762374781
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-Jan.
2016-1-00
2016-Jan
20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-Jan.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
ref37
ref36
ref14
ref31
ref33
ref11
ref10
ang (ref32) 2008
ref2
ref39
ref17
ref38
ref19
ref18
yang (ref15) 2014
gao (ref1) 2014; 61
bishop (ref30) 2006; 1
ref24
ref23
ref26
ref20
ref22
ref21
aono (ref13) 2013; 38
ang (ref3) 2014
song (ref7) 2005
ref28
ref27
chin (ref16) 2014
ref29
meng (ref5) 2008
ref8
ref9
ref4
brunner (ref25) 2008
ref6
References_xml – start-page: 1265
  year: 2005
  ident: ref7
  article-title: Phase synchrony rate for the recognition of motor imagery in brain-computer interface
  publication-title: Advances in neural information processing systems
– start-page: 2390
  year: 2008
  ident: ref32
  article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface
  publication-title: Proc IEEE IJCNN
– ident: ref18
  doi: 10.1109/TBME.2006.883649
– ident: ref28
  doi: 10.1109/TAU.1967.1161901
– start-page: 4103
  year: 2008
  ident: ref5
  article-title: BCI-FES training system design and implementation for rehabilitation of stroke patients
  publication-title: Proc IJCNN
– ident: ref39
  doi: 10.1515/bmt-2013-4446
– ident: ref38
  doi: 10.1016/j.jneumeth.2013.11.009
– volume: 38
  start-page: 123
  year: 2013
  ident: ref13
  article-title: Relationship between event-related desynchronization and cortical excitability in healthy subjects and stroke patients
  publication-title: Tokai J Exp Clin Med
– ident: ref17
  doi: 10.1109/TBME.2005.851521
– ident: ref19
  doi: 10.1109/TBME.2008.919125
– ident: ref29
  doi: 10.1109/CNE.2007.369647
– ident: ref12
  doi: 10.1371/journal.pone.0042922
– ident: ref2
  doi: 10.1109/TPAMI.2014.2330598
– ident: ref31
  doi: 10.1145/1961189.1961199
– ident: ref14
  doi: 10.1007/s00221-012-3166-9
– year: 2008
  ident: ref25
  publication-title: ?BCI competition 2008-Graz data set A?
– volume: 1
  year: 2006
  ident: ref30
  publication-title: Pattern Recognition and Machine Learning
– ident: ref9
  doi: 10.1109/TBME.2010.2082539
– ident: ref8
  doi: 10.1109/86.895946
– ident: ref24
  doi: 10.1109/TNSRE.2006.875642
– ident: ref10
  doi: 10.1109/TBME.2004.826691
– volume: 61
  start-page: 1436
  year: 2014
  ident: ref1
  article-title: Visual and auditory brain-computer interfaces
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2300164
– ident: ref22
  doi: 10.1214/aos/1013203451
– ident: ref33
  doi: 10.1177/001316446002000104
– ident: ref37
  doi: 10.1088/1741-2560/11/3/036001
– ident: ref20
  doi: 10.1016/j.patcog.2011.04.018
– start-page: 1310
  year: 2014
  ident: ref16
  article-title: Discriminative channel addition and reduction for filter bank common spatial pattern in motor imagery BCI
  publication-title: Proc EMBC 2014
– ident: ref11
  doi: 10.1109/TNSRE.2011.2168542
– ident: ref21
  doi: 10.1016/S0167-9473(01)00065-2
– ident: ref36
  doi: 10.1186/1471-2202-11-S1-P127
– ident: ref4
  doi: 10.1177/155005941104200411
– ident: ref35
  doi: 10.1161/hs1101.097401
– start-page: 672
  year: 2014
  ident: ref15
  article-title: Selection of effective EEG channels in brain computer interfaces based on inconsistencies of classifiers
  publication-title: Proc EMBC 2014
– start-page: 1550059414522229
  year: 2014
  ident: ref3
  article-title: A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke
  publication-title: Clin EEG Neurosci
– ident: ref26
  doi: 10.1186/1743-0003-11-9
– ident: ref6
  doi: 10.1161/STROKEAHA.107.505313
– ident: ref34
  doi: 10.1161/01.STR.0000017100.68294.52
– ident: ref27
  doi: 10.1109/ICVR.2011.5971813
– ident: ref23
  doi: 10.1214/009053605000000255
SSID ssj0017657
Score 2.3753955
Snippet Studies have shown that a motor imagery electro encephalogram (EEG)-based brain-computer interface (BCI) system can be used as a rehabilitation tool for stroke...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 169
SubjectTerms Accuracy
Algorithms
Boosting
Brain modeling
brain-computer interface (BCI)
Brain-Computer Interfaces
Channels
Classification
Competition
Computer Simulation
Diagnosis, Computer-Assisted - methods
Electroencephalography
Electroencephalography - methods
Evoked Potentials, Motor - physiology
Feature extraction
Frequency bands
Human-computer interface
Humans
Imagination - physiology
Models, Neurological
Models, Statistical
Motor Cortex - physiology
Patients
Pattern Recognition, Automated - methods
Rehabilitation
Reproducibility of Results
Sensitivity and Specificity
spatial-spectral analysis
Spatio-Temporal Analysis
Stochastic processes
Stroke
Stroke - diagnosis
Stroke - physiopathology
Stroke Rehabilitation
Strokes
Training
Title A Boosting-Based Spatial-Spectral Model for Stroke Patients' EEG Analysis in Rehabilitation Training
URI https://ieeexplore.ieee.org/document/7214285
https://www.ncbi.nlm.nih.gov/pubmed/26302519
https://www.proquest.com/docview/1755842960
https://www.proquest.com/docview/1760908382
https://www.proquest.com/docview/1762374781
https://www.proquest.com/docview/1786186199
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZJTr30lT62TYsKfRxabWw9rWNSNg2FhJJsIDcjSzKEBLtkvZf--s7ID5rQLr0ZPDZjzwz6JI2-j5D3kYfKBWkZ18ow6WrDKp0ZFk0sfB2KKBLP9smpPr6Q3y_V5Rb5Mp2FiTGm5rM4x8u0lx9av8alsn2T-MHUNtmGNOvPak07BkYnVk8oYMmk4Nl4QCaz-8vT87MFdnGpOZcaPEGqUK4Fwmt7ZzxKAiv_xpppzDl6RE5Gb_tWk-v5uqvm_tc9Isf__ZzH5OEAPulBny1PyFZsnpIPfxIN02XPMkA_0rM7HN67JBzQw7ZdYZs0O4SxL1CUM4b0ZahhjwsmFIXVbijAYHre3bbXkf7oWVtXn-hi8Y2OBCj0qrn3droclCqekYujxfLrMRs0GpiXuemYzXitMLrBVrIOXPka4Dpy8gsAYkG42ilRwb82Pug6eFXExGJfOeU8z4N4TnaatokvCXVRmAKCA6Olkj5zzmdC6Lry0WIjrpiRfIxU6Qf3UEfjpkwTmcyWKdAlBrocAj0jn6dnfvb0HRutdzFKk-UQoBnZGxOiHCp8VQLsAuzGYQI4I--m21CbuOHimtiu0UZnFjBuwTfacIEiBvkmmwJlDXILHr7oE3LycczjV3_3_TV5AF84LBrtkZ3udh3fAIzqqrepfn4DPTwWLQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALr_JYKGAkHgfqbeJHEh9btGWB7gq1qdRb5NiOhFolqJu98OvxOA_RClbcImUSTTJjzWd7_H0Abx2zpbZCUZbIlApdpbRMopS61GWmspnjgWd7sUzmZ-LruTzfgr3xLIxzLjSfuSlehr1825g1LpXtp4EfTN6C277uC9md1hr3DNIk8Hr6ISyo4CwajshEaj9fnp7MsI9LTplIvC9IFsoSjgBbXatIQWLl32gzVJ2j-7AY_O2aTS6m67acml83qBz_94MewL0efpKDLl8ewparH8G7P6mGSd7xDJD35OQai_cO2ANy2DQrbJSmh776WYKCxj6BKarY45IJQWm1S-KBMDltr5oLR753vK2rD2Q2-0wGChTyo77xdpL3WhWP4exoln-a016lgRoRpy1VEaskxteqUlSWSVN5wI6s_NxDMct1pSUv_b9OjU0qa2TmAo99qaU2LLb8CWzXTe2eAdGOp5kPjq-XUphIaxNxnlSlcQpbcfkE4iFShendQyWNyyJMZSJVhEAXGOiiD_QEPo7P_OwIPDZa72CURss-QBPYHRKi6Mf4qvDAy6M35qeAE3gz3vajE7dcdO2aNdokkfIoN2MbbRhHGYN4k02Gwgax8h4-7RJy9HHI4-d_9_013Jnni-Pi-Mvy2wu467-2X0Lahe32au1eelDVlq_CWPoN690Zeg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Boosting-Based+Spatial-Spectral+Model+for+Stroke+Patients%27+EEG+Analysis+in+Rehabilitation+Training&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Liu%2C+Ye&rft.au=Zhang%2C+Hao&rft.au=Chen%2C+Min&rft.au=Zhang%2C+Liqing&rft.date=2016-01-01&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=24&rft.issue=1&rft.spage=169&rft.epage=179&rft_id=info:doi/10.1109%2FTNSRE.2015.2466079&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon