Permutation Jaccard Distance-Based Hierarchical Clustering to Estimate EEG Network Density Modifications in MCI Subjects

In this paper, a novel electroencephalographic (EEG)-based method is introduced for the quantification of brain-electrical connectivity changes over a longitudinal evaluation of mild cognitive impaired (MCI) subjects. In the proposed method, a dissimilarity matrix is constructed by estimating the co...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 29; no. 10; pp. 5122 - 5135
Main Authors Mammone, Nadia, Ieracitano, Cosimo, Adeli, Hojjat, Bramanti, Alessia, Morabito, Francesco C.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, a novel electroencephalographic (EEG)-based method is introduced for the quantification of brain-electrical connectivity changes over a longitudinal evaluation of mild cognitive impaired (MCI) subjects. In the proposed method, a dissimilarity matrix is constructed by estimating the coupling strength between every pair of EEG signals, Hierarchical clustering is then applied to group the related electrodes according to the dissimilarity estimated on pairs of EEG recordings. Subsequently, the connectivity density of the electrodes network is calculated. The technique was tested over two different coupling strength descriptors: wavelet coherence (WC) and permutation Jaccard distance (PJD), a novel metric of coupling strength between time series introduced in this paper. Twenty-five MCI patients were enrolled within a follow-up program that consisted of two successive evaluations, at time T0 and at time T1, three months later. At T1, four subjects were diagnosed to have converted to Alzheimer's Disease (AD). When applying the PJD-based method, the converted patients exhibited a significantly increased PJD (<inline-formula> <tex-math notation="LaTeX">p < 0.05 </tex-math></inline-formula>), i.e., a reduced overall coupling strength, specifically in delta and theta bands and in the overall range (0.5-32 Hz). In addition, in contrast to stable MCI patients, converted patients exhibited a network density reduction in every subband (delta, theta, alpha, and beta). When WC was used as coupling strength descriptor, the method resulted in a less sensitive and specific outcome. The proposed method, mixing nonlinear analysis to a machine learning approach, appears to provide an objective evaluation of the connectivity density modifications associated to the MCI-AD conversion, just processing noninvasive EEG signals.
AbstractList In this paper, a novel electroencephalographic (EEG)-based method is introduced for the quantification of brain-electrical connectivity changes over a longitudinal evaluation of mild cognitive impaired (MCI) subjects. In the proposed method, a dissimilarity matrix is constructed by estimating the coupling strength between every pair of EEG signals, Hierarchical clustering is then applied to group the related electrodes according to the dissimilarity estimated on pairs of EEG recordings. Subsequently, the connectivity density of the electrodes network is calculated. The technique was tested over two different coupling strength descriptors: wavelet coherence (WC) and permutation Jaccard distance (PJD), a novel metric of coupling strength between time series introduced in this paper. Twenty-five MCI patients were enrolled within a follow-up program that consisted of two successive evaluations, at time T0 and at time T1, three months later. At T1, four subjects were diagnosed to have converted to Alzheimer's Disease (AD). When applying the PJD-based method, the converted patients exhibited a significantly increased PJD (p < 0.05), i.e., a reduced overall coupling strength, specifically in delta and θ bands and in the overall range (0.5-32 Hz). In addition, in contrast to stable MCI patients, converted patients exhibited a network density reduction in every subband (delta, θ, alpha, and beta). When WC was used as coupling strength descriptor, the method resulted in a less sensitive and specific outcome. The proposed method, mixing nonlinear analysis to a machine learning approach, appears to provide an objective evaluation of the connectivity density modifications associated to the MCI-AD conversion, just processing noninvasive EEG signals.In this paper, a novel electroencephalographic (EEG)-based method is introduced for the quantification of brain-electrical connectivity changes over a longitudinal evaluation of mild cognitive impaired (MCI) subjects. In the proposed method, a dissimilarity matrix is constructed by estimating the coupling strength between every pair of EEG signals, Hierarchical clustering is then applied to group the related electrodes according to the dissimilarity estimated on pairs of EEG recordings. Subsequently, the connectivity density of the electrodes network is calculated. The technique was tested over two different coupling strength descriptors: wavelet coherence (WC) and permutation Jaccard distance (PJD), a novel metric of coupling strength between time series introduced in this paper. Twenty-five MCI patients were enrolled within a follow-up program that consisted of two successive evaluations, at time T0 and at time T1, three months later. At T1, four subjects were diagnosed to have converted to Alzheimer's Disease (AD). When applying the PJD-based method, the converted patients exhibited a significantly increased PJD (p < 0.05), i.e., a reduced overall coupling strength, specifically in delta and θ bands and in the overall range (0.5-32 Hz). In addition, in contrast to stable MCI patients, converted patients exhibited a network density reduction in every subband (delta, θ, alpha, and beta). When WC was used as coupling strength descriptor, the method resulted in a less sensitive and specific outcome. The proposed method, mixing nonlinear analysis to a machine learning approach, appears to provide an objective evaluation of the connectivity density modifications associated to the MCI-AD conversion, just processing noninvasive EEG signals.
In this paper, a novel electroencephalographic (EEG)-based method is introduced for the quantification of brain-electrical connectivity changes over a longitudinal evaluation of mild cognitive impaired (MCI) subjects. In the proposed method, a dissimilarity matrix is constructed by estimating the coupling strength between every pair of EEG signals, Hierarchical clustering is then applied to group the related electrodes according to the dissimilarity estimated on pairs of EEG recordings. Subsequently, the connectivity density of the electrodes network is calculated. The technique was tested over two different coupling strength descriptors: wavelet coherence (WC) and permutation Jaccard distance (PJD), a novel metric of coupling strength between time series introduced in this paper. Twenty-five MCI patients were enrolled within a follow-up program that consisted of two successive evaluations, at time T0 and at time T1, three months later. At T1, four subjects were diagnosed to have converted to Alzheimer's Disease (AD). When applying the PJD-based method, the converted patients exhibited a significantly increased PJD (<inline-formula> <tex-math notation="LaTeX">p < 0.05 </tex-math></inline-formula>), i.e., a reduced overall coupling strength, specifically in delta and theta bands and in the overall range (0.5-32 Hz). In addition, in contrast to stable MCI patients, converted patients exhibited a network density reduction in every subband (delta, theta, alpha, and beta). When WC was used as coupling strength descriptor, the method resulted in a less sensitive and specific outcome. The proposed method, mixing nonlinear analysis to a machine learning approach, appears to provide an objective evaluation of the connectivity density modifications associated to the MCI-AD conversion, just processing noninvasive EEG signals.
In this paper, a novel electroencephalographic (EEG)-based method is introduced for the quantification of brain-electrical connectivity changes over a longitudinal evaluation of mild cognitive impaired (MCI) subjects. In the proposed method, a dissimilarity matrix is constructed by estimating the coupling strength between every pair of EEG signals, Hierarchical clustering is then applied to group the related electrodes according to the dissimilarity estimated on pairs of EEG recordings. Subsequently, the connectivity density of the electrodes network is calculated. The technique was tested over two different coupling strength descriptors: wavelet coherence (WC) and permutation Jaccard distance (PJD), a novel metric of coupling strength between time series introduced in this paper. Twenty-five MCI patients were enrolled within a follow-up program that consisted of two successive evaluations, at time T0 and at time T1, three months later. At T1, four subjects were diagnosed to have converted to Alzheimer's Disease (AD). When applying the PJD-based method, the converted patients exhibited a significantly increased PJD (p < 0.05), i.e., a reduced overall coupling strength, specifically in delta and θ bands and in the overall range (0.5-32 Hz). In addition, in contrast to stable MCI patients, converted patients exhibited a network density reduction in every subband (delta, θ, alpha, and beta). When WC was used as coupling strength descriptor, the method resulted in a less sensitive and specific outcome. The proposed method, mixing nonlinear analysis to a machine learning approach, appears to provide an objective evaluation of the connectivity density modifications associated to the MCI-AD conversion, just processing noninvasive EEG signals.
In this paper, a novel electroencephalographic (EEG)-based method is introduced for the quantification of brain-electrical connectivity changes over a longitudinal evaluation of mild cognitive impaired (MCI) subjects. In the proposed method, a dissimilarity matrix is constructed by estimating the coupling strength between every pair of EEG signals, Hierarchical clustering is then applied to group the related electrodes according to the dissimilarity estimated on pairs of EEG recordings. Subsequently, the connectivity density of the electrodes network is calculated. The technique was tested over two different coupling strength descriptors: wavelet coherence (WC) and permutation Jaccard distance (PJD), a novel metric of coupling strength between time series introduced in this paper. Twenty-five MCI patients were enrolled within a follow-up program that consisted of two successive evaluations, at time T0 and at time T1, three months later. At T1, four subjects were diagnosed to have converted to Alzheimer's Disease (AD). When applying the PJD-based method, the converted patients exhibited a significantly increased PJD (p <; 0.05), i.e., a reduced overall coupling strength, specifically in delta and theta bands and in the overall range (0.5-32 Hz). In addition, in contrast to stable MCI patients, converted patients exhibited a network density reduction in every subband (delta, theta, alpha, and beta). When WC was used as coupling strength descriptor, the method resulted in a less sensitive and specific outcome. The proposed method, mixing nonlinear analysis to a machine learning approach, appears to provide an objective evaluation of the connectivity density modifications associated to the MCI-AD conversion, just processing noninvasive EEG signals.
Author Mammone, Nadia
Morabito, Francesco C.
Adeli, Hojjat
Ieracitano, Cosimo
Bramanti, Alessia
Author_xml – sequence: 1
  givenname: Nadia
  orcidid: 0000-0003-4962-3500
  surname: Mammone
  fullname: Mammone, Nadia
  email: nadia.mammone@irccsme.it
  organization: Signal Processing Group, IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
– sequence: 2
  givenname: Cosimo
  orcidid: 0000-0001-7890-2897
  surname: Ieracitano
  fullname: Ieracitano, Cosimo
  organization: Department DICEAM of the Mediterrean, University of Reggio Calabria, Reggio Calabria, Italy
– sequence: 3
  givenname: Hojjat
  orcidid: 0000-0001-5718-1453
  surname: Adeli
  fullname: Adeli, Hojjat
  organization: College of Engineering, The Ohio State University, Columbus, OH, USA
– sequence: 4
  givenname: Alessia
  surname: Bramanti
  fullname: Bramanti, Alessia
  organization: National Research Council, Institute of Applied Sciences and Intelligent Systems Eduardo Caianiello, Messina, Italy
– sequence: 5
  givenname: Francesco C.
  orcidid: 0000-0003-0734-9136
  surname: Morabito
  fullname: Morabito, Francesco C.
  organization: Department DICEAM of the Mediterrean, University of Reggio Calabria, Reggio Calabria, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29994428$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFPFDEYhhuDEUT-gCamCRcus7Sdbqc96rICZllNwMRb0-l8o11nW2w7Uf49XXbhwIHv8vXwPF-a932L9nzwgNB7SiaUEnV6s1wurieMUDlhjaKC81fogFHBKlZLuff0bn7uo6OUVqSMIFPB1Ru0z5RSnDN5gP5_h7ges8kuePzVWGtih89cysZbqD6bBB2-cBBNtL-dNQOeDWPKEJ3_hXPA85Td2mTA8_k5XkL-F-IffAY-uXyHr0Ln-iJtbifsPL6aXeLrsV2Bzekdet2bIcHRbh-iH1_mN7OLavHt_HL2aVFZTptcyU4JmJq2bykH0hJJW254LZRUdVcr2wlJGKs7yhhMxZT10CvTl2kM9GC7-hCdbO_exvB3hJT12iULw2A8hDFpRoSsORWEFPT4GboKY_Tld5pR2tCmaYQq1McdNbZr6PRtLAnEO_2YaQHkFrAxpBSh19ZtA87RuEFTojcN6ocG9aZBvWuwqOyZ-nj9RenDVnIA8CRIJimhtL4HQ1mnTQ
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TNNLS_2021_3118369
crossref_primary_10_1142_S0129065718500223
crossref_primary_10_3390_e23050592
crossref_primary_10_1088_1741_2552_ac697d
crossref_primary_10_1109_TNNLS_2019_2900077
crossref_primary_10_1109_JBHI_2022_3232550
crossref_primary_10_3389_fnins_2020_562132
crossref_primary_10_1177_15500594211063662
crossref_primary_10_1109_TCYB_2020_2974776
crossref_primary_10_1142_S012906572050032X
crossref_primary_10_3390_brainsci11040453
crossref_primary_10_1017_jpr_2023_112
crossref_primary_10_1142_S0129065719500205
crossref_primary_10_3389_fnagi_2023_1039496
crossref_primary_10_3390_s20010009
crossref_primary_10_1142_S0129065723500156
crossref_primary_10_1016_j_jneumeth_2019_04_013
crossref_primary_10_1109_TNSRE_2020_3014951
crossref_primary_10_1186_s13195_022_01046_z
crossref_primary_10_1016_j_neuroscience_2024_08_017
crossref_primary_10_1142_S012906572050001X
crossref_primary_10_1142_S0129065724500291
crossref_primary_10_3390_app10165666
crossref_primary_10_1109_ACCESS_2021_3126348
crossref_primary_10_1109_JBHI_2020_3015471
crossref_primary_10_1142_S0129065720500021
crossref_primary_10_1142_S0129065720500148
crossref_primary_10_1142_S0129065721300023
crossref_primary_10_18267_j_aip_198
crossref_primary_10_1142_S0129065720500070
crossref_primary_10_1016_j_neuroscience_2021_07_022
crossref_primary_10_1142_S0129065722500538
crossref_primary_10_1109_JBHI_2021_3080935
crossref_primary_10_1016_j_ins_2020_05_073
crossref_primary_10_3233_ICA_220682
crossref_primary_10_1016_j_cmpb_2024_108506
crossref_primary_10_1109_JBHI_2023_3243698
crossref_primary_10_1016_j_clineuro_2020_106446
crossref_primary_10_1142_S0129065720500112
crossref_primary_10_1142_S0129065722500423
crossref_primary_10_1016_j_neunet_2019_11_017
crossref_primary_10_1007_s11704_021_0450_5
crossref_primary_10_3390_brainsci11080977
crossref_primary_10_1016_j_compbiomed_2024_109028
crossref_primary_10_1142_S0129065723500211
crossref_primary_10_3390_e27010096
crossref_primary_10_1016_j_bspc_2024_106763
crossref_primary_10_1109_TFUZZ_2021_3129848
crossref_primary_10_1109_TNNLS_2021_3124330
crossref_primary_10_3390_electronics8091031
crossref_primary_10_1016_j_compbiomed_2022_105511
crossref_primary_10_1142_S0129065724500072
crossref_primary_10_1007_s11063_023_11260_x
crossref_primary_10_1109_TNNLS_2021_3137795
crossref_primary_10_1142_S012906572050015X
crossref_primary_10_1109_OJSP_2021_3051453
crossref_primary_10_1142_S0129065719500199
Cites_doi 10.1016/j.artmed.2016.06.003
10.3109/02699052.2015.1071430
10.1142/S0129065715500057
10.1142/S0129065716500374
10.1212/01.wnl.0000334278.11022.42
10.1109/TNN.2005.845141
10.1177/1550059412444970
10.1016/j.artmed.2015.03.003
10.1001/archneur.62.5.779
10.1109/TNN.2002.1000132
10.1142/S0129065716500039
10.1109/TNNLS.2015.2475618
10.1109/TNNLS.2013.2280271
10.3233/JAD-2005-7301
10.1142/S0129065716500088
10.3390/e14071186
10.5194/npg-11-561-2004
10.1148/radiol.2511080924
10.1142/S0129065714500300
10.1007/s10916-015-0353-9
10.1186/s13195-015-0162-x
10.1007/s00702-010-0450-3
10.1097/WAD.0b013e3181ed1160
10.7326/0003-4819-140-7-200404060-00008
10.1142/S0129065716500258
10.1103/PhysRevLett.88.174102
10.1109/TNNLS.2013.2275003
10.1142/S012906571550032X
10.1016/j.jneumeth.2003.10.009
10.1016/j.neurobiolaging.2004.03.008
10.1142/S0129065715500070
10.1142/S0129065716500246
10.1016/j.bbr.2016.02.035
10.1001/archneur.59.11.1764
10.1214/aoms/1177730491
10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
10.3389/fnagi.2014.00224
10.1016/j.jalz.2011.03.003
10.1016/S0370-1573(02)00137-0
10.1016/j.clinph.2013.08.033
10.1136/bmj.39433.616678.25
10.2174/156720510790691137
10.1177/155005941004100103
10.1097/01.wad.0000189033.35579.2d
10.1016/S0167-2789(01)00386-4
10.1016/j.physa.2012.04.025
10.1109/TNNLS.2013.2247058
10.1002/9780470977811
10.2174/156720510792231720
10.1103/PhysRevE.61.5142
10.1515/revneuro-2016-0052
10.1142/S0129065716500283
10.3233/ICA-2010-0345
10.1016/j.jneumeth.2011.01.027
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2018.2791644
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 5135
ExternalDocumentID 29994428
10_1109_TNNLS_2018_2791644
8281011
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Italian Ministry of Health
  grantid: GR-2011-02351397
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c417t-8d96e5abfb14e0b081b4a4369893d39cd680223d122e5652fef9affff7aefecd3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Thu Jul 10 22:57:43 EDT 2025
Mon Jun 30 06:45:04 EDT 2025
Thu Jan 02 22:35:01 EST 2025
Thu Apr 24 23:00:10 EDT 2025
Thu Jul 03 08:43:09 EDT 2025
Wed Aug 27 02:52:49 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-8d96e5abfb14e0b081b4a4369893d39cd680223d122e5652fef9affff7aefecd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0734-9136
0000-0003-4962-3500
0000-0001-5718-1453
0000-0001-7890-2897
PMID 29994428
PQID 2117177769
PQPubID 85436
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TNNLS_2018_2791644
pubmed_primary_29994428
proquest_miscellaneous_2068341600
proquest_journals_2117177769
ieee_primary_8281011
crossref_primary_10_1109_TNNLS_2018_2791644
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References prince (ref1) 2016
ref56
ref12
ref59
ref15
ref58
ref14
de salvo (ref16) 2015; 30
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref19
ref18
(ref36) 2013
fiscon (ref13) 2014
ref50
ref46
ref48
ref42
christopher (ref45) 1998; 79
ref44
quiroga (ref49) 2000; 61
varghese (ref9) 2013; 18
ref8
ref7
cover (ref40) 2012
ref4
ref3
ref6
ref5
ref35
ref34
ref37
ref31
ref30
ref33
kraskov (ref39) 2003
ref2
lin (ref57) 2013; 24
ref38
shameem (ref41) 2009
rui (ref47) 2005; 16
vuong (ref43) 2014
ref24
ref23
boccaletti (ref51) 2002; 366
ref26
ref25
ref64
ref20
ref63
ref22
ref21
ref28
ref27
ref29
ref60
ref62
ref61
mammone (ref32) 2016
References_xml – ident: ref12
  doi: 10.1016/j.artmed.2016.06.003
– ident: ref15
  doi: 10.3109/02699052.2015.1071430
– start-page: 1
  year: 2009
  ident: ref41
  article-title: An efficient k-means algorithm integrated with jaccard distance measure for document clustering
  publication-title: Proc 1st Asian Himalayas Int Conf Internet (AH-ICI'09)
– ident: ref29
  doi: 10.1142/S0129065715500057
– ident: ref63
  doi: 10.1142/S0129065716500374
– ident: ref6
  doi: 10.1212/01.wnl.0000334278.11022.42
– volume: 16
  start-page: 645
  year: 2005
  ident: ref47
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2005.845141
– ident: ref35
  doi: 10.1177/1550059412444970
– volume: 18
  start-page: 239
  year: 2013
  ident: ref9
  article-title: A review of neuroimaging biomarkers of Alzheimer's disease
  publication-title: Neurology Asia
– ident: ref31
  doi: 10.1016/j.artmed.2015.03.003
– ident: ref2
  doi: 10.1001/archneur.62.5.779
– ident: ref59
  doi: 10.1109/TNN.2002.1000132
– ident: ref30
  doi: 10.1142/S0129065716500039
– ident: ref56
  doi: 10.1109/TNNLS.2015.2475618
– ident: ref58
  doi: 10.1109/TNNLS.2013.2280271
– ident: ref11
  doi: 10.3233/JAD-2005-7301
– year: 2016
  ident: ref1
  article-title: World alzheimer report 2016: Improving healthcare for people living with dementia: Coverage, quality and costs now and in the future
– ident: ref61
  doi: 10.1142/S0129065716500088
– ident: ref42
  doi: 10.3390/e14071186
– ident: ref44
  doi: 10.5194/npg-11-561-2004
– ident: ref10
  doi: 10.1148/radiol.2511080924
– year: 2012
  ident: ref40
  publication-title: Elements of Information Theory
– ident: ref60
  doi: 10.1142/S0129065714500300
– start-page: 979
  year: 2014
  ident: ref43
  article-title: Weighted-permutation entropy as complexity measure for electroencephalographic time series of different physiological states
  publication-title: Proc IEEE EMBS Conf Biomed Eng Sci (IECBES
– ident: ref53
  doi: 10.1007/s10916-015-0353-9
– ident: ref19
  doi: 10.1186/s13195-015-0162-x
– ident: ref17
  doi: 10.1007/s00702-010-0450-3
– ident: ref18
  doi: 10.1097/WAD.0b013e3181ed1160
– ident: ref5
  doi: 10.7326/0003-4819-140-7-200404060-00008
– ident: ref23
  doi: 10.1142/S0129065716500258
– ident: ref38
  doi: 10.1103/PhysRevLett.88.174102
– volume: 24
  start-page: 1689
  year: 2013
  ident: ref57
  article-title: EEG-based learning system for Online motion sickness level estimation in a dynamic vehicle environment
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2275003
– ident: ref22
  doi: 10.1142/S012906571550032X
– ident: ref37
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: ref33
  doi: 10.1016/j.neurobiolaging.2004.03.008
– ident: ref54
  doi: 10.1142/S0129065715500070
– start-page: 1241
  year: 2016
  ident: ref32
  article-title: Hierarchical clustering of the electroencephalogram spectral coherence to study the changes in brain connectivity in Alzheimer's disease
  publication-title: Proc IEEE Congr Evol Comput (CEC)
– ident: ref24
  doi: 10.1142/S0129065716500246
– ident: ref25
  doi: 10.1016/j.bbr.2016.02.035
– ident: ref4
  doi: 10.1001/archneur.59.11.1764
– ident: ref52
  doi: 10.1214/aoms/1177730491
– volume: 79
  start-page: 61
  year: 1998
  ident: ref45
  article-title: A practical guide to wavelet analysis
  publication-title: Bull Amer Meteorol Soc
  doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
– ident: ref20
  doi: 10.3389/fnagi.2014.00224
– ident: ref8
  doi: 10.1016/j.jalz.2011.03.003
– volume: 366
  start-page: 1
  year: 2002
  ident: ref51
  article-title: The synchronization of chaotic systems
  publication-title: Phys Rep
  doi: 10.1016/S0370-1573(02)00137-0
– ident: ref21
  doi: 10.1016/j.clinph.2013.08.033
– ident: ref7
  doi: 10.1136/bmj.39433.616678.25
– start-page: 105
  year: 2014
  ident: ref13
  article-title: Alzheimer's disease patients classification through EEG signals processing
  publication-title: Proc IEEE Symp Comput Intell Data Mining (CIDM)
– ident: ref28
  doi: 10.2174/156720510790691137
– ident: ref26
  doi: 10.1177/155005941004100103
– ident: ref3
  doi: 10.1097/01.wad.0000189033.35579.2d
– ident: ref50
  doi: 10.1016/S0167-2789(01)00386-4
– year: 2013
  ident: ref36
  publication-title: Diagnostic and Statistical Manual of Mental Disorders
– year: 2003
  ident: ref39
  publication-title: Hierarchical Clustering Based on Mutual Information
– ident: ref55
  doi: 10.1016/j.physa.2012.04.025
– ident: ref46
  doi: 10.1109/TNNLS.2013.2247058
– ident: ref48
  doi: 10.1002/9780470977811
– ident: ref14
  doi: 10.2174/156720510792231720
– volume: 30
  start-page: 237
  year: 2015
  ident: ref16
  article-title: Neurophysiological assessment for evaluating residual cognition in vegetative and minimally conscious state patients: A pilot study
  publication-title: Funct Neurol
– volume: 61
  start-page: 5142
  year: 2000
  ident: ref49
  article-title: Learning driver-response relationships from synchronization patterns
  publication-title: Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top
  doi: 10.1103/PhysRevE.61.5142
– ident: ref27
  doi: 10.1515/revneuro-2016-0052
– ident: ref62
  doi: 10.1142/S0129065716500283
– ident: ref64
  doi: 10.3233/ICA-2010-0345
– ident: ref34
  doi: 10.1016/j.jneumeth.2011.01.027
SSID ssj0000605649
Score 2.5069032
Snippet In this paper, a novel electroencephalographic (EEG)-based method is introduced for the quantification of brain-electrical connectivity changes over a...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5122
SubjectTerms Alzheimer's disease
Alzheimer’s Disease (AD)
Brain
brain connectivity
Cluster analysis
Clustering
Cognitive ability
Coherence
Complexity theory
Connectivity
Coupling
Couplings
Dementia
Density
EEG
Electrodes
electroencephalographic (EEG)
Electroencephalography
Evaluation
hierarchical clustering (HC)
Information processing
Learning algorithms
Machine learning
mild cognitive impairment (MCI)
network density
Neural networks
Nonlinear analysis
Optical wavelength conversion
Patients
permutation entropy (PE)
permutation Jaccard distance (PJD)
Permutations
Signal processing
Strength
Wavelet analysis
Title Permutation Jaccard Distance-Based Hierarchical Clustering to Estimate EEG Network Density Modifications in MCI Subjects
URI https://ieeexplore.ieee.org/document/8281011
https://www.ncbi.nlm.nih.gov/pubmed/29994428
https://www.proquest.com/docview/2117177769
https://www.proquest.com/docview/2068341600
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnrhQaHmEFmQkbpBt4jgPH2G7ZanYFRKttLcotidS1VWC2kSi_fUd20kkEEXkFClO4mTGnu-z5wHwXiheZbnhoUSRW4KiQyVSEWKFXFY2QbqrPLdaZ8sLcbZJNzvwcYqFQUTnfIYze-r28k2re7tUdkzsgDSIuM4jIm4-VmtaT4kIl2cO7fI44yFP8s0YIxPJ4_P1-tsP68hVzHhOiEiI3-yQK6zyMMZ0tuZ0D1ZjL72LydWs79RM3_2RwPF_P-MpPBlAJ_vkteQZ7GCzD3tjQQc2jO8D-PWd5uneb86zs4p--7VhJxZh0uXwMxk8w5aXNmTZVVDZsvm2t4kWyPyxrmULmi4IACNbLL6wtfcvZyfWQ767ZavWWK8kv0DILhu2mn9lNG3ZdaCb53BxujifL8OhNEOoRZx3YWFkhmmlahULjBThCiUqkdhqlIlJpDaZDeFNTMw5EmTkNdayqunIK6xRm-QF7DZtg6-ApQY1kRxUhSG2lqQECTEtlFJaREoKHUA8CqrUQ95yWz5jWzr-EsnSCbe0wi0H4QbwYbrnp8_a8c_WB1ZIU8tBPgEcjfpQDgP7piS-TAQ4zzMZwLvpMg1Ju89SNdj21CbKCgIHBCUDeOn1aHo2WX8piPK9_vs7D-Gx7Zn3FjyC3e66xzeEejr11qn7PXZk_dE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtNAFL0qZQEbCpSHocAgwQo5tcfj14IFJClJm1hIpFJ2xuO5lqpGdtXYgvIt_Ar_xp3xQwIBu0p4Zcnj9_G954zvA-CVkDwLQsXtGEWoBUpuS-ELGzPkcaYLpJvOc8skmJ2K47W_3oHvQy4MIprgMxzpVfMvX1V5o6fKDkkdEILcLoTyBK--kEDbvp1P6G2-5vxouhrP7K6HgJ0LN6ztSMUB-pkspCvQkeQApciEp9smesqLcxXoXFNPuZwjcRteYBFnBS1hhgXmyqPj3oCbxDN83maHDTM4DimBwPBr7gbc5l647rNynPhwlSSLTzp0LBrxkDiYEL94PtPK5e-s1ni3oz340T-XNqjlfNTUcpR_-61k5P_64O7CnY5Ws3ftd3APdrC8D3t9ywrWWbB9-PqRPFHThh-w44yAdanYRHNo2my_J5eu2OxMJ2WbHjEbNt40upQEOXhWV2xKBpEoPrLp9ANL2gh6NtE5APUVW1ZKx121U6DsrGTL8ZyRYdYzXdsHcHot9_8QdsuqxMfAfIU5yTiUkSI96vlEetGPpJS5cGQscgvcHhhp3lVm1w1CNqlRaE6cGjClGkxpByYL3gz7XLR1Sf45el-DYhjZ4cGCgx5_aWe6til3XZL4YRjEFrwcNpPR0X-SshKrhsY4QUT0h8iyBY9a3A7HJn4TCxK1T_58zhdwa7ZaLtLFPDl5Crf1VbaxkQewW182-Iw4Xi2fm0-NwefrhuhPpvBeCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Permutation+Jaccard+Distance-Based+Hierarchical+Clustering+to+Estimate+EEG+Network+Density+Modifications+in+MCI+Subjects&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Mammone%2C+Nadia&rft.au=Ieracitano%2C+Cosimo&rft.au=Adeli%2C+Hojjat&rft.au=Bramanti%2C+Alessia&rft.date=2018-10-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft_id=info:doi/10.1109%2FTNNLS.2018.2791644&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon